Epidemiology and omics – challenges and policy implications

Priyanka Pillai
University of Melbourne

OECD Global Open Science Forum
Enhancing access to research data during crises: lessons learned from the COVID-19 pandemic
23rd April 2021
Priyanka Pillai
Academic Specialist — Research Data and Health Informatics
priyanka.pillai@unimelb.edu.au
twitter.com/Pillai_Pri

mdap.unimelb.edu.au
mdap-info@unimelb.edu.au
twitter.com/MDAP_Unimelb

https://www.apprise.org.au/
https://www.apprise.org.au/contact-us
twitter.com/APPRISE_CRE
“Infectious disease surveillance is one of the most exciting opportunities created by big data, because these novel data streams can improve timeliness, and spatial and temporal resolution, and provide access to “hidden” populations. These streams can also go beyond disease surveillance and provide information on behaviours and outcomes related to vaccine or drug use. However, the promise of these big-data streams must be balanced by caution”

TABLE OF CONTENT

01.	Challenges of multidisciplinary research
02.	Omics and epidemiology data
03.	What can be done better from the policy perspective?
04.	Forming a Community of Practice (CoP)
01. Challenges of multidisciplinary research
Value of multidisciplinary research

Clinical – Trials, observational and interventional studies, imaging, healthcare data

Omics – Rapid detection of pathogens and transmission

Epidemiology – Prevalence, risk factors, spread, severity and transmissibility

Social Sciences – Economic, social and political impact.

Evidence base
Challenges of multidisciplinary research

- Harmonisation across sophisticated yet diverse systems
- Minimum information dataset
- Integration of disparate sources of data for a complete picture
- Differences in maturity levels of data capturing systems
- Diversity in data models, definitions and standards
- Sensitivities about data linkage, accidental findings, miscalculations, etc
- Timeliness of accessing data across information systems
- Networked infrastructure and researchers who can integrate the resources
02. Omics and epidemiology data
Challenges in epidemiology data management

Minimum information dataset

Use and reuse

Interoperability
Challenging due to different standards, formats and definitions

Documentation
Lack of a rich knowledge base on data standards, data collections and sharing protocols, and metadata standards

Heterogeneity
In methods, tools, systems, analytics protocols...

The full picture
Linking epi data with clinical and genomics data
Challenges in omics data management

Volume and diversity
Lots of valuable sequencing data available openly but is it accessible for all?

Inequity in capacity
Not all regions have access to sequencing facilities

Retention?
Are we simultaneously building capacity to retain huge volumes of data?

Reproducibility
Complex pipelines, not enough skills to replicate those pipelines

Increased demand for openness
Linking epi data with clinical and genomics data

The full picture
Linking epi data with clinical and genomics data
03. What can be done better from the policy perspective?
Recommendations for policymakers

Tools
- Standardised tools, method and technology

Global system
- Combine genomics and epi for early detection and rapid response

Knowledge base
- Catalogue of resources, tools and repositories

Harmonisation
- Interoperable systems

Promote openness where applicable

Funding and partnerships will support all these recommendations…
04. Establishing a Community of Practice (CoP)
What will the Infectious Diseases Data CoP achieve?

People
Identify key international and local leaders and change agents

Priorities
Identify key priorities in the infectious diseases research community

Tools and technology
Scope data, definitions, systems, tools and analytical methods

Be an enabler
Build a global framework that can be adapted to localised settings
We need to make better decisions for data so the data can make better decisions for us....

- Break out of silos. There is immense value in combining information from different systems
- Acknowledging diversity of people that are centre of data...and the diversity they bring to the data as well
- Standardised and harmonised data fields, formats and definitions for consistent decision making
- Clear understanding of the value for collaborating and sharing data
- Build capacity (e.g., skills, people, methods, tools, platform, time, funding, collaborations) during preparedness stage for better response
THANKS!

Priyanka Pillai

Academic Specialist — Research Data and Health Informatics

priyanka.pillai@unimelb.edu.au

twitter.com/Pillai_Pri

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik