
John Aubrey Douglass
Senior Research Fellow
Center for Studies in Higher Education
University of California, Berkeley

ABSTRACT
The US remains highly competitive as a source of High Tech (HT) innovation because of a number of market positions, many of which result from long-term investments in institutions such as research universities and in R&D funding, and more broadly influenced by a political culture that has tended to support entrepreneurs and risk taking. In essence, the US was the first mover in pursuing the nexus of science and economic policy. The following discusses a number of these market factors that have historically influenced knowledge accumulation and HT innovation in the US, an assessment of their current saliency in the face of globalization and the growing market position of competitors, such as the EU. It also provides an analysis and sample of the frenzy of major US state-based HT initiatives to create Knowledge Based Economic Areas (KBEA's), and the prospect of a major new federal initiative to increase national R&D funding.

New growth theory has become a ubiquitous part of the lexicon of international business and university leaders, and, perhaps most importantly, ministries and political leaders of almost all political persuasions. The shared axiom essentially states that postmodern economies, and increasingly developing economies, are growing in their dependence on "knowledge accumulation." Promoting knowledge accumulation locally, via knowledge based businesses and entrepreneurial universities working together, and supported by government, leads to technical innovation, new products, robust local economies, and ultimately greater nationally productivity and global competitiveness.

In part, the growing political acceptance of the new growth theory, relates to a number of highly touted success stories to create Knowledge Based Economic Areas (KBEA's). The United States, in particular, continued to be viewed as the most successful nation in creating KBEA's, providing in some form an influential model. But with significant efforts by regional and national governments globally to pursue the edicts of new growth theory, and to create on their own political and cultural terms, KBEA's, one might ask what are the current advantages, and disadvantages, of the American model? Does the US retain a substantial global advantage, in part by being one of the first movers in creating vibrant KBEA's? With growing global competition in creating strong high technology clusters in regional areas, what policy innovations are being pursued in the US?

A. The Status of the US HT Advantage

The following provides a sense of the global position of the US in building and promoting KBEA's, offering a brief review of current patterns of High Technology (HT) business activity, the role of universities, the significant new wave of state HT initiatives, and, finally, a federal legislation to increase national R&D investment.

1. Political Interest and Support for HT - the mantra of the postmodern economy

Among the general public, and most importantly among major political leaders in the US, the tenets of new growth theory, as noted previously, are growing in influence. With declines in older manufacturing and consumer goods industries, high technology and service industries are widely viewed as the source of near and long-term economic competitiveness.

This worldview is, of course, shared in many other developed economies, such as the EU. The difference is that the US has had a longer history of essentially believing (rightly or wrongly) that HT innovation and economic activity will, in some form, be the crux of its future economy, which influences R&D investment rates. There is, of course, an abundant empirical evidence of the central importance of HT innovation, including highly productive regional economic areas such as Silicon Valley and the San Francisco Bay area for IT, San Diego in communications, and Boston in biotechnology. But there has also emerged a political rhetoric influenced by these success stories, including the desire to replicate in some form its formula, and by an optimistic enthusiasm and sense of political competence that often drives policymaking.

The major change in the US, and reflecting trends in other parts of the world, is the movement of policymaking and public investment intended to promote HT innovation, and encourage university-business collaboration, to the regional (or state) and local level, with state governments increasingly becoming active. However, there are peculiarities to the dynamics of policymaking in the US. For one, historically the source of public R&D funding has been the federal (national) government. State and local based initiatives to, for example, build university-business collaborations two decades ago where in large part pursued to capture federal funds. That motivation remains, but increasingly states are simply investing their own money in basic research efforts in areas such as stem cells — an area that, for political reasons, the current Bush administration has refused to fund via federal coffers.

2 Significant portions of the section of the brief rely on data and analysis provided in the most recent edition of Science and Engineering Indicators (2006) published by the National Science Foundation. For more information, see: http://www.nsf.gov/statistics/seind06/ch1.cfm?c4hl7
Political interest, enthusiasm, and the sense of political competition (to borrow the practices of competitor states or local regions, or to beat them to new policy initiatives), is in some form a prerequisite to building KBEA’s. Arguably, and although with many nuances, the US has high a political interest and desire to promote KBEA’s, and HT innovation, the same as anywhere in the world.

At the same time, the US has its own peculiar ironies in how science—although not one of its chief products, technology—is viewed. For example, less than half the American population accepts the theory of evolution. Whether and how the theory of evolution is taught in public schools remains one of the most contentious issues in science education. A recent US survey has not shown much change over time in the public’s level of knowledge about science.

At the same time, the most recent Eurobarometer does show an increase, with marginal change occurring in almost all countries surveyed—all though there is considerable variation in science knowledge across countries in Europe, Belgium, Germany, Ireland, Luxembourg, and the Netherlands recorded double-digit increases between 1992 and 2005 in the percentage of correct responses to science literacy questions. These political and cultural factors hinder development of a more scientifically education populace and workforce, and ultimately the number of native trained scientists and engineers.

2. University and Private Sector Interactive Vibrancy - high quality elite HE institutions and growing partnerships

In the course of creating the world’s first mass higher education system, the US built a large array of public and private universities that have found merit and success in interacting and supporting private enterprise and local economies. The public universities that emerged in the mid- to late-1800s, in particular, had as part of their charters the responsibility of providing research and training in agricultural and emerging fields of industrial engineering that catered to local and regional needs. The governing boards of these public institutions reflected this important component in their charge, with the major usually representing business and farming interests.

The result was a culture that promoted applied uses of scientific and engineering research that became a major cultural component in most major American research universities, public and private, by the early 1900s—and particularly in engineering fields. In addition, federal funds, the initiatives of state and local governments, and the efforts of sectarian communities and private benefactors, helped to create a vast array of public and private institutions that, essentially, supported the emergence of a cadre of high quality research universities. One indicator of the concentration of high quality research universities is the high ranking of US institutions in a variety of studies, including the highly publicized study based at Shanghai University.

The idea of mass higher education to, at least in part, service the broad and ever expanding needs of local and regional economies stood in sharp contrast to most other nations (such as most of Europe), and gave the US a significant market advantage.

The tradition of public-private partnerships and other cultural and legal factors (such as intellectual property laws) continues to significantly shape HT innovation in the US. For one, there is a relatively strong building of alliances and flow of funding. Since 1993 R&D expenses paid to other domestic R&D performers outside their companies has increased as a proportion of company-funded R&D performed within firms. In 2003, companies in the United States reported $10.2 billion in R&D expenses paid to other domestic R&D performers outside their companies, compared with $183.3 billion in company-funded R&D performed within firms. The ratio of contracted-out R&D to in-house R&D was 5.6% for the aggregate of all industries in 2003, compared with 3.7% in 1993.

Participation by federal laboratories in cooperative research and development agreements (CRADAs) increased in FY 2003 but was still below the mid-1990s peak. Federal laboratories participated in a total of 2,336 CRADAs with industrial companies and other organizations in FY 2003, up 4.3% from a year earlier, but still below the 3,500 peak in FY 1996.

At the same time, US companies continue to partner with other American and international companies worldwide to develop and exploit new technologies. New industrial technology alliances worldwide reached an all-time peak in 2003 with 695 alliances, according to the Cooperative Agreements and Technology Indicators database. Alliances involving only U.S.-owned companies have represented the largest share of alliances in most years since 1980, followed by alliances between U.S. and European companies.

3. Relatively High R&D Investment Rates – investment in basic research

Absolute levels of R&D expenditures are important indicators of a nation's innovative capacity and are a harbinger of future growth and productivity. Indeed, investments in the R&D enterprise strengthen the technological base on which economic prosperity increasingly depends worldwide. The relative strength of a particular country's current and future economy and the specific scientific and technological areas in which a country excels are further revealed through comparison with other major R&D-performing countries.

Since 1953, U.S. R&D expenditures as a percentage of GDP have ranged from a minimum of 1.4% in 1953 to a maximum of 2.9% in 1964. Most of the growth over time in the R&D/GDP ratio can be attributed to steady increases in nonfederal R&D spending. Nonfederally financed R&D, the majority of which is company financed, increased from 0.6% of GDP in 1953 to an estimated 1.9% of GDP in 2004 (down from a high of 2.1% of GDP in 2000). The increase in non-federally financed R&D as a percentage of GDP is indicative of the growing role of S&T in the U.S. economy.

Yet much of the R&D expenditures in the US are geographically concentrated in around ten different states, and states vary significantly in terms of the types of research performed within their borders. In 2003, the top 10 states in terms of R&D accounted for almost two-thirds of U.S. R&D. California alone accounted for more than one-fifth of the $278 billion of R&D that could be attributed to one of the 50 states or the District of Columbia. Over half of all R&D performed in the United States by computer and electronic products manufacturers, for example, is located in California, Massachusetts, and Texas, while The R&D by chemicals manufacturing companies is particularly prominent in two states, accounting for 61% of New Jersey’s and 49% of Pennsylvania’s business R&D. Together these two states represent almost one-third of the nation’s R&D in this sector.
The United States remains one of the biggest investors in R&D with the highest relative investment in basic research, most of which is conducted in its network of research universities. For example, in 2000, global R&D expenditures totalled at least $729 billion, half of which was accounted for by the two largest countries in terms of R&D performance, the United States and Japan. Worldwide, there remains a heavy concentration of R&D in a seven major economies. The US, Canada, France, Germany, Italy, Japan, and the United Kingdom performed over 83% of OECD R&D in 2002. At the same time, more money was spent on R&D activities in the United States in 2002 than in the rest of the G-7 countries combined.\(^2\)

R&D intensity indicators, such as R&D/gross domestic product (GDP) ratios, continue to demonstrate the advantages enjoyed by developed, wealthy economies in the global HT economy. Yet there are signs that competing nations are beginning to push R&D investment rates in both the public and private sector that match or exceed the rates in the US. Overall, in 2004 the US ranked fifth among OECD countries in terms of reported R&D/GDP ratios. Israel (not an OECD member country), devoting 4.9% of its GDP to R&D, led all countries, followed by Sweden (4.3%), Finland (3.5%), Japan (3.1%), and Iceland (3.1%). In the US, R&D as a proportion of GDP has stood steady at 2.7%.

But there are two major market advantages for long-term economic growth for the US relative to other economies. First is the high proportion of R&D investment by the private sector. R&D performed by the business sector is estimated to have reached $215.2 billion in 2004. The business sector's share of U.S. R&D peaked in 2000 at 75%, but following the stock market decline and subsequent economic slowdown of 2001 and 2002, the business activities of many R&D-performing firms were curtailed. The business sector is projected to have performed approximately 70% of U.S. R&D in 2007.

The second market advantage is the relatively high investment rates in basic research and the way that funding is dispersed. The United States spends approximately 18 percent of its total R&D portfolio on basic research. About one-half of this research is funded by the Federal Government and performed in the academic sector. The largest share of this basic research effort is conducted in support of life sciences.

In contrast, basic research accounts for comparatively smaller amounts of the national R&D in most other economies. For example, in the Russian Federation it accounts for 18 percent of all R&D expenditures; in South Korea, which is currently the sixth largest R&D-performing member of OECD, the figure is 14 percent; in Japan 12 percent.\(^4\) Indicating the growing emphasis on promoting scientific research and HT innovation in the EU, basic research accounts for more than 20 percent of total R&D performance reported in Italy, France, and Australia.

Universities and colleges have historically been the largest performer of basic research in the United States, and in recent years they have accounted for more than half (55% in 2004) of the nation's basic research. Organizations influence the type of R&D conducted by their scientists and engineers both directly and indirectly. The most direct influence is the decision to fund specific R&D projects. This influence tends to be weaker in academia than in industry or government agencies because academic researchers generally have more freedom to seek outside R&D funding. This reliance on external sources of funding, along with the tenure system, makes universities and colleges well suited to carrying out basic research (particularly undirected basic research).

The federal government, estimated to have funded 61.8% of U.S. basic research in 2004, has historically been the primary source of support for basic research. Moreover, the federal government funded 94.6% of the basic research performed by universities and colleges in 2004. Industry devoted only an estimated 4.8% of its total R&D support to basic research in that year, representing 16% of the national total. The private sectors relatively small contribution to basic research continues to reflect the high degree of risk of actually commercializing research results, as well as concern about the ability of the firm to enforce property rights over the discovery.

An interesting and relatively new phenomenon relates to global shifts in investment patterns in R&D. With the growth of HT clusters and research expertise worldwide, US based multinational corporations (MNCs) continued to expand their investment in R&D activity overseas. In 2002, R&D expenditures by affiliates of foreign companies in the United States reached $27.5 billion, up 2.3% from 2001 after adjusting for inflation. By comparison, total U.S. industrial R&D performance declined by 5.6%, after adjusting for inflation, over the same period. Cross-country R&D investments through MNCs continue to be strong between U.S. and European companies.

At the same time, certain developing or newly industrialized economies are emerging as significant hosts of U.S.-owned R&D, including China, Israel, and Singapore. In 1994, major developed economies or regions accounted for 90% of overseas R&D expenditures by U.S. MNCs. This share decreased to 85% by 2001. The change reflects modest expenditures growth in European locations, compared with larger increases in Asia (outside Japan) and Israel.\(^3\)

4. **Venture Capital - US still most robust**

Venture capital is a primary source of funding for HT businesses. The US remains the single largest source of venture capital, representing a major market advantage unmatched by any other major developed nation. The lack of an equity investment culture, information problems, and market volatility are factors that hinder the development of early-stage financing in many OECD countries.

In the United States, a continuum of capital providers – e.g. business angels, public and private venture funds - helps to diversify risk and ensure a steady flow of quality deals. These networks - together with the use of staged financing instruments linked to performance, provision of technical and managerial support, and easy exits on secondary stock markets - have contributed to the survival and growth of portfolio firms. The number of venture capitalists with financial and technical expertise is limited in many countries and has not generally matched the rapid growth in risk capital supply across the OECD. Some countries, including Canada and Sweden as well as Israel, fill this experience gap by attracting venture investors from abroad.\(^6\)

In many countries outside of the US, structural, regulatory and fiscal barriers act to constrain the development of a dynamic venture capital market and business environment. Around the world, almost 20 percent of all venture deals took place across national boundaries, an increase of 250 percent over the preceding five-year period.\(^7\) They observe that this trend has been accelerated by the practice of "venture licensing," the replication of proven business success through "franchising of innovation."\(^8\)

\(^2\) See Science and Engineering Indicators 2006, National Science Foundation: http://www.nsf.gov/statistics/seind06/c4/c4h.htm#c4hl7

\(^3\) Science and Engineering Indicators 2006.

\(^5\) E-mail & Young's Acceleration: Global Venture Insights Report 2007.

models in new markets. Though the U.S., Europe and Israel remain key in the industry, practices like this are expected to lead to even more focus on emerging markets in the coming years.

However, not everyone agrees that national borders are disappearing as a factor in venture investment. U.S. firms are merely dabbling in overseas markets. Although many U.S. portfolios include foreign companies, most of the time those firms make up less than 5 percent of total firm investment.

Instead, U.S. venture firms appear to be taking a different approach to capitalizing on emerging markets. About 88 percent of respondents to one recent survey indicated that their portfolio included companies with a significant portion of their operations overseas, mostly in India and China. This figure is almost twice the number reported last year. One conclusion is that venture capital firms remain cautious about expanding their global portfolios and that, although the pace of global investment will continue to grow in the next few years, it will do so slowly.

Yet despite the small amount of portfolio space dedicated to investments in China and India, the sum of all of these smaller investments from around the world has made China into a major presence in the industry. The report also provides a number of new models for global investment, including “international joint funds, strategic limited partners, local funds with a global brand, local teams under one global fund or a hybrid of these models” that may ease some of the reservations of U.S. firms about investing globally. These types of partnerships, which are already changing the face of global venture investment, may create an industry in which international investment is common, but a local presence is necessary.

5. Intellectual Property (IP) - US a first mover

In part because it has been one of the most prolific generators of intellectual property, the US has created a relatively elaborate and generally protective set of laws that, in turn, has significantly influenced economic development. Two major developments help to decipher the proliferation of IP and its influence on the American market.

First, in 1980 the federal government revised patent and licensing law. The Bayh-Dole Act of 1980 opened the doors for universities and their faculty and researchers to own patents and issue licenses developed through federally funded research. Previously, by allowing universities and research staff to jointly own discoveries supported by federal research grants, Bayh-Dole is credited with providing an important market force for creating the entrepreneurial university and for bolstering activity in a key economic sector – a model later replicated by other national governments, beginning with the UK during the Thatcher administration.

Bayh-Dole generated a revised worldview for both the university and business sectors by encouraging tech-transfer – indeed, arguably an exaggerated sense of potential profits for researchers, universities, and business partners alike. This federal initiative, along with the funding of new federally funded university-business centers in engineering, also had another effect: state governments, and to lesser extent municipal governments, in harnessing universities in new ways to support and grow their tech-based businesses, and to secure growing federal funding for R&D.

Another major shift in IP laws was shaped by the legal system, and specifically what was literally determined to be a patentable discovery or idea. Remarkable discoveries in the life sciences, in part fed by long-term investments in basic research, created relatively unique requests for patents and licenses. In 1980, the same year the Bayh-Dole Act was passed, the US Supreme Court upheld a lower court decision providing an extremely broad definition of “patentable material,” including the patenting of organisms, molecules, and research techniques related to new biotechnology fields.8

Arguably, the growing focus on patents and licensing by universities, and by industry, has had a deleterious effect on the sharing of information and discoveries that has bolstered scientific inquiry. But it also has encouraged greater investment by capital markets and resulted in research collaborations in the US to a degree not yet replicated in similar developed economies.

Within the US domestic economy, a record number of patents (more than 169,000) were issued in the United States in 2003, although the rate of growth in US patenting has slowed since 2000.9 Nonetheless, U.S. patents have enjoyed a period of nearly uninterrupted growth since the late 1980s.

The US also retains a strong market position in the number of international patents held and marketed to other nations. In 2003, U.S. receipts totaled $48.3 billion and its trade in intellectual property produced a surplus of $28.2 billion, up about 5% from the $25.0 billion surplus recorded a year earlier. About 75% of transactions involved exchanges of intellectual property between U.S. firms and their foreign affiliates. Exchanges of intellectual property among affiliates grew at about the same pace as those among unaffiliated firms. These trends suggest both a growing internationalization of U.S. business and a growing reliance on intellectual property developed overseas.

Yet another indicator of changing markets is the growing number of US patents held by foreign sources. In 2003, U.S. residents accounted for about 55% of all successfully granted patents, while foreign inventors accounted for about 45% of the total. A decade ago, businesses based in Japan, Germany, the UK, France and Canada, and a few other developed economies, were the largest source of US patent applications.

But that has changed. Since 1997, Taiwan and South Korea replaced France and Canada in the top five foreign sources of inventors seeking U.S. patents. In 2003, Taiwan accounted for 9% of foreign sources of U.S. patent applications and South Korea for close to 7%. Canada and the United Kingdom accounted for 5% and France for 4%. If recent patents granted to residents of Taiwan and South Korea are indicative of the technologies awaiting review, many of these applications will prove to be for new computer and electronic inventions. Also impressive is the growth in patent applications by inventors from Israel, Finland, India, and China.

US Biotech Patents by Foreign Inventor: 1990-2003
Foreign firms now account for about 36% of all U.S. biotechnology patents. These patents are more evenly distributed among a somewhat broader number of countries than that for all technology areas combined. Another evident pattern is the more prominent representation of European countries in U.S. patents of biotechnologies and the smaller representation by Asian inventors.

Not only is Japan and Germany the leading foreign source for U.S. patents overall, they are the leading foreign sources for U.S. patents granted for biotechnologies. Recently, however, Germany’s share of U.S. biotechnology patents granted has been rising while Japan’s share has been falling. In 2003, Germany was still the leading foreign source, accounting for 6.5% of U.S. biotechnology patents granted, up from around 4% in the late 1990s, while Japan’s share was 6.4%, about half the share held by Japanese inventors in the early 1990s. These patenting trends indicate that while the US remains a leading source of patents, and offers a liberal business environment, there are concrete signs of significant technology innovation in Asia and in a transitioning Europe.

6. Tax Policy - US most advanced and long term

One major US advantage in shaping investment patterns and promoting risk taking relates to tax policy at the federal, state, and increasingly local level as well. The US has long engaged in using tax structures not simply to generate revenue, but to shape economic behavior – a characteristic relatively new to most other economies including the EU, which have focused on relatively simple tax structures.

For example, bankruptcy laws in the US have been the most liberal of any major developed economy, reflecting a political culture that essentially promotes entrepreneurship, recognizes the high rate of failure among all types of businesses, and spreads the risk so that a business failure does not mean permanent ruin. The complexity of the tax system has also long included “tax credits,” encouraging businesses to invest in technology and increasingly in R&D.

At the same time, the US tax code is so complex, and easily amendable, that it is also subject to major political influence, largely by corporate interests, including the growing HT sector. State and local taxation systems, historically, varied significantly, including a sales tax in some states, or an income tax model like the federal system, or both.

But over the past three decades, states and local government have become much more engaged in shaping tax policy to attract desirable businesses, including HT, and to generate investment in both university and business based research. From 1990 to 2001, for instance, research and experimentation (R&E) tax credit claims by companies in the United States grew twice as fast as industry-funded R&D, after adjusting for inflation, but growth in credit claims varied throughout the decade. R&E tax credit claims reached an estimated $6.4 billion in 2001. From 1990 to 1996, companies claimed between $1.5 billion and $2.5 billion in R&E credits annually; since then, annual R&E credits have exceeded $4 billion. However, in 2001 R&E tax credit claims still accounted for less than 4% of industry-funded R&D expenditures.

7. Talent Pool and Mobility - Attractiveness and Openness for Skilled Labor and Foreign Students

The US has reaped tremendous advantages by its early commitment to mass higher education. Over most of the last century, more Americans went to college and graduated, with many entering graduate programs, than any other nation in the world. Adding to the nation’s supply of talent has been a relatively open market approach to attracting academics and researchers. In the 1930s, the US provided a haven for preeminent scientists escaping Nazi Germany and World War II. The emergence of a large network of high quality, sometimes prestigious, universities that would hire foreign nationals as professors and researchers – a sharp contrast to many if not most nations where university faculty held or held civil service positions, and in which national governments limited the hiring of non-native talent.

Particularly after the war, and beginning in earnest during the 1960s, the presence of foreign students in US universities also grew dramatically, supported sometimes by their national governments, and increasingly by offers of student financial aid in graduate programs such as engineering where, today, foreign nationals often are more than 50 percent of the total students in that program.

In previous decades, students who came to the US for both undergraduate and graduate programs largely stayed in the US and entered the job market. Their presence has dramatically influenced HT innovation and the growth of that sector in the US economy. For example, one study indicates that nearly one third of all the successful start-ups in the Silicon Valley were started by foreign nationals, most of who gained their training in American universities. As shown in the following charts, foreign nationals from Asia became the largest single source of talent coming to the US for their education, largely in graduate programs in science and engineering. Reflected by government policies of the Chinese national government, students from China were the largest single source of foreign students in the US beginning in the early 1990s. The overall growth in all foreign nationals entering US graduate degree programs in that period also reflected a significant shortfall in the training of “native” US students in STEM fields, and the push by HT economic sectors to get the talent they needed via US universities, and by successfully advocating more liberal visa policies for highly educated immigrants.

This pattern of attracting and then retaining talent is beginning to erode. The US, along with other developed economies with mature higher education systems, is finding that a growing number of foreign nationals educated in science and engineering fields, and professionals that have long contributed to S&T innovation and businesses, are beginning too return to their native economies as they mature, buttressed by national policies to attract top scientific talent.

Getting talent from abroad is an important component of the US’s HT advantage. Educating a more robust native population should be an equally, if not more, important goal. A significant factor that will influence the US’s market position, and the general socio-economic health of the nation, is the significant relative decline in the higher education attainment rates of Americans when compared to other developed economies.

Although the United States still retains a lead in the number of people with higher education experience and degrees, at the younger ages a different story emerges. On average, the postsecondary participation rate for those aged eighteen to twenty-four in the United States is approximately 33 percent according to a 2005 study, down from around 38 percent in 2000. In the US, more students today are part-time than in the past, and more are in two-year colleges; the wealthiest students are in the four-year institutions, and students from lower and even middle income
families are now more likely to attend a two-year college, less likely to earn a bachelor’s degree, and now take much longer to attain a degree than in the past.\footnote{For an analysis of the decline in the US advantage in higher education access and degree production, see John Aubrey Douglass, The Conditions for Admission: Access, Equity, and the Social Contract of Public Universities (Stanford University Press, 2007).} In contrast, within a comparative group of fellow OECD countries, many nations are approaching 50 percent of this younger age group participating in postsecondary education, and most are enrolled in programs that lead to a bachelor’s degree. According to 2004 data, the US has slipped from 1st to 14th in the higher education participation rate. Without a major effort by states and the federal government, and by higher education institutions, it is likely that this ranking will go down further over the next decade.

The US will undoubtedly remain a leader in HT and will continue to draw talented graduate students and scientists to its unmatched network of research universities. Already the initial negative influence of the Patriot Act has ebbed and foreign applications to US graduate schools have begun to increase once again, although perhaps the numbers will grow at a slower pace than in previous decades.\footnote{Council of Graduate Schools, "Findings from the 2006 CGS International Graduate Study in the U.S. Survey", January 2007.}

However, because of concerted policy efforts and investment in education, particularly in science and technology programs at universities, and the corresponding growth of S&T sectors, new competitors for faculty, graduate students, and more generally talent will continue to grow in number and quality. America’s once dominant competitive advantage will diminish. Universities in the EU, for example, have grown significantly in their ability to attract graduate students (outside of Oxbridge), and many are becoming more liberal in their willingness to hire foreign nationals as faculty. The Bologna Agreement and other policy initiatives seek great mobility of talent and jobs, at least in part influenced by the American model.

The emergence of English as the dominant language in academia and business once has, and remains, a market advantage for the US, the UK, and other English speaking countries. But the use of English in non-English speaking nations, and the growing number of graduate programs (particularly professional programs) offered in English throughout the world also is diminishing the market advantage held by US universities.

An emerging body of research largely produced by the scientific community and economists worries about the ability of the US to continue its market advantage in both attracting and retaining talent from abroad. A congressionally requested report by a pre-eminent committee of scientists and S&T leaders chaired by the former CEO of Lockheed Martin Marietta, Norman Augustine, recently argued that “a comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas.”\footnote{Committee on Science, Engineering, and Public Policy, Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (New York: National Academies Press, 2006).} The political traction of such analysis, however, has proven marginal, thus far.

Labor economist Robert Freeman has observed that a diminished comparative advantage for the US in high-tech will “create a long period of adjustment for US workers, of which the off-shoring of IT jobs to India, growth of high-tech production in China, and multinational R&D facilities in developing countries are harbingers.” The US will need to adjust, he notes, and reflecting the observations of many others, by developing “new labor market and R&D policies that build on existing strengths”\footnote{Freeman, Does Globalization of the Scientific/Engineering Workforce Threaten US Economic Leadership?} and that recognize scientific and technological advances in other countries.\footnote{Douglass – OECD Paper}

Understanding these market shifts will be key for the US. As of this writing, America remains a nation mired in a protracted and expensive occupation in Iraq and Afghanistan. Rising deficits, a growing trade imbalance, and Republican control of both houses of Congress and the White House has placed a low priority on increased funding for domestic programs by the federal government.

As discussed later in this essay, there is a major initiative to increase federal R&D spending in the physical sciences, but it is unclear if it will survive in its present form in light of current political environment with its heavy focus on cutting federal spending and preparing for the pending presidential election.

B. A Comparative Assessment of the US’s Competitive Advantage

The US remains a productive environment for S&T and will remain so in the short run not only because of the excellence of its research universities and the growth of new business sectors like biotechnology. There is also the availability of venture capital, relatively high rates of R&D investment, and tax incentives and legal precedents that, thus far, are not yet matched in other economies.

With the exception of the dot.com bust, university research and HT economic growth remain robust in the US. For example, the science and engineering workforce in the United States has grown rapidly, both over the last half-century and the last decade. From 1950 to 2000, employment in S&E occupations grew from fewer than 200,000 to more than 4 million workers, an average annual growth rate of 6.4%. Between the 1990 and 2000 censuses, S&E occupations continued to grow at an average annual rate of 3.6%, more than triple the rate of growth of other occupations. Between 1980 and 2000, the total number of S&E degrees earned grew at an average annual rate of 1.5%, which was faster than labor force growth, but less than the 4.2% growth of S&E occupations. S&E bachelor’s degrees grew at a 1.4% average annual rate, and S&E doctorates at 1.9%.

On average, American companies spend three times as much as those in Europe on R&D; they have access to some ten times as much debt financing. This is one reason why many S&T firms in Europe and other parts of the world set up offices in the US- not to gain access to scientific expertise, but to its capital markets. Because of the high cost for an initial public offering on the stock market, many international firms are merging with existing, and often fledgling, US firms.

The question is how long these American advantages will remain. The global environment is changes rapidly, with individual countries growing significantly in their R&D abilities, in part by government policies and in part because expanding investment by the private sector. The European Research Area and the emerging 7th Framework are intended to boost significantly R&D investment and to help shape tax policies and the availability of capital.\footnote{Martin Marietta, Norman Augustine, recently argued that “a comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas.”}

The chart shown on the right offers an unscientific assessment by the author of the major factors that promote and sustain national and regional HT economies. Most of these advantage factors have, in some form, been discussed previously. Added to our list are factors such as the overall quality of the science and tech workforce, mobility within a region or nation for those workers, the concept of a relatively open business environment (e.g., collaborations between universities and business, between different business enterprises, and the availability of venture capital, relatively high rates of R&D investment, and tax incentives and legal precedents that, thus far, are not yet matched in other economies)

4 Freeman, Does Globalization of the Scientific/Engineering Workforce Threaten US Economic Leadership?"
sharing of workforce and knowledge which is widely perceived as one ingredient to the success of silicon valley), and the overall quality of life offered to that workforce, including housing, local schools, and transportation. Increasingly in cities and in regions with successful HT sectors, housing costs are rising with the real or potential threat of diminishing the attractiveness of the region for employees; in the US, urban area schools are also generally declining in quality, poor public transportation and the increased division of rich and poor, all add strain to the quality of life.

The chart offers an assessment of the general status of these various advantages in supporting KBEA’s in the US, in the San Francisco Bay Area (including Silicon Valley and biotech corridors in San Francisco and around Berkeley), and in the EU (particularly among the EU top 5) on a ten-point scale - ten being the most favorable. In addition, the author’s sense of the trajectory of each advantage factor is indicated by a plus (going up) or minus (going down).

Americans are generally not looking across the Atlantic or Pacific, or across their borders, for ideas on HT policymaking. Lawmakers and other policymakers are concerned about being competitive in the global marketplace, but the US remains largely isolationist in its leanings despite the fact that the HT sector is increasingly an international endeavor. The focus of government and much of the business sector is on protecting or expanding foreign markets, intellectual property rights and tax incentives, buttressing venture capital markets, and reducing restrictions on immigrant/visitor visas.

US political culture retains a sense that it is a nation that remains the most productive and innovative home for science and technology, and that, for instance, the cure for cancer or the breakthroughs promised by stem-cell research will be homegrown. Thus far, this seems to ignore the significant knowledge centers in Europe and emerging S&T centers in countries like China, India, and other parts of the world.

An important indicator of the research gains and HT productivity of Europe and other parts of the world is a relatively little known fact, at least among Americans, is that the US no longer has a trade surplus in HT advanced products (and thus not counting mass consumer items such as electronics). A major bright spot in the overall trade balance has been its relatively strong export of HT goods and services. Maintaining and, indeed, enhancing this market position was one of the major reasons for the concerted policy efforts beginning in the early 1980s with the passage of Bayh-Dole and other federal initiatives that formed a formal transition of science policy as a major component of national economic policy.

For some two decades, the US enjoyed a substantial surplus in HT products. However, as shown in the accompanying charts, between 2001 and 2002 the US moved from a $6 billion surplus to a $15 billion deficit in these goods and services. In 2004, the deficit was more than $25 billion. Within the various categories of HT products, aerospace and electronics retained surpluses; the largest single deficit was in information and communications. It is important to note, however, that these shifts reflect the process of globalization and the international nature of many HT businesses. American controlled HT firms, for example, have products being created and manufactured throughout the world, as other major international conglomerates. The blurring of national boundaries in terms of business activity, including finance, makes the story line of surpluses and deficits increasingly complicated.

Yet another indicator of the shift in America’s HT advantage is the growth of international patent activity. The widely perceived US hegemony does not accurately reflect recent data. The accompanying chart demonstrates that among OECD countries the US retains a major market position. The growing EU has an actual larger total of patents, with a significant portion generated by individuals and HT businesses in Europe’s top five economies.

The trajectory indicates that Europe, and many other parts of the world, are making sizable and relatively fast gains as global players in HT markets. Even in the area of R&D investment, as noted earlier, the market is shifting.

As a percentage of GNP, federal funding for basic research in the U.S. in the physical sciences and engineering has been declining for the past 30 years, to less than 0.05% in 2003. Asia’s developing economies are placing increasing percentages of the GNP into science and technology, and they are the edge of a payoff, with their share of global high-tech exports rose from 7% in 1980 to 25% in 2001. According to National Science Foundation figures, the U.S. percentage fell from 31% to 18%.

C. Cluster Theory – The Geographic Dispersion of US HT

While the US remains a major source of HT innovation and job growth, among the various states there are significant differences in the geographic dispersion of mature KBEA’s, particularly in the generation of new HT businesses and centers of venture capital. A recent study indicates that larger firms with over 1,000 employees are the most likely to collaborate with universities and other public research institutes (non-profits).

Further, most if not all of these firms are already engaged in R&D activity, sometimes via contracting research activity, and have therefore successfully built a capacity to absorb and use public-generated research. Another study indicates, not surprisingly, that university-based start-ups are largely concentrated in states with the largest universities and with the largest levels of venture capital.

A recent study by Martin Kinney and Donald Patton illustrates the geographic concentration of firms that grow from start-ups into public companies listed on the New York stock exchange (Initial Public Offering of Stock, or IPOS) illustrates the concentration of new HT activity in sectors such as semiconductors and biotechnology. IPOS indicate the maturity of the industry. Data is from the period 1996 through 2000.

As the following two charts indicate, in the biotechnology sector, there is a heavy concentration of new firms in specific regions: the states of Massachusetts (the Boston area), New York and east coast corridor down to Maryland,
along with California's San Francisco Bay Area and San Diego. These regions accounted for approximately half of the 85 HT businesses going public. New IPOS emerged also in North Carolina, Georgia (Atlanta), Michigan (Ann Arbor), Texas (Austin and Houston), and the state of Washington (Seattle).

Semiconductor IPOS in that period of four years were even more concentrated, with the vast majority in the Bay Area and San Diego, followed by Boston and the New York to Maryland corridor. A similar pattern of concentration is found in the telecommunication sector. In all three HT sectors – biotech, semiconductors, and telecommunications – there is a general recocurrence HT business activity. In each of these geographic areas, there is a link between existing and high quality research universities and the existence of an urban environment that has built, over time, a robust and talented workforce and research environment. There is also evidence that that workforce, including a significant number of HT business professionals, scientists and engineers, often with immigrant backgrounds, are mobile, moving from one KBEA to another. Further, there is a distinct pattern in which the vast majority of venture capital focus their investments in these areas, specializing on making bets within a HT research and business environment that appears to offer the best potential payoff. Even then, one recent study estimates that some 70 percent of venture capital investments in US HT businesses fall.

At the same time, data collected by the US Bureau of Labor on the number of employees in HT businesses in both the public and private sectors, indicates a much more dispersed geographic distribution. In this case, employment numbers include all those in businesses and industries classified by the US government as HT, including financial services and industries such as automobile manufacturing and aerospace – a wide swath of activity in the economy.

The chart below shows the total employment in HT businesses by state and as a percentage of all workers – unfortunately, not by major regions within a state. With that caveat in mind, the employment numbers indicate that while states such as Massachusetts, California, Texas, Michigan, and Maryland (where there is a high concentration of federal and private research laboratories) have many HT businesses, many other states have relatively high employment in HT industries as well. The chart also indicates the concentration of university R&D as a percentage of the state Gross State Product.

Cluster Theory - The US Example
Semiconductor IPOS (44 firms going public 1996 - 2000)

Source: Martin Kenney and Donald Patton

Cluster Theory - The US Example
Biotechnology IPOS (65 firms going public 1996 - 2000)

Source: Martin Kenney and Donald Patton

Dispersed Pattern of HT Employment: 2000
50 State Comparison: HT as a Percentage of All State Employment and University R&D Per $1,000 of Gross State Product.

GSP. Again, this data provides a more nuanced illustration of the role of university based R&D in relationship to a state's entire economy. Some big HT states, such as California, which has the highest number of HT employees of any state, and secures the most federally and privately funded R&D investments, have economies that are extremely diverse – in other words, HT is important, and the role of research universities is a major factor in their economies, but it is not a dominant player now or for the foreseeable future in most states.

One possible implication of the dispersed HT employment is that as this sector continues to mature, the traditionally dominant KBEA's may continue to create innovation and businesses, but actual employment may end up in other geographic areas – effectively helping to create competitors. Further, innovative HT businesses, as they grow, seek other locales, whether in the US, and increasingly in other nations, to locate part or all of their operations—one obvious example is the tremendous dispersal of the software industry. Efforts by governments to build and support KBEA's may reap significant local economic, and social, benefits, but they might not keep the investment locally as jobs are dispersed to other regions. The benefits are national and international.

In total, in 2000 some 8.8 percent of the workers in the US where employed in the HT sector. In comparison, the EU-15 average for that year was 7.6 percent, with Germany having the highest percentage at around 11.2 – according to data collected by CORDIS. The problem is that this data is already old – the latest data I could secure at this time. The probability is that there is significant growth of nascent KBEA's in the US and EU, and elsewhere, building the formula of university and private sector coordination, and increasingly government based initiatives.

D. A Frenzy of State Based Initiatives – Patterns and a Sample of Recent Legislation

The politics of HT, and the devotion to new growth theory, means a growing sense of competition and a remarkable new era of policymaking driven, in part, by a sense of urgency and by the natural laws of interest group politics. In the US, this has created a remarkable level of effort by states and regional governments to make targeted investments that are relatively new, and entering policy arenas once largely reserved for the federal government – the traditional source of public supported R&D. Some investments are attempts to leverage federal funding, or to create new funding streams, for example to create public funded venture capital in states that lack private investors, or in the case of Stem Cell related research to fill a void left by the Bush administration's edict effectively severely limiting federal funding for research thought improper by neoconservatives.

Lack of leadership at the federal level on science and technology funding, where funding levels to date have been relatively stagnant except for the National Institute of Health, has resulted in state political leaders being active policymakers in areas thought vital to the socio-economic health of their respective state. This has occurred not only

in S&T, but also in health care, immigration, and in issues related to global warming and energy.

1. Patterns of Policymaking

There are a great variety of different initiatives that, sometimes, reflect the distinctive economic challenges of a state, sometimes the political leaning a dominant political party, and also the political power of major industries. Yet there are also some general patterns to the HT related policymaking, as summarized below.21

- **Research Clusters** - State funding and policies are often focused on promoting or creating new university-business collaborative “clusters” to build additional research capabilities.
- **High Profile Research** - States are increasingly targeting their efforts on promoting and directly funding high profile “discovery” research, reflecting a relatively new political understanding of the nature of technological innovation.
- **Leverage Federal Grants** - State initiatives are intended to leverage (and not replace) existing federal science funding and to attract additional industry and venture capital.
- **Copy-Cat Phenomenon** - States are heavily influenced by the initiatives of other states, using high-profile models, like California’s Stem Cell initiative, to both reposition the state’s economy and to service the political needs of lawmakers.
- **Using Special Funds and Bonds** - Many states are only marginally dipping into their state operating budgets, instead using funding derived from a huge 1998 settlement reached with the US tobacco industry, via bonds, or other one-time allocations of public funds.
- **Matching Funding Requirement** - Most state initiatives require some form of matching funding from private-sector businesses.
- **IP Conundrums** - Many states struggle with issues related to intellectual property rights—essentially mirroring the debates over the Bayh-Dole Act.
- **Part of Larger State Strategies** - Policies to promote university-business collaborations and tech transfer are usually part of a larger set of Tech-Based Economic Development (TBED) policies that also include:
 - Tax incentives
 - Venture capital for start-ups, often focused on attracting existing high-tech businesses from other states, or (like federal policies) on supporting and promoting small businesses.
- **Share the Wealth** - State initiatives often include financing for consortiums of universities within a state to “spread the wealth” and meet political needs of lawmakers and reduce opposition.
- **Political Value** - An important aspect of this rising tide of new state-based initiatives are their origin and the political value placed on S&T as a driver of economic growth and a sense of competition with other states.
 - The vast majority of these initiatives come from government agencies and officials, are often influenced by industry and, as in the case of California’s Stem Cell Initiative, “patient advocates”, but seemingly rarely the net result of proposals or ideas generated by the academy.

One important additional observation on the frenzy of policymaking: most (but not all) HT initiatives are relatively cheap, one-time, direct, targeted allocations of public funds, or presented to voters as bonds that are gaining relatively wide public support. They provide good political payoffs for lawmakers.

At the same time, long-term investments, like additional funding for secondary schools, or improving the financial health of state’s universities to improve lagging higher education access and graduation rates, are usually ignored. It can be argued that making investments and paying more attention to these and other socio-economic infrastructure components of a state might have a longer-term impact on the development of talent.

2. A Sample of the Frenzy of State Initiatives: 200722

The following provides a sample of recent state based initiatives to promote and support KBEA’s. Each of these initiatives have been presented and debated, in some instances passed or defeated, by state and local governments in the US over an eight-month period – January through August 2007. The sample was chosen in part to provide an environmental scan of the varied initiatives, most related to funding university.

Texas – Cancer Initiative

Governor Rick Perry, a Republican, signed in June 2007 a major new biomedical initiative to create a cancer institute with proposed funding over a ten-year period under a bond act that will generate $3 billion for voter approval. The measure will be presented to voters in November. The measure will essentially create a NIH type agency for cancer research and was first advocated by a friend of former Governor Ann Richards, who died from esophagel cancer, and influenced by California’s high profile passage of a $3 billion dollar bond act for STEM cell related research in 2004 – an initiative that was unprecedented in its scale, and in the concept that states might directly fund basic research in targeted areas once reserved largely to the federal government.

New York – Rural Cluster Development Initiative

New York Gov. Eliot Spitzer signed legislation establishing a new program to stimulate employment and income growth by promoting cluster-based strategies in rural regions of the state. Sponsored by Sen. George H. Winner Jr., chairman of New York’s Legislative Commission on Rural Resources, Senate Bill 3234 outlines the Cluster Based Industry and Agribusiness Development Grant Program, which will provide seed grants of up to $25,000 on a competitive basis to community-based economic development corporations. The Empire State Development (ESD) Corporation, the state’s lead economic development agency, will dispense funds as part of its comprehensive rural revitalization program. Clusters are expected to be organized around the existing strengths in certain regions, as well as the emerging technologies and research under development at the universities and colleges dotting the landscape of rural New York.23

California – Additional Funds for Existing University-Industry Research Centers

Gov. Arnold Schwarzenegger unveiled the $95 million Research and Innovation Initiative in January to provide funding to several university-based projects focused on clean energy, biotechnology and nanotechnology research

21 Adapted from Douglass, “The Entrepreneurial State and Research Universities.”

22 The text of S.B. 3234 can be accessed at: http://assembly.state.ny.us/leg/?bn=S03234

23 This section of the brief includes analysis and reports offered by the State Science and Technology Institute and their SSTI Weekly Digest.
and commercialization. The fiscal year 2007-08 state budget includes $70 million in lease revenue bond funding for the Energy Biosciences Institute and the Helios Project at the University of California (UC). UC Berkeley will receive $40 million for the Energy Biosciences Institute to focus on the development of alternative fuel, and $30 million is allocated for the Helios Project, an initiative by the Lawrence Berkeley National Laboratory to create sustainable, carbon neutral sources of energy. Lawmakers also approved $6 million for UC labor research programs. Not included in the budget is $15 million in operating funds for the California Institutes for Science and Innovation. UC officials hope to re-engage policymakers on the subject in the future, according to a press release from the UC Office of the President.\(^{24}\)

Illinois – Venture Fund Initiative Falls

Gov. Blagojevich proposed the creation of the Illinois Community Assets Fund during his combined State-of-the-State and Budget Address in March to increase access to capital and financing for economically distressed communities and populations. However, following a volatile legislative session in Illinois between the governor and lawmakers, a budget agreement was reached, but it does not include funding for several of the governor’s priorities, including a $100 million state-run venture capital fund. Gov. Blagojevich signed the FY08 budget last week, vetoing approximately $500 million. Lawmakers also left out the governor’s recommendation of $20 million in grants to the Illinois Regenerative Medicine Institute for stem cell research.

The FY08 budget does include funding for existing programs within the Department of Community and Economic Opportunity (DCEO), including $5.5 million for the Community Technology Center Grant Program, $5 million for the Entrepreneurship Center Program, and $2 million for the Manufacturing Extension Program. Among the governor’s line item vetoes were $1 million for the Innovation Challenge Grant program, $1 million for the Entrepreneur in Residence Program, and $750,000 for a grant to the University of Illinois for ILLINVENTURES.

Arkansas – Secures National Science Foundation Grant

The National Science Foundation (NSF) will grant the Arkansas Science & Technology Authority (ASTA) $8 million through the Experimental Program to Stimulate Competitive Research (EPSCoR) to enhance the state’s research capabilities. The new funds will be used to support a broad range of activities, from attracting world-class scholars to fostering entrepreneurship in select technology areas. The program, dubbed the Arkansas Advancing and Supporting Science, Engineering and Technology (ASSET) Initiative, will provide additional research funding to three of the state’s university campuses: the University of Arkansas in Fayetteville, the University of Arkansas at Little Rock, and Arkansas State University in Jonesboro. These schools will receive financial support for the establishment of two new research centers and to promote interdisciplinary and multi-institutional research in promising fields.

The first center will investigate the nexus of agricultural, energy, environmental and health sciences in the use of plant materials for energy generation. The Plant Powered Production (P3) Center will be a statewide virtual facility that will bring together researchers from each of these disciplines and will facilitate cooperative research between the state’s institutions of higher education. A second center, the Wireless Nano- Bio- Info-Tech Sensor System and Center, will provide a collaborative infrastructure for nanosensor research at the University of Arkansas. Researchers at the center will contribute to the development of wireless arrays of low-cost, specialized nanosensors that can be used in power generation, food preservation, and biodevices.

ASTA’s ASSET Initiative also will invest in a range of programs beyond university R&D to support high-tech growth in these emerging fields. The state’s strategy includes a Human Resource Development and Community Outreach plan that will support entrepreneurs through training and education to commercialize the technologies developed at these new centers. In addition, ASSET will sponsor seminar series, discipline-specific regional and national meetings, and electronic access to scientific journals for researchers. The initiative also plans to develop K-12 and undergraduate educational programs and new opportunities for