
FORUM ON TAX ADMINISTRATION

Unlocking the Digital Economy -
A Guide to Implementing
Application Programming
Interfaces in Government

Unlocking the digital economy

A guide to implementing application programming
interfaces in government

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Preface

As tax administrators we must continue to evolve in order to meet client expectations
for seamless service delivery whilst also protecting the integrity of revenue systems. As
public servants and community leaders we also have a broader opportunity to make positive
contributions to Government and community ecosystems that may extend beyond our
traditional tax administration roles. The need for us to contribute to the broader ecosystem is
reinforced by the fact that our clients operate across the boundaries of different government
services, across public and private sectors and across government jurisdictions.

The digitisation of our economies allows us to now imagine a world where “tax just
happens” as a by-product of people going about their normal business. It allows us to move
beyond a siloed, period based and retrospectively audited reactive world. We can now begin
to craft a new reality where services are seamlessly integrated and where the integrity of
the broader system is assured within these integrated services.

Our ability to create a world where “tax just happens” is increasingly dependent on
“machine to machine” Application Programming Interfaces (APIs). These APIs allow our
revenue systems to digitally interact with other Digital Service Providers (DSPs) including
banks, accounting software providers and other government agencies. We can use APIs to
send and receive information, to validate activities, to facilitate transactions and to impose
behavioural nudges close to real time.

This paper briefly explores the business context for APIs before exploring a broad
range of implementation issues associated with APIs. Where possible, this paper has drawn
on some of the most commonly implemented industry standards at the time of publication
and we hope that any agency, regardless of where they are on their API implementation
journey, can benefit from the concepts explored within this paper.

I would like to acknowledge the contributions of participating jurisdictions for providing
insights and implementation examples of APIs. The ability to build on experience and
application across a wide range of use cases has enabled us to develop a robust guidance
paper with extensive relevance to agencies across the globe.

Finally, I would like to recognise the efforts of my staff at the Australian Taxation
Office. There has been a great deal of collaboration between the ATO and the hundreds of
organisations that interact with our APIs. This paper is a reflection of the many learnings
that have come from that journey.

Chris Jordan

Commissioner of Taxation, Australian Taxation Office

PREFACE – 3

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

TABLE OF CONTENTS – 5

Table of contents

Abbreviations and acronyms��� 7

Executive summary��� 9

Chapter 1. �Introduction ��11
1.1. Why APIs? ��11

Chapter 2. �Technical concepts��17
2.1. A brief history of APIs��17
2.2. API Management��� 18
2.3. Architectural approaches��� 21
2.4. API security practices and controls��� 37
2.5. API consumer experience ��� 44
2.6. API measurement and reporting ��� 46
2.7. API delivery techniques and toolsets��� 47

Chapter 3. �Future applications of APIs��� 51
3.1. A transport management company executes a payroll event��� 51
3.2. A transport management company makes a contract payment��� 52
3.3. A transport management company attempts a contract payment ��� 53

Annex A. �ATO Lessons Learned��� 55

Annex B. �Glossary of terms��� 59

References ��� 65

Figures
Figure 1.1	 The difference between partially connected and fully connected ecosystems����������������������11
Figure 1.2	 Attributes of paper, electronic and digital ecosystems ��� 12
Figure 1.3	 The growth of digital “event based” reporting ��� 13
Figure 1.4	 ATO transition from paper to digital (from the reinventing the ATO blueprint)������������������� 15
Figure 2.1	 Connections across the ecosystem��17
Figure 2.2	 Extract from the MuleSoft End to End Lifecycle for Microservices������������������������������������� 20
Figure 2.3	 Peer-to-peer model��� 21
Figure 2.4	 The four-corner model��� 22
Figure 2.5	 Client-server model ��� 23
Figure 2.6	 Monoliths and microservices��� 24
Figure 2.7	 The API gateway pattern��� 27

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

6 – TABLE OF CONTENTS

Figure 2.8	 Event-Driven Architecture��� 28
Figure 2.9	 Liability vs Return On Investment (ROI) Analysis��� 37
Figure 2.10	 OpenID Connect Protocol Suite ��� 39
Figure 3.1	 A transport management company executes a payroll event��� 52
Figure 3.2	 A transport management company makes a contract payment��� 53
Figure 3.3	 A transport management company attempts a contract payment��� 54

Tables
Table 1.1	 Comparison of machine to machine (M2M) and human processing ����������������������������������� 14
Table 2.1	 Peer-to-peer application technologies and standards��� 22
Table 2.2	 Commonly used HTTP methods, purpose and classification��31
Table 2.3	 Fundamental technology standards��� 32
Table 2.4	 Messaging standards ��� 32
Table 2.5	 WS-* standards ��� 34
Table 2.6	 Primary data standards ��� 35
Table 2.7	 Authentication and authorisation standards��� 38
Table B.1	 Definitions for key terms used throughout the document��� 63

Box
Box 2.1	 Example of exchanging SMS data��� 23

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

﻿Abbreviations and acronyms – 7

Abbreviations and acronyms

ABN	 Australian Business Number

ABR	 Australian Business Register

API	 Application programming interface

ASF	 Apache Software Foundation

CC	 Creative Commons

COTS	 Commercial off the shelf

DOS	 Denial of service attack

DSP	 Digital Service Providers

ESB	 Enterprise service bus

EVTE	 External vendor test environment

HATEOAS	 Hypermedia as the Engine of Application State)

HTTP	 HyperText Transfer Protocol

IAAS	 Infrastructure as a service

ISO	 International Organisation for Standardisation

IETF	 Internet Engineering Task Force

JSON	 JavaScript Object Notation

JWA	 JSON Web Algorithms

JWE	 JSON Web Encryption

JWK	 JSON Web Key

JWS	 JSON Web Signatures

JWT	 JSON Web

MAC	 Message authentication code

MIT	 Massachusetts Institute of Technology

OASIS	 Organisation for the Advancement of Structured Information Standards

OAS	 Open API Specification

PEPPOL	 Pan-European Public Procurement On-Line

OWASP	 Open Web Application Security Project

PAAS	 Platform as a Service

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

8 – ﻿Abbreviations and acronyms

PII	 Personally identifiable information

PKI	 Public Key Infrastucture

RFC	 Request for Comments

SAAS	 Software as a service

SAML	 Security Assertion Markup Language

SSL	 Secure Socket Layer

SLA	 Service Level Agreement

SOA	 Service-oriented architecture

SOAP	 Simple object access protocol

SDK	 Software development kit

TLS	 Transport layer security

W3C	 World Wide Web Consortium

WSDL	 Web services description language

XBRL	 eXtensible Business Reporting Language

XML	 eXtensible Markup Language

XSD	 XML Schema Definition

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

﻿Executive summary – 9

Executive summary

The advent of the World Wide Web has revolutionised the way business is being
conducted. Organisations can now leverage off the data that flows through their “natural
systems” and connect to other services such as government infrastructure. Application
Programming Interfaces (APIs) allow this connectivity between systems, people and things
without facilitating direct access.

There are many opportunities to be realised through the use of APIs. Information can
be collected as a primary function of an API or as a by-product. This collection of data is
often rules based. When an event occurs, it triggers the push or pull of information from
a data source. If calculations are required, this can be built into the API functionality. The
data can be validated through the API before being posted to a back end system.

With the correct rules and validations in place, seamless interaction between multiple
touch points simultaneously allows “tax and other government obligations” to just happen.

Benefits of creating a digital ecosystem through APIs include:

•	 fostering a self-regulating economy, making it harder for people to operate outside
the system

•	 streamlining and automating government interactions

•	 moving past use of electronic forms to true digital interactions.

Good API management varies by organisation, however there are two factors these
organisations will have in common. First, ensuring the design focus has the user at the
centre. Understanding the need and operation of the end user helps when designing the
functionality of an API. Second, take a product management approach. This includes
understanding the product lifecycle and what success or failure looks like, providing a
sandbox environment for appropriate testing to take place and, establishing a valid business
case to justify the approach. It needs to be noted that success of government APIs is not
always guaranteed and the one size fits all approach isn’t necessarily always the best way.

There are two conceptual architectural models information exchange is based on, peer-
to-peer and client-server. In a peer-to-peer model, communications can occur between any
of the peers, while a client-server model only allows client to server and/or server to client
communication.

API implementation patterns have seen a shift from monolithic architecture to
microservices architecture. Microservices provide the ability to scale and distribute services
across an organisation’s servers according to need. Microservices need not be as small
as possible, however the focus should be to manage a single specific business capability.
Another architecture pattern is the event-driven pattern. Event-driven architecture
manages asynchronous activities between event producers and event consumers. Both
the microservices and event-drive architecture implementation patterns have their own
strengths and weaknesses which need to be considered before adoption.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

10 – ﻿Executive summary

The two key API implementation styles used are Representational State Transfer
(ReST) and Remote Procedure Call (RPC). Although RPC was commonly used early in the
web API implementation journey, it has been surpassed by ReST in recent years.

Having the right API security practices and controls in place is essential when exposing
information externally to an organisation. The solution should be the right balance of cost
vs risk.

Authentication and authorisation standards should be used to provide a layer of protection
against unintentional exposure and control access to APIs. Encrypted connections are
essential for communication, further security can be achieved by avoiding the use of
predictable resource locators.

When determining requirements, consider whether to align them to an established
international standard such as ISO/IEC 27001. Other controls an organisation can implement
to heighten security in their API environment should include:

•	 whitelisting of software identifiers, names and source locations

•	 throttling or rate limiting

•	 establishing visibility and integrity though the supply chain

•	 geoblocking of specific locations

•	 implementation of intrusion detection and intrusion prevention systems and

•	 use of real-time fraud analytics.

API risk management involves understanding the risk matrix and what types of
operational security problems can arise whether they be accidental or deliberate.

Developers building these services need to be given the proper tools and information
to build, deliver and maintain APIs beneficial to end users. This can be done by providing
developers the ability to self-service through portals, ensuring there are documentation
standards and providing information in developer kits to assist developers in building APIs.

When implemented correctly, API measurement and reporting insights are useful to
support the management of the API suite. Monitoring is not only useful for security, it can
also be used to track availability and real time use of APIs. Organisations can monitor
system health and use effective alerting where critical warning thresholds are reached and
may impact API user experience.

Delivery of APIs should be done through an agile methodology which will allow for
organisations to respond to changing demands and deliver incrementally. Automated
processes such as continuous integration and continuous delivery allow for a resource shift
away from operational tasks into delivery.

With the widespread use of open source or royalty free code, it is recommended
that organisations incorporate licence management into their practices. Where there are
dependencies on third-party software, steps should be taken to understand their risk profile.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

1. Introduction – 11

Chapter 1

Introduction

1.1. Why APIs?

1.	 The advent of the internet has led to a fundamental shift in the way people interact
across society. It has revolutionised the way people do business. The World Wide Web
and web 2.0 have led to shifts in the way governments interact with the community to
deliver services. Many of those initial forays were nothing more than digitising paper and
providing web based forms through online portals.

2.	 The introduction of the smartphone led to a shift and expansion to delivering
services through applications (apps). These apps were underpinned by small lightweight
data calls which drove an increase of web based services. The next wave is not being
driven through web pages but now through web services called application programming
interfaces (APIs).

Figure 1.1. The difference between partially connected and fully connected ecosystems

Disconnected or partially connected systems Interacting via contemporary, connected services in natural systems

Interact via
multiple entry

points

Natural
systems

Point of sale

Banks

Businesses or
agencies

Superannuation
fund

Interact via most
suitable entry

point to an
ecosystem

$

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

12 – 1. Introduction

3.	 In parallel the development of software applications, often referred to as the “natural
systems” people work in from day to day, has increased. Key examples of these are
accounting and business management software. These systems are able to leverage off the
growing range of API’s available in the market to gain access to data to support real time
updates and transactions.
4.	 This has allowed a shift away from the previous “digitising paper” and form based
approaches to a model where the required data, and only the required data, needed to
support a specific transaction is transmitted.
5.	 As a result APIs are becoming the foundation of digital business. They allow
connectivity between systems, people and things without providing direct access. This
limits the risk of compromise to the system as opposed to if someone was allowed direct
access to the system and the underpinning data stores.
6.	 When APIs are used by a taxation administration, they allow tax and other
government obligations to happen as a by-product of a natural system. Natural systems
such as accounting software products can integrate with point of sale systems to give
organisations consolidated data across their business.
7.	 Complete connected environments with the right rules and validations in place
enable seamless interactions, which can be facilitated by software. APIs provide benefit
where there are multiple touch points and complex chains of interactions. They allow for
these transactions to execute one after the other or simultaneously.

Figure 1.2. Attributes of paper, electronic and digital ecosystems

KEY FEATURES KEY FEATURES

EXPERIENCE/ATTRIBUTES EXPERIENCE/ATTRIBUTES EXPERIENCE/ATTRIBUTES

• One to one exchange of data
• Expensive, time consuming and manual
• Multiple steps required by user and ATO:

Order form

Limited �elds
Manual Processing
Error prone
Data requires validation
Inbound only
Retrospective data (latent)

• One to one exchange of data (with possible one to several)
• Often replicates the paper process but uses electronic forms
• Some improvements to the process achieved:

Less paper
usage

• Exchange of unlimited data between unlimited entities
• Tax and Super “just happen”
• Di�cult to not comply

Secured Identity
Management

Enables more �elds
Limited Automation
Some validation and calculations
Can download/upload some information
Still error prone
Retrospective data (latent)

Removes the need for forms and cyclical reporting
No limits to volume and type data
Unlimited automation possibilities
Limited opportunities for errors
Near real time validation of data
Account balance “as it happens”
Current data (no latency)
Decrease costs to community, ATO & Government

Complete
form

Send formReceive
outcome

Moving from… PAPER forms

A
N

N
U

A
L

RE
CO

N
CI

LI
A

TI
O

N

Amend any
errors

Await
outcome

Up to 7
days

Up to 28
days

Up to 56
days

1 2

3 4

5 6

over to… ELECTRONIC forms

A
N

N
U

A
L

RE
CO

N
CI

LI
A

TI
O

N

1

2

3

Lodge online
(Some pre-�lling
available)

View outcome
online (via PDF)

Amend any
errors online

Decrease in
waiting time
(14 days)

Await outcome
(paper only)

Up to 56
days 4

then to a… DIGITAL ecosystem
KEY FEATURES

Banking
transactions

Expenses/
eInvoicing

Asset
holdings Government

entitlements

Licensing &
registrations

Progressive
accounting

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

1. Introduction – 13

APIs can support the move beyond “electronic” forms to real digital
interactions
8.	 True digital requires a move beyond electronic forms and electronic lodgements. Full
digital end-to-end transactions require little user involvement beyond the initial request.
These transactions will usually stay in channel, and where a response is required, it will be
provided to the originating point. There may be many touch points in a digital end-to-end
transaction, but on face value, the interaction will be seamless and almost instantaneous.
The data goes everywhere it needs to go and there is connectivity throughout the entire
ecosystem.

9.	 There is the opportunity for tax administrations using only paper forms to move
straight from paper to digital interactions and bypass building electronic forms. This may
provide efficiencies in the longer term, providing greater service connectivity to consumers
from the outset and not investing in the build and maintenance of temporary platforms and
infrastructure.

10.	 Many administrations will have investments in electronic forms. As a result a
deliberate but phased shift will be required to shift to a digital ecosystem.

APIs can support a system that auto regulates
11.	 Connectivity through the ecosystem makes it easier for citizens to comply with
their obligations while making it harder not to. APIs facilitate conditionality, making
sure a transaction can only progress when certain conditions are met, such as a valid
business registration. Data can flow through to multiple end points ensuring integrity and
consistency across the system. Through this integration, participants are forced to operate
within the system. This is discussed further in Chapter 3, “Future applications of APIs”.

APIs can support multi-directional information
12.	 Basic electronic forms provide functionality for the inward transmission of information,
but there is little opportunity for data to be returned through the same channel. APIs allow
for data and information to be exchanged in multiple directions. Information can be sent in
and out between multiple parties in a digital ecosystem.

Figure 1.3. The growth of digital “event based” reporting

“Electronic Paper” Reporting
(e.g. BAS, ITR)

Digital “Event Based”
(Real time events, updates,
transactions)

Vo
lu

m
es

Single messages are
best placed for small
message/quick
interactions.

Today’s messaging is based on
paper mentality and back end
processing.

Batch/Bulk and Outbound
contain larger �les and high
volume transactions.

The future interaction with the ATO
looks di�erent with more frequent,
smaller interactions.

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

14 – 1. Introduction

APIs can support the application of rules or conditions
13.	 In machine to machine (M2M) transactions rules can be built in to perform several
functions. Validation rules can be used to improve data quality and reduce the occurrence
of errors. Upfront validation rules can include checking the right alpha numerical values
are included in each field. Upfront validation can also be applied to electronic forms.
Where APIs offer additional functionality is through interactive service validation. This
goes beyond the upfront validation and includes checking, for example, that the identifying
data for a transaction matches. This can reduce the number of orphan transmissions which
cannot be processed due to an inability to match to correct record.

14.	 Conditional rules mentioned above are also important in a M2M environment as
the systems need to know when and how certain transactions need to take place. Building
conditional rules into an API also has advantages for business processes as they allow for
certain transactions to be off limits in certain circumstances. Rules should support and not
hinder the efficient operation of natural systems.

15.	 Access controls can be built in to the API environment to restrict who can access a
service. Other levels of control can include when a user can access a service, the level of
detail they can see and the modifications they can make within the environment.

APIs can increase Machine to Machine (non-Human) interactions
16.	 Ecosystems can connect at an M2M level with little to no human interaction. They
function on rules which are built into the APIs and determine what the machine can or
can’t do with the information they collect or distribute.

Table 1.1. Comparison of machine to machine (M2M) and human processing

M2M Human
Anytime, anywhere Working hours, physical locations
Rules based Process/procedure based open to interpretation
Uses previously validated data Data entry open to errors
Simultaneous touch points Linear touch points

APIs can support the consistency and correctness of content
17.	 APIs facilitate the exchange of data, real time payments and other information between
systems. Data exchange can be as a result of a transaction, or data from a transaction can
be extracted and used to fulfil other reporting obligations. APIs reduce the need for double
handling of data and re-entry out of channel as they facilitate the connectivity to various
different data repositories. Content is less exposed to errors while transposing as the need for
human data entry is limited.

APIs can support appropriate timing
18.	 Through the use of APIs, reporting can be event based or posted close to real
time instead of annual or quarterly. Events can be reported simultaneously to different
end points or can be reported in a series of transactions dictated by rules built into the
ecosystem, only having the next transaction take place on the successful execution of the
previous transaction.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

1. Introduction – 15

APIs can support a new and improved client experience
19.	 Organisations have moved beyond simply providing a service to their customers.
Customers now expect service experience and the private sector is delivering on this
expectation. Typically restrictive organisations such as banks have been setting the
standard for a service experience. Strict 9am to 4pm, Monday to Friday operating hours
have been replaced with online banking and banking apps, allowing customers access and
control over their funds 24 hours a day 7 days a week. It has come to be an expectation of
our modern society that customers are able to access services 24/7.
20.	 The Australian Taxation Office (ATO) has been exploring the theme of customer
(or client) experience through its reinvention programme. As part of this, a comparison
has been drawn against what the ATO looked like in a purely paper based world, in an
electronic world and what it could look like in a fully digital world.

APIs can support both retail and wholesale
21.	 Organisations providing digital services through retail channels (e.g. external
websites, portals) should consider the benefits of providing similar services in the
wholesale market (i.e. machine-to-machine interactions). Often, third party service
providers are able to provide richer functionality when a wholesale service is available. It
often comes with reduced ongoing costs to the organisation as there is less maintenance
due to there being no user interface to upkeep. There are still build requirements on the
organisation, and there is a need to know who the end consumer will be and what their
requirements for a service will be.

Figure 1.4. ATO transition from paper to digital (from the reinventing the ATO blueprint)

Pre-1986:
ATO assessment era

1986-2014:
Self-assessment era

Towards 2020 and beyond:
Streamlined self-assessment

AUSTRALIAN ENVIRONMENT

COMPLIANCE FOCUS

RISK APPROACH

RISK CULTURE

BUSINESS DESIGN FOCUS

PRIMARY MEDIUM

STRUCTURAL DIVISIONS

STYLE OF WORKPLACE

ATTITUDE TO ADMINISTRATION

CLIENT SERVICES

TAX ADMINISTRATION PARADIGM

Emergence of personal computers,
the internet and mobile devices, and
changing community expectations

Agile and empowered networks of
individuals and teams

Integrated digital solutions

Increasing voluntary compliance

Tailored engagement based on risk

Sensible risk management

Foster willing participation by making it
easy to get things right and hard not to

Whole-of-client, whole-of-government,
whole-of-ATO

We align to community standards and
expectations and ensure taxpayers
pay the right amount

Globalisation, digital economy, social
media, rapidly changing community
expectations, digital by design

Increased focus on teams and
multiskilling, rigid procedures and rules

Risk-based reviews and audits

Compliance to model and risk
di�erentiation framework

Risk aversion

Listening to the community

Paper moving to electronic records

Market-based divisions

Agreed mutual obligations and protect
the revenue

Call centres, �eld services, emerging
digital services

Self-assessment
Based on true and correct statements

Right services at the right time

Streamlined self-assessment
Based on integrated digital solutions
and stronger relationships

No personal computers or internet,
reliance on TV and print media

No risk tolerance

No risk di�erentiation, random selection

100% assessment

Internally focused

Paper records

Regional divisions

Focus on individual, rigid procedures
and rules

We set the standards and protect the
revenue

Front counter, mail telephone

ATO assessment
Based on full and complete disclosure

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 17

Chapter 2

Technical concepts

2.1. A brief history of APIs

22.	 Application Programming Interfaces (APIs) are defined as: “A set of functions and
procedures allowing the creation of applications that access the features or data of an
operating system, application, or other service” (OxfordDictionaries.com, 2018).

23.	 The concept of an Application Programming Interface is quite simple, it connects to
systems via an agreed protocol and set of functions. In most cases, an API is separate from
the backend systems that store the information to be shared. Essentially, this is a similar
architecture to websites that provide access to organisational information.

Figure 2.1. Connections across the ecosystem

Bene�ciaries
A

PI Consum
ers

A
PI O

w
ners

APIs

BACKEND

Other
Gov’t

Gov’t
websites

Business
software

Large
business

Small
business

Citizens

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

18 – 2. Technical concepts

24.	 Modern web scale APIs use the same protocol as between the web browser and
web server. Instead of returning data and code that is interpreted by the web browser and
rendered as a human readable web page, the API returns machine readable data.

2.2. API Management

What is API Management?
25.	 API Management has become an increasing focus for delivery teams and executives
as organisations seek to participate in the API economy and rapidly grow their catalogue of
external facing APIs. The scope and approach to API Management varies from organisation
to organisation, but it is generally accepted to include:

•	 the process of publishing, promoting, and overseeing APIs in a secure, scalable
environment

•	 ensuring that developers and partners are productive consumers of your APIs
•	 managing, securing, and mediating your API traffic
•	 allowing an organisation to grow their API programme to meet increasing demands
•	 enabling the monetisation of APIs
•	 where technology, business, organisation, and integration concerns intersect.

26.	 API Management is the operational element that underpins a successful API strategy.

What is API Governance?
27.	 API Governance is a sub-set of API Management and is a policy driven approach
to enforcement throughout the design, delivery, and operation of an API. API Governance
concerns frequently include:

•	 version management – version numbering, prior version support arrangements

•	 API lifecycle – API status and deployment assurance

•	 security monitoring and policy enforcement – service accreditation, authentication,
authorisation, and audit policies

•	 risk parameters for managing API environments – visibility, subscription management,
service standards and consumer accreditation.

28.	 There are many commercial product offerings available in the market that claim to
automate or simplify API management and governance concerns. These products are many
and varied, and organisations should assess each product against their common and unique
requirements. This area is further complicated for government agencies and regulators due
to legislative constraints and minimum service standards.

Contemporary API Management practices
29.	 There are some key practices that have emerged which may assist organisations
to embed effective API management regardless of specific technology implementations.
Many approaches and practices exist but two consistent themes continue to stand out:

•	 user at the centre

•	 product-based approach.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 19

Applying user-centred design
30.	 User-centred design (UCD) practices with IT projects have come of age in the
past five years, particularly for projects delivering Web Applications or Mobile Apps.
The benefits of UCD are well established across the industrial design segment. Car
manufacturers determined long ago that the sound a car door makes when it closes will
influence a potential buyer’s perception of the quality and robustness of a new vehicle, and
ultimately value for money.

31.	 Application of UCD practices is slightly more complex when considering APIs and
wholesale web services. The API producer has little control over the ultimate end-user
experience, only the capabilities that are exposed to the next layer in the digital supply
chain.

32.	 Despite the limited ability to directly execute a change to the end-user’s experience,
good user research can be highly valuable. It can uncover challenges and pain points
that may be the manifestation of poor Web API design. User research can also uncover
previously unnoticed opportunities to foster innovation through secure access to useful
organisational information via APIs.

33.	 Information and insight gathered through user research should be shared openly
with the registered members of the digital supply chain. This may foster competition,
prompt innovation, and generate demand for new API services. Ultimately, it will result in
a product which better meets the needs of your end consumer.

34.	 It is critical to establish shared understanding with an organisation’s primary
API consumers. This is often achieved through close collaboration and co-design. An
organisation must provide a clear mechanism for API consumers to provide input and
feedback and ensure that they close the loop and respond to input in a meaningful and
transparent manner. Providers of regulatory or compliance related wholesale APIs should
acknowledge their API consumers as critical partners in the digital supply chain.

35.	 Organisations may find that establishing an agreed set of business and technical
patterns can assist in creating a shared understanding of common API capabilities and
expected service levels.

36.	 When introducing new services or major enhancements, an API provider should
undertake a collaborative user-centred design process with API consumers. A practical
example of a co-design process that is applicable to the development of APIs is depicted
in Figure 2.2.

37.	 This process recognises the value of early and meaningful co-design engagement
with API consumers as reflected by the following steps:

1.	 Model – Identify process and business requirements, create a logical data model
and translate into API groupings.

2.	 Simulate – Model the API resources, operations and methods. Model Payloads and
error codes.

3.	 Get Feedback – Publish API mock-ups to an interactive developer portal and
manage feedback.

4.	 Validate – Modify the API design as appropriate and continue validation.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

20 – 2. Technical concepts

Applying a product management approach
38.	 Many organisations are realising benefits and competitive advantage through
applying a product management approach to API delivery. APIs are the new client face
of the organisation and should be viewed as a product in their own right rather than just a
technology solution.
39.	 This approach has several implications:

1.	 Understand the product lifecycle – Organisations should understand the lifecycle
of their products, with emphasis on understanding what success looks like and the
appropriate time to withdraw or encourage users to migrate off a specific product
or product version.

2.	 Provide a sandbox – Organisations should seek to provide API consumers with
an appropriate sandbox environment to undertake “real” market testing. External
vendor testing environments should facilitate API consumers in reproducing
realistic test scenarios to support a consistent, high-quality end-user experience.

3.	 Establish a business case – All API investment should be subject to existence of a
positive business case. Product managers should understand the anticipated usage of
the API and the associated cost-benefit of an API implementation project. Business
cases need not be overzealous, but rather a clear and concise case for change.

40.	 Convergence of user and product is not a new concept and has been at the core
of most industries for generations. However, for many internal IT teams this is a new
way of working. Some key considerations specific to the delivery of APIs that should be
acknowledged include:

•	 the success of government API services is not guaranteed, despite the monopoly
on the market

•	 one size doesn’t always fit all. Organisations should be prepared to tailor APIs to
meet various usage scenarios

Figure 2.2. Extract from the MuleSoft End to End Lifecycle for Microservices

DESIGN
MODEL

SIM
U

LA
TE

GET FEEDBACK

VALID
ATE

Source: MuleSoft (2017), Best Practices for Microservices:
Implementing a foundation for continuous innovation.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 21

•	 API versioning should be actively managed to ensure that project support remains
sustainable, whilst balanced against customer expectations

•	 must have consumers or a known need that the market will consume or fill.

2.3. Architectural approaches

Architecture principles
41.	 As with all architectural endeavours, an organisation will be faced with competing
options and will need to make trade-off decisions. To maximise the likelihood of an API
project succeeding and minimise design delays, the organisation should establish a set of
guiding principles to address architectural preferences and delivery approaches.

42.	 These principles should reflect and link to the organisational objectives, priorities,
and immovable boundaries. The principles should have a defined order of precedence to
allow designers and architects to determine which principle is applied if two principles are
perceived to be in conflict. Additionally, a clear escalation path should be established to
support a risk-based decision if required.

Conceptual architectural models
43.	 Each exchange of information between parties or computer systems is predominately
based on one of two conceptual models:

•	 peer-to-peer

•	 client-server.

Peer-to-peer
44.	 Solutions based on the peer-to-peer model involve direct communications between
two or more peer computer systems to exchange information in a mutually agreed manner.
Each peer is able to communicate with any other peer on the business network using an
agreed set of messaging protocols.

Figure 2.3. Peer-to-peer model

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

22 – 2. Technical concepts

45.	 Some readily identifiable peer-to-peer application technologies and standards are
included in Table 2.1.

Table 2.1. Peer-to-peer application technologies and standards

Technology Description
Blockchain and
Distributed Ledger
Technologies

“blockchain is an open, distributed ledger that can record transactions between two [or
more] parties efficiently and in a verifiable and permanent way. The ledger itself can also be
programmed to trigger transactions automatically” (Lakhani and Iansiti, 2017).

Applicability Statement
(AS-n) Specifications

The Applicability Statement Specifications: AS1; AS2; & AS3; were defined in the early to
mid-2000s to allow support for the secure exchange of business data using various emerging
internet protocols. E.g. FTP; HTTP and SMTP (Email).
AS4 was first standardised in 2013 and is a sub-set (or profile) of the ebMS3 standard.

EDIFACT In 1987 the United Nations Economic Commission for Europe established arguably the first
global standards for peer-to-peer message exchange.

Health Level 7 (HL7) HL7 is a “framework (and related standards) for the exchange, integration, sharing, and
retrieval of electronic health information” (Health Level Seven International, 2018).

46.	 One of the major challenges in a peer-to-peer environment is ensuring that all peers
can consistently send and receive information that can be readily understood by any other
peer. This is known as interoperability.

47.	 Several standardised models and messaging standards have been developed to
improve inter-peer interoperability and are heavily used in the banking, healthcare, retail,
and utility sectors. The complexity of the problem space often dictates the approach to
standardisation, the implementation cost, and the level of participation in a peer-to-peer
messaging network. Some key elements that assist in classifying a use case for peer-to-peer
include:

•	 the regulatory framework – where participants are required by law to exchange
data

•	 the need for participants to conduct the same type of business transaction with
multiple parties

•	 the multi-directional flow of information between transaction participants

•	 the number of consumers or maintainers of a shared information asset.

48.	 To alleviate some of the cost and complexity that results from conforming with
agreed standards for peer-to-peer communication, brokerage models have emerged. The
most recognisable model is the logical four-corner model.

Figure 2.4. The four-corner model

Data Producer

Access
Point/Broker

Access
Point/Broker

API Provider

[Corner 1] [Corner 4]

[Corner 2] [Corner 3]

Source: Australia – Australian Tax Office.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 23

49.	 In the four-corner model, Corners 2 and 3 provide the standardised exchange
between parties, whilst offering customised integrations, or commercial transformations
for their respective customers, Corners 1 and 4.

Client-Server
50.	 The Client-Server model is the foundation of the World Wide Web, where solutions
generally consist of multiple clients exchanging information with a common party (the
Server), but not each other. In these arrangements the Server usually dictates the nature
of the information exchange to reflect their internal system representation. Figure 2.5.
provides a conceptual representation of the Client-Server model.

51.	 With the rapid expansion of the API economy, the Client-Server model has seen a
resurgence for Web APIs as companies seek to monetise their data and services in new
ways. This has led to a trend away from ratified standards with the industry, to adopting
architectural styles and open frameworks in their place. It has also lead to a divergence in
implementation techniques and API definitions for consistent use cases as organisations
seek to maximise their internal advantages.

52.	 There has been some standardisation initiatives in recent years, but market forces
have largely determined the preferred techniques and approaches, particularly around data
representation and syntax.

53.	 Further information on contemporary specifications and standards is included in the
Technology sub-section below.

Figure 2.5. Client-server model

Clients
Internet

Server

Source: Australia – Australian Tax Office.

