Collateral Advantage: Exchange Rates, Capital Flows, and Global Cycles

Michael B. Devereux UBC

Charles Engel U Wisconsin

Steve Pak Yeung WuUCSD

6 Oct 2023 4th Joint Workshop

Bank of England – Banque de France – IMF – OECD – Banca d'Italia

Motivation

 Macro finance literature has focused on the liquidity yield or "convenience yield" of short-term U.S. govt bonds (Krishnamurthy, Vissing Jorgensen 2012)

 Internationally, US govt bonds play a central role and serve particular function in the international finance architect

 Recent empirical evidence support a relationship of "convenience yield" of government bonds and exchange rate movements

Engel and Wu (REStud Forthcoming), Jiang, Lustig, Krishnamurthy (JF 2021)

Exchange rate and convenience yield

US vs rest of G10 real exchange rate and convenience yield

Data: Engel and Wu 2023

Goal

 Many existing models features exogenous convenience yield (e.g., bonds in the utility function, UIP wedges)

Goal

 Many existing models features exogenous convenience yield (e.g., bonds in the utility function, UIP wedges)

 A model with endogenous convenience yield that can help explain exchange rate and external position of the US

Goal

 Many existing models features exogenous convenience yield (e.g., bonds in the utility function, UIP wedges)

- A model with endogenous convenience yield that can help explain exchange rate and external position of the US
- 1. Exchange rate and convenience yield in normal times
- 2. Long term external position of the US (exorbitant privilege)
- 3. During **global crisis** (GFC, COVID19), dollar appreciates and large wealth transfer (exorbitant duty)

What we do in this paper

- A NK DSGE model with banks to generate endogenous convenience yield
- Financial intermediaries as in Gertler Karadi 2011, Gertler Kiyotaki 2010 who face collateral constraint on their asset holding
- Symmetric 2-country model (US and foreign) with one asymmetry

US bond is assumed to be better collateral

Demand for an asset not just for interest rate, but as collateral

What we find

- Because the US bond is better collateral
- In steady state, the US
- 1. generates "excess return" on its foreign investment
- 2. has negative NFA and positive net foreign income (exorbitant privilege)
- Upon a uniform global financial shock
- 1. Banks have tight balance sheet constraints >> run to least constrained assets (US bonds)
- 2. Demand for US bond appreciates the currency
- 3. Wealth transfer from the US to RoW (exorbitant duty and Maggiori 2017 paradox)
- 4. Capital flow retrenchment for both countries
- Exchange rates
- 1. Endogenous convenience yield and UIP deviation
- 2. Reasonably match many untargeted moments

Road map

- 1. Quantitative model
- 2. IRFs to mimic GFC
- 3. Exchange rate moments

A two-country New Keynesian model with Treasury convenience

- Goods market
- Home (US) and foreign (Eurozone) goods
- Nominal price stickiness with pricing to market (i.e., local currency pricing LCP)

- Banking sector
- Gertler Karadi / Gertler Kiyotaki type of Home and Foreign banks
- Moral hazard problem → Incentive constraint on asset holding

- Assets market
- Home bond, foreign bond, home capital, foreign capital
- Key is that home bond is better collateral

Graphical Setup

```
Home (US) Foreign (Eurozone)
```


Banks

- Follows the Gertler and Karadi framework
- A fraction $1-\theta$ of each household becomes a banker each period, and continues with probability θ , and reverts to being a consumer with probability $1-\theta$
- Balance sheet of bank (omitted *i* subscript):

$$N_t + B_t = [Q_t K_{h,t+1} + D_{h,t}] + S_t [Q_t^* K_{f,t+1} + D_{f,t}]$$

Net worth + deposit = [investment in Home asset] + [investment in Foreign asset]

where Q_t is the home capital price, S_t is the home price of a foreign currency K_h is the home bank holding of <u>home capital</u> K_f is the home bank holding of <u>foreign capital</u> D_h is the home bank holding of <u>home bond</u> D_f is the home bank holding of <u>foreign bond</u>

Banks' problem

Banks' value function is

$$V_{t} = E_{t}\Omega_{t+1}[(1-\theta)N_{t+1} + \theta V_{t+1}]$$

- Maximize value function by choosing the four assets (K_h, K_f, D_h, D_f)
- Subject to Gertler-Kiyotaki, Gertler-Karadi type of incentive constraint
- Banker can abscond κ amount of the assets so

value of the bank $\geq \kappa$ (value of the assets)

