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FOREWORD

The OECD’s Working Group on Harmonization of Regulatory Oversight in Biotechnology
focuses its work on the development of Consensus Documents that are mutually recognised among
Member countries. These Consensus Documents contain information for use during the regulatory
assessment of a particular product.

This consensus document addresses the biology of poplar species (Populus L.). Poplars are an
important and prominent feature of forests throughout the Northern Hemisphere where they are also
among the most frequently planted tree species. They are important raw material for wood pulp,
particleboard, plywood, lumber, boxes, matchsticks, and small woodenware (Farrar 1995). The bark
contains tannic acid, used in tanning of leather, and the fragrant balsam found in the buds of some species
is sometimes used for medicinal purposes (Sargent 1965). While several species occur in Canada,
trembling aspen (P. tremuloides Michx.) has the largest forest inventory of any broadleaf tree species,
comprising 80% of the merchantable standing poplar timber with a volume estimated at 1,857 million m3

(Morley and Balatinecz 1993).

There are many recognised species of poplars and these hybridise extensively in nature, with
many more hybrids having been produced by controlled crossing. All of the species are deciduous, fast-
growing with a relatively short life span, are moisture loving, generally intolerant of shade, and are
medium to large trees. Ease of propagation, speed of growth and hardiness has led to their popularity for
use as ornamentals, windbreaks, large spacing and short-rotation “pulp” or “energy” plantations. In this
document, poplars are discussed generally as a genus, with some emphasis on Canadian species, and are
referred to as individual groups, species or hybrids only as necessary. Taxonomic and evolutionary
processes are reviewed that have given rise to divergence into sections, each containing a tremendous
range of genetic diversity. Reproductive biology is described with focus on aspects of the mating system,
gene flow, seed production, natural stand establishment and maintenance by vegetative reproduction. The
current knowledge of genetic variation within the genus is reviewed, highlighting the lack of population
differentiation over large areas, except for essential adaptive traits, and the tremendous variation typically
found within populations. Biological diversity and the complexity of ecological interactions with higher
and lower flora and fauna are discussed. The reader is also referred to the excellent monographs on
Populus species contained in Silvics of North America (Burns and Honkala 1990), and many relevant
papers contained in the recently published Biology of Populus (Stettler et al. 1996a).

The document was prepared by the lead country, Canada, and has been revised on a number of
occasions based on the input from other Member countries. It is intended for use by regulatory authorities
and others who have responsibility for assessments of transgenic plants proposed for commercialisation,
and by those who are actively involved with genetic improvement and intensive management of the genus.



ENV/JM/MONO(2000)10

6



ENV/JM/MONO(2000)10

7

TABLE OF CONTENTS

Preamble ........................................................................................................................................9

Section I Forestry Practices...............................................................................................11

A. Deployment of reforestation materials.......................................................11

B. Provenance transfer ....................................................................................12

C. Breeding programs ....................................................................................12

D. Conservation of genetic resources ............................................................13

Section II Taxonomy and Natural Distribution .................................................................15

Section III Centres of Origin/Diversity ...............................................................................19

A. Natural distribution ...................................................................................19

B. Evolution and migrational history .............................................................19

Section IV Reproductive biology ........................................................................................21

A. Reproductive development ........................................................................21

B. Mating system and gene flow ....................................................................22

C. Seed production .........................................................................................22

D. Natural regeneration ..................................................................................22

E. Vegetative reproduction in nature .............................................................23

(continued next page)



ENV/JM/MONO(2000)10

8

Section V Genetics .............................................................................................................24

A. Cytology .....................................................................................................24

B. Genetic variation ........................................................................................24

B.1. Population-level variability ...............................................................24

B.2. Individual-level variability .................................................................26

B.3. Molecular genetics..............................................................................26

C. Inbreeding depression and genetic load ....................................................27

Section VI Crosses ..............................................................................................................28

Section VII Ecology and Associated Species .......................................................................30

A. Habitat .......................................................................................................30

B. Synecology and associated species ...........................................................31

C. Competition and stand structure ................................................................31

D. Ecosystem dynamics .................................................................................32

Section VIII Summary ............................................................................................................35

Section IX References..........................................................................................................36

Appendix Genetic transformation of Poplars .....................................................................52

Questionnaire to Return to the OECD.........................................................................................55



ENV/JM/MONO(2000)10

9

Preamble

OECD Member countries are moving rapidly towards the commercialisation and marketing of
agricultural and industrial products of modern biotechnology. They have therefore identified the need for
harmonisation of regulatory approaches to the assessment of these products, to ensure safety, while
avoiding unnecessary trade barriers.

In 1993, Commercialisation of Agricultural Products Derived through Modern
Biotechnology was instituted as a joint project of the OECD’s Environment Policy Committee and
Committee on Agriculture. The objective of this project was to assist countries in their regulatory
oversight of agricultural products derived through modern biotechnology – specifically in their efforts to
ensure safety, to make oversight policies more transparent and efficient, and to facilitate trade. The project
was focused on the review of national policies, with respect to regulatory oversight, that will affect the
movement of these products into the marketplace.

The first step in this project was to carry out a survey concentrating on national policies with
regard to regulatory oversight of these products. Data requirements for products produced through modern
biotechnology, and mechanisms for data assessment, were also surveyed. The results were published in
Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results
(OECD 1995).

Subsequently, an OECD Workshop was held in June 1994 in Washington, D.C. with the aims of
improving awareness and understanding of the various systems of regulatory oversight developed for
agricultural products of biotechnology; identifying similarities and differences in various approaches; and
identifying the most appropriate role for the OECD in further work towards harmonization of these
approaches. Approximately 80 experts in the areas of environmental biosafety, food safety and varietal
seed certification, representing 16 OECD countries, eight non-member countries, the European
Commission and several international organisations, participated in the Workshop. Report of the OECD
Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology
was also published by the OECD in 1995.

As a next step towards harmonization, the Working Group on Harmonization of Regulatory
Oversight in Biotechnology instituted the development of consensus documents which are mutually
acceptable among Member countries. The purpose of these documents is to identify common elements in
the safety assessment of a new plant variety developed through modern biotechnology, in order to
encourage information sharing and prevent duplication of effort among countries. These common
elements fall into two general categories: the biology of the host species or crop and the gene product.

The safety issues identified in the consensus documents on the biology of specific crop plants
are intended to address the potential for gene transfer within the crop plant species, and among related
species, as well as the potential for weediness. They make no attempt to be definitive in this respect,
however, as the many different environments in which the crop species may be grown are not considered
individually.



ENV/JM/MONO(2000)10

10

This consensus document is a “snapshot” of current information that may be relevant in a
regulatory risk assessment. It is meant to be useful not only to regulatory officials, as a general guide and
reference source, but also to industry and others carrying out research.

To ensure that scientific and technical developments are taken into account, OECD countries have
agreed that consensus documents will be updated regularly. Additional areas relevant to the subject of
each consensus document will be considered at the time of updating.

Users of this document are therefore invited to provide the OECD with new scientific and technical
information, and to make proposals for additional areas to be considered. There is a short, pre-addressed
questionnaire for that purpose at the end of this document. The completed questionnaire (or a
photocopy) should be returned to the OECD’s Environmental Health and Safety Division at the address
shown.
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Section I – Forestry Practices

It has been estimated that more than 90% of poplar cultivation throughout the world is
concentrated on species and hybrids in section Aigeiros (Thielges 1985). This is due to the ease of
intrasectional hybridisation and intersectional crosses with species in the Tacamahaca section, the broad
adaptability of these species and hybrids in the temperate and sub-tropical zones, and the ease of
vegetative propagation. Section Turanga has been increasing in importance, and the scale of some
planting programs is enormous: the Three North Shelterbelt System is a 35.6 million hectare shelterbelt
project across the desert border in northern China, where poplars make up 60% of the effort, much of it P.
euphratica and hybrids Populus simonii × P. nigra (Weisberger et al. 1995, Wang 1996).

A. Deployment of reforestation materials

Seedling propagation of reforestation stock is most commonly used for difficult-to-root species
in section Populus, although there are no significant reforestation efforts with species in this section in
Canada (PCC 1996b). When practised, primarily for growing out controlled crosses, seed propagation is
easily carried out using standard greenhouse propagation techniques (Burr 1986, Stanton and Villar 1996).

For the most part, stem cuttings from species in the Tacamahaca and Aigeiros sections root
easily, while rooting is usually poor for those in sections Populus, Leucoides and Turanga (Zsuffa 1975).
The rooting ability of P. deltoides varies, while that of P. nigra and P. balsamifera is very high. These
latter species transmit their better rooting ability to hybrids with P. deltoides (Zsuffa et al. 1993).
Vegetative propagation techniques for poplars in nursery culture can be divided into two groupings:
autovegetative propagation, including cuttings, layering, etc., and heterovegetative propagation, including
grafting, budding, etc. (Fröhlich and van der Meiden 1979).

For easy-to-root varieties, stem cuttings are normally taken from ripened one-year-old shoots
during the dormant season, usually from plants in nursery stool beds, but sometimes from epicormic
branches of older trees. Such varieties are often planted directly as unrooted cuttings or as pre-rooted
stock on well-prepared planting sites. For harder-to-root varieties, more intensive rooting procedures must
normally be used, often using greenwood material, rooting hormones and mist chamber techniques.
Poplars from section Populus, that are notoriously difficult to propagate from stem cuttings, are more
commonly propagated from root suckers, root cuttings and layers (Benson and Schwalbach 1970, Zsuffa
1971, Dirr and Heuser 1987, Hall et al. 1989).

Grafting and budding of difficult-to-root varieties is possible, and some species combinations
demonstrate that intersectional compatibility is present, for example P. tremula on P. trichocarpa (Dirr
and Heuser 1987), and P. alba or P. × canescens on P. lasiocarpa (Fröhlich and van der Meiden 1979) is
possible: the most extensive application of grafting as a propagation technique has likely been in China
where P. × tomentosa (P. alba × P. adenopoda), a variety that roots poorly from stem cuttings, is grafted
onto P. simonii or one of its hybrids. If the grafted plant is planted with the union below the soil surface, it
is felt that the scion forms its own roots over time (Zsuffa et al. 1996).
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Poplars are also amenable to propagation by tissue culture and various protocols and explant
materials have been used. The difficult-to-root species from section Populus have been propagated in vitro
by enhanced axillary branching of shoots. Other cultivars of P. × canadensis (P. deltoides × P. nigra) and
P. yunnanensis are propagated in vitro using dormant buds as the explant source (Dirr and Heuser 1987).
In vitro techniques offer the most likely means for vegetative propagation of species and hybrids in
section Populus (Fröhlich and Weisgerber 1985, Ahuja 1987). The use of somatic embryogenesis has
proved successful with P. alba × P. grandidentata (Michler and Bauer 1991).

Embryo culture (also referred to as embryo rescue) techniques have been developed to improve
the recovery rates of hybrid genotypes where crosses often exhibit high frequencies of aborted or
immature embryos (Stanton and Villar 1996). While it has been possible to culture individual embryos or
whole ovules removed several weeks after pollination (Kouider et al. 1984, Savka et al. 1987), subsequent
developments have allowed the culture of half capsules or individual carpels, followed by subculture of
germinated embryos (Raquin et al. 1993).

Poplars are deployed not only in production plantations, but are also important species for
protection planting, especially as windbreaks on the plains for North America, and for other landscape
use. Plantations may be deployed as monoclonal stands, mosaics of monoclonal blocks or clonal rows, and
as intimate single-tree mixtures of various genotypes (Zsuffa 1993).

While Canada presently has no regulations governing the control and certification of planting
stock, a certification service has been designed and introduced by the Poplar Council of Canada. The
service provides certification of: (1) varietal (clonal) identity; (2) quality and type; and (3) sanitary
condition. In addition the service maintains a Canadian register of clones and varieties not recommended
for planting (Zsuffa 1993, PCC 1996a). In Europe, the 130 cultivars registered for commercial use in any
country of the European Union (EU) can be marketed within the EU since 1966, and their circulation
became free in 1993 with the opening of the single market (Pinon and Valadon, 1997). In Germany,
Populus reproductive materials are regulated by the Gesetz über forstliches Saat-und Pflanzgut (FSaatG).

B. Provenance transfer

Although large geographic variation has been observed among provenances in morphology,
growth and wood properties, the results to date indicate that possibilities for gain “vary from encouraging
to confusing to bleak” (Farmer 1996). Limited studies in various Populus species do suggest that
productivity gains might be achieved through provenance transfer (e.g., Nelson and Tauer 1987), but the
focus on hybrid breeding and clonal selection has precluded serious consideration of provenance transfer
as an improvement strategy.

C. Breeding programs

Poplar breeding has been characterised by two main features: interspecific hybridisation and
clonal selection (Bisoffi and Gullberg 1996). The spontaneous occurrence of natural hybrids among
sympatric and introduced species was recognised early this century and suggested a logical starting point
for breeding programs. The more often assumed rather than proven superiority of F1 hybrids has been
based on performance of selected clones usually attributed to heterosis, although recent studies have
confirmed the existence of hybrid vigor (Stettler et al. 1988, Bradshaw and Stettler 1995). The
incorporation of clonal selection as a characteristic of poplar breeding programs is largely due to the
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relative ease of vegetative propagation, compared with sexual reproduction (Mohrdiek 1983, Thielges
1985).

Interest in the breeding of polyploids followed the discovery of fast-growing triploid aspens in
the 1930s (Einspahr et al. 1963, Einspahr and Winton 1976) but largely declined in the 1970s, with the
exception of some molecular genetics studies (Bradshaw and Stettler 1993). Renewed interest in aspen
breeding in western Canada and the Lake States has focused on hybrid vigour of crosses between P.
tremuloides and P. tremula, followed by clonal selection and deployment (Li and Wyckoff 1991, Li et al.
1993, Li 1995).

Important long-term breeding programmes have a long history in Europe (Italy, France,
Belgium, Netherlands). More recently, co-operation between universities and pulp industries has lead to a
very intensive effort in the Pacific Northwest region of North America concentrating on P. trichocarpa ×
P. deltoides hybrids, and to a lesser extent those of P. trichocarpa × P. maximowiczii, P. trichocarpa × P.
nigra, and P. deltoides × P. nigra (Stettler et al. 1996b, Zsuffa et al. 1996). In Bavaria in Germany cross
breeding between P. maximowiczii × P. trichocarpa and P. maximowiczii × P. nigra has also been
conducted. Intensively managed, short-rotation (5-8 years) plantations are geared toward pulp production,
and over 30,000 ha are under cultivation as part of this programme between southern Oregon and British
Columbia (Zsuffa et al. 1996).

Since the modern techniques of molecular biology are now being successfully applied to
Populus it can be anticipated that novel traits, such as herbicide resistance, insect resistance and modified
wood characteristics, will be introduced into these species.

D. Conservation of genetic resources

The history of poplar breeding and intensive culture spans a 70-year period. The International
Poplar Commission (IPC) was established in 1947 to assist in the direction and co-ordination of this effort
and to promote conservation and exchange of germplasm in 35 member nations (IPC 1996). In 1992, the
IPC formally requested its member countries “to adopt appropriate measures to ensure that existing
genetic resources of poplar and willow species, in natural and man-made stands, be properly preserved,
stressing the role that fast-growing species may play in reducing pressure on delicate and endangered
natural environments world-wide” (IPC 1992).

Some species of Populus are near the point of disappearing in some parts of their natural range,
for example, P. nigra in Western Europe, while other species are still in full evolution, for example, P.
deltoides. IPC nations have thus been encouraged to develop strategies for in situ conservation. Such
efforts started in North China with the ex-situ conservation of Populus simonii due to three FAO co-
ordinated poplar projects (Weisgerber et al. 1995), and in Europe with the conservation of P. nigra by the
EUFORGEN network (Turok et al. 1997, Cagelli and Lefèvre, 1996). For broadly distributed species like
P. deltoides, the recommended focus of in situ conservation is on small, isolated populations at the limits
of the species range, as a source of adaptive variation. Once widely distributed, much of the original
genetic resource for P. nigra was lost when natural regeneration was excluded by human activity
(Steenackers 1996). The disappearance of P. nigra from middle Europe may also have resulted from the
backcrossing of hybrids, especially of Populus × canadensis and P. nigra.

Other poplar species have a restricted natural range and require special protection. P. suaveolens
(syn. P. maximowiczii) is well protected in natural reserves at different altitudes in the mountains of
Hokkaido and can freely regenerate from seed in these areas. P. heterophylla is another species with
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restricted distribution, growing on soils that are too wet for P. deltoides; a special strategy is required to
protect this species in situ (Steenackers 1996).

Despite the long history of domestication, ex situ conservation efforts have been limited and
rarely involve seed materials. A notable exception is the P. trichocarpa seed bank created by the
Netherlands in the 1970s. Promotion of ex situ conservation efforts has been recommended as an
imperative to the IPC, as has the need for guidelines for the global management and conservation of
poplar genetic resources (Steenackers 1996).
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Section II – Taxonomy and Natural Distribution

Poplar species (peuplier in French) are members of the genus Populus L., in the family
Salicaceae (willow family) and the order Salicales. The genus is traditionally subdivided taxonomically
into sections. Five of these sections are widely recognised: Turanga, Leucoides, Aigeiros, Tacamahaca,
and Populus (known synonymously as Leuce) (Zsuffa 1975). Periodically, taxonomists have been inclined
to add a sixth single-species section to resolve classification problems. For example, Browicz (1966)
proposed section Tsavo, to include the east African species P. ilicifolia, a species not even recognised by
some taxonomists and included by others in section Turanga. Section Ciliata has been proposed to include
the Himalayan species P. ciliata Wall. Ex Royle, formerly included in Leucoides (Khosla and Khurana
1982), an apparent mistake that others have suggested be resolved by classifying the species under
Tacamahaca. Still another section, Abaso, has been proposed to accommodate P. mexicana that seems
weakly related to other species of section Aigeiros, in which it has previously been placed (Eckenwalder
1996). The dispute over the sectional classification of poplars will no doubt continue; meanwhile, it is
generally accepted that three of the sections are represented in Canada: Populus, Aigeiros, and
Tacamahaca (Krüssmann 1985, Farrar 1995).

Disagreements over the species classification of poplars show no sign of abatement. The wide
distribution of many poplar species, frequent introgressive hybridisation, a long history of cultivation and
ease of vegetative propagation has led to much confusion in the nomenclature of poplars. Numerous
synonyms exist, and hybrids and cultivated varieties have often been named as species (Zsuffa 1975).
Thus, species counts for the genus range from the low 20's to over 80, depending on the authority. The
classification suggested by Eckenwalder (1996), which enjoys the transitory advantage of being the most
recently published, recognises 29. This classification is presented, with synonyms recognised by Zsuffa
(1975), in Table 1. Polymorphisms of DNA add new data to this “conventional” classification (Cervera et
al, 1997).

Section Turanga Bge

The three species in this section are native to northeast Africa and Asia. The most important is P.
euphratica which, although not commonly cultivated in the past, can tolerate poor soils, extreme
heat and soil salinity, and is now a key species for anti-desertification purposes in the large
Three North Shelterbelt project in northern China (Wang 1996).

Section Leucoides Spach – Large-leaved Poplars

While no members of this section are native to Canada, swamp cottonwood (P. heterophylla) is
a secondary species on wet sites in the central and eastern United States. Other examples of this
section, P. lasiocarpa and P. glauca, are native to temperate regions of China.
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Section Tacamahaca Spach – Balsam Poplars

North American members of this section, found in both Canada and the United States, are
balsam poplar – peuplier baumier (P. balsamifera), black cottonwood – peuplier de l’Ouest (P.
trichocarpa), and narrowleaf cottonwood – peuplier à feuilles étroites (P. angustifolia). This
group includes the commonly planted Simon poplar – peuplier de Simon (P. simonii) from
eastern Asia. Other important members from Asia include P. laurifolia, and P. suaveolens.
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Table 1. Suggested classification, nomenclature and occurrence of Populus species (Eckenwalder
1996), and synonyms given by an earlier classification (Zsuffa 1975) in square brackets

Section Scientific name &
synonyms

Common names Occurrence

Abaso Ecken.

P. mexicana Wesmael Mexico

Turanga Bge.

P. euphratica Oliv. Euphrates poplar, bahan Spain, NE Africa, Asia

P. ilicifolia (Engler) Rouleau E. Africa

P. pruinosa Schrenk E. Eurasia

Leucoides Spach large-leaved poplars
P. lasiocarpa Oliv. Chinese necklace poplar China

P. glauca Haines
  [P. wilsonii Schneid.]

China

P. heterophylla L. swamp cottonwood, swamp poplar, USA

Tacamahaca Spach balsam poplars
P. angustifolia James narrowleaf cottonwood, narrowleaf

balsam poplar
southern Sask. And Alberta to
southwestern US

P. balsamifera L. balsam poplar North America

P. ciliata Royle Himalayas

P. laurifolia Ledeb. laurel poplar eastern Asia

P. simonii Carr. Simon poplar eastern Asia

P. suaveolens Fish.
 [ P. cathayana Rehd. P. koreana Rehd
  P. maximowiczii A.Henry ]

doronoki, Japanese poplar NE China, Japan

P. szechuanica Schneid. E. Eurasia

P. trichocarpa Torr. & A.Gray black cottonwood, western balsam poplar western Canada and US

P. yunnanensis Dode E. Eurasia

Aigeiros Duby Cottonwoods and Black Poplars
P. deltoides Marsh.
 [ P. sargentii Dode, P. wislizenii Sarg. ]

eastern cottonwood (ssp. deltoides),
plains cottonwood (ssp. monilifera),
Rio Grande cottonwood (ssp. wislizenii

Quebec, Ontario
Prairie Provinces to Texas SW
USA

P. fremontii S.Wats. Fremont cottonwood SW USA

P. nigra L. black poplar, European black poplar Europe, western Asia

Populus L. [Leuce Duby] aspens
P. adenopoda Maxim.

P. alba L. white poplar, silver poplar central and southern Europe to
N. Africa, central Asia

P. gamblei Haines E. Eurasia

P. grandidentata Michx. largetooth aspen, bigtooth aspen, aspen,
poplar, popple

eastern North America

P. guzmanantlensis Vasq. & Cue. Mexico

P. monticola Brand Mexico

P. sieboldii Miq. Siebold aspen, Japanese aspen Japan

P. simaroa Rzed. Mexico

P. tremula L.

 [P. davidiana (Dode) Schneid.]
European aspen, tremble, Zitterpappel Europe, northern Africa, north-

eastern Asia

P. tremuloides Michx. trembling aspen, quaking aspen North America
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Section Aigeiros Duby – Cottonwoods and Black Poplars.

This section includes the “true” cottonwoods (a term also associated with Tacamahaca). In
North America the section is represented by eastern cottonwood – peuplier deltoïde (P. deltoides
ssp. deltoides), and plains cottonwood – peuplier deltoïde de l’Ouest (P. deltoides ssp.
monilifera), found both in Canada and the United States, and by Fremont cottonwood (P.
fremontii) and Rio Grande cottonwood (P. deltoides ssp wislizeni) as secondary species in the
southwestern United States. The black poplar – peuplier noir (P. nigra) is an important species
native to North Africa, central and western Europe, and the cultivar known as Lombardy poplar
– peuplier noir d’Italie (P. nigra cv. ‘Italica’) is commonly planted as a hardy ornamental in
North America.

Section Populus L. (syn. Leuce Duby) – Aspens.

This section is further subdivided into two subsections, Albidae and Trepidae, containing the
white poplars and aspens, respectively. The North American representatives of this section are
both members of Trepidae: trembling aspen – peuplier faux-tremble (P. tremuloides), and
largetooth aspen – peuplier à grandes dents (P. grandidentata). P. tremula is an important and
highly variable aspen from Europe, while P. sieboldii is a recognised species from Japan.
However, aspens throughout Eurasia are now thought to be races of a single, highly polymorphic
species, viz. P. tremula (Barnes and Han 1993). While no white poplars are native to North
America, the European white poplar – peuplier blanc (P. alba) was among the first species
introduced from Europe.

Natural hybridisation has been reported between almost all sympatric poplar species, and
between introduced and native poplars, both in North America and Europe (Schreiner 1974, Demeritt
1990). Natural hybridisation generally occurs between species in the same section to the limited extent
that the parent species overlap (Brayshaw 1965, Eckenwalder 1977), although intersectional hybrids also
occur. Species in different sections, though broadly sympatric, are ecologically isolated from one another,
so that hybridisation occurs over large geographic areas but within a relatively narrow ecological range of
overlap (Eckenwalder 1984a, c). Complicated natural hybrid populations may also form where three or
more species are sympatric (Rood et al. 1986).

Eastern cottonwood was introduced into France from southeastern Canada in the late 1700’s. In
southern Germany, since the early 1970’s, cross-breeding of P. × canadensis has been replaced by P.
trichocarpa × P. deltoides or P. trichocarpa × P. Subsequent natural hybridisation with the native black
poplar produced the hybrid which was named P. × canadensis in 1789 (Mühle Larsen 1960, Wright 1976).
Clones of this hybrid are now widely planted across Europe. This hybrid was also the first poplar hybrid
produced by controlled pollination, by Englishman A. Henry (Larsen 1956). Artificial hybridisation has
been used in North America since the 1920s and 30s (Stout and Schreiner 1933, Heimburger 1936).
Several of the more important hybrids occurring naturally in North America are listed, together with
synonyms and common names, in Table 2.
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Section III - Centres of Origin/Diversity

A. Natural distribution

The genus Populus is widely distributed throughout the Northern Hemisphere, in both the
temperate and subtropical zones. Representative species are found from Alaska and Labrador south to
northern Mexico, as well as Europe, North Africa, the Himalayas, mainland China and Japan (Schreiner
1974). Some species are very widely distributed. P. tremuloides, for example, is the most broadly
distributed tree species in North America, spanning 110° of longitude and 47° of latitude, and the second
most widely distributed in the world (Jones 1985, Barnes and Han 1993).

B. Evolution and migrational history

It was long felt that Populus was one of the oldest contemporary angiosperm genus, originating
in China and Japan during the Triassic; however, these fossil records are now associated with other taxa.
While the closest relatives in Flacourtiaceae are from tropical Asia, the fossil record now indicates that the
genus Populus had tropical origins in North America during the late Paleocene, about 58 million years ago
(Collinson 1992). These early leaf fossils are very similar to the present day P. mexicana in section Abaso
(Eckenwalder 1996). In the late Eocene, the first Eurasian relatives from other sections appeared, with
those of Turanga confined to the Old World, and an ancestor of section Leucoides invaded temperate
habitats. During the Oligocene, precursors of Tacamahaca and Aigeiros appeared that would not become
distinct sections until the Miocene, at which time members of section Populus also appeared (Collinson
1992, Eckenwalder 1996).
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The evolution of the advanced sections of Populus has been characterised by rapid speciation
during allopatric cycles, but influenced by widespread introgression, both within and between sections
(Eckenwalder 1984b, 1996, Smith and Symata 1990, Kaul 1995). This rapid sequence of events, much
conflicting evidence, and the confusion that has characterised the identification of species, has made it
difficult to track the recent evolutionary history of poplars in the more advanced sections (Eckenwalder
1996). While there is evidence of evolutionary divergence among the sections, the sections themselves are
very widely distributed. Species within the sections are highly related and many are among the most
broadly distributed of any tree species.

It is clear that migration of genes to other section members can occur easily throughout a very
large portion of the North Temperate zone. Poplars are pioneering species and migrate quickly. Pollen
studies have demonstrated that Populus species frequently dominate the first forest communities
following glaciation (Cwynar 1988, Keenan and Cwynar 1992). In Europe, P. tremula is the early
pioneering species. P. nigra occurs along rivers and in pastures, together with Salix alba. Large stands of
P. tremuloides in North America are thought to have originated soon after retreat of the Pleistocene ice
sheet and have been since maintained asexually from root suckers, making them some of the largest and
oldest organisms in the world (Barnes 1975, Kemperman and Barnes 1976, Mitton and Grant 1980,
Cheliak and Dancik 1982).

Table 2   Nomenclature of naturally occurring Populus Hybrids

Parentage Hybrid designation Common name
P. alba × P. grandidentata P. × roulwauiana Boivin

P. alba × P. adenopoda P. × tomentosa Carr.. Chinese white poplar

P. alba × P. tremula P. × canescens (Ait.) Sm. grey poplar

P. alba × P. tremuloides P. × heimburgeri Boivin

P. angustifolia × P. deltoides P. × acuminata Rydb.
[syn. P. × andrewsii Sarg.]

Lanceleaf cottonwood, peuplier à
feuilles acuminées

P. angustifolia × P. balsamifera P. × brayshawii Boivin Brayshaw’s poplar, peuplier hybride
de Brayshaw

P. angustifolia × P. tremuloides P. × sennii Boivin

P. balsamifera × P. deltoides P. × jackii Sarg. Jack’s poplar, peuplier hybride de
Jack

P. balsamifera × P. tremuloides P. × dutillyi Lepage
P. deltoides × P. nigra P. × canadensis Moench cv. Eugenei

[syn. P. × euramericana (Dode) Guinier]
Carolina poplar, peuplier de
Caroline [syn. Canada poplar,
Euramerican poplars]

P. deltoides × P. tremuloides P. × bernardii Boivin Bernard poplars

P. deltoides × P. trichocarpa
)

P. × generosa Henry
[syn. P. × interamericana Brockh.]

Interamerican poplars

P. fremontii × P. trichocarpa P. × parryi Sarg. Parry cottonwood

P. grandidentata × P. tremuloides P. × smithii Boivin

P. laurifolia × P. nigra P. × berolinensis Dippel

[syn. P. × rasumowskyana Schr.

and P. × petrowskyana Schr.]

Berlin poplars, Russian poplars

P. deltoides × P. balsamifera × P.
angustifolia (natural trihybrid)

Unnamed Unnamed
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Section IV – Reproductive Biology

A. Reproductive development

Poplars are normally dioecious and obligatory outcrossers; however, the occurrence of
monoecious inflorescences and perfect flowers has been reported (Lester 1963a, b, Melchior 1967).
Reproductive buds in P. tremuloides may develop into pistillate, staminate or perfect flowers, initiated at
different times (Lester 1963a). P. lasiocarpa is a notable exception as it is normally monoecious and self-
fertilising (Schreiner 1974). Overall sex ratios of 1:1 have been confirmed for P. tremuloides (Einspahr
and Winton 1976, Grant and Mitton 1979) and for P. deltoides (Farmer 1964b), although an elevational
gradient in sex ratio has been observed in P. tremuloides in the Rocky Mountains, with females more
common at low elevations, while more than 90% are male above 3 200 m (Grant and Mitton 1979).

Reproductive buds are simple (Jackson and Sweet 1972). Their initiation and early development
have been described in P. tremuloides and P. deltoides (Nagaraj 1952, Seitz 1958, Lester 1963a). Floral
initiation takes place in buds, located in the axils of leaves on the current-year shoot. These buds are no
more than small apices, each with a single bud scale when winter dormancy occurs (Owens and Blake
1985, Kaul 1995). Terminal buds burst in May, and axillary primordia initiate several bud scales during
rapid shoot elongation. Reproductive apices are determined around mid-June (Lester 1963a). Pistillate
primordia are first to begin development of floral parts by late June, followed by staminate primordia in
early July. In P. deltoides, staminate flower buds can be readily distinguished from vegetative buds by
midsummer, while identification of pistillate flowers requires dissection (Farmer 1976). Floral
development continues within buds through September, so that anthers and ovules are well developed
before winter dormancy (Owens and Blake 1985, Kaul 1995). For at least some Populus species, a chilling
requirement must be satisfied before development will resume (Farmer 1964a). Megaspore mother cells
differentiate in the spring, and microsporogenesis immediately precedes anthesis (Farmer and Pitcher
1981).

Flowers are borne in catkins (aments) early in the spring, prior to flushing of vegetative buds.
When fully developed, both male and female catkins are 10 to 15 cm in length. Female flowers have from
two to four, cap- or y-shaped stigmas, while the males have 30 to 80 stamens (Demeritt 1990). Each
catkin bears a few dozen, one-celled capsules, each containing 10 to 30 seeds.

Male flowers ripen and shed pollen a few days before females, ensuring that pollen is in the air
when the first females are receptive (Farmer and Pitcher 1981). Such pollen-pistil interactions have been
largely documented in Populus nigra (Villar et al. 1987a, Villar et al.1993). Variation in flowering date is
due to differences among trees and in P. deltoides is highly heritable (Farmer 1976). This variation in
flowering date extends the pollination period from 2 to 3 weeks. Another study of natural variation in P.
nigra over 111 sites in France revealed a fair level of diversity and a low overall differentiation, with an
important intraregional gene diversity (Legionnet et al. 1997).
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Pollen germinates within the first few hours after pollination. Fertilisation takes place several
days later and is normally complete within two weeks (Farmer and Pitcher 1981). Seed development
proceeds rapidly and dispersal occurs in most species by midsummer, before the full growth of the leaves
(Schreiner 1974). In North American, the period of seed maturity in sections Populus and Tacamahaca is
determined by temperature sums and is quite uniform within the limits of ecotypic zones (Pauley 1950).
On the other hand, seed dispersal in the Aigeiros poplars may continue throughout the summer and early
fall (Farmer 1966).

B. Mating system and gene flow

Two factors contribute to high gene flow and genetic diversity in poplars. Firstly, most are
dioecious, and thus obligatory outcrossers. And secondly, in addition to being wind-pollinated, the long
white, silky hairs attached to the short stalks of the seeds promote wind dispersal over great distances
(Schreiner 1974), resulting in high rates of migration.

Electrophoretic studies in P. tremuloides suggest that gene flow is high, leading to a lack of
differentiation among populations for putative neutral allozyme loci. However, the role of non-random
mating in these same studies was variable, with no deviations from Hardy-Weinberg equilibrium detected
in populations sampled in Minnesota (Lund et al. 1992), while an excess of heterozygotes were found in
Alberta populations (Cheliak and Dancik 1982), and a deficiency of heterozygotes observed in Ontario
populations (Hyun et al. 1987).

C. Seed production

Most poplars begin flowering between age 10 and 15 years (Schreiner 1974), although flowering
in P. deltoides may occur as early as age four (Farmer and Pitcher 1981). Tacamahaca and Aigeiros
poplars produce large annual seed crops. Those in section Populus produce some seeds each year, but
bumper crops occur at intervals of three to five years. Poplars are prolific seed producers. A typical 12 m
P. deltoides specimen was estimated to produce almost 28 million seeds in one season, and estimates for
P. tremula have ranged as high as 54 million seeds. Poplar seeds are very small. Species in section
Populus can produce 6000 to 8000 seeds per gram, while North American Leucoides and Aigeiros produce
from 300 to 450 seeds per gram (Schreiner 1974).

Typically, the longevity of poplar seeds under natural conditions is quite short – about two to
four weeks. Under controlled low-temperature (-18 to 5° C) and stable moisture content (5 to 8%)
conditions, storage time has been extended to 140 days for P. balsamifera (Hellum 1973), two years for P.
tremuloides (Fechner et al. 1981), and five to six years for Aigeiros poplars (Tauer 1979, Muller and
Tessier du Cros 1982).

D. Natural regeneration

Poplar seeds germinate or die within a few days after seedfall. Germination is epigeal. A fringe
of hairs develops at the base of the hypocotyl, rendering the seedling upright and encouraging the root to
grow down into the soil.

A favourable medium such as fine mineral soil is required for germination, together with light
and continual moisture (McDonough 1979, Farrar 1995). Such conditions are rare, requiring fresh
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exposure of mineral soils, as found on shorelines, sandbars and old gravel pits. In North America,
regeneration of section Populus from seed is confined to newly disturbed areas, whereas the primary mode
of reproduction within stands is asexual (Barnes 1966, Schier 1973, Einspahr and Winton 1976).

E. Vegetative reproduction in nature

Except for members of section Populus, all poplars sprout vigorously from the stump and root
collar. Coppicing occurs occasionally on young aspen (Zsuffa 1975). Reproduction from adventitious
shoots on roots (root suckers) is common in many species, although less frequent in those in the Aigeiros
and Leucoides sections.

Clonal groups of P. tremuloides in eastern North America are very common, but generally less
than 0.1 ha in size, while in areas of Utah, groups as large as 80 ha have been observed (Kemperman and
Barnes 1976). In the semi-arid western United States, some argue that widespread seedling establishment
has not occurred since the last glaciation, some 10,000 years ago (Einspahr and Winton 1976,
McDonough 1985). Indeed, some biologists feel that western clones could be as old as 1 million years
(Barnes 1966, 1975). It has been claimed that a single clone, nicknamed "Pando" (Latin for I spread),
covers 43 hectares, contains more than 47,000 stems and weighs in excess of 6 million kg, making it the
largest known organism (Grant et al. 1992, Mitton and Grant 1996)

Studies have also demonstrated that both natural and vegetative propagation occur in nature, for
example with P. nigra (Legionnet et al. 1997).



ENV/JM/MONO(2000)10

24

Section V – Genetics

A. Cytology

Poplars are normally found in the diploid condition with 2n = 38 chromosomes (Blackburn and
Harrison 1924, Smith 1943). Polyploid individuals are rare and have only been reported in a half-dozen
species (Darlington and Wylie 1956). While rare, the first discovery of a triploid forest tree was, in fact, a
clone of P. tremula (Müntzing 1936). Several other natural triploid clones have since been found in both
P. tremula and P. tremuloides, usually exhibiting larger leaves and exceptional growth (Einspahr et al.
1963, Heimburger 1968, Einspahr and Winton 1976).

Some reports suggest the sex determination in poplars is controlled by sex chromosomes (Peto
1938, Smith 1943, van Buijtenen and Einspahr 1959), however, this theory remains controversial. While
published reports favour a genetic basis for gender, a linkage analysis of almost 2 500 PCR-based RAPD
markers in a segregating family of F1 hybrid P. trichocarpa × P. deltoides failed to find any markers that
were significantly associated with gender (McLetchie et al. 1994). The authors suggested that gender
might be determined genetically by regions of the genome not sampled by the tested markers or by a
complex of loci operating in an additive threshold manner or in an epistatic manner, or that gender is
determined environmentally at an early zygote state.

B. Genetic variation

As already mentioned, the genus Populus is tremendously varied with species distributed
throughout the Northern Hemisphere and the opportunities to generate novel genotypes through
hybridisation are enormous. Breeding programs have not hesitated to exploit this genetic variability,
although sound quantitative estimates of narrow-sense and broad-sense heritabilities, and covariances
among selection criteria would undoubtedly have assisted in making breeding and selection strategies
more efficient (Riemenschneider et al. 1996). Poplars are ideal species for quantitative genetics studies, as
clonal replication can be readily accomplished to describe complex modes of gene action (Foster and
Shaw 1988, Mullin and Park 1992, Bradshaw and Foster 1992). It is thus surprising that genetic variation
has been studied in detail for only a few species and traits.

The true potential of poplar species can only be determined by genetic studies designed to
resolve variation among and within stands. Unfortunately, the concentration of breeders on interspecific
hybridisation has left this field largely ignored, and detailed studies of large natural populations are quite
recent and only a few species are well documented (Mohrdiek 1983, Farmer 1991).
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B.1  Population-level variability

Considerable clonal variation among populations may be expressed for growth traits and for
Melampsora rust resistance, but for other characteristics there is often little geographic differentiation.
Overall, data from molecular genetic studies suggest that gene flow through migration has been sufficient
to prevent genetic drift, inbreeding, and other processes that might give rise to geographic variation
unrelated to adaptive selection (Farmer 1996).

Significant variation over a 10° latitudinal transect was observed for phenology (Farmer et al.
1988a), shoot/root allometric coefficients (Schnekenburger and Farmer 1989), and height growth among
four provenances of P. balsamifera, with southern sources continuing to grow later in the season
(Schnekenburger and Farmer 1989, Farmer 1993). These same populations exhibited very little
geographic differentiation for isozyme characters (Farmer et al. 1988a), rooting ability (Farmer et al.
1989), and date of bud break (Farmer and Reinholt 1986). Another test series including a more restricted
sampling of populations over a 3.5° range found significant population differences accounting for about
12% of the variation in two-year height, leaf morphology, sylleptic branching and pest resistance
(Riemenschneider et al. 1992), with populations grouped into north-western, central, and south-eastern
clusters (Riemenschneider and McMahon 1993).

Similarly, in P. tremuloides, isozyme and RAPD variation studies have shown little
differentiation among populations (e.g., Hyun et al. 1987, Lund et al. 1992, Yeh et al. 1995), whereas
considerable variation among populations is well-documented for morphology, growth and wood
properties (van Buijtenen et al. 1959, Barnes 1969, Einspahr and Winton 1976). Variation among
populations generally follows clinal trends, with wood density declining with increasing elevation
(Valentine 1962) and from south to north (Einspahr and Benson 1967). A common-garden trial showed
that northern and western provenances flushed and ceased growth first, with lower survival when grown in
Michigan (Brissette and Barnes 1984), and another showed that better growing clones came from lower
Michigan (Reighard and Hanover 1985). There is some evidence of a north-south increase in
susceptibility of P. tremuloides populations to Hypoxylon mammatum (French and Hart 1978).
Populations of P. tremuloides also vary with respect to ozone sensitivity, with tolerance correlated to
maximum daily ozone levels, as well as annual precipitation and minimum temperature (Berrang et al.
1991).

Geographic variation is also well documented for P. deltoides. A wide range provenance trial
established in Nebraska, included sources from Texas in the south, to Minnesota in the north and
Pennsylvania in the east, and evaluated bark, stem, crown and leaf morphology, in addition to growth and
survival (Ying and Bagley 1976). Clinal patterns of variation from north and west to south and east were
observed for most traits. Cuttings from Nebraska, Minnesota and Wisconsin produced significantly higher
numbers of roots than those from other sources (Ying and Bagley 1977). A similar clinal trend was found
in a study of 40 populations in the southern Great Plains, where NW to SE patterns were observed for
two-year height, diameter, branching and Melampsora rust resistance (Nelson and Tauer 1987). A study of
nine populations in Ontario showed great variation in leaf morphology which was unrelated to latitude or
longitude, and was not correlated with the moderate allozyme variation that suggested differences between
eastern and western populations (Rajora et al. 1991).

A series of studies of P. trichocarpa populations in Washington have documented significant
variation for leaf, branch and phenology characters (Weber et al. 1985), photosynthetic processes (Dunlap
et al. 1993), survival height growth and biomass production (Heilman and Stettler 1985), volume
production, Melampsora rust resistance and adaptation to arid sites (Dunlap et al. 1994), leaf and crown
morphology (Dunlap et al. 1995). A sample of 10 populations over a 4.5° latitudinal range showed only
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weak clinal trends for three-year height and diameter (Rogers et al. 1989). Another sample of five riparian
populations in Washington showed little difference among populations with respect to flood tolerance of
young seedlings and rooted cuttings (Smit 1988).

B.2  Individual-level variability

While the amount of genetic variation among populations differs greatly depending on the trait,
the variation within populations is moderate to high for virtually all traits. Unfortunately, most genetic
testing has focused on clonal materials without any particular family structure, and these studies have
concentrated on the species and hybrids of sections Tacamahaca and Aigeiros. Generally, only estimates
of broad-sense heritability (H2) are available, and genetic structure is rarely partitioned into additive and
non-additive components (Riemenschneider et al. 1996). In the limited number of studies of seedling
populations, narrow-sense heritability (h2) estimates for growth were similar to estimates of H2 in P.
deltoides (Farmer 1970, Ying and Bagley 1976, Nelson and Tauer 1987), and much lower in the case of P.
trichocarpa (Rogers et al. 1989).

A large number of studies of growth and yield characters in P. deltoides have produced
consistent estimates of H2 between 0.20 and 0.50, with significant genotype-environment interactions,
usually less than half as large as the corresponding genetic main effects (Wilcox and Farmer 1967, Farmer
and Wilcox 1968, Mohn and Randall 1971, 1973, Randall and Cooper 1973, Foster 1986). A limited
number of clonally replicated trials suggest that much of the genetic variance in yield is non-additive
(Foster 1985, Foster and Shaw 1988). Heritability for stem growth in P. balsamifera was about H2 = 0.50
(Farmer et al. 1988b). In both P. deltoides and P. balsamifera, C-effects (in sensu Lerner 1958) during the
first year were often as large as that due to clones (Wilcox and Farmer 1968, Farmer et al. 1989), but
appear to be less important after field planting (Farmer et al. 1988b). Detailed measurements of leaf,
branch and phenological characteristics, which are known to affect tree productivity, have been employed
to describe ideotypes (Dickmann and Keathley 1996) that may be useful in yield selection of P.
balsamifera (Riemenschneider et al. 1992), P. trichocarpa (Riemenschneider et al. 1994), and hybrids
involving P. deltoides, P. nigra and P. simonii (Wu 1994a, b). Indications of the utility of the ideotype
concept for yield selection have been inconsistent.

Heritability of rooting and root characters is typically very high, with H2 estimates as high as
0.85 to 0.91 in P. deltoides (Wilcox and Farmer 1968, Ying and Bagley 1977). Other recent studies also
indicate high heritability for rooting in P. trichocarpa (Riemenschneider et al. 1996).

Much effort has been concentrated on the inheritance of Melampsora rust resistance, due to its
impact on poplar culture. Early studies of rust resistance in P. deltoides gave estimates of h2 between 0.38
and 0.66, and for H2 between 0.66 and 0.88 (Jokela 1966). Similarly high estimates for rust resistance or
severity have since been reported for P. deltoides (Farmer and Wilcox 1968, Thielges and Adams 1975),
P. tremula and P. tremuloides (Gallo et al. 1985), P. balsamifera (Riemenschneider et al. 1992), P.
trichocarpa and its hybrids (Hsiang et al. 1993, Riemenschneider et al. 1994), and hybrids among P.
deltoides, P. nigra, and P. maximowiczii (Rajora et al. 1994).

B.3  Molecular genetics

In recent years a great deal of research has been directed towards associating important traits
with molecular markers, and in developing corresponding genetic maps (Bradshaw et al. 1994, Cervera et
al. 1997). The emphasis of this work has been directed towards adaptive traits (Bradshaw and Stettler,
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1995) and to resistance to diseases (Villar et al. 1996), and suggests the role of a few quantitative trait loci
(QTL’s) that have large effects on these quantitative traits.

C. Inbreeding depression and genetic load

Given the high rate of gene flow in poplars, one would expect low rates of inbreeding. A study
of 200 clones of P. tremuloides in Ontario indicated a deficiency of heterozygotes and an average fixation
index of 0.462 (Hyun et al. 1987). However, these results might well be due to a sampling phenomenon,
Wahlund's effect, rather than inbreeding. In contrast to these observations, populations of P. tremuloides
in Alberta, where clonal reproduction is more common, showed an excess of heterozygotes (Cheliak and
Dancik 1982, Jelinski and Cheliak 1992). While rates of inbreeding in natural populations may be low,
genetic load may be expressed as inbreeding depression in pedigrees of hybrid material, giving rise to
distortion of expected Mendelian segregation ratios (Bradshaw and Stettler 1994).
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Section VI - Crosses

Figure 1: Crossability of Populus species (from Zsuffa 1975)

Extensive crossability studies have been carried out among species in the Populus, Tacamahaca
and Aigeiros sections, while few data are available for those in Turanga and Leucoides (Zsuffa 1975).
Interspecific breeding results are summarised in Figure 1.

Hybrids between members of the same section are produced easily and are often more vigorous
than their parents. Dramatic examples are the hybrids made between P. tremuloides and P. tremula (Ilstedt
and Gullberg 1993). Crossing success between sections is variable. Crosses between Aigeiros and
Tacamahaca are easy, while those between sections Populus and Aigeiros, and sections Populus and
Tacamahaca are notoriously difficult, resulting normally in dead seed or dwarfed seedlings (Zsuffa 1975).
Crosses between sections are sometimes made more easily using interspecific hybrids, rather than pure
species, as parents.
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The incompatibility of some species is characterised by arrested development of the pollen tube
and failure to penetrate the stigma (Melchior and Seitz 1968, Guries and Stettler 1976, Stettler et al. 1980,
Knox 1984, Villar et al. 1987b, Rougier et al. 1992, Villar et al. 1993). This block can be overcome in
some cases by mixing the incompatible pollen with “mentor pollen”, i.e., compatible pollen that has been
killed by means of gamma radiation (Stettler and Ager 1984, Knox et al. 1987, Villar and Gaget-Faurobert
1996), and by treatment of pollen and stigmas with solvents and extracts from compatible pollen
(Whitecross and Willing 1975, Willing and Pryor 1976). This technique has made it possible to obtain
crosses of section Populus with Aigeiros and Tacamahaca poplars that are otherwise difficult (Stettler
1968, Zufa 1971, Knox et al. 1972, Willing and Pryor 1976).
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Section VII – Ecology and Associated Species

A. Habitat

Poplars are found in a great variety of forest ecosystems, from boreal to sub-tropical, and from
mountainous to riparian. In some environments such as boreal forests and in large river valleys, they form
large stands, while in other situations they are found as small stands or groups of trees. Although there is
some variation among species, essentially all poplars are very intolerant of shade. They are pioneering
species and among the first to invade and re-colonise areas disturbed by harvesting, land clearing and fire.
The Populus species and their hybrids vary greatly in their adaptability to climate, although all are nutrient
demanding and perform best with an abundant and continuous supply of moisture (Heilman et al. 1996).

