Regional Outlook 2021 - Country notes

Latvia

Progress in the net zero transition

Disclaimer (for the referring document)
This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Extracts from publications may be subject to additional disclaimers, which are set out in the complete version of the publication, available at the link provided.
EMISSIONS

<table>
<thead>
<tr>
<th></th>
<th>2018 OECD average:</th>
<th>2018 Latvian average:</th>
<th>EU target:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.5 tCO₂e/capita</td>
<td>6.1 tCO₂e/capita</td>
<td>net zero emissions by 2050</td>
</tr>
</tbody>
</table>

Large regions (TL2)

Figure 1. Estimated regional greenhouse gas emissions per capita
Tons CO₂ equivalent (tCO₂e), large regions (TL2), 2018

Greenhouse gas emissions per capita generated in Latvia are below 10 tCO₂e per capita, and thus below the OECD average.

Small regions (TL3)

Figure 2. Contribution to estimated GHG emissions
By type of small region, 2018

Figure 3. Estimated GHG emissions per capita
By type of small region, 2018

Across the OECD, metropolitan regions emit most greenhouse gases but per capita emissions are highest in remote regions. In Latvia, non-metro regions emit most greenhouse gases. Emissions per capita in Latvian remote rural regions are higher than in metropolitan regions.

Figure notes: Figures 1, 2, 3 and the OECD average show OECD calculations based on estimated greenhouse gas emissions data from the European Commission’s Joint Research Centre (ECJRC). The Emissions Database for Global Atmospheric Research of the ECJRC allocates national greenhouse gas emissions to locations according to about 300 proxies. See Box 3.7 in the 2021 OECD Regional Outlook for more details.
Latvian electricity mix

Figure 4. National electricity generation by energy source in 2019

- **Natural gas**: ~40%
- **Hydro**: ~30%
- **Wind**: ~20%
- **Solar**: ~10%
- **Other**: ~9%

Share of coal-fired electricity generation

- **2019 OECD average**: 23%
- **2019 Latvian average**: 0%
- **2030 well below 2°C benchmark for the EU**: <2%
- **2030 1.5°C benchmark for OECD countries**: 0%

Figure 5. Regional coal-fired electricity generation estimates

Per cent of total electricity generation, large regions (TL2), 2017

Latvia no longer generates electricity from coal. No new capacity is planned or being build.
Benchmark notes: The well-below 2 degrees benchmarks show IEA Sustainable Development Scenario (SDS) numbers. The SDS models how the global energy system can evolve in alignment with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. According to the Powering Past Coal Alliance (PPCA), a phase-out of unabated coal by 2030 for OECD countries is cost-effective to limit global warming to 1.5°C.

Figure notes: Figure 4 shows data from the IEA (2020). Figures 5, 6 and 8 show OECD calculations based on the Power Plants Database from the WRI. The database captures electricity generation from the power plants connected to the national power grid. As a result, small electricity generation facilities disconnected from the national power grid might not be captured. See here for more details. Figures 7 and 9 show the power potential of solar and wind. Mean wind power density (WPD) is a measure of wind power available, expressed in Watt per square meter (W/m²). Global horizontal irradiation (GHI) is the sum of direct and diffuse irradiation received by a horizontal surface, measured in kilowatt hours per square metre (kWh/m²).

Wind power

| 2019 OECD average: 8% | 2019 Latvian average: 2% | 2030 well below 2°C benchmark for the EU: >29% |

Figure 6. Regional wind power generation estimates
Per cent of total electricity generation, large regions (TL2), 2017

![Wind power map](image)

Figure 7. Wind power potential
Mean wind power density (W/m²)

![Wind power density map](image)

Solar power

| 2019 OECD average: 3% | 2019 Latvian average: 0% | 2030 well below 2°C benchmark for the EU: >14% |

Figure 8. Regional solar power generation estimates
Per cent of total electricity generation, large regions (TL2), 2017

![Solar power map](image)

Figure 9. Solar power potential
Global horizontal irradiation (kWh/m²)

![Solar power potential map](image)

The national average shares are far below the 2030 benchmarks. Wind power density is high offshore and in western regions, solar power potential is higher in the west.
There will be both employment gains and losses due to the transition to net zero greenhouse gas emissions. They may not be distributed in the same way across regions. Employment in sectors that may be subject to some job loss by 2040 as a result of policies to reduce emissions in line with the climate objectives in the Paris Agreement amounts to less than 2% in Latvia, mostly in chemicals. Latvia has less employment in these sectors than the OECD average. The selection of sectors is broad and based on employment effects simulated across OECD countries (See Box 3.9 of the 2021 *OECD Regional Outlook*). It does not take specific local characteristics into account.

Figure notes: Figure 10 is based on data from OECD Statistics. Sectors are selected based on macroeconomic simulations of a scenario limiting global warming to well below 2 degrees. See Box 3.9 in the 2021 *OECD Regional Outlook* for more details.
Benchmark notes: In the IEA’s Sustainable Development Scenario, OECD countries (such as the European Union, Japan and the United States) as well as China fully phase out conventional car sales by 2040. This scenario is aligned with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. The UK Committee on Climate Change finds that all new cars and vans should be electric (or use a low carbon alternative such as hydrogen) by 2035 at the latest to reach net zero GHG emission targets by 2050, which is aligned with limiting global warming to 1.5°C. A more cost-effective date from the point of view of users is 2030.

Figure notes: Figure 11 is based on data from ITF and OECD Statistics. See Box 3.10 in the 2021 OECD Regional Outlook for more details. GDP per capita is expressed in USD per head, PPP, constant prices from 2015.

Modal shift

Riga has a relatively poor public transport performance, London (UK) has among the highest public transport performance scores. Inhabitants of the metropolitan area of London can on average reach 95% of the population living within 8 km in 30 minutes by public transport.

Figure 11. Public transport performance in 2018
Policies towards net-zero greenhouse gas emissions can bring many benefits beyond halting climate change. They include reduced air and noise pollution, reduced traffic congestion, healthier diets, enhanced health due to increased active mobility, health benefits through thermal insulation, and improved water, soil and biodiversity protection. Some are hard to quantify.

Small particulate matter (PM2.5) is the biggest cause of human mortality induced by air pollution. Major disease effects include stroke, cardiovascular and respiratory disease. Air pollution amplifies respiratory infectious disease such as Covid-19. It affects children the most. It reduces their educational outcomes as well as worker productivity.