1

value if running the business

value if running away

Banks' problem

Banks' value function is

$$V_{t} = E_{t}\Omega_{t+1}[(1-\theta)N_{t+1} + \theta V_{t+1}]$$

- Maximize value function by choosing the four assets (K_h, K_f, D_h, D_f)
- Subject to Gertler-Kiyotaki, Gertler-Karadi type of incentive constraint
- Banker can abscond κ amount of the assets so

$$V_t \ge \vartheta_t \left[\left(\kappa_{K,h} Q_t K_{h,t+1} + \kappa_h D_{h,t} \right) + \left(\kappa_{K,f} S_t Q_t^* K_{f,t+1} + \kappa_f S_t D_{f,t} \right) \right]$$

- The lower the parameter κ , the more it is pledgeable
- Key assumption:

Home bond is the best collateral $\kappa_h < \kappa_f \le \kappa_{K,h} \le \kappa_{K,f}$ The same for the foreign banks $\kappa_h^* < \kappa_f^* \le \kappa_{K,f}^* \le \kappa_{K,h}^*$

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_h]: E_t \Lambda_{t+1} (R_{h,t+1} - R_{t+1}) = \eta_t \vartheta_t(\kappa_{h,t})$$

$$FOC[D_{h}]: E_{t}\Lambda_{t+1}(R_{h,t+1} - R_{t+1}) = \eta_{t}\vartheta_{t}(\kappa_{h,t})$$

$$FOC[D_{f}]: E_{t}\Lambda_{t+1}\left(\frac{S_{t+1}}{S_{t}}R_{f,t+1} - R_{t+1}\right) = \eta_{t}\vartheta_{t}(\kappa_{f,t})$$

 $\eta_t = shadow \ value \ of \ constraint$

 $\vartheta_t = 1 = country$ wide constaint

 $\kappa_{h,t} = asset specific pledgeability$

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_{h}]: E_{t}\Lambda_{t+1}(R_{h,t+1} - R_{t+1}) = \eta_{t}\vartheta_{t}(\kappa_{h,t})$$

$$FOC[D_{f}]: E_{t}\Lambda_{t+1}\left(\frac{S_{t+1}}{S_{t}}R_{f,t+1} - R_{t+1}\right) = \eta_{t}\vartheta_{t}(\kappa_{f,t})$$

• Combining $FOC[D_h]$ and $FOC[D_f]$ gives

UIP wedge

$$E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{h,t+1} \right) = \eta_t \vartheta_t (\kappa_{f,t} - \kappa_{h,t})$$

• As the constraint tightens, η_t rises

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_h]: E_t \Lambda_{t+1} \left(R_{h,t+1} - R_{t+1} \right) = \eta_t \vartheta_t(\kappa_{h,t})$$

$$FOC[D_f]: E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{t+1} \right) = \eta_t \vartheta_t(\kappa_{f,t})$$

• Combining $FOC[D_h]$ and $FOC[D_f]$ gives

UIP wedge

$$E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{h,t+1} \right) = \eta_t \vartheta_t (\kappa_{f,t} - \kappa_{h,t})$$

- As the constraint tightens, η_t rises
- Forward iterating gives

$$S_{t} = -E_{t} \left\{ \sum_{t=1}^{\infty} \left(R_{h,t} - R_{f,t} \right) + \sum_{t=1}^{\infty} (\tilde{\eta}_{t}) \right\} + \lim_{k \to \infty} E_{t} s_{t+k} - k\bar{s}$$

Calibration table

• Log-linearize around non-stochastic steady state

Symbol	Meaning	Value	Target
$\overline{D_h} = \overline{D_f}$	Total govt debt	2.7	Debt to GDP of 83%
θ	Bank survival prob.	0.95	Leverage of 3
κ_h	Home constraint cost of holding home bond	0.025	Convenience yield = 1%
$oldsymbol{\kappa_h^*}$	Foreign constraint cost of holding home bond	0.05	Foreign holding of US Treasury of 45%
κ_f	Home constraint cost of holding foreign bond	0.40	-ve NFA 18.5%
$oldsymbol{\kappa_f^*}$	Foreign constraint cost of holding foreign bond	0.32	Net foreign income / GDP = 0.0013
$\kappa_{Kh}^* = \kappa_{Kf}$	Constraint cost of holding external capital	0.49	Equity premium of 6%
$\kappa_{Kh} = \kappa_{Kf}^*$	Constraint cost of holding own capital	0.41	Home bias of equity of 70%

Steady state

Symbol	Steady star
Symbol	Steady sta

NFA/GDP	-18.50%	
$r_f - r_h$	4.4 - 3.4% = 1%	
Net income from abroad / GDP	0.13%	

Exorbitant privilege:

+ve Net income from abroad because of convenience yield despite the -ve NFA

Steady state

Symbol	Steady state	
NFA/GDP	-18.50%	
$r_f - r_h$	4.4 - 3.4% = 1%	
Net income from abroad / GDP	0.13%	

Exorbitant privilege:

+ve Net income from abroad because of convenience yield despite the -ve NFA

Symbol	Steady state	
C, C*	0.6113 > 0.6107	
L, L*	0.3314 < 0.3325	
Y, Y*	0.8059 < 0.8082	
Equity share of foreign claims	61% > 53%	

Living off the privilege, US has a high consumption, despite less L and Y

Road map

- 1. Quantitative Model
- 2. IRFs to mimic 2008 GFC
- 3. Exchange rate moments

Key takeaways

- Dollar appreciates in crisis due to convenience demand
- Dollar appreciates despite a wealth transfer to the rest of the world (reconcile reserves currency paradox Maggiori 2017)
- Capital flow retrenchment

Experiment

- A 1% shock to ϑ and ϑ^* (1% tightening to all assets on incentive constraint)
- The shock is AR1, with persistence of 0.98

Symmetric shock but asymmetric effects

IRF of *ϑ* shock – exchange rate

$$S_t = -E_t \left\{ \sum_{t=1}^{\infty} \left(R_{h,t} - R_{f,t} \right) + \sum_{t=1}^{\infty} \left(\tilde{\eta}_t \right) \right\} + \lim_{k \to \infty} E_t s_{t+k} - k \bar{s}$$
 Convenience yield: $\tilde{\eta}_t \equiv E_t S_{t+1} - S_t - \left(R_{h,t} - R_{f,t} \right)$

USD appreciates mostly because of strong convenience yield demand

IRF of *ϑ* shock – reserves currency paradox

• Recall that $RER_t = TOT_t^{2\omega-1} \times D_t$

 Despite a wealth transfer to RoW → RER appreciation because of deviation of LOOP

IRF of ϑ shock – real outcomes

- Home bond is great
- → Home banks shift out from investment more during a crisis
- → Home output drops more

IRF of ϑ shock – capital flows

- Home banks suffer more during the crisis
- → Home banks demand more of the least constrained bond
- > Foreign selling home bonds despite they also demand more of the liquid bond
- → Retrenchment of capital flows

Note: direction of capital flows ≠ demand revelation

IRF of symmetric money shocks (2022 global tightening)

- Same size of global tightening results in USD RER appreciation
- Convenience yield demand drives most of the RER appreciation

Road map

- 1. Quantitative Model
- 2. IRFs to mimic GFC
- 3. Exchange rate moments

Replicate Engel Wu empirical regression

$$\Delta s_{j,t} = \alpha_j + \beta_0 s_{j,t-1} + \beta_1 \Delta \eta_{j,t} + \beta_2 \Delta (i - i^*)_{j,t} + \beta_3 \eta_{j,t-1} + \beta_4 (i - i^*)_{j,t-1} + u_{j,t}$$

	G10 panel regression	Model implied
	Quarterly	Quarterly
$s_{j,t-1}$	-0.06**	-0.02
	(0.02)	
$\Delta \eta_{j,t}$	-1.65**	-1.15
	(0.76)	
$\Delta(m{i}-m{i}^*)_{m{j},m{t}}$	-2.61***	-2.45
	(0.97)	
$\eta_{j,t-1}$	-2.08**	-0.04
	(0.87)	
$(i-i^*)_{j,t-1}$	-0.44**	-0.02
5 ·	(0.22)	
N	739	14,900

Note: S.E. cluster by time

Exchange rate moments

	Data moment (Eurozone vs US)	Model implied
$\sigma(\Delta NER)/\sigma(\Delta y)$	3.6	2.5
$\sigma(\Delta NER)/\sigma(\Delta c)$	3.3	2.0
ho(RER)	0.93	0.89
Fama eta	-0.18	-0.03
Backus Smith correlation	0.05	0.16
$Corr(\Delta GDP, \Delta c)$	0.94	0.78
$Corr(\Delta GDP, \Delta I)$	0.81	0.66
$Corr(\Delta GDP, \Delta GDP^*)$	0.88	0.56

Can match these untargeted moments reasonably well

Conclusion

- A DSGE model of endogenous convenience yield
- It takes a pretty standard NK model with one important new assumption
- One single asymmetry US bond is better collateral
- Convenience yield links to banking friction no exogenous yield / noise trader
- Matches US external positions and exchange rate dynamics well

Conclusion

- A DSGE model of endogenous convenience yield
- It takes a pretty standard NK model with one important new assumption
- One single asymmetry US bond is better collateral
- Convenience yield links to banking friction no exogenous yield / noise trader
- Matches US external positions and exchange rate dynamics well

THANK YOU