Slovak Republic

Progress in the net zero transition

Disclaimer (for the referring document)
This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty
over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city
or area. Extracts from publications may be subject to additional disclaimers, which are set out in the complete
version of the publication, available at the link provided.
EMISSIONS

<table>
<thead>
<tr>
<th>2018 OECD average:</th>
<th>2018 Slovak average:</th>
<th>EU target:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5 tCO₂e/capita</td>
<td>7.9 tCO₂e/capita</td>
<td>net zero GHG emissions by 2050</td>
</tr>
</tbody>
</table>

Large regions (TL2)

Figure 1. Estimated regional greenhouse gas emissions per capita
Tons CO₂ equivalent (tCO₂e), large regions (TL2), 2018

Greenhouse gas (GHG) emissions per capita generated in half of Slovak large regions are below 10 tCO₂e per capita. All Slovak large regions have lower emissions per capita than the OECD average of 11.5 tCO₂e per capita.

Estimated emissions per capita in East Slovakia are more than two times higher than in Central Slovakia.

Small regions (TL3)

Figure 2. Contribution to estimated GHG emissions
By type of small region, 2018

In Slovak Republic, metropolitan regions emit slightly less greenhouse gases than non-metro regions. Emissions per capita in Slovak non-metro regions are lower than in metropolitan regions.

Figure 3. Estimated GHG emissions per capita
By type of small region, 2018

Notes: Figures 1, 2, 3 and the OECD average show OECD calculations based on estimated greenhouse gas emissions data from the European Commission’s Joint Research Centre (ECJRC). The Emissions Database for Global Atmospheric Research of the ECJRC allocates national greenhouse gas emissions to locations according to about 300 proxies. See Box 3.7 in the 2021 OECD Regional Outlook for more details.
Slovak electricity mix

Figure 4. National electricity generation by energy source in 2019

- **Coal**: 2019 OECD average: 23%, 2019 Slovak average: 9%, 2030 well below 2°C benchmark for the EU: <2%, 2030 1.5°C benchmark for OECD countries: 0%

Share of coal-fired electricity generation

- Bratislava Region and Central Slovakia do not use coal in electricity generation. West Slovakia generated just under 7% of its electricity using coal, while East Slovakia depended on coal for 95% of its electricity generation in 2017. No new capacity is planned or being build.
Benchmark notes: The well-below 2 degrees benchmarks show IEA Sustainable Development Scenario (SDS) numbers. The SDS models how the global energy system can evolve in alignment with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. According to the Powering Past Coal Alliance (PPCA), a phase-out of unabated coal by 2030 for OECD countries is cost-effective to limit global warming to 1.5°C.

Figure notes: Figure 4 shows data from the IEA (2020). Figure 5 shows OECD calculations based on the Power Plants Database from the WRI. The database captures electricity generation from the power plants connected to the national power grid. As a result, small electricity generation facilities disconnected from the national power grid might not be captured. See here for more details. Figures 6 and 7 show the power potential of solar and wind. Mean wind power density (WPD) is a measure of wind power available, expressed in Watt per square meter (W/m²). Global horizontal irradiation (GHI) is the sum of direct and diffuse irradiation received by a horizontal surface, measured in kilowatt hours per square metre (kWh/m²).

Wind power

| 2019 OECD average: 8% | 2019 Slovak average: 0.02% | 2030 well below 2°C benchmark for the EU: >29% |

Figure 6. Wind power potential
Mean wind power density (W/m²)

![Wind power diagram](image)

Source: Map produced by The Global Wind Atlas

Solar power

| 2019 OECD average: 3% | 2019 Slovak average: 2% | 2030 well below 2°C benchmark for the EU: >14% |

Figure 7. Solar power potential
Global horizontal irradiation (kWh/m²)

![Solar power diagram](image)

Source: Map produced by The Global Solar Atlas

Although wind and solar shares are low, Slovak Republic has a large share of zero-emission electricity generation due to nuclear power and hydropower. Solar power potential is higher in the south and wind power density in the west.
There will be both employment gains and losses due to the transition to net zero greenhouse gas emissions. They may not be distributed in the same way across regions. Employment in sectors that may be subject to some job loss by 2040 as a result of policies to reduce emissions in line with the climate objectives in the Paris Agreement amounts to less than 4% in all Slovak regions. All Slovak regions, except for West Slovakia, have less employment in these sectors than the OECD average. West Slovakia has the highest share, largely driven by chemicals. The selection of sectors is broad and based on employment effects simulated across OECD countries (See Box 3.9 of the 2021 OECD Regional Outlook). It does not take specific local characteristics into account.

Figure notes: Figure 8 is based on data from OECD Statistics. Sectors are selected based on macroeconomic simulations of a scenario limiting global warming to well below 2 degrees. See Box 3.9 in the 2021 OECD Regional Outlook for more details.
Electrification of passenger cars

Benchmarks for new zero-emission passenger car sales:
- IEA well-below 2°C benchmark: 100% by 2040.
- Aligned with net zero emissions by 2050: 100% by 2035 at the latest. 2030 cost-effective.

Slovak target sales of zero emission new passenger cars:
- No full phase out date of internal combustion cars yet

2018 Slovak average rate of full-electric road motor vehicles stock: <1 per 1000 vehicles

Figure 9. Full-electric road motor vehicles stock
For 1000 vehicles, large regions (TL2), 2018

In 2018, no Slovak region had over 1 full-electric vehicle per 1000 vehicles. Regions with a net zero target by 2050 will need to phase out sales of new conventional car by 2035 at the latest (also considering cars have an average useful life of 15 years). A phase-out by 2030 is more cost-effective.

Benchmark notes: In the IEA’s Sustainable Development Scenario, OECD countries (such as the European Union, Japan and the United States) as well as China fully phase out conventional car sales by 2040. This scenario is aligned with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. The UK Committee on Climate Change finds that all new cars and vans should be electric (or use a low carbon alternative such as hydrogen) by 2035 at the latest to reach net zero GHG emission targets by 2050. A more cost-effective date from the point of view of users is 2030. Figure notes: Figure 9 is based on data from OECD Statistics.
Policies towards net-zero greenhouse gas emissions can bring many benefits beyond halting climate change. They include reduced air and noise pollution, reduced traffic congestion, healthier diets, enhanced health due to increased active mobility, health benefits through thermal insulation, and improved water, soil and biodiversity protection. Some are hard to quantify.

Small particulate matter (PM2.5) is the biggest cause of human mortality induced by air pollution. Major disease effects include stroke, cardiovascular and respiratory disease. Air pollution amplifies respiratory infectious disease such as Covid-19. It affects children the most. It reduces their educational outcomes as well as worker productivity. Average exposure to small particulate matter air pollution is above the maximum threshold recommended by the World Health Organisation in all regions.