Regional Outlook 2021 - Country notes

Denmark

Progress in the net zero transition

Disclaimer (for the referring document)
This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Extracts from publications may be subject to additional disclaimers, which are set out in the complete version of the publication, available at the link provided.
2018 OECD average: 11.5 tCO₂e/capita
2018 Danish average: 8.6 tCO₂e/capita
Danish target: net zero GHG emissions by 2050

Large regions (TL2)

Figure 1. Estimated regional greenhouse gas emissions per capita
Tons CO₂ equivalent (tCO₂e), large regions (TL2), 2018

Greenhouse gas (GHG) emissions per capita generated in the majority of Danish large regions are below 10 tCO₂e per capita. Only Southern Denmark has higher emissions per capita than the OECD average of 11.5 tCO₂e.

Estimated emissions per capita in Southern Denmark are almost four times higher than in the capital region.

Small regions (TL3)

Figure 2. Contribution to estimated GHG emissions
By type of small region, 2018

Figure 3. Estimated GHG emissions per capita
By type of small region, 2018

Across the OECD, metropolitan regions emit more greenhouse gases than remote regions. In Denmark, the same pattern can be observed – in part because Denmark has little population in remote regions. Emissions per capita in Danish remote rural regions are higher than in metropolitan regions. All region types have reduced production-based emissions per capita between 2010 and 2018.
Danish electricity mix

Figure 4. National electricity generation by energy source in 2019

![Figure 4](image)

2019 OECD average: 23%
2019 Danish average: 11%
2030 well below 2°C benchmark for the EU: <2%
2030 1.5°C benchmark for OECD countries: 0%

Figure 5. Regional coal-fired electricity generation estimates
Per cent of total electricity generation, large regions (TL2), 2017

![Figure 5](image)

All Danish regions used coal for electricity generation in 2017. Some regions rely largely on coal. For example, the Capital City Region and Northern Jutland depend on coal for around 50% of their electricity generation. No new capacity is planned or being built.
Benchmark notes: The well-below 2 degrees benchmarks show IEA Sustainable Development Scenario (SDS) numbers. The SDS models how the global energy system can evolve in alignment with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. According to the Powering Past Coal Alliance (PPCA), a phase-out of unabated coal by 2030 for OECD countries is cost-effective to limit global warming to 1.5°C.

Figure notes: Figure 4 shows data from the IEA (2020). Figure 5 shows OECD calculations based on the Power Plants Database from the WRI. The database captures electricity generation from the power plants connected to the national power grid. As a result, small electricity generation facilities disconnected from the national power grid might not be captured. See here for more details. Figures 6 and 7 show the power potential of solar and wind. Mean wind power density (WPD) is a measure of wind power available, expressed in Watt per square meter (W/m²). Global horizontal irradiation (GHI) is the sum of direct and diffuse irradiation received by a horizontal surface, measured in kilowatt hours per square metre (kWh/m²).

Wind power

| 2019 OECD average: 8% | 2019 Danish average: 55% | 2030 well below 2°C benchmark for the EU: >29% |

Figure 6. Wind power potential
Mean wind power density (W/m²)

Source: Map produced by The Global Wind Atlas

Solar power

| 2019 OECD average: 3% | 2019 Danish average: 3% | 2030 well below 2°C benchmark for the EU: >14% |

Figure 7. Solar power potential
Global horizontal irradiation (kWh/m²)

Source: Map produced by The Global Solar Atlas

Wind power density is high, particularly offshore.
There will be both employment gains and losses due to the transition to net zero greenhouse gas emissions. They may not be distributed in the same way across regions. Employment in sectors that may be subject to some job loss by 2040 as a result of policies to reduce emissions in line with the climate objectives in the Paris Agreement amounts to less than 3% in all Danish regions. All Danish regions, apart from the Capital City Region, have less employment in these sectors than the OECD average. The capital region has a larger share, largely driven by transport. The selection of sectors is broad and based on employment effects simulated across OECD countries (See Box 3.9 of the 2021 OECD Regional Outlook). It does not take specific local characteristics into account.

Figure notes: Figure 8 is based on data from OECD Statistics. Sectors are selected based on macroeconomic simulations of a scenario limiting global warming to well below 2 degrees. See Box 3.9 in the 2021 OECD Regional Outlook for more details.
TRANSPORT

Electrification of passenger cars

2019 Danish average share of full-electric new passenger cars: 2%	Benchmarks for new zero-emission passenger car sales:
	IEA well-below 2°C benchmark: 100% by 2040.
	Aligned with net zero emissions by 2050: 100% by 2035 at the latest. 2030 cost-effective.
	Danish target sales of zero emission new passenger cars: 100% by 2035

Modal shift

Copenhagen has relatively good public transport performance. For comparison, London (UK) has among the highest public transport performance scores. Inhabitants of the metropolitan area of London can on average reach 95% of the population living within 8 km in 30 minutes by public transport.

Figure 9. Public transport performance in 2018

Benchmark notes: In the IEA’s Sustainable Development Scenario, OECD countries (such as the European Union, Japan and the United States) as well as China fully phase out conventional car sales by 2040. This scenario is aligned with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. The UK Committee on Climate Change finds that all new cars and vans should be electric (or use a low carbon alternative such as hydrogen) by 2035 at the latest to reach net zero GHG emission targets by 2050. A more cost-effective date from the point of view of users is 2030.

Figure notes: Figure 9 is based on data from ITF and OECD Statistics. See Box 3.10 in the 2021 OECD Regional Outlook for more details. GDP per capita is expressed in USD per head, PPP, constant prices from 2015.
Policies towards net-zero greenhouse gas emissions can bring many benefits beyond halting climate change. They include reduced air and noise pollution, reduced traffic congestion, healthier diets, enhanced health due to increased active mobility, health benefits through thermal insulation, and improved water, soil and biodiversity protection. Some are hard to quantify.

Small particulate matter (PM2.5) is the biggest cause of human mortality induced by air pollution. Major disease effects include stroke, cardiovascular and respiratory disease. Air pollution amplifies respiratory infectious disease such as Covid-19. It affects children the most. It reduces their educational outcomes as well as worker productivity.

In the Capital City Region and Southern Denmark close to half of the population or more are exposed to small particulate matter air pollution above the maximum level recommended by the World Health Organisation.

Figure notes: Figure 10 is based on data from OECD Statistics.