Box 2.1. Example of exchanging SMS data

Telstra and Optus provide APIs to allow a registered user to send an SMS message to a
mobile phone number (consistent use case).

Despite having a common industry standard to exchange SMS data between network
providers, both providers have distinctly different customer-facing API implementations,
defining different mandatory data, different data formats, and different error responses.

Sources: Telstra, 2018; ModicaGroup, 2018.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

24 – 2. Technical concepts

Contemporary API implementation patterns
54.	 There are multiple prominent and complementary API solution architecture patterns
that have emerged in recent years. They are well supported by vendor tools and products.

Microservices architecture
55.	 There is no clear definition of the microservices architectural style, but it is generally
accepted as an “approach to developing a single application as a suite of small services,
each running its own process and communicating with lightweight mechanisms” (Fowler
and Lewis, 2014).

56.	 The microservices architecture espouses the value of separating the scope of
responsibility for a concept into a single [micro] service rather than building monolithic
architectures. It is really a refinement of the Service-Oriented Architecture, with a resource
centric focus. Microservices “are built around business capabilities and independently
deployable by fully automated deployment machinery” (Fowler and Lewis, 2014).

57.	 The intent is that all actions related to a specified capability or resource are
encapsulated into a single microservice, that can be designed, built, and scaled to meet
requirements independent of other business capabilities and largely dependency free.

58.	 Figure 2.6. illustrates the conceptual difference between a monolithic application and
a microservices application.

Figure 2.6. Monoliths and microservices

A microservices architecture puts
each element of functionality into a
separate service…

… and scales by replicating the
monolith on multiple servers

… and scales by distributing these services
across servers, replicating as needed.

A monolithic application puts all its
functionality into a single process…

Source: Fowler, M. and J. Lewis (2014), “Microservices: A definition of the new architectural term”.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 25

Key changes from traditional patterns

Determining size, scope, and capabilities
59.	 One key challenge organisations face when adopting a microservices architecture is
how to size and scope these “micro” services. Many incorrectly assume that microservices
should be as small as possible or that SOA-based Web Services can just be renamed.

60.	 Instead, designers should ensure that each microservice embodies the Single
Responsibility Principle. Where the focus of the microservice should be limited to a specific,
low-level business capability and only manage the required information for that domain
context.

It is recommended to start with relatively broad service boundaries and refine over time, as
specific business requirements highlight the need for more granular services.

Decentralised data management
61.	 Decentralisation of data management often appears counter-intuitive to enterprise IT
organisations, raising questions like:

•	 Why would we split our relational database into multiple databases?
•	 Doesn’t it increase the maintenance overhead?
•	 But our DBA team is centralised…?

62.	 Decentralised data management is an extension of the concept of limited and
isolated scope where a given microservice can only access its dedicated database, but
not the databases of other microservices. A microservices API is the only entry point to
access a specified data resource to ensure consistency. As a result, its data can be managed
independently of other data domains. It can then be hosted, tuned, and scaled to meet the
specific needs of the microservice.

63.	 However, the resulting challenge is to ensure that common data models exist across
the organisation, despite their independent data storage arrangements (Fowler and Lewis,
2014). It is critical to understand the requirement to support eventual data consistency. This
concept is described in the following sub-section.

Managing complexity
64.	 With the proliferation of many microservices with discreet responsibilities and
independent data stores, the complexity of the operating environment will also increase
substantially. As such, to successfully establish and maintain a microservices ecosystem
API automation and governance are critical.

65.	 Additionally, the introduction of decentralised data management and fully self-
contained services may require a business transaction to leverage multiple microservices to
achieve the business outcome. As such, transactional logic and microservices orchestration
is required. This is either achieved on the client-side or via an intermediary microservice
or gateway pattern.

To manage the failure of a distributed transaction and eventual data consistency, each microservice
must implement compensating transactions.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

26 – 2. Technical concepts

66.	 If a dependent microservice transaction fails, then the entire microservice fails
and all upstream operations have to be undone by invoking the respective compensating
operation of those microservices (Indrasiri, 2016).

Microservices strengths and weaknesses
67.	 The microservices architectural style has several strengths and weaknesses that need
to be considered prior to organisational adoption:

•	 Strengths:

-	 supporting technology optimisation (Gartner, 2018) – enabling each microservice
to operate on the most suitable technology platform and at the appropriate scale
(Microsoft Corporation, 2017)

-	 supporting incremental adoption, evolution and co-existence (Gartner, 2018)

-	 enables focused delivery teams to have full responsibility for the capability
(Microsoft Corporation, 2017)

-	 improved fault isolation (Microsoft Corporation, 2017)

-	 can enable higher release velocity, faster innovation, and a more resilient
architecture (Microsoft Corporation, n.d.)

•	 Weaknesses:

-	 increased complexity for enterprise environments – complexity is moved as
services become more discreet and orchestration requirements are moved to
other areas of the architecture (Microsoft Corporation, 2017)

-	 cultural change is required (Gartner, 2018) and reconfiguration of IT delivery
teams is also required

-	 aspiration vs rationale – many organisations want microservices without
understanding the rationale or the implications (Gartner, 2018).

More granular microservice implementation patterns

Command Query Responsibility Segregation (CQRS)
68.	 CQRS is a design pattern that separates command functions (create, update, delete)
from query (read) functions through the introduction of separate interfaces and data
models. This means that each model can be designed and optimised for a specific function.
This pattern can be useful where there are very different functional or quality of service
requirements between command and query use cases.

69.	 An example where this pattern may be useful is the ATO’s Australian Business
Register (ABR). The ABR’s ABN Lookup service is considered a high-volume service
with several orders of magnitude difference in transaction volume compared to the ABR’s
ABN record update services. CQRS would enable those APIs to be independently scaled
and data models/platforms tuned for their specific needs.

70.	 CQRS has the potential to tailor APIs and data models for specific purposes but it
also involves some complex issues including the cognitive complexity for designers, and
the challenge of ensuring eventually consistent data, across all data models and stores.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 27

CQRS should be a targeted pattern applied to specific sub-systems and services, not a broad-
scale solution pattern.

Designing for failure
71.	 Organisations should treat failure of individual IT system components as an inevitable
reality. Even the most robustly designed component can fail due to unforeseen circumstances.
As such, organisation should take proactive steps to understand the behaviour of APIs in
various failure scenarios. This information should be used to inform and design fault tolerant
API services that produce anticipated results even in a failure scenario.

72.	 Organisations should:
•	 map and understand external dependencies that underpin APIs (e.g. 3rd Party

Authentication Services)
•	 implement High Availability and Load Balancing
•	 design services to be replaceable and implement self-healing actions
•	 plan for portability, including platform substitution
•	 plan for error handling and plan monitoring as part of design.

API Gateway pattern
73.	 Organisations who provide more than one API will immediately recognise they have
common functions and features that must be performed for all services. These functions
often include authentication and authorisation of users, audit logging and quality of service
management.

74.	 Under a strict microservices architecture these functions would be re-implemented
or recoded in each microservices. This may result in some negative implications including
duplication of code and code maintenance, and the potential for eventual functional
divergence.

Figure 2.7. The API gateway pattern

API client API client

API Gateway

API Layer

Mediation Layer

Authorisation
Server

Users
Big

System DB
Content

Mgmt SOAP JDBC RSS

Source: Australia – Australian Taxation Office.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

28 – 2. Technical concepts

75.	 The API Gateway pattern has been designed to abstract common functions into a
single, lightweight messaging gateway. The API Gateway acts as a single-entry point for
all customers, including other microservices and ensures the consistent application of API
policies. The API Gateway is effectively the API Governance enforcement layer.

76.	 As a note of caution, many commercial API Management products offer API
Gateway capabilities. Some vendors have true lightweight product offerings, but many have
expanded product offerings that blur the line between an API Gateway and an Enterprise
Service Bus. Architects should ensure that the selected product is fit for the intended
patterns and purpose and utilised in accordance with that purpose.

77.	 This pattern has the added benefits, that when combined with the microservices
architecture it enables teams to focus purely on the microservice scope with policy
responsibility sitting in the Gateway Layer.

API Gateway strengths and weaknesses
78.	 The API Gateway pattern has several strengths and weaknesses that need to be
considered prior to organisational adoption.

•	 Strengths:

-	 supports the consistent application of API Governance policies

-	 supports the consistent collection of API Monitoring and Measurement
information (see later section)

-	 enables the offloading of microservices cross-cutting concerns to a common
layer, supporting simplified scope management.

•	 Weaknesses:

-	 Some API Gateway deployment models introduce a centralised component,
which is a potential single point of failure.

Event-Driven pattern
79.	 The Event-Driven architecture is a tried and tested pattern enabling the effective
management of asynchronous activities between event producers and event consumers, as
shown in Figure 2.8. In this pattern the event producer need not have any knowledge of the
number or identity of event consumers.

Figure 2.8. Event-Driven Architecture

Event Producers Event Ingestion

Event Consumers

Event Consumers

Event Consumers

Source: Microsoft Corporation (n.d.), “Architecture styles”.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 29

80.	 The Publish-Subscribe approach is the most traditional implementation of the Event-
Driven Pattern, where the event producer publishes the event to messaging infrastructure,
for example a message queue or topic. The messaging infrastructure then sends the
message to any event consumers currently subscribed. Event consumers that subscribe
after an event is published will not receive a copy of the event.

81.	 The Event Streaming approach is a more contemporary implementation of the Event-
Driven Pattern that has come to prominence with the advent of the Internet of Things and
extremely high-volume APIs. Event Streaming enables all activities to be published to an
ordered log that can be processed in part, or in full, by one or more consumers. The log is
persistent, so late consumers are able to process prior history.

82.	 The Event-Driven Pattern is a complementary pattern that can be used in
combination with the Microservices and API Gateway patterns to support extremely high-
volume processing or real-time risk analytics and pattern matching.

Publish-Subscribe pattern – strengths and weaknesses
83.	 The Publish-Subscribe pattern has several strengths and weaknesses that need to be
considered prior to organisational adoption.

•	 Strengths:

-	 decoupling of the producer and consumer enables a highly scalable architecture

-	 no point-to-point integrations

-	 new consumers can be easily added.

•	 Weaknesses:

-	 It has the potential to introduce data synchronisation delays between systems.
Implementers should be careful to ensure that solutions and data stores are
eventually consistent.

-	 It may be difficult to ensure that events are processed in order or only
processed once when deployed in a multi-instance scenario.

API implementation styles
84.	 There are two key styles of API implementation:

•	 Representational State Transfer (ReST) and

•	 Remote Procedure Call (RPC).

85.	 The RPC API implementation style was popular during the first wave of Web APIs
in the early 2000s but in recent years its market prevalence has been surpassed by ReST.
ReST now accounts for over 80% of API implementations (Cloud Elements, 2018).

86.	 Due to its prevalence during the first wave, the RPC style underpins many of the
API messaging standards that have been ratified by international standards organisations.
Many standards processes take several years from conception to ratification, which may
be unable to keep pace with the rate of innovation and change currently occurring in the
Web API segment.

87.	 An overview of each style and its existing standards landscape has been provided
below.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

30 – 2. Technical concepts

Representational State Transfer (ReST) Style
88.	 The ReST style was first described in Fielding’s dissertation (2000) but has been
rapidly growing in popularity since its 2006 adoption by Twitter and Facebook. The ReST
style relies heavily on the well-established and standardised features of the underlying
HTTP protocol and only describes a small set of additional constraints which define a
“ReSTful service”.

ReST design constraints
89.	 The Rest style is defined by a set of design constraints. An API must adhere to all
design constraints to be considered ReSTful. The constraints are:

•	 Client-Server – ReST APIs follow the Client-Server architectural model, separating
the user interface from the data storage concerns, thus allowing components to evolve
and scale independent of each other.

•	 Stateless – All requests between the client and the server must contain all
information required to understand the request. It must not rely on any stored context
on the server-side. This constraint increases visibility, reliability and scalability.

•	 Cache – To improve efficiency, scalability and user-perceived performance all
response data is labelled as cacheable or non-cacheable. This enables a client
following an initial request to determine if a subsequent request to the server is
required to service the users need.

•	 Uniform Interface – the ReST style has a strong emphasis on a uniform interface
between components:
-	 Identification of resources – a unique resource identifier (or URI) is used to

identify the unique resource involved in an API interaction.
-	 Manipulation of resources through representations – ReST components

perform actions on a resource by using a representation to capture the
current or intended state of that resource and transferring that representation
between components. Common representations formats in include JSON and
XML. Multiple APIs may be provided to enable a client to access different
representations of a single resource.

-	 Self-descriptive messages – each message contains all the information
necessary to complete the task and the requested HTTP Method (see below)
describes the expected processing action to be performed by the server.

-	 HATEOS – (see the Linked Data section below)
•	 Layered System – An API client cannot see and does not need to understand the

complexity behind the immediate layer they are interacting with.

HTTP Methods
90.	 HTTP Methods are at the core of all ReSTful APIs as they instruct the server on the
expected processing action that is taken with the provided representation data.

91.	 Some HTTP methods are “Safe Methods” that should not modify the state of the
resource. HTTP methods may also be classified as idempotent, meaning they will return a
consistent result no matter how many times the server executes an identical request.

92.	 Table 2.2 describes the commonly used HTTP methods, their purpose and classification.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 31

Table 2.2. Commonly used HTTP methods, purpose and classification

Method Purpose Safe Idempotent
GET The GET method means retrieve whatever information (in the form of a representation)

is identified by the Request-URI
Y Y

HEAD The HEAD method is identical to GET except that the server MUST NOT return a
message-body in the response

Y Y

POST The POST method is used to request that the origin server accept the entity enclosed in
the request as a new subordinate of the resource identified by the Request-URI in the
Request-Line

N N

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the enclosed
entity SHOULD be considered as a modified version of the one residing on the origin
server

N Y

PATCH The PATCH method requests that a set of changes described in the request entity be
applied to the resource identified by the Request-URI.
The difference between the PUT and PATCH requests is reflected in the way the server
processes the enclosed entity to modify the resource identified by the Request-URI.
With PATCH the enclosed entity contains a set of instructions describing how a resource
currently residing on the origin server should be modified to produce a new version.

N N

DELETE The DELETE method requests that the origin server delete the resource identified by the
Request-URI.

N Y

93.	 Implementers should note that ReSTful APIs need not implement or externally
expose all HTTP Methods for each resource.

94.	 ReSTful APIs leverage the underlying HTTP Error codes to provide high-level
information on the processing outcome of a transaction. If required, additional error
information can be included in the response payload.

Remote Procedure Call Style (RPC) (incl. SOAP)
95.	 RPC is an architectural style for distributed systems that has been in widespread
use since the 1980s but saw a substantial re-vitalisation with the advent of the World Wide
Web. The central concept of RPC is the procedure, where a specified action can be taken
to retrieve or modify the status of one or more data objects. Effectively the procedure can
run on any remote system if the information exchange format between the two systems can
be understood.

96.	 The complexity of managing the information exchange led to standardised practices
to manage metadata related to the exchange. Simple Object Access Protocol (SOAP) is the
most widely used RPC standard for Web APIs, with SOAP version 1.2 becoming a W3C
recommendation in April 2007.

97.	 The standard describes SOAP as “a lightweight protocol intended for exchanging
structured information in a decentralised, distributed environment. It uses XML technologies
to define an extensible messaging framework providing a message construct that can be
exchanged over a variety of underlying protocols. The framework has been designed to
be independent of any particular programming model and other implementation specific
semantics.” (W3C, 2007a)

98.	 SOAP implementations are generally implemented using the HTTP POST method.
Error handling is implemented using the SOAP fault concept that provides for highly
granular and customised error reporting.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

32 – 2. Technical concepts

99.	 Critics of the RPC style would argue that SOAP and its derivations are no longer
considered lightweight due to its use of XML and complex relationship with the WS-* Web
Service Quality of Service standards.

Technology standards
100.	 APIs that conform to the architectural models and patterns previously identified can
be implemented using a variety of technology standards and pseudo-standards.
101.	 For tax administrations, the ultimate choice of technology should be driven through
consultation and co-design with end-users and digital intermediaries. There are however,
some contemporary options that should serve as the starting point for these conversations.

The fundamentals
102.	 There are some fundamental technology standards that should underpin any
contemporary Web API implementation (see Table 2.3).

Messaging standards
103.	 As previously noted, many of the ratified standards have been produced based on the
RPC style and were ratified by their respective standards bodies in the mid-2000s. Many
of these standards have remained stable, with little innovation and limited refinement since
that time.

Table 2.3. Fundamental technology standards

Standard a Standards body Description
HTTP
(v1.1 or
v2.0)

IETF The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for
distributed, collaborative, hypertext information systems. (IETF, 2014)
HTTP is the underlying protocol used by the World Wide Web and this protocol defines
how messages are formatted and transmitted, and what actions Web servers and
browsers should take in response to various commands. It was first standardised in 1999.

TLS
(v1.2)

IETF The Transport Layer Security protocol provides communications security over the
Internet. The protocol allows client-server applications to communicate in a way that is
designed to prevent eavesdropping, tampering, or message forgery (IETF, 2008)..

Notes: Prior versions of TLS and SSL have been proven to be insecure and should not be used.
	 a.	�Recommended at time of writing. Readers should refer to the responsible standards organisation for

the current status of each standard, any relevant addendums, or superseding standards.

Table 2.4. Messaging standards

Standard a Standards body Description
SOAP
(v1.2)

W3C SOAP Version 1.2 is a lightweight protocol intended for exchanging structured
information in a decentralised, distributed environment (W3C, 2007a).
Organisations should avoid establishing proprietary SOAP message structures where
ReST or an alternative is fit for purpose.

ebMS3 Core
Features
(1 Oct 2007)

OASIS This specification defines a communications-protocol neutral method for exchanging
electronic business messages. It defines specific Web Services-based enveloping
constructs supporting reliable, secure delivery of business information. Furthermore,
the specification defines a flexible enveloping technique, permitting messages to
contain payloads of any format type (OASIS, 2007a).
This specification became an OASIS Standard on 1 Oct 2007.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 33

104.	 SOAP-based messaging standards have seen a significant decline in popularity over
the past decade. However, some specifications are seeing ongoing usage for niche or large-
scale peer-to-peer networks. For example, the AS4 specification is regulated for use by the
Australian Superannuation industry (Australian Taxation Office, 2016) and is currently
being adopted across the EU for public procurement under the OpenPEPPOL initiative
(Pagh-Rasmussen and Fieten, 2017).

105.	 The benefits of specifications like AS4 for large peer-to-peer networks result from
their comprehensive support for fault-tolerance and quality of service management. These
features are critical to ensuring a highly functional peer-to-peer ecosystem, but they come
with increased cost and complexity. XML technologies are also heavily used to support
these standards, this adds to the perception that these standards are heavyweight and
complex.

Organisations should seek to implement all APIs using the ReSTful style.

For specific, niche use cases an organisation may consider a proven and well adopted RPC-style
messaging standard (e.g. AS4). This is likely to be for complex peer-to-peer transactions and
organisations should seek to use the minimum possible feature set to avoid complexity.

Quality of service standards
106.	 Underlying each messaging standard is a requirement to effectively manage quality
of service attributes like security and reliability. In parallel to the development of SOAP-
based specifications the WS-* Standards suite was also created. The WS-* standards suite
is also based on XML representation of messaging attributes and consists of the standards
described in Table 2.5.

Standard a Standards body Description
ebMS3
Advanced
Features
(19 May
2011)

OASIS This specification complements the ebMS 3.0 Core Specification by specifying
advanced messaging functionality for message service configuration, message
bundling, messaging across intermediaries and transfer of messages as series of
smaller message fragments (OASIS, 2011). This specification is currently a Committee
Specification 01, not an OASIS Standard. Many vendors are yet to implement these
features or subject them to widespread interoperability testing.

AS4 v1.0 OASIS The AS4 profile of the ebMS 3.0 specification has been developed in order to bring
continuity to the principles and simplicity that made AS2 successful, while adding
better compliance to Web Services standards, and features such as message pulling
capability and a built-in receipt mechanism. Using ebMS 3.0 as a base, a subset of
functionality is defined along with implementation guidelines adopted based on the
“just-enough” design principles (OASIS, 2013).
This specification became an OASIS Standard on 23 Jan 2013.

ReST - As previously mentioned ReST is a style rather than a standard. It has become an
industry pseudo-standard but does not require any specific profiling beyond what is
described in the underlying HTTP Protocol.

Note: a.	� Recommended at time of writing. Readers should refer to the responsible standards organisation for
the current status of each standard, any relevant addendums, or superseding standards.

Table 2.4. Messaging standards (continued)

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

34 – 2. Technical concepts

107.	 The WS-* standards are highly complex and have varying degrees of implementation.
The most popular standards are the WS-Security; WS-Trust; and WS-Federation. The
remaining standards have less common implementations but may be referenced or underpin
other OASIS standards.

108.	 Due to their close relationship with XML, these standards are rarely used for ReST/
JSON implementations.

Table 2.5. WS-* standards

Standard a Standards body Description
WS-Addressing
(v1.0)

W3C Web Services Addressing provides transport-neutral mechanisms to
address Web services and messages (W3C, 2006a).

WS-Context
(v1.0)

OASIS When multiple Web services are used in combination, the ability to structure
execution related data called context becomes important. This information
is typically communicated via SOAP Headers. WS-Context provides a
definition, a structuring mechanism, and service definitions for organising
and sharing context across multiple execution endpoints (OASIS, 2007b).

WS-Discovery
(v1.1)

OASIS This specification defines a discovery protocol to locate services (OASIS,
2009a).

WS-Policy
(v1.5)

W3C The Web Services Policy 1.5 – Framework provides a general-purpose
model and corresponding syntax to describe the policies of entities in a Web
services-based system (W3C, 2007b).

(WS-Security)
(v1.1.1)

OASIS This specification describes enhancements to SOAP messaging to provide
message integrity and confidentiality. The specified mechanisms can be
used to accommodate a wide variety of security models and encryption
technologies (OASIS, 2012a).

WS-Trust
(v1.4)

OASIS Web Services – Trust 1.4 defines extensions that build on [WS-Security]
to provide a framework for requesting and issuing security tokens, and to
broker trust relationships (OASIS, 2012b).

WS-Federation
(v1.2)

OASIS This specification defines mechanisms to allow different security realms
to federate, such that authorised access to resources managed in one
realm can be provided to security principals whose identities and attributes
are managed in other realms. This includes mechanisms for brokering of
identity, attribute, authentication and authorisation assertions between
realms, and privacy of federated claims (OASIS, 2009b).

WS-SecureConversation
(v1.4)

OASIS This specification defines extensions that build on [WS-Security] to provide
a framework for requesting and issuing security tokens, and to broker trust
relationships (OASIS, 2009c).

WS-Coordination
(v1.2)

OASIS The Web Services – Coordination specification describes an extensible
framework for providing protocols that co-ordinate the actions of distributed
applications (OASIS, 2009d).

WS-ReliableMessaging
(v1.1)

OASIS This specification (WS-ReliableMessaging) describes a protocol that allows
messages to be transferred reliably between nodes implementing this
protocol in the presence of software component, system, or network failures
(OASIS, 2008).

WS-Reliability
(v1.1)

OASIS Web Services Reliability (WS-Reliability) is a SOAP-based protocol for
exchanging SOAP messages with guaranteed delivery, no duplicates, and
guaranteed message ordering (OASIS, 2004).

Note:	 a.	�Recommended at time of writing. Readers should refer to the responsible standards organisation for
the current status of each standard, any relevant addendums, or superseding standards.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 35

Data representation
109.	 The primary intent of Web APIs is to exchange or modify data between systems. As
such, the data representation, or format, is critical to any API. There are two primary data
formats used by most Web APIs, each with sub-variants for specific niche purposes.

110.	 The two primary data standards are shown in Table 2.6.

111.	 Many contemporary Web APIs are now designed and delivered using JSON as the
primary data representation because it is perceived as lightweight in comparison to XML.
Ultimately the choice of data format should be driven by factors including:

•	 the existing practices within the ecosystem – awareness and utilisation

•	 the complexity of the data domain and

•	 the capability of the device used for data input – some mobile device frameworks
do not support XML natively.

It is recommended that organisations consider the use of JSON first, and provide XML
capabilities if required to support the existing user community. There are numerous API Gateway
products and open source libraries that support execution time conversion between the two data
formats.

Niche data representation variants
112.	 XBRL is a niche data representation standard that was adopted by the ATO and
the Standard Business Reporting Program in 2010. XBRL has adoption for securities
filings, particularly reporting financial performance and compliance information across
50 countries (XBRL International, 2018). XBRL is a highly specialised specification built
on top of XML.

Whilst well suited to financial reporting and cross-entity comparison, the XBRL standard
is complex to implement and access to domestic skills is limited. It is not suitable for simple
transactional data exchanges like change of address or status of account transactions.

Table 2.6. Primary data standards

Standard a Standards body Description
XML
(v1.1)

W3C eXtensible Markup Language (XML) is a simple, very flexible text format derived from
SGML (ISO 8879) (W3C, 2006b).
Originally designed to meet the challenges of large-scale electronic publishing, XML is
also playing an increasingly important role in the exchange of a wide variety of data on
the Web and elsewhere.
XML 1.1 (2nd Ed) became a W3C recommendation in August 2006.

JSON
(2nd Ed.)

ECMA
International
& IETF

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent
syntax for defining data interchange formats (ECMA International, 2017).
JavaScript Object Notation Data Interchange Syntax second edition was standardised
as ECMA-404 in December 2017 and concurrently published by IETF as RFC8259.

Note:	 a.	�Recommended at time of writing. Readers should refer to the responsible standards organisation for
the current status of each standard, any relevant addendums, or superseding standards.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

36 – 2. Technical concepts

Emerging trends
113.	 Several major industry segments have relied heavily on XML-based data
representations for many years. Two of the most significant XML-based industry standards
have recently taken steps towards supporting JSON-based representations. These are:

•	 ISO20022: This international standard is the global contemporary standard for
inter-bank funds transfer and the basis for Australian New Payments Platform.
ISO20022 recently published a paper describing how to define ISO20022 messages
as ReST/JSON APIs (ISO20022 Registration Management Group, 2018).

•	 HL7: Health Level Seven is the international standard for the interoperability of
healthcare data. The most recent draft of HL7’s Fast Healthcare Interoperability
Resources Specification (FHIR3) contains a fully documented JSON representation
as a peer to XML (HL7 Community, 2017).

Linked data
114.	 One of the key elements of ReSTful Web APIs is support for Hypermedia As The
Engine Of Application State (HATEOS). An API that implements HATEOS will provide
an API client with additional information (links) in its response that enables the client to
understand (and navigate) the other actions that are currently available based on the state
of the requested resource.

115.	 A popular example used to demonstrate HATEOS principles is the bank account
scenario. Consider an API that allows a client to retrieve the balance of a bank account:

•	 If the account balance is positive, the API will return links to APIs that enable the
client to:

-	 deposit funds

-	 withdraw funds

-	 transfer fund; or

-	 close the account.

•	 If the account is overdrawn, the API will only return a link that enables the client to:

-	 deposit funds.

116.	 HATEOS is defined as one of the original style constraints for a ReSTful API, but
it is largely accepted as a requirement for the highest level of API Maturity (Fowler, 2010).
There are a variety of formats and techniques for representing linked data. The following
common practices and standards are in active use:

•	 JSON-LD (W3C, 2014) – a JSON-based format to serialise linked data. The syntax
is designed to easily integrate into deployed systems that already use JSON, and
provides a smooth upgrade path from JSON to JSON-LD.

•	 Hypertext Application Language (HAL) (Kelly, 2018) – HAL provides a set of
conventions for expressing hyperlinks in either JSON or XML.

•	 Collection+JSON (Amundsen, 2013) – Collection+JSON is a JSON-based read/
write hypermedia-type designed to support management and querying of simple
collections.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 37

Whilst there is still significant debate about the best approach to describing linked data in your
API, JSON-LD is the leading option as it is reasonably well supported from a tools perspective
and is a recognised W3C Standard.

JSON-LD also provides a backwards compatible approach to implementing linked data on your
existing APIs, as you progress up the API maturity scale.

Schema definitions
117.	 A key element of a secure data exchange is the ability to validate the data that you
have received, to ensure it is fit for purpose, and free from malicious content. Each data
representation has its own approach to the definition of an acceptable data schema, and the
validation of received data against that schema.

The two preferred respective methods for the JSON and XML data representations are JSON-
Schema and XML Schema Definition (XSD).

2.4. API security practices and controls

118.	 Securing information exposed by internet facing applications is met with numerous
challenges, both for information producers as well as consumers. Exposing information,
traditionally only available inside the organisation, to external clients introduces a security
risk which must be taken into consideration when designing digital services. Security
breaches are a common occurrence and high-profile cases (Armerding, 2018) (Bell, 2018)
happen on a regular basis.

119.	 However, security is not a “one size fits all solution” (Sandoval, 2015). A balance
between security and ease of use is not easy to achieve, although an important decision
when considering solution complexity and cost (Gruman, 2007).

120.	 With the rapid growth of the API economy, app developers are getting accustomed
to a set of standards and best practices when relying on APIs. Global standards improve
interoperability between a wide range of programming platforms (Patronus Laboratories

Figure 2.9. Liability vs Return On Investment (ROI) Analysis

Cost of implementing
security controls

Cost of security
breach

Optimum security
at minimum cost

Analysis of cost vs. risk
Cost of implementing security vs. cost of security breach

Cost

Risk

Source: Patronus Laboratories Corporation (2019)

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

38 – 2. Technical concepts

Corporation, 2019) The IT industry changes fast and best practices from several years ago
may no longer be recommended (Greenberg, 2016). This also applies to the use of security
standards. The industry is additionally converging on a few best practices regarding API
security mechanics. These are outlined in the sub-sections below.

Authentication and authorisation
121.	 Authentication and authorisation of API consumers is critical to ensure that an
organisation’s data is appropriately protected from unintentional exposure or modification.

122.	 There are numerous standards that have emerged to support Authentication and
Authorisation of Web APIs (see Table 2.7).

The OpenID Connect Protocol Suite
123.	 Since OAuth2.0 does not provide authentication, an additional layer is needed to
achieve this. A popular standard (OpenID Connect) is provided by the OpenID Foundation
and builds on the OAuth2.0 set of standards.

124.	 OpenID Connect “allows Clients to verify the identity of the End-User based on
the authentication performed by an Authorization Server, as well as to obtain basic profile
information about the End-User in an interoperable and REST-like manner” (OpenID
Foundation, 2014a).

Table 2.7. Authentication and authorisation standards

Standard a Standards body Description
SAML
(v2.0)

OASIS Security Assertion Markup Language (SAML) enables Cross Domain Single Sign
On by allowing one computer to perform security functions (authentication and/or
authorisation) on behalf of another relying party. SAML is based on XML.

OAuth
(v2.0)

IETF OAuth is an authorisation framework enabling a third party application limited access to
an HTTP service (IETF, 2012a). OAuth2 is now suffering from the same problems as the
WS-* at the time around web service standards. The proliferation of extensions to the
protocol has made it harder for developers to implement consistently.
Note OAuth1.0 has been superseded.

JWT IETF JSON Web Tokens (JWT) is a standard for passing authenticated identity information
between an identity provider and service provider similar to SAML but optimised for
JSON. JWT relies on other standards: JWS, JWE (IETF, 2015a).

JWS IETF JSON Web Signatures support a data structure representing a digitally signed message
(IETF, 2015b).

JWE IETF JSON Web Encryption provides support for encrypted content using JSON-based data
structures (IETF, 2015c).

JWK IETF JSON Web Key provides a data structure that represents a cryptographic key (IETF,
2015d).

JWA IETF JSON Web Algorithms provide cryptographic algorithms and identifiers to be used with
the JSON Web Signature, JSON Web Encryption and JSON Web Key (IETF, 2015e).

OpenID
Connect

OpenID
Foundation

OIDC provides an identity layer on top of the OAuth2.0 protocol (OpenID Foundation,
2014a).
Uses RFC 6750 OAuth 2.0 Bearer Token Usage Specifications (IETF, 2012b).

SCIM
(v2.0)

System for Cross Domain Identity Management (SCIM) simplifies the management of
user identities across multiple domains.

Note:	 a.	�Recommended at time of writing. Readers should refer to the responsible standards organisation for
the current status of each standard, any relevant addendums, or superseding standards.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 39

125.	 OpenID Connect allows clients to request information about authenticated sessions
and end-users. OpenID Connect is one of the most prevalent approaches being deployed to
authenticate ReSTful Web APIs.

SAML and WS-Security Suite
126.	 The recommended approach to authenticating SOAP-based Web APIs is using the
WS-Security suite of standards, in combination with the SAML Standards. These provide
a comprehensive approach to assuring the request or response has been securely delivered,
and that the credential presented by the initiator has been assured.

127.	 SAML is often used in enterprise scenarios but is becoming less popular in web-
scale API solutions.

Proactive vulnerability management

Always use HTTPs for APIs
128.	 There is no valid reason not to use an encrypted connection to APIs. Computing
power provides fast enough performance where the end user will not notice a difference in
the response times because of encryption overhead.

129.	 Domain validation certificates, which ensure the client is connecting to the right
API, are available for free. Acquiring a server certificate for a new API can be integrated
in the software development workflow using DevOps processes.

130.	 APIs should only be made available over a secure connection; there is no need to
offer non-secure connections. It is therefore recommended to disable non-secure access
to the API altogether. HTTP Strict Transport Security (HSTS) will also prevent HTTP
fallback vulnerabilities which may be possible in some circumstances.

Figure 2.10. OpenID Connect Protocol Suite

OAuth 2.0
Core

Underpinnings

JWE WebFingerJWK JWAJWSJWT

Core Discovery

Session
Management

Form Post
Response Mode

Minimal

4 Feb 2014
http://openid.net/connectOpenID Connect Protocol Suite

Dynamic

Complete

Dynamic Client
Registration

OAuth 2.0
JWT Pro�le

OAuth 2.0
Responses

OAuth 2.0
Bearer

OAuth 2.0
Assertions

Source: OpenID Foundation (2014b), “Welcome to OpenID Connect”.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

40 – 2. Technical concepts

131.	 OWASP recommends mutual authenticated client-side certificates for highly
privileged web services (Cloud Elements, 2018). Although more complex to integrate and
manage, when dealing with highly privileged services, the security benefits will outweigh
the cost of the overhead.

Prevent predictable resource locations
132.	 Be careful of predictable identifiers when designing API interfaces. Predictable
identifiers enable the enumeration of resources or allow a client to guess the location of
information that is restricted.

133.	 Mitigation strategies include performing strict authorisation checks where not only
the authentication status is verified but also if the current user is allowed to access a certain
resource location. Instead of using predictable identifiers, the API could use long random
strings such as Universally Unique Identifiers.

Understand your dependencies
134.	 Most organisations recognise the importance of undertaking vulnerability identification
and verification activities as part of their standard systems delivery lifecycle. However,
there is a growing area of concern that extends beyond the API code that has been
written directly by the organisation. With the increasing use of Open Source libraries
and packages, developers are often unaware of the quality of, or vulnerabilities contained
within the code with which they rely upon (Forrester, 2017).

It is highly recommended that organisations leverage static code analysis tools in their automated
delivery pipeline that analyses all dependencies.

In addition, organisations should consider leveraging one of the handful of tools available that
map open-source dependencies and support crowdsource vulnerability tracking and reporting.

Security certification
135.	 Organisations should establish their requirements to certify their API platform and
services. For the ATO this means compliance with the Australian Signals Directorate
published Information Security Manual (ISM) and the Information Security Registered
Assessors Program (IRAP).

Additionally, organisations should consider if certification is required to allow external consumers
to access your APIs. This should be a risk-based assessment of the API and API consumption
model.

Organisations should seek to leverage internationally recognised certification programmes that
their API consumers may already hold, prior to implementing their own certification programme
for example, ISO/IEC 27001:2013.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 41

Whitelisting and throttling

Whitelisting
136.	 Whitelisting is a common technique to restrict execution rights to pre-approved
software or a pre-approved request source. Traditional API whitelisting may consist of a pre-
configured list of software identifiers, names, source locations or hashes that are allowed
to execute.

137.	 With the advent of the API economy, providers are seeking to quickly support
developers to consume the APIs through self-service catalogues and developer portals. This
self-service adoption objective is at odds with traditional whitelisting processes. Manual
whitelisting processes are often not responsive enough to support some commercial API
models that seek to reduce barriers to adoption.

138.	 The contemporary approach to Web API whitelisting is to issue each API consumer
or API Subscription with a unique API key that provides access to the API, rather than
registering consumer provided information. The API consumer is responsible for the
management and protection of their unique API key. API keys can be vulnerable to
discovery by a third party if not appropriately protected when stored on client systems
or during transmission if the API is poorly designed or not protected by TLS. As such,
organisations should provide a mechanism to revoke and reissue replacement API keys.

139.	 Organisations should ensure they do not use API keys as the only method of
authentication for APIs that provide sensitive or Personally Identifiable Information (PII).

140.	 Organisations that use API keys to conduct whitelisting should ensure that:

•	 APIs are protected using TLS 1.2;

•	 API keys are not provided in the request URI;

141.	 Organisations should also consider developing appropriate blacklisting techniques
to protect medium to high risk APIs. If an organisation considers that malicious or
accidental misuse of an API is likely to result in material consequences, then it may wish
to implement blacklisting. Blacklisting is the explicit blocking of specific products, users,
or connection from source IPs or regions.

Throttling
142.	 It is recommended not to allow unlimited access to an API in terms of the volume
of requests that can be made in a given period of time. Unlimited access leaves a service
vulnerable to denial of service attacks where the service is slowed down by inundating
the API with millions of requests. Unlimited access also allows malicious clients to retry
authentication requests by brute forcing access codes.

143.	 Unlimited access to API’s can be mitigated by rate limiting (throttling) strategies.
Examples of rate limiting strategies are:

1.	 limit per connection property (IP address)

2.	 limit per user (account/access token/API key)

3.	 limit per application property (user account/resource type)

4.	 limit per context (region/type of app).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

42 – 2. Technical concepts

144.	 Rate limiting strategies can also be used when monetising the use of APIs. Based
on the client identifier or user, the API provider determines the number of requests made
in a certain period.
145.	 The HTTP standard provides a standard response code when the limit is reached and
a client makes more requests than allowed, for example, 429 Too many requests.

Security monitoring and intervention

Supply chain visibility/integrity
146.	 In a modern, digital information supply chain, many parties may transport,
transform or enrich data that is provided to your Web API, or between your API response
and the ultimate end user. Organisations have very little direct influence over the usage and
manipulation of API inputs and outputs beyond their direct interface boundary.

147.	 In a truly client-server scenario, the API definition and transport level security such
as TLS is usually sufficient to enable integrity. However, more complex peer-to-peer, or
multi-hop, scenarios may introduce additional risk to each transaction.

148.	 Organisations provisioning medium to high risk APIs should proactively work with
their API consumers to understand the digital supply chain and implement visibility and
integrity measures. These may include, but are not limited to, digital signatures, token
chains, and notary capabilities.

GeoBlocking
149.	 As previously mentioned in the whitelisting sub-section, the ability to blacklist an IP
address range or a geographic location can provide partial mitigation from some forms of
Distributed Denial of Service attack. If an API provider determines that they are unlikely
to receive any legitimate business transactions, or detects an unusual spike in regional
transaction ratios it may choose to proactively block, or rate limit the suspect traffic. This
technique is known as GeoBlocking.

150.	 Organisations should be careful to understand their anticipated and actual usage
geographic consumer scenarios as it is often not straightforward. The popularity of public
cloud services, crowd sourcing and off-shore development labs may result in consumers
connecting to your APIs from highly diverse locations. The geographic traffic profile for
your external testing environments may also vary from your production environments.

Intrusion Detection/Prevention Systems
151.	 An Intrusion Detection System (IDS) can be either a software or hardware appliance
that monitors network traffic to detect potential threats or malicious activity indicators.
An IDS will analyse traffic and identify patterns that may indicate a cyber-attack, but is
a passive solution that simply detects, captures intelligence and alerts when a pattern is
detected.

152.	 An Intrusion Prevention System (IPS) builds on top of the IDS concept to actively
block potentially harmful traffic. Both IDS and IPS solutions can be subject to false
positives and some organisations are reluctant to implement active blocking capabilities.

Implementation of IDS and/or IPS solutions is considered good practice.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 43

Real-time fraud analytics
153.	 Real-time fraud or behavioural analytics is an emerging capability that can provide
additional protection to an organisation. Many organisations are collating substantial
amounts of data about the typical usage patterns of their consumers. This information can
support real-time streaming analytics processes to detect a potentially fraudulent transaction
as it is in flight. These processes can ubsequently trigger additional actions and risk
treatment, or suspend the transaction pending further validation. Banks have been using this
style of processing to determine unusual credit card transactions for some time.

Risk management
154.	 The exposure of your organisational data to the outside world through APIs is not
without risk, but these risks are often manageable. Organisations should seek to fully
understand their API risk profile and technology leaders should engage in overt and
meaningful discussions with their line of business counterparts about the risk profile, key
mitigations and incident response plans.

API risk matrix
155.	 Each new API should be assessed against an agreed risk matrix that considers the
impact of exposure of API data to an unauthorised or malicious user, including:

•	 breach of privacy (through explicit exposure or implicit confirmation of facts)

•	 financial loss or penalty

•	 identity theft

•	 reputational damage and loss of public trust

•	 misuse of APIs to gather unfair market advantage.

156.	 Organisations should ensure they do not apply overzealous security controls to the
wrong APIs, effectively limiting their potential. For example, if an organisation currently
provides some information on their public website to anonymous users, it should not design
an API using authentication and whitelisting to provide the same information.

Operational security
157.	 There are two types of operational security problems:

•	 Accidental misconfigurations: These are inadvertent by nature and are by far the
most frequent type of operational issues.

•	 Deliberate misconfigurations: These are deliberate in nature but vary in their
degree of maliciousness. For example, violation of the security policy to allow an
operator’s home system access through the corporate firewall is not as likely to be
as severe as acts of sabotage by a disgruntled employee.

158.	 The typical reaction when looking for a solution to a security problem is to look for
features to configure. It is important to understand that operational problems cannot be
fully solved by features, because the person making the misconfiguration may also remove
the feature that is meant to protect against such misconfigurations. Operational problems
require operational solutions, and operational competence of the organisation.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

44 – 2. Technical concepts

159.	 Operational solutions include:

•	 Operational security policy: there should be clear guidelines on what operators
can do and what they are not allowed to do.

•	 Change management process: every organisation should create precise processes
that define and control how changes to their APIs and underlying infrastructure
occur.

•	 Access control: it is good practice to restrict access to API Management Interfaces.
Access restrictions are traditionally implemented via AAA authentication.

•	 Authorisation: the access an operator has should be restricted to the minimum
access needed for the operator to do their job.

•	 Secure and verify: all of the above measures are active attempts to detect a change in
the API, such as a configuration change. It is also possible to detect policy violations
by analysing the traffic on the API. For example, intrusion detection systems can
create alerts when flows are seen on the network that does not correspond to the
policy. There are many other ways to monitor for traffic anomalies.

•	 Automation: It is generally recommended to automate processes and procedures,
specifically recurring verification processes, because humans tend to overlook
details in log files and similar processes. Automated processes are also less likely
to make mistakes, although if a mistake does happen, it is often systematic and
therefore easily detectable.

2.5. API consumer experience

Developer portals – self service
160.	 One of the major changes that has led to the widespread adoption of Web APIs is the
ability for developers to discover and explore an organisation’s APIs.

161.	 At a minimum, most organisations now provide developers with self-service access
to comprehensive API documentation and the ability to register/create an account to access
testing services.

162.	 More advanced developer portal solutions allow developers to manage paid
subscriptions, service level packages, API security keys and limited support capabilities.
Many portals also provide a web interface to support simple testing of APIs with user
configured inputs.

163.	 Publishing to the API developer portal should be an automated by-product of
continuous integration processes publishing a new API version to an integrated API
gateway service. Consumers can opt-in to be automatically notified of an update to any
APIs that they have subscribed to consume.

164.	 API Providers should consider the privacy requirements associated with subscribed
data collection ensuring that they adhere to emerging global practices (European
Commission, 2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 45

API documentation standards
165.	 Significant change has occurred in API documentation practices over the past
five years. Traditionally, Web Services were documented as text documents with a few
supporting machine consumable descriptions like XSD schemas and WSDL files.

166.	 With the increasing popularity of Web APIs several initiatives were commenced
to improve the approach to API definitions and associated documentation. The most
popular specification is the OpenAPI Specification (OAS), formally known as Swagger.
OAS provides a comprehensive, user friendly way to describe and share your API prior to
implementing the associated business logic. OAS specifications are well supported by several
API gateway products. API Providers can import the OAS definitions to automatically create
their gateway configuration.

167.	 A complementary (originally alternative) API modelling language known as
ReSTful API Modelling Language (RAML) was developed in parallel to OAS. The two
projects have since converged and key partners are collaborating to leverage the best of
both approaches (Sarid, 2017).

Organisations should apply a contemporary approach to API definition, leveraging the Open
API Specification.

Organisations should use OAS Specifications to expose their API design to their consumers early
and often in the API lifecycle. This reinforces the co-design feedback loop and reduces the cost
of rework when compared to traditional lifecycles.

Organisations should ensure the API lifecycle status is clearly defined and visible to the
consumer (e.g. Consultation Draft vs Live).

Developer kits
168.	 Traditionally organisations may have produced a Software Developer Kit (SDKs)
to assist their API consumers overcome implementation complexity and reduce the time
required to develop API consuming software.

169.	 Often organisations would need to support multiple programming languages and
regularly update their SDKs to keep pace with leading edge developers, but also need to
support an extensive number of prior versions for late adopters.

170.	 With the improvements to API documentation standards, simplified API styles
and focused service scopes, the need to provide comprehensive SDKs is dissipating. In
addition, many API portals that leverage the Open API Specification can automatically
generate client and service-side code packages based on the API definition. These code
generation tools are supported by an active open source community that adds new
generator packages when another programming language becomes popular.

171.	 Most importantly, when a new API is released, or a version update occurs the
organisation has no requirement to manually update an SDK.

Organisations should seek to provide code generation capabilities in their developer portal and
should eliminate (or minimise the scope of) any existing SDKs.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

46 – 2. Technical concepts

2.6. API measurement and reporting

172.	 Organisations have been seeking collection of information and insights from their
software applications for many years. APIs are no exception and organisations have the
ability to capture real-time information to support the ongoing operation of their APIs, but
also to support product management and monetisation outcomes.

Operations management
173.	 Organisations implement Operations Management techniques such as API
Monitoring to achieve resilience objectives including High Availability. Monitoring enables
organisations to minimise the Time to Detect and Time to Mitigate a production issue
(Guckenheimer, 2017a). The objective is to use monitoring to detect an emerging issue
before it impacts or is reported by a customer.

Monitoring techniques
174.	 Organisations often implement one or more of the following monitoring techniques:

•	 Telemetry – the process for collection of data for API monitoring purposes.
Organisations can implement telemetry collection through any combination of
mechanisms including installation of monitoring agents, flags in source code, and
application or infrastructure logging.

•	 Synthetic Monitoring – the process of executing a repeatable set of API
transactions to measure the current performance of the API compared to previous
history or defined threshold parameters.

•	 Real-User Monitoring – provides insights into the end user experience replicating
conditions such as network lag or mobile device performance.

Effective alerting
175.	 Collecting real-time telemetry provides little value if it is not easily interpreted
or does not provide actionable insights. Organisations should enable alerting to ensure
that operational staff are aware of a change to system health and are able to proactively
investigate the cause.

176.	 Organisations should determine initial monitoring thresholds for key application
metrics and establish a cyclical review and tuning programme. Organisations should ensure
that they have identified both warning and alert thresholds.

177.	 It is also important to ensure that the alert distribution method is understood and
suitable for the target audience. There is a tendency for organisations to send alerts broadly
and to aggregate up red or amber alerts to the highest levels of the organisation dashboard.
In many circumstances, this can create unnecessary unrest and a negative perception of an
application’s performance. For example, a system administrator may wish to set an alert
threshold that triggers when a storage device reaches 80% capacity. However, this alert
might have no immediate business impact and should not be displayed on a business facing
dashboard.

178.	 Organisations should consider the criticality of the alert and determine if it should be
delivered via SMS, email or a messaging or social channel, for example Slack.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 47

Product management
179.	 API monitoring can also be useful to support product management decisions.
Transaction volumetrics may provide useful insights including trend analysis of product
usage, failure and error rates etc.

180.	 Additionally, API developer portal and subscription information can provide product
managers with insights on the attractiveness of product offerings, the conversion and
implementation rates and the general popularity of each service.

181.	 Finally, monitoring in combination with techniques such as alpha and beta testing
can inform product managers about the optimal configuration of product features and
functions.

Benchmarking
182.	 The consumers of Government provided APIs are often operating in a competitive
market and providing innovative solution to end users. API providers may be able to
stimulate improvements to product quality and API adoption through the provision of
consumer-facing metrics and benchmarking tools.

183.	 Some organisations have benefited from publishing business error benchmarks to API
consumers, which have triggered substantial quality improvements. API providers should
ensure they consider the privacy and reputational impacts of publishing benchmarking data
and take appropriate steps to de-identify or aggregate data as appropriate.

2.7. API delivery techniques and toolsets

Agile
184.	 There is a multitude of Agile, and agile at scale, frameworks and practices available.
The consistent theme throughout all agile methods is maximising value creation. Often
this is using just-in-time practices for concept elaboration and implementation, that allow
organisations to rapidly respond to changing demands and priorities.

185.	 The Australian Government’s Digital Transformation Agency (DTA) and the UK
Government’s Government Digital Service has some excellent resources to support
organisations to gain an understanding of agile approaches and the agile mindset (Digital
Transformation Agency, 2016). The DTA’s Digital Transformation Culture Posters can
provide an effective reminder to practitioners on how to focus their effort for positive
results (Digital Transformation Agency, 2017).

Automation pipelines
186.	 As an organisation’s API portfolio grows or consumption of its APIs rapidly increases,
the importance of automation becomes critical. Automation allows an organisation to
quickly respond to changing business needs, delivering consistent and reliable outcomes.

Organisations should consider scope for automation during service design and consider automation
in the context of the entire service lifecycle, not just development.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

48 – 2. Technical concepts

Continuous integration
187.	 Automation of key software development steps is a generally established practice
that has evolved over the last decade. Automation often involves build, code packaging and
various levels of test automation, including regression testing. This automation is commonly
known as Continuous Integration (CI), where code is checked-in by the developer and
automatically built and tested.

188.	 In recent years the use of automation has progressed beyond CI to support continuous
delivery and cloud elasticity.

Organisations should seek to ensure they have an automation profile that is appropriate to the risk
profile of their services and the supporting operational model.

Continuous delivery
189.	 Continuous Delivery (CD) is the natural extension of CI. CD automates the process
of deployment, enabling deployments to occur at the push of a button. This approach still
ensures the business or product owners have full control and can deploy an application
version on demand (ThoughtWorks, 2018). CD has the ability to substantially reduce the
time and effort involved in deployment of APIs and their dependencies, allowing for more
frequent releases and rapid feedback cycles (Atlassian, 2018).

190.	 Organisations that have mature CD processes may wish to further automate the
deployment decision and implement Continuous Deployment, which automatically deploys
new software to production if it has passed all automated tests.

191.	 Some organisations leverage the concept of deployment rings, or progressive release
of a deployment to various groups of subscriptions stakeholders (Guckenheimer, 2017b).
This approach enables organisations to monitor the success and stability of a release with
each deployment group prior to release to the next “broader” ring of stakeholders. This
approach is commonly applied by organisations such as Microsoft and Apple, which enable
users to opt into early adoption of new features, the inner deployment rings.

It is recommended that organisations incrementally progress through the Continuous Integration,
Continuous Delivery and Continuous Deployment maturity levels, only progressing when
technology teams, product management and business owners are all comfortable with the risk
profile.

Cloud elasticity
192.	 One of the key benefits of cloud technology is the ability to dynamically scale up and
down to meet the demand for API services. To enable elasticity each application component
must be able to scale in a repeatable manner, within a set of predefined thresholds. API and
microservice implementers will need to apply technologically appropriate techniques to
create lightweight deployment blueprints for each component or dependency.

193.	 Some common techniques include the use of containerisation solutions based
on Docker or Kubernetes. Containerisation techniques allow for consistent and rapid
environment provision and tear-down and are highly suited to stateless API solutions.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

2. Technical concepts – 49

Resilience of dependencies
194.	 The use of open source or royalty-free code libraries is nothing new in the software
development world and has been occurring for decades. However, the legal system has
caught up. Many technology organisations are regularly finding themselves in court to
argue their ownership or appropriate use of intellectual property manifested as application
source code.

195.	 As such, organisations are becoming increasingly aware of the need to understand
the licensing that applied to all the proprietary and open source code on which they rely.
Several tools have emerged to help identify, track, and reconcile issues with source library
licensing. Many tools also support developers to discover libraries that both meet their
functional needs and their preferred licensing model.

Organisations should incorporate licence management into their library selection and usage
processes. Where practical, they should also include licensing checking processing into their
automated build pipeline.

196.	 As previously identified in the API Security Practices and Controls sub-section,
developers should analyse and understand the risk profile associated with all third-party
software dependencies, noting the risk profile can change very rapidly.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

3. Future applications of APIs – 51

Chapter 3

Future applications of APIs

197.	 In an environment fully connected via APIs the system can auto regulate. Machine
to machine transactions based on pre-established rules create potentially limitless
opportunities for data sharing, real time reporting and real time payments.

198.	 The following examples are conceptual use cases for the potential interconnectivity
within the environment through the widespread implementation and use of APIs.

3.1. A transport management company executes a payroll event

199.	 From their business management software (BMS), the company runs a payroll event.
All checks must pass for the transaction to be completed. The following interactions will
happen almost instantaneously and there is the potential for several of the interactions to
occur simultaneously:

•	 1a. API made available from the agency responsible for industry specific licensing.
A response will be provided indicating whether requested staff members hold the
appropriate type of licence if required for the work they are doing.

•	 1b. API made available from the agency responsible for migration or visa employment.
A response will be provided indicating whether requested staff members hold the right
visa for the type of work they are doing (where applicable for non-residents).

•	 2a. BMS sends pay details to the child support agency via their API.A response is
provided confirming whether an amount is to be taken out of the pay to meet child
support obligations.

•	 2b. BMS sends pay details to the revenue agency via their API. A response confirms
whether the employee has any outstanding obligations.

•	 2c. BMS sends pay details to the welfare agency via their API. A response is provided
confirming whether an amount is to be taken out of the pay to meet outstanding
welfare obligations.

•	 3a. BMS issues a payslip to the employee with the final amount to be paid.
•	 3b. BMS notifies bank of payments that need to be made.
•	 3c. BMS notifies retirement of pension fund of amounts to be paid.
•	 4a. Bank issues payment to the employee.
•	 4b. Bank issues payment to the Superannuation fund.

•	 5. BMS issues non sensitive data to the agency responsible for collection of statistical
data.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

52 – 3. Future applications of APIs

3.2. A transport management company makes a contract payment

200.	 From their business management software (BMS), the company makes a contract
payment. All checks must pass for the transaction to be completed. The following interactions
will happen almost instantaneously and there is the potential for several of the interactions
to occur simultaneously:

•	 1a. A vendor sends an invoice to the BMS of the transport company
•	 2a. BMS checks vendor details are valid with the Agency responsible for Business

and Company Registration.
•	 2b. BMS checks vendor details are valid with the Agency responsible for Industry

Specific Licensing.
•	 3a. BMS sends contract payment details to the Revenue Agency.
•	 3b. BMS sends contract payment details to the Bank.
•	 3c. BMS issues non sensitive data to the agency responsible for collection of

statistical data.
•	 4. Bank issues payment to the vendor.

Figure 3.1. A transport management company executes a payroll event

Point of
sale

Transport
company

Welfare

State or local

Revenue

Child support

Migration or visa
employment

Statistical data

Other grants and
subsidies

Employment grants

Industry-speci�c
licensing

Business and
company registration

1b

4b4a

3b

3c

3a

2c

2b

2a

5

1a

Employees
Retirement/

pension fund

Tax agent/
bookkeeper

Fleet management
system

Business management
software

Fuel depot

Bank
Contractor

G
ov

er
ne

m
en

t
ag

en
ci

es

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

3. Future applications of APIs – 53

3.3. A transport management company attempts a contract payment

201.	 From their business management software (BMS), the company makes a contract
payment. All checks must pass for the transaction to be completed. The following
interactions will happen almost instantaneously and there is the potential for several of the
interactions to occur simultaneously:

•	 1a. A vendor sends an invoice to the BMS of the transport company

•	 2a. BMS checks vendor details are valid with the Agency responsible for Business
and Company Registration. It is identified that the vendor details are not valid and
the transaction stops ensuring payment is not made to a potential unregistered
business.

202.	 This example highlights how the system self-regulates where it identifies someone
without a valid business registration. Payment is not made and in order to receive payment,
the vendor is forced to participate in the system.

Figure 3.2. A transport management company makes a contract payment

Point of
sale

Transport
company

Welfare

State or local

Revenue

Child support

Migration or visa
employment

Statistical data

Other grants and
subsidies

Employment grants

Industry-speci�c
licensing

Business and
company registration

3b

3c

3a

2b

2a

1a

Employees
Retirement/

pension fund

Tax agent/
bookkeeper

Fleet management
system

Business management
software

Fuel depot

Bank
Vendor

G
ov

er
ne

m
en

t
ag

en
ci

es

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

54 – ﻿Executive summary

Figure 3.3. A transport management company attempts a contract payment

Point of
sale

Transport
company

Welfare

State or local

Revenue

Child support

Migration or visa
employment

Statistical data

Other grants and
subsidies

Employment grants

Industry-speci�c
licensing

Business and
company registration

2a

1a

Employees
Retirement/

pension fund

Tax agent/
bookkeeper

Fleet management
system

Business management
software

Fuel depot

Bank
Vendor

G
ov

er
ne

m
en

t
ag

en
ci

es

Source: Australia – Australian Tax Office (2018).

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Annex A. Executive summary – 55

Annex A

ATO Lessons Learned

Engage with your digital supply chain

203.	 The Australian Taxation Office (ATO) has been delivering APIs using various techniques
and technologies for over a decade. Throughout that time the ATO has observed a dramatic
increase in technology maturity across its digital supply chain. For some early initiatives the
ATO effectively dictated the technology solution and approach to its service consumers.

204.	 However, in recent years the organisation has recognised the benefits of close
engagement and active collaboration with its digital supply chain. Early and ongoing
engagement, and service co-design ensures that each API can be effectively and efficiently
consumed in an appropriate, scalable and secure manner.

205.	 The ATO has learnt that poor technology choices and a “build it and they will come”
mentality can materially impact on the successful adoption of an API offering. Instead,
greater market tractions can be achieved through understanding the natural data lifecycle,
building fit-for-purpose APIs and ensuring low barriers to entry. The only way to uncover
the true value of the data held across the supply chain is to engage in a joint discovery
exercise with that supply chain.

206.	 There continues to be a growing understanding across the ATO that engaging
and enabling Digital Service Providers (DSPs) is critical to ensuring that ATO APIs
are consumed effectively. This ensures value is surfaced for the ultimate end users, the
participants in the Australian Taxation and Superannuation systems.

Market test your products early

207.	 For much of the last decade the ATO has followed a traditional enterprise-scale
waterfall software delivery methodology. As with all waterfall methods, heavy investment
in design, build and test occurs before a product or service is ready to expose to the market.

208.	 In an API world this can have significant impacts on the overall time to consumer
value. On various occasions third-party API consumers have waited several months to
access documentation and machine consumable API end-points only to identify design
flaws and need to wait for a subsequent cycle to correct the bug(s).

209.	 The ATO is continuing to focus on improvement in this area through the
implementation of agile practices, early exposure of API documentation, and collaborative
co-design. However, there is further work to do in this area and the ATO are actively
investigating opportunities presented by OpenAPI specifications and DevOps enabled agile.

210.	 Organisations should seek to expose API products early, while listening to and actively
addressing feedback.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

56 – Annex A. ATO Lessons Learned

API Governance – DSP Operational Framework

211.	 The ATO has developed its DSP Operational Framework as part of its recognition
and response to risks posed by API based (wholesale) digital services. It specifically
identifies the need to improve:

•	 enrolment, identification, authentication and authorisation technologies available
to clients

•	 registration and certification of DSPs who are allowed to use the APIs being made
available by the ATO

•	 the maturity of their monitoring environments.

212.	 The ATO has recognised that APIs are creating new opportunities for Taxation
and Superannuation, but also need new frameworks and techniques to ensure trust and
security across the ecosystem. The ATO has identified the following compounding risk
and opportunity factors:

•	 increased community connectivity and demand for availability (more access
“anytime”)

•	 increased range in types of APIs available (including data IN and data OUT)
•	 exponential increases in volumes and payloads of API transactions
•	 significant growth in the range, number and complexity of digital service providers
•	 increased digital enrolments and consumption (e.g. by businesses, agents, others)
•	 increased throughput velocity in ATO (i.e. more transactions are processing in real

time)
•	 increased automation in community and by service providers (enables “mass”

volumes).

213.	 To address the increased risk of cybercrime, the ATO DSP Operational Framework
determines if access to APIs (and ultimately organisation data) is permitted based on three
dimensions:

•	 API Risk Category – see Risk Management section above

•	 DSP Trust Rating – determined by registration and certification processes, and
prior performance

•	 API Monitoring Maturity – how mature the ATO’s monitoring and behavioural
analytics capability is in relation to the specific API information domain.

214.	 The ATO has further identified a suite of additional controls that must be implemented
for medium to high risk APIs and DSPs with a large customer base to increase a DSP’s Trust
Rating or to mitigate real-time transactional and data risks. These mitigations include:

•	 multi-factor authentication in the client-facing system

•	 appropriate onshore/offshore application and data hosting arrangements

•	 enhanced supply chain visibility

•	 encryption of data in transit

•	 encryption of data at rest

•	 recognised IT security certification and/or accreditation.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Annex A. ATO Lessons Learned – 57

215.	 The ATO’s critical learning is to ensure that controls are fit-for-purpose and
appropriately risk-based. Additionally, transition in timelines should seek to balance the
need for security with the commercial impact on the DSP market.

Cyber-security is critical

216.	 Government provided APIs and digital services will always be an attractive target
for malicious actors. As such, API providers should ensure they plan for end-to-end
API security, applying fit-for-purpose security controls that align to the risk associated
with the API and the API platform. The ATO actively works with the Australian Signals
Directorate to implement best practices and government specified security controls.
Often implementation of controls to address emerging threats can be challenging. The
implementation of continuous delivery and containerisation techniques can aid organisations
to rapidly tear-down and patch environments.

217.	 Organisations should also take steps to ensure their systems integrators are appropriately
secure and reliable.

Judicious use of standards

218.	 Some of the ATO’s early API endeavours and indeed business services were
hampered by technology selection and the use of immature standards. The ATO has often
been at the forefront of digital technologies and found itself in a position where it needs
to select a technology stack or a technology standard with minimal global application or
experience relevant to the Taxation or Superannuation domains.

219.	 The ATO recognises that some of its historical technology choices have subsequently
suffered from lack of broad adoption and resulted in difficultly accessing skills and
expertise. Additionally, an early standard will often contain many features that the authors
have identified as potentially useful. However, some features will never make it into
widespread commercially available implementations.

220.	 The ATO continues to recognise the potential value of leveraging international
standards but has adjusted its approach to the adoption of standards to consider the
following factors:

•	 only use well adopted standards or be prepared to foster the market to support a
new standard;

•	 standards will change over time, be ready for change; immature standards may
change very rapidly or prove difficult to implement;

•	 standards may contain a high-degree of optionality; and

•	 standards may contain ambiguity that will only be resolved through implementation
and interoperability testing.

Provide the right enablers

221.	 Most successful API strategies and implementations have a common success factor,
the API publisher has provided the right enablers to support API consumers. Enablers will
vary from project to project, and API to API but the ATO has learnt that missing enablers

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

58 – Annex A. ATO Lessons Learned

or poor-quality enablers is guaranteed to impact on adoption and generation of value. For
example:

•	 Poor implementation guidance material – increases the support overhead,
introduces time to value delays and may result in a poor user experience or data
quality.

•	 SDKs are not generally core business for an organisation – if they can’t be
generated then they become a maintenance burden and a barrier to innovation.
Organisations should only create SDKs if they generate unique market value or the
current market maturity requires the organisation to simplify API consumption and
lower barriers to entry.

•	 The API testing experience needs to be as realistic as possible – artificial stubs
or contrived test cases don’t reflect the real world, making it difficult for API
consumers to ensure a predictable experience for end users.

222.	 Organisations should invest to provide the right enablers and expose them to API
consumers early in the delivery lifecycle.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Annex B. ATO Lessons Learned – 59

Annex B

Glossary of terms

Table B.1. Definitions for key terms used throughout the document

Term
Synonyms/

abbreviation Definition
Apache 2.0 License The Apache License is a free and open source software (FOSS) licensing agreement

from the Apache Software Foundation (ASF). The agreement stipulates terms for use,
reproduction, modification and distribution of any software that is released under the
Apache License.

Application Programming
Interface

API A set of functions and procedures allowing the creation of applications that access the
features or data of an operating system, application, or other service.

API Gateway An API gateway is programming that sits in front of an application programming interface
(API) and filters traffic or performs other cross-cutting concerns.

AS4 profile of the ebMS3 AS4 The AS4 profile of the ebMS 3.0 specification has been developed in order to bring
continuity to the principles and simplicity that made AS2 successful, while adding better
compliance to Web Services standards, and features such as message pulling capability
and a built-in receipt mechanism.

Australian Business Number ABN An Australian Business Number (ABN) is a unique 11 digit number that identifies your
business to the government and community.

Australian Business Register ABR The Australian Business Register (ABR) stores details about businesses and organisations
when they register for an Australian business number (ABN).
The Register is recognised nationally as a valuable asset and is used by the community
and government daily to identify and verify business information.

Authentication The process of verifying that someone or something is the actual entity that they claim to
be.

Authorisation Authorisation is the process of determining whether an authenticated subject (a user) can
see, change, delete or take other actions upon data.

Blacklist When performing input validation, the set of items that – if matched – result in the input
being considered invalid. If no invalid items are found, the result is valid.

Brute Force Attack An attack on an encryption algorithm where the encryption key for a ciphertext is
determined by trying to decrypt with every key until valid plaintext is obtained.

Claim Piece of information asserted about an Entity
Code Signing Signing executable code to establish that it comes from a trustworthy vendor. The

signature must be validated using a trusted third party in order to establish identity
Commercial off the Shelf COTS Commercially available specialised software designed for specific applications that can be

used with little or no modification.
Confidentiality Confidentiality is roughly equivalent to privacy. Measures undertaken to ensure

confidentiality are designed to prevent sensitive information from reaching the wrong
people, while making sure that the right people can in fact get it:

Conformance Fulfilment of an implementation of all requirements specified; adherence of an
implementation to the requirements of one or more specific specifications or standards

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

60 – Annex B. Glossary of terms

Term
Synonyms/

abbreviation Definition
Creative Commons A Creative Commons (CC) licence is one of several public copyright licences that enable

the free distribution of an otherwise copyrighted work. A CC licence is used when an
author wants to give people the right to share, use, and build upon a work that they have
created.

Credential Data presented as evidence of the right to use an identity or other resources.
Default deny A paradigm for access control and input validation where an action must explicitly be

allowed. The idea behind this paradigm is that one should limit the possibilities for
unexpected behaviour by being strict, instead of lenient, with rules.

Denial of Service Attack DoS Any attack that affects the availability of a service. Reliability bugs that cause a service
to crash or go into some sort of vegetative state are usually potential denial-of-service
problems.

DevOps DevOps is the combination of cultural philosophies, practices, and tools that increases
an organisation’s ability to deliver applications and services at high velocity: evolving
and improving products at a faster pace than organisations using traditional software
development and infrastructure management processes.

Digital Service Provider DSP Digital Service Providers (DSP) are critical enablers in the delivery of services to the
community/end-user.
They offer a range of digital products to the community (e.g. accounting and payroll
software, super services, banking services, business registration and licensing services
etc). They use software to enable their services and they may choose to connect their
software to government services via APIs.

Digital Signature Data that proves that a document (or other piece of data) was not modified since being
processed by a particular entity.

Digital Supply Chain The digital supply chain is a process of networking and applications between individuals
and organisations involved in a transaction that is initiated in a paperless environment,
using web-enabled capabilities.

ebXML Messaging Services
Version 3

ebMS3 This specification defines a communications-protocol neutral method for exchanging
electronic business messages. It defines specific Web Services-based enveloping
constructs supporting reliable, secure delivery of business information. (OASIS, 2007a)

Enterprise Service Bus ESB An enterprise service bus (ESB) implements a communication system between mutually
interacting software applications in a service-oriented architecture (SOA).

External Vendor Test
Environment

EVTE An environment used by DSPs to test their API client software packages before deploying
to production.

Gateway Gateways securely manage data flows between connected networks from different security
domains.

GNU General Public License GNU GPL The GNU General Public License is a free, copyleft licence for software and other kinds of
works.

HATEOS HATEOAS (Hypermedia as the Engine of Application State) is a constraint of the REST
application architecture. A hypermedia-driven site provides information to navigate the
site’s REST interfaces dynamically by including hypermedia links with the responses.

HTTP HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by the
World Wide Web and this protocol defines how messages are formatted and transmitted,
and what actions Web servers and browsers should take in response to various
commands.

HTTP Header HTTP headers are the name or value pairs that are displayed in the request and response
messages of message headers for Hypertext Transfer Protocol (HTTP).

HTTP Method HTTP defines a set of request methods to indicate the desired action to be performed for
a given resource. Although they can also be nouns, these request methods are sometimes
referred as HTTP verbs

HyperMedia The concept of providing links to other resources. Hypermedia is one of the key principles
to a REST architecture

IaaS Infrastructure as a service (IaaS) is a form of cloud computing that provides virtualised
computing resources over the internet.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Annex B. Glossary of terms – 61

Term
Synonyms/

abbreviation Definition
Idempotency From a RESTful service standpoint, for an operation (or service call) to be idempotent,

clients can make that same call repeatedly while producing the same result. In other words,
making multiple identical requests has the same effect as making a single request. Note
that while idempotent operations produce the same result on the server (no side effects),
the response itself may not be the same (e.g. a resource’s state may change between
requests).

Identity A person’s identity is not a fixed concept; it is highly dependent on context. It is some
combination of characteristics or attributes that allow a person to be uniquely distinguished
from others within a specific context

Identity Proofing An identity proofing process tests the veracity of claims an individual makes regarding their
identity

Integrity Integrity involves maintaining the consistency, accuracy, and trustworthiness of data over
its entire life cycle

Integrity Checking The act of checking whether a message has been modified either maliciously or by
accident.

International Organisation for
Standardization

ISO ISO is an independent, non-governmental international organisation with a membership of
160 national standards bodies.
Through its members, it brings together experts to share knowledge and develop voluntary,
consensus-based, market relevant International Standards that support innovation and
provide solutions to global challenges.

Internet Engineering Task
Force

IETF The IETF is a large open international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet architecture and the
smooth operation of the Internet.

JavaScript Object Notation JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy
for humans to read and write. It is easy for machines to parse and generate. It is based
on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition,
December 1999.

JSON Web Algorithms JWA JSON Web Algorithms provides cryptographic algorithms and identifiers to be used with
the JSON Web Signature, JSON Web Encryption and JSON Web Key. (IETF, 2015e)

JSON Web Encryption JWE JSON Web Encryption provides support for encrypted content using JSON-based data
structures. (IETF, 2015c)

JSON Web Key JWK JSON Web Key provides a data structure that represents a cryptographic key. (IETF,
2015d)

JSON Web Signatures JWS JSON Web Signatures support a data structure representing a digitally signed message.
(IETF, 2015b)

JSON Web Tokens JWT JSON Web Tokens (JWT) is a standard for passing authenticated identity information
between an identity provider and service provider similar to SAML but optimised for JSON.
JWT Relies on other standards: JWS, JWE. (IETF, 2015a)

Message Authentication Code MAC A function that takes a message and a secret key (and possibly a nonce) and produces an
output that cannot, in practice, be forged without possessing the secret key.

Message integrity A message has integrity if it maintains the value it is supposed to maintain, as opposed to
being modified on accident or as part of an attack.

MIT License The MIT License is a permissive free software licence originating at the Massachusetts
Institute of Technology (MIT). As a permissive licence, it puts only very limited restriction
on reuse and has, therefore, an excellent licence compatibility

Non-repudiation The capability of establishing that a message was signed by a particular entity. That is, a
message is said to be non-repudiatable when a user sends it, and one can prove that the
user sent it. In practice, cryptography can demonstrate that only particular key material was
used to produce a message. There are always legal defences such as stolen credentials
or duress.

OAUTH OAuth is an authorisation framework enabling a third-party application limited access to an
HTTP service.

Open ID Connect OIDC OIDC provides an identity layer on top of the OAuth2.0 protocol. (OpenID Foundation,
2014a)

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

62 – Annex B. Glossary of terms

Term
Synonyms/

abbreviation Definition
Open Source Denoting software for which the original source code is made freely available and may be

redistributed and modified.
Organisation for the
Advancement of Structured
Information Standards

OASIS OASIS is a non-profit consortium that drives the development, convergence and adoption
of open standards for the global information society.

OpenAPI Specification OAS
Swagger

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to
RESTful APIs which allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documentation, or through
network traffic inspection.

OpenPEPPOL PEPPOL OpenPEPPOL is a non-profit international association and consists of both public sector
and private members.
The purpose of OpenPEPPOL is to enable European businesses to easily deal
electronically with any European public-sector buyers in their procurement processes,
thereby increasing opportunities for greater competition for government contracts and
providing better value for tax payers’ money.

Open Web Application
Security Project

OWASP The Open Web Application Security Project (OWASP) is a 501(c)(3) worldwide not-for-
profit charitable organisation focused on improving the security of software.

PaaS Platform as a Service (PaaS) or application platform as a Service (aPaaS) or platform
base service is a category of cloud computing services that provides a platform allowing
customers to develop, run, and manage applications without the complexity of building and
maintaining the infrastructure

Personally Identifiable
Information

PII Information that:
a.	can be used to identify the natural person to whom such information relates, or
b.	is or might be directly or indirectly linked to a natural person to whom such information

relates.
Private key In a public key cryptosystem, key material that is bound tightly to an individual entity that

must remain secret in order for there to be secure communication.
Proxy (server) A proxy server is a dedicated computer or a software system running on a computer that

acts as an intermediary between an endpoint device, such as a computer, and another
server from which a user or client is requesting a service.

Public key In a public key cryptosystem, the key material that can be published publicly without
compromising the security of the system. Generally, this material must be published; its
authenticity must be determined definitively.

Public Key Infrastructure PKI A system that provides a means for establishing trust as to what identity is associated with
a public key.

Request For Comments RFC Each distinct version of an Internet standards-related specification is published as part of
the “Request for Comments” (RFC) document series. RFCs cover a wide range of topics
in addition to Internet Standards, from early discussion of new research concepts to status
memos about the Internet.

SaaS Software as a service is a software licensing and delivery model in which software is
licensed on a subscription basis and is centrally hosted.

SAML Security Assertion Markup Language (SAML) enables Cross Domain Single Sign On by
allowing one computer to perform security functions (authentication and/or authorisation)
on behalf of another relying party. SAML is based on XML.

SAML Provider A SAML Provider is an entity that undertakes authentication functions on behalf of a
Relying Party.

SAML Assertion A SAML Assertion is the XML document exchanged between the SAML provider and the
Relying Party. The SAML Assertion may contain one or more Claims.

Scalable The ability of the system to increase/decrease the capacity of specific system or solution
components to meet current processing requirements

Secure Socket Layer SSL A popular protocol for establishing secure channels over a reliable transport, utilising a
standard X.509 Public Key Infrastructure for authenticating machines. This protocol has
evolved into the TLS protocol, but the term SSL is often used to generically refer to both.
See TLS

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

Annex B. Glossary of terms – 63

Term
Synonyms/

abbreviation Definition
Service Level Agreement SLA A Service Level Agreement (SLA) is an agreement between an IT Service Provider and a

Customer that is outside of IT. An SLA describes the service being delivered, documents
service level targets and specifies the responsibilities of the IT Service Provider and the
Customer. An SLA describes expectations of the Customer and a commitment by the
Service Provider to meet those expectations.

Slack A set of cloud based tools and services. Slack is an acronym which stands for Searchable
Log of All Conversation and Knowledge.

SOAP SOAP Version 1.2 is a lightweight protocol intended for exchanging structured information
in a decentralised, distributed environment. (W3C, 2007a)

Software Developer Kit SDK A software development kit (SDK or devkit) is typically a set of software development tools
that allows the creation of applications for a certain software package, software framework
or hardware platform.

Specification Specifications are often published when the subject under question is still under development
or when insufficient consensus for approval of an International Standard is available.
Specifications approach International Standards in terms of detail and completeness, but
have not yet passed through all approval stages either because consensus has not been
reached or because standardisation is seen to be premature

Standard A standard is a document, established by consensus and approved by a recognised body,
that provides, for common and repeated use, rules, guidelines or characteristics for activities
or their results, aimed at the achievement of the optimum degree of order in a given context.

Swagger Specification OpenAPI
Specification

The Swagger project was the original foundation of the OAS, consisting of the Swagger
Specification and the Swagger tools. The Swagger brand has been retained for the tooling,
whilst the specification has been transitioned to OAS.

Tincup Tincup is a microservice implemented by UBER to provide currency and exchange rate
services.

Transport Layer Security TLS
SSL

The successor to SSL, a protocol for establishing secure channels over a reliable
transport, using a standard X.509 Public Key Infrastructure for authenticating machines.
The protocol is standardised by the IETF.

Validation The act of determining that data is sound. In security, generally used in the context of
validating input.

W3C The World Wide Web Consortium (W3C) is an international community where Member
organisations, a full-time staff, and the public work together to develop Web standards.

Web API API Modern web scale APIs that use the same underlying protocol as between the web
browser and web server. Instead of returning code that is interpreted by the web browser
and rendered as a human readable web page, the API returns machine readable code

Web Service The term Web services describes a standardised way of integrating Web-based
applications using the XML, SOAP, WSDL and UDDI open standards

Web Services Description
Language

WSDL An XML language for describing Web services.

Whitelist When performing input validation, the set of items that, if matched, results in the input
being accepted as valid. If there is no match to the whitelist, then the input is considered
invalid. That is, a whitelist uses a “default deny” policy.

WS-* WS-“ is a prefix used to indicate specifications associated with web services and there
exist many WS* standards, as outlined in the Quality of Service section of this document.

X.509 Certificate A digital certificate that complies with the X.509 standard (produced by ANSI).
XBRL XBRL (eXtensible Business Reporting Language) is a freely available and global standard

for exchanging business information. XBRL allows the expression of semantic meaning
commonly required in business reporting

XML XML stands for eXtensible Markup Language. XML was designed to store and transport
data. XML was designed to be both human- and machine-readable.

XSD XSD (XML Schema Definition) is a World Wide Web Consortium (W3C) recommendation
that specifies how to formally describe the elements in an Extensible Mark-up Language
(XML) document.

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

﻿References – 65

References

Amundsen, M. (2013), Collection+JSON – Document Format, http://amundsen.com/media-
types/collection/format/ (accessed on 11 December 2018).

Armerding, T. (2018), The 17 biggest data breaches of the 21st century, www.csoonline.
com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
(accessed on 11 December 2018).

Atlassian (2018), Continuous integration vs. continuous delivery vs. continuous
deployment, www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd (accessed on
11 December 2018).

Australian Taxation Office (2016), SuperStream legislaton, standards and schedules,
www.ato.gov.au/Super/SuperStream/In-detail/Legal-framework/Legislative-instrument/
SuperStream-legislation,-standards-and-schedules/ (accessed on 11 December 2018).

Bell, T. (2018), 5 myths of API security, https://www.cso.com.au/article/635902/5-myths-
api-security/ (accessed on 11 December 2018).

Cloud Elements (2018), State of API Integration 2018 Report, https://offers.cloud-
elements.com/hubfs/cld-2018-soai-final-2018.pdf?t=1526679859334 (accessed on
11 December 2018).

Digital Transformation Agency (2017), Digital Transformation Culture Posters, https://
dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/
s3fs-public/files/digital-service-standard/dta-culture-posters-wcag.pdf (accessed on
11 December 2018).

Digital Transformation Agency (2016), Digital Service Standard: 3. Agile and User-
Centred Process, https://guides.service.gov.au/digital-service-standard/3-agile-and-
user-centred/ (accessed on 11 December 2018).

ECMA International (2017), The JSON Data Interchange Syntax, www.ecma-international.
org/publications/files/ECMA-ST/ECMA-404.pdf (accessed on 11 December 2018).

European Commission (2018), Data Protection: Rules for the protection of personal data
inside and outside the EU, https://ec.europa.eu/info/law/law-topic/data-protection_en
(accessed on 11 December 2018).

Forrester (2017), The Forrester Wave™: Software Composition Analysis, Q1 2017, Forrester
Research, Inc.

Fowler, M. (2010), Richardson Maturity Model, https://martinfowler.com/articles/
richardsonMaturityModel.html (accessed on 11 December 2018).

Fowler, M. and J. Lewis (2014), Microservices: A definition of this new architectural term,
https://martinfowler.com/articles/microservices.html (accessed on 11 December 2018).

http://amundsen.com/media-types/collection/format/
http://amundsen.com/media-types/collection/format/
http://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
http://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
http://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
http://www.ato.gov.au/Super/SuperStream/In-detail/Legal-framework/Legislative-instrument/SuperStream-legislation,-standards-and-schedules/
http://www.ato.gov.au/Super/SuperStream/In-detail/Legal-framework/Legislative-instrument/SuperStream-legislation,-standards-and-schedules/
https://www.cso.com.au/article/635902/5-myths-api-security/
https://www.cso.com.au/article/635902/5-myths-api-security/
https://offers.cloud-elements.com/hubfs/cld-2018-soai-final-2018.pdf?t=1526679859334
https://offers.cloud-elements.com/hubfs/cld-2018-soai-final-2018.pdf?t=1526679859334
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/digital-service-standard/dta-culture-posters-wcag.pdf
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/digital-service-standard/dta-culture-posters-wcag.pdf
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/digital-service-standard/dta-culture-posters-wcag.pdf
https://guides.service.gov.au/digital-service-standard/3-agile-and-user-centred/
https://guides.service.gov.au/digital-service-standard/3-agile-and-user-centred/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/microservices.html

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

66 – ﻿References

Gartner (2018), Assessing Microservices for Agile Application Architecture and Delivery,
Gartner.

Greenberg, A. (2016), So Hey You Should Stop Using Texts For Two-Factor Authentication,
www.wired.com/2016/06/hey-stop-using-texts-two-factor-authentication/ (accessed on
11 December 2018).

Gruman, G. (2007), Strategies for Dealing With IT Complexity, www.cio.com/
article/2437606/it-organization/strategies-for-dealing-with-it-complexity.html (accessed
on 11 December 2018).

Guckenheimer, S. (2017b), What is continuous delivery?, https://docs.microsoft.com/en-us/
azure/devops/what-is-continuous-delivery (accessed on 11 December 2018).

Guckenheimer, S. (2017a), What is Monitoring?, https://docs.microsoft.com/en-us/azure/
devops/what-is-monitoring (accessed on 11 December 2018).

Health Level Seven International (2018), Introduction to HL7 Standards, www.hl7.org/
implement/standards/ (accessed on 11 December 2018).

HL7 Community (2017), HL7 FHIR Release 3 (STU) Resource Formats, www.hl7.org/fhir/
formats.html (accessed on 11 December 2018).

IETF (2014), Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing, https://
tools.ietf.org/html/rfc7230 (accessed on 11 December 2018).

IETF (2008), The Transport Layer Security (TLS) Protocol: Version 1.2, https://tools.ietf.
org/html/rfc5246 (accessed on 14 June 2018).

IETF (2015e), JSON Web Algorithms (JWA), https://tools.ietf.org/html/rfc7518 (accessed on
11 December 2018).

IETF (2015c), JSON Web Encryption (JWE), https://tools.ietf.org/html/rfc7516 (accessed on
11 December 2018).

IETF (2015d), JSON Web Key (JWK), https://tools.ietf.org/html/rfc7517 (accessed on
11 December 2018).

IETF (2015b), JSON Web Signature (JWS), https://tools.ietf.org/html/rfc7515 (accessed on
11 December 2018).

IETF (2015a), JSON Web Token (JWT), https://tools.ietf.org/html/rfc7519 (accessed on
11 December 2018).

IETF (2012a), The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749
(accessed on 11 December 2018).

IETF (2012b), The OAuth 2.0 Authorization Framework: Bearer Token Usage, www.ietf.
org/rfc/rfc6750.txt (accessed on 11 December 2018).

Indrasiri, K. (2016), Microservice in Practice – Key Architectural Concepts of an MSA,
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-
an-msa/ (accessed on 11 December 2018).

ISO20022 Registration Management Group (2018), ISO 20022 and JSON: An
implementation Best Practices Whitepaper, www.iso20022.org/sites/default/files/
documents/general/ISO20022_API_JSON_Whitepaper_Final_20180129.pdf (accessed
on 11 December 2018).

http://www.wired.com/2016/06/hey-stop-using-texts-two-factor-authentication/
http://www.cio.com/article/2437606/it-organization/strategies-for-dealing-with-it-complexity.html
http://www.cio.com/article/2437606/it-organization/strategies-for-dealing-with-it-complexity.html
https://docs.microsoft.com/en-us/azure/devops/what-is-continuous-delivery
https://docs.microsoft.com/en-us/azure/devops/what-is-continuous-delivery
https://docs.microsoft.com/en-us/azure/devops/what-is-monitoring
https://docs.microsoft.com/en-us/azure/devops/what-is-monitoring
http://www.hl7.org/implement/standards/
http://www.hl7.org/implement/standards/
http://www.hl7.org/fhir/formats.html
http://www.hl7.org/fhir/formats.html
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
http://www.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc6750.txt
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
http://www.iso20022.org/sites/default/files/documents/general/ISO20022_API_JSON_Whitepaper_Final_20180129.pdf
http://www.iso20022.org/sites/default/files/documents/general/ISO20022_API_JSON_Whitepaper_Final_20180129.pdf

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

﻿References – 67

Kelly, M. (2018), HAL – Hypertext Application Language, http://stateless.co/hal_
specification.html (accessed on 11 December 2018).

Lakhani, M. and K. Iansiti (2017), The Truth About Blockchain, https://hbr.org/2017/01/
the-truth-about-blockchain (accessed on 11 December 2018).

Microsoft Corporation (2017), Microservices architecture style, https://docs.microsoft.
com/en-us/azure/architecture/guide/architecture-styles/microservices (accessed on
11 December 2018).

Microsoft Corporation (n.d.), Architecture Styles, https://docs.microsoft.com/en-us/azure/
architecture/guide/architecture-styles/ (accessed on 11 December 2018).

ModicaGroup (2018), Optus SMS Suite Mobile Gateway REST API, https://confluence.
modicagroup.com/display/OPTUS/Optus+SMS+Suite+Mobile+Gateway+REST+API
(accessed on 11 December 2018).

MuleSoft (2017), Best practices for microservices: Implementing a foundation for
continuous innovation.

OASIS (2013), AS4 Profile of ebMS 3.0 Version 1.0, http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.html (accessed on
11 December 2018).

OASIS (2011), OASIS ebXML Messaging Services Version 3.0: Part 2, Advanced Features,
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.html
(accessed on 11 December 2018).

OASIS (2008), Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1,
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.html (accessed
on 11 December 2018).

OASIS (2004), Web Services Reliable Messaging TC – WS-Reliability 1.1, http://docs.
oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf (accessed
on 11 December 2018).

OASIS (2007a), OASIS ebXML Messaging Services Version 3.0: Part 1, Core Features,
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.html
(accessed on 11 December 2018).

OASIS (2007b), Web Services Context Specification (WS-Context) Version 1.0, http://docs.
oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html (accessed on 11 December 2018).

OASIS (2009d), Web Services Coordination (WS-Coordination) Version 1.2, http://docs.
oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html (accessed
on 11 December 2018).

OASIS (2009a), Web Services Dynamic Discovery (WS-Discovery) Version 1.1, http://docs.
oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html (accessed on
11 December 2018).

OASIS (2009b), Web Services Federation Language (WS-Federation) Version 1.2, http://
docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html (accessed
on 28 December 2018).

OASIS (2012a), Web Services Security: SOAP Message Security Version 1.1.1, http://
docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html
(accessed on 11 December 2018).

http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html
https://hbr.org/2017/01/the-truth-about-blockchain
https://hbr.org/2017/01/the-truth-about-blockchain
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/
https://confluence.modicagroup.com/display/OPTUS/Optus+SMS+Suite+Mobile+Gateway+REST+API
https://confluence.modicagroup.com/display/OPTUS/Optus+SMS+Suite+Mobile+Gateway+REST+API
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.html
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html
http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html

UNLOCKING THE DIGITAL ECONOMY – A GUIDE TO IMPLEMENTING APPLICATION PROGRAMMING INTERFACES IN GOVERNMENT © OECD 2019

68 – ﻿References

OASIS (2009c), WS-SecureConversation 1.4, http://docs.oasis-open.org/ws-sx/
ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html (accessed on
11 December 2018).

OASIS (2012b), WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/
ws-trust-1.4-errata01-complete.html (accessed on 11 December 2018).

OpenID Foundation (2014a), OpenID Connect Core 1.0 incorporating errata set 1, http://
openid.net/specs/openid-connect-core-1_0.html (accessed on 11 December 2018).

OpenID Foundation (2014b), Welcome to OpenID Connect, https://openid.net/connect/
(accessed on 11 December 2018).

OxfordDictionaries.com (2018), API, https://en.oxforddictionaries.com/definition/api
(accessed on 11 December 2018).

Pagh-Rasmussen, N. and S. Fieten (2017), OpenPEPPOL CC F2F meetings – AS4
Transition, https://peppol.eu/wp-content/uploads/2017/05/AS4-transition-Vienna-CC-
Sander-and-Niels-0905-2017.pdf (accessed on 11 December 2018).

Patronus Laboratories Corporation (2019), Patronuslabs, https://www.patronuslabs.com/
products/liability-vs-roi-analysis (accessed on 6 February 2019).

Sandoval, K. (2015), API Security: The 4 Defenses of The API Stronghold, https://
nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/ (accessed on
11 December 2018).

Sarid, U. (2017), Open API and RAML: Better Together, https://blogs.mulesoft.com/dev/
api-dev/open-api-raml-better-together/ (accessed on 11 December 2018).

Telstra (2018), Telstra Messaging API, https://dev.telstra.com/content/messaging-api#
(accessed on 11 December 2018).

ThoughtWorks (2018), Continuous Delivery, www.thoughtworks.com/continuous-delivery
(accessed on 11 December 2018).

W3C (2014), JSON-LD 1.0: A JSON-based Serialization for Linked Data, www.w3.org/TR/
json-ld/ (accessed on 11 December 2018).

W3C (2007a), SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), www.
w3.org/TR/soap12/ (accessed on 11 December 2018).

W3C (2007b), Web Services Policy 1.5 – Framework, www.w3.org/TR/2007/REC-ws-
policy-20070904/ (accessed on 11 December 2018).

W3C (2006a), Web Services Addressing 1.0 – Core, www.w3.org/TR/ws-addr-core/
(accessed on 11 December 2018).

W3C (2006b), Extensible Markup Language (XML) 1.1 (Second Edition), www.w3.org/TR/
xml11/ (accessed on 11 December 2018).

XBRL International (2018), An Introduction to XBRL, www.xbrl.org/the-standard/what/
an-introduction-to-xbrl/ (accessed on 11 December 2018).

http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/connect/
https://en.oxforddictionaries.com/definition/api
https://peppol.eu/wp-content/uploads/2017/05/AS4-transition-Vienna-CC-Sander-and-Niels-0905-2017.pdf
https://peppol.eu/wp-content/uploads/2017/05/AS4-transition-Vienna-CC-Sander-and-Niels-0905-2017.pdf
https://www.patronuslabs.com/products/liability-vs-roi-analysis
https://www.patronuslabs.com/products/liability-vs-roi-analysis
https://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
https://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
https://blogs.mulesoft.com/dev/api-dev/open-api-raml-better-together/
https://blogs.mulesoft.com/dev/api-dev/open-api-raml-better-together/
https://dev.telstra.com/content/messaging-api#
http://www.thoughtworks.com/continuous-delivery
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.xbrl.org/the-standard/what/an-introduction-to-xbrl/
http://www.xbrl.org/the-standard/what/an-introduction-to-xbrl/

www.oecd.org/tax/forum-on-tax-administration/

FORUM ON TAX ADMINISTRATION

Unlocking the Digital Economy - A Guide
to Implementing Application Programming
Interfaces in Government
New digital technologies are reshaping the economy, leading to the development of new products,
services and business models and creating new ways for citizens and businesses to interact in
their daily lives. They are also allowing tax administrations to be more data and service driven,
with increasing use of proactive tools for engaging with taxpayers, greater use of third party
data and increasing use of advanced analytics to better target interventions. This in turn offers
opportunities to make tax a more seamless process, with easier self-service, reductions in burdens
and enhanced compliance.

A key enabler of these changes is the use of Application Programming Interfaces (APIs). This is
the functionality that connects systems, people and things without facilitating direct access, an
invisible process that people already use every day on mobile phones and via the internet.

This report, which is aimed at the more specialist reader within tax administrations, provides an
overview of the practices, techniques and standards used to deliver contemporary and effective
digital services for taxpayers. It is intended to provide practical assistance to tax administrations,
and other parts of government, which are seeking to implement or further develop their API
strategy.

	Unlocking the Digital Economy – A Guide to Implementing Application Programming Interfaces in Government
	Table of contents
	Preface
	Abbreviations and acronyms
	Executive summary
	Chapter 1. Introduction
	1.1. Why APIs?
	Figure 1.1. The difference between partially connected and fully connected ecosystems
	Figure 1.2. Attributes of paper, electronic and digital ecosystems
	APIs can support the move beyond “electronic” forms to real digital interactions
	APIs can support a system that auto regulates
	APIs can support multi-directional information
	Figure 1.3. The growth of digital “event based” reporting
	APIs can support the application of rules or conditions
	APIs can increase Machine to Machine (non-Human) interactions
	Table 1.1. Comparison of machine to machine (M2M) and human processing
	APIs can support the consistency and correctness of content
	APIs can support appropriate timing
	APIs can support a new and improved client experience
	APIs can support both retail and wholesale
	Figure 1.4. ATO transition from paper to digital (from the reinventing the ATO blueprint)

	Chapter 2. Technical concepts
	2.1. A brief history of APIs
	Figure 2.1. Connections across the ecosystem

	2.2. API Management
	What is API Management?
	What is API Governance?
	Contemporary API Management practices
	Figure 2.2. Extract from the MuleSoft End to End Lifecycle for Microservices

	2.3. Architectural approaches
	Architecture principles
	Conceptual architectural models
	Figure 2.3. Peer-to-peer model
	Table 2.1. Peer-to-peer application technologies and standards
	Figure 2.4. The four-corner model
	Figure 2.5. Client-server model
	Box 2.1. Example of exchanging SMS data
	Contemporary API implementation patterns
	Figure 2.6. Monoliths and microservices
	Figure 2.7. The API gateway pattern
	Figure 2.8. Event-Driven Architecture
	API implementation styles
	Table 2.2. Commonly used HTTP methods, purpose and classification
	Table 2.3. Fundamental technology standards
	Table 2.4. Messaging standards
	Technology standards
	Table 2.5. WS-* standards
	Table 2.6. Primary data standards

	2.4. API security practices and controls
	Figure 2.9. Liability vs Return On Investment (ROI) Analysis
	Authentication and authorisation
	Table 2.7. Authentication and authorisation standards
	Figure 2.10. OpenID Connect Protocol Suite
	Proactive vulnerability management
	Security certification
	Whitelisting and throttling
	Security monitoring and intervention
	Risk management

	2.5. API consumer experience
	Developer portals – self service
	API documentation standards
	Developer kits

	2.6. API measurement and reporting
	Operations management
	Monitoring techniques
	Effective alerting
	Product management
	Benchmarking

	2.7. API delivery techniques and toolsets
	Agile
	Automation pipelines
	Continuous integration
	Continuous delivery
	Cloud elasticity
	Resilience of dependencies

	Chapter 3. Future applications of APIs
	3.1. A transport management company executes a payroll event
	Figure 3.1. A transport management company executes a payroll event

	3.2. A transport management company makes a contract payment
	Figure 3.2. A transport management company makes a contract payment

	3.3. A transport management company attempts a contract payment
	Figure 3.3. A transport management company attempts a contract payment

	Annex A. ATO Lessons Learned
	Annex B. Glossary of terms
	Table B.1. Definitions for key terms used throughout the document

	References