The members of section Populus are very broadly distributed and thus found over a tremendous
range of climates. In P. tremuloides, the southern limit is roughly defined by the 24° C mean July
temperature isotherm, while the northern limit corresponds to a mean annual degree-day sum of 700° C, at
threshold temperature of 5.6° C (Fowells 1965). Within this range the species occurs where annual
precipitation exceeds evapotranspiration. While P. tremuloides is found on a variety of soils, ranging from
shallow and rocky to deep loamy sands and heavy clays, growth is strongly influenced by drainage and
fertility (Perala 1990). Throughout the more restricted range of P. grandidentata, moisture is adequate in
all seasons, with the least precipitation occurring at the north-west limit on the prairie border in Manitoba
with only 510 mm. It is far less adaptable than P. tremuloides, developing best on moist, fertile sandy
uplands with good aeration (Laidly 1990).

The members of the Tacamahaca and Aigeiros sections are referred to collectively as the
riparian cottonwoods. Species in the Tacamahaca section are generally found at higher elevations and
latitudes (high river systems of montane and young piedmont valley floodplains) (Braatne et al. 1996). In
this section, P. balsamifera is the most broadly distributed, withstanding climatic extremes similar to that
of P. tremuloides. It is usually restricted to moist, low-lying ground, and is one of the few boreal species
associated with poorly drained clay soils having pH greater than 7.2 (Dix and Swan 1971, Zasada and
Phipps 1990). P. trichocarpa is most commonly found in the humid coastal forests of the Pacific
Northwest, performing best on deep alluvial soils with abundant moisture, nutrients, oxygen and pH 6.0 to
7.0 (Smith 1957, DeBell 1990). P. angustifolia has a very limited range where it is a pioneering species on
gravel and sand bars near fast-flowing rivers (Brayshaw 1965).

Members of section Aigeiros are limited to lower elevations and latitudes (lower river systems of
mature piedmont valley flood plains) (Braatne et al. 1996). The natural range of P. deltoides covers a wide
southern range, with frost-free days ranging from less than 100 to more than 200, and rainfall from less
than 380 mm in the northwest to more than 1,400 mm in the south. This species performs best on moist,
well-drained, fine sandy or silt loams, and on sites that are rarely higher than 6 m above the average level
of nearby streams (Cooper and Van Haverbeke 1990).
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The only North American member of section Leucoides, P. heterophylla, is found in warm,
humid areas with abundant rainfall. It performs best on deep moist soils of shallow swamps and low-lying
areas near tidewater, and occupies sites that are too wet for P. deltoides (Johnson 1990).

B. Synecology and associated species

Poplars occur in the early successional stages over a wide range of forest ecosystems, so it is no
surprise that ecological associations are tremendously diverse. This is particularly true for species in
section Populus, as they are not restricted to riparian habitats. In Europe, P. tremula is the early pioneer.
P. nigra occurs along rivers and in pastures, together with Salix alba, P. tremuloides is found in pure
stands across its range, but also in mixed stands where it is commonly associated with white spruce (Picea
glauca), black spruce (Picea mariana), balsam fir (Abies balsamea), white birch (Betula papyrifera), P.
balsamifera, and jack pine (Pinus banksiana). The associations with shrub and herbaceous species are
even more numerous and varied (Perala 1990, Farrar 1995). P. grandidentata occurs in small pure stands,
but more commonly as an associate in poplar stands with either P. tremuloides or P. balsamifera. It is a
minor component of many other forest types and is thus associated with a wide range of shrubs and
ground flora (Laidly 1990, Farrar 1995).

In section Tacamahaca, P. balsamifera reaches its best development on river flood plains where
it occurs as pure stands and is associated with various willows and alders (Viereck et al. 1983). However,
it also occurs in mixtures with boreal conifers and several hardwood species, and the associated shrub and
herbaceous mixtures are numerous (Zasada and Phipps 1990). P. trichocarpa generally occurs in mixtures
with larger willows, and to a lesser extent with several western conifers (DeBell 1990). Shrub and
herbaceous associates are numerous, but better sites are characterised by beaked hazel (Corylus cornuta),
elder (Sambucus spp.), salmonberry (Rubus spectabilis), nettles (Stachys spp.), swordfern (Polystichum
munitum) and lady fern (Athyrium filix-femina) (Smith 1957).

On riparian sites, P. deltoides tends to grow as essentially pure stands or mixed in open stands
with other riparian species. In the area where the species performs best, roughleaf dogwood (Cornus
drummondii) and swamp-privet (Forestiera acuminata) are major shrub associates (Cooper and Van
Haverbeke 1990).

C. Competition and stand structure

As mentioned earlier, all poplars are shade intolerant, early successional species, and disturbance
is often essential in maintaining many poplar ecosystems. The availability of sites suitable for
colonisation, particularly following fires, plays a major role in determining seedling establishment
(DeByle and Winokur 1985, Jelinski and Cheliak 1992, Kay 1993). Once established, fire can also remove
shade-tolerant competitors, allowing vigorous P. tremuloides sprouts to emerge from persistent root
systems (Bailey et al. 1990), with densities in excess of 1 million per hectare (Schier et al. 1985). In the
absence of disturbance, aspens are regarded as transient, and successional patterns are determined by soil
water regime (Roberts and Richardson 1985). Intolerant associates will often out-live aspens, while
tolerant hardwoods and conifers will also dominate by virtue of their ability to regenerate under shade.

The riparian cottonwoods are all very flood-tolerant, so that establishment and growth are
promoted by the disturbances characteristic of alluvial habitats. In non-alluvial habitats, they take the
opportunity to establish on moist agricultural fields, forest clearings and the margins of wetlands, but are
eventually dominated by secondary forest species (Braatne et al. 1996). Willows and alders may precede
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the establishment of P. balsamifera, which is normally then replaced by white spruce (Walker and Chapin
1986, Walker et al. 1986). P. deltoides is a very poor competitor, as it is very intolerant of shade, and
competes well only with willows, owing to its faster growth except on very wet sites (Cooper and Van
Haverbeke 1990).

When established as plantations, poplars and their hybrids must generally be established in pure
stands. In addition to being highly intolerant of shade, young poplars cannot tolerate competition from
grass, weeds or shrubs. Control of vegetation in the first few years is essential, although poplars are highly
sensitive to many herbicides used for vegetation control (Demeritt 1990).

D. Ecosystem dynamics

Poplars coexist with a wide range of insects, but most pose a more serious threat only to
artificial populations of planted species and their hybrids. In North America the most serious defoliator,
particularly in hybrid plantings, is the cottonwood leaf beetle (Chrysomela scripta). Other foliage insects
include the forest tent caterpillar (Malacosoma disstria), the poplar tent maker (Ichthyura inclusa),
mourning cloak butterfly larvae (Nymphalis antiopa), the large aspen tortrix (Choristoneura conflictana),
a leaf beetle (Zeugophora scutellaris), and the aspen blotch miner (Phyllocnistis populiella). The
cottonwood twig borer (Gypsonoma haimbachiana) is particularly destructive, while several other borers
may also do damage. Infestations of poplar gall midge (Prodiplosis morrisi) and many species aphids are
also responsible for damage (Dickmann and Stuart 1983, Demeritt 1990). In China, in Ningzia
Autonomous Region, it was reported that 24 million trees were destroyed due to attack by the longicorn,
Anoplophora glabripennis (Chinese National Report, IPC 1996). Several mechanisms are thought to
operate to give hybrids more or less resistance relative to their parental species, but as a rule hybrid
populations are centres of insect abundance (Whitham et al. 1996).

Other insect pests include:

− Satin moth Stilpnoia salicis
− Gluphisia septentrionis
− Viceroy butterfly larvae Basilarchia archippus
− Gypsy moth Lymantria dispar [European and Asian varieties]
− Mourningcloak butterfly Nymphalis antiopa
− Pandemis leafroller Pandemis pyrusana
− Large aspen tortrix Christoneura conflictana
− Forest tent caterpillar Malacosma dissitria
− Poplar/willow borer Chryptorhyuchus lapthi
− Clear-winger poplar borer Panthrene robinae
− Poplar borer Saperda calcerata
− Bronze poplar borer Agrilus grandulatus lirogus
− Scented willow sawfly Nematus salicis odoratus
− Phratora leaf Beetle Phratora californica
− Flea beetle Altica sp.
− Williamette balley Corythucha salicata

western willow lace bug
− Cottonwood twig borer Gypsonoma haimbachiana
− Aphids
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Further information about insect pest species of poplar can be found in Peterson, et al. 1996,
Hiratsuka, 1987, Furniss and Carolin, 1977, Hepting 1971 and USDA Forest Service 1979. A useful
Internet website is “http://ww.cas.psu.edu/docs/CASDEPT/PLANText/poplar.html”.

The fungi associated with Populus species are tremendously diverse. More than 250 species are
known to be associated with the decay of P. tremuloides alone (Lindsey and Gilbertson 1978). Only fungi
associated with sections Populus, Aigeiros, and Tacamahaca have been studied to any extent, and
“virtually nothing is known” of those associated with other sections (Newcombe 1996).

The five most damaging or potentially damaging diseases of Aigeiros and Tacamahaca are:

− Melampsora leaf rust (Melampsora spp.) which, while causing only moderate levels of
mortality in plantations, can cause volume growth reduction of up to 65% (Widin and
Schipper 1981). The situation is now becoming serious in Europe as variability in
Melampsora larici-populina has been reported and interspecific hybrid trees selected for
complete resistance to this fungus are now affected by new races of this pathogen (Pinon
1992a,b, Pinon, 1995, Pinon and Frey 1997);

− Marssonina anthracnose or leaf spot (Marssonina spp.), affecting Aigeiros species and some
of their intersectional hybrids in particular, and causing an estimated 16% loss from
production plantations in Italy (Thielges 1985);

− Bacterial canker (Xanthomonus populi Ridé), causing serious damage to non-native Aigeiros
and Tacamahaca species planted in Europe (Thielges 1985);

− Dothiciza canker (Discosporium populeum), of minor importance in North America, but
causing wide-spread, heavy losses to P. × canadensis clones in Europe (Waterman 1957,
Thielges 1985); and

− Septoria leaf spot and canker (Septoria musiva Peck), which is generally limited to a leaf
spot in native stands but is particularly damaging to hybrids, and has prevented the general
use of most P. × canadensis clones in Canada, the United States and Argentina (Thielges
1985).

Members of the Populus section are most likely to be affected by:

− Hypoxylon stem canker [Hypoxylon mammatum (Whal.) Miller] is broadly distributed on
host species in section Populus, but only becomes a disease problem in certain areas
(Manion and Griffin 1986, Newcombe 1996). It sometimes causes cankers on P. trichocarpa
in Europe (Terrasson et al. 1988) and on various hybrid clones in North America (Ostry and
McNabb 1986).

− White-rotting fungus (Phellinus tremulae (Bond.) Bond. & Borisov.) causes serious decay in
aspens (Thomas et al. 1960), although the mechanism of resistance by members of Aigeiros
and Tacamahaca to decay is unknown (Newcombe 1996).

Various poplar species and hybrids display well-developed adaptations to environmental stress,
but in particular to drought, flooding, salinity, cold, and atmospheric pollutants such as ozone (Blake et al.
1996, Neuman et al. 1996). It is also noted that P. canescens shows stability against strong winds.
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Many mammals feed on the bark, leaves and roots of Populus, notably snowshoe hares (Lepus
americanus), beaver (Castor canadensis), porcupine (Erethizon dorsatum), pocket gophers (Thomomys
bottae), and opossum (Trichosurus vulpecula) (Edwards 1978, Bryant 1981, Cantor and Whitham 1989,
Basey et al. 1990). Ungulates such as deer, moose and elk (Cervus elaphus) not only browse on shoots and
new sprouts, but also damage bark by chewing and rubbing with their antlers (Romme et al. 1995). Cattle
and sheep also browse on regeneration and cause root damage to existing trees when allowed to range
through stands (Cooper and Van Haverbeke 1990, Perala 1990). While little is known about the response
of mammals to patterns of hybridisation in Populus, there is tremendous variation in feeding preference
among hybrids and individual clones. It is suspected that this is due to variation in concentrations of
phenolic glycosides which are known to be defensive toward mammals (Whitham et al. 1996).

Mice and voles can cause severe damage in young plantations (DeBell 1990). Many species of
birds thrive in poplar forests, and a few can cause damage through their feeding. The ruffed grouse and the
sharp-tailed grouse feed on aspen buds, and the ruffed grouse also feeds on the leaves during the summer
months. Red-breasted and yellow-bellied sapsuckers may scar trees with drill holes as they forage for bark
insects (Fowells 1965).

The riparian cottonwoods are one of the most productive and sensitive components of riparian
ecosystems in western North America. The number of vertebrate species associated with these
communities is four times higher than the numbers associated with spruce-fir, lodgepole pine, or Douglas-
fir communities, yet human activities result in the loss of over 100 000 ha of riparian habitat each year
(Finch and Ruggiero 1993). While riparian ecosystems occur on less than 1% of the western North
American landscape, they provide habitat for more bird species than all other vegetation types combined
(Knopf et al. 1988). Zones of hybridisation are thought to be centres of biodiversity (Whitham et al.
1996), representing a refugium for insect species (Whitham 1989), and thus a superior habitat for
insectivorous birds (Martinsen and Whitham 1994, Dickson and Whitham 1996).
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Section VIII – Summary

The wide distribution of Populus throughout the Northern Hemisphere represents an important
and valuable component of many forest ecosystems and great potential for domestication. Evolution of the
genus has been characterised by divergence into various sections, which offer even more opportunities for
novel genetic combinations through hybridisation. Gene flow within the range of the individual species is
usually very high, with populations distinguished only by their adaptive response to environmental
selection pressures.

While initial establishment is by seeds, which may travel long distances to invade newly
disturbed areas, the maintenance of populations often relies on poplar’s ability to reproduce vegetatively.
Plantation culture of poplars has exploited this trait, and most breeding programs are characterised by
deployment of selected clones. Clonal variation is high for yield traits, as well as disease resistance and
wood quality.

In North America, P. tremuloides is the most widely distributed tree species and an important
component of many forest types. The riparian cottonwoods, from sections Aigeiros and Tacamahaca, play
an important role in the maintenance of complex riparian communities, in addition to their importance in
plantation culture. Although North American poplar communities are still largely intact, small populations
on the edge of species’ ranges are in need of conservation. Of even greater concern is the erosion of
genetic resources, particularly for P. nigra, that has resulted from human activity in Europe.

Poplar is ideally suited as a model organism for understanding growth processes in forest trees.
It has and will undoubtedly continue to be a target for domestication and forest management in many parts
of the world.
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Appendix

Genetic Transformation of Poplars

Poplar is the first forest tree species to have been transformed (Fillatti et al. 1987). Since that
time, a number of different transformation procedures have been optimized on poplar species in many
laboratories. These allow for the easy recovery of transgenic poplar plants (Jouanin et al. 1993).
Agrobacterium- mediated transformation appears to be the most widely used vector for DNA transfer in
poplar (Leplé et al. 1992). The first reports on poplar transformation deal primarily with the introduction
of marker genes: the GUS gene or genes conferring selectable traits such as resistance to antibiotics or to
herbicides (Brasiliero et al. 1992). Since 1990, an increasing number of studies have focused on the
expression of genes potentially able to modify agronomic traits, for example: tolerance to insect attack
(Robinson et al. 1994, Leplé et al. 1995, 1998), control of flowering (Weigel and Nilsson, 1995),
modification of wood quality through altered lignin content and composition (Baucher et al. 1996, Van
Doorsselaere et al. 1995), improvement to oxidative stress tolerance (Strohm et al. 1995). Until recently,
most of the results have been obtained using juvenile material grown under controlled conditions,
however, an increasing number of field trials are now being set up with transgenic poplars in order to
validate results obtained in the greenhouse. Moreover, these field evaluations will answer a number of
questions concerning the spatial and temporal stability of transgene expression in mature trees that are
subject to a natural changing environment (Pilate et al. 1997).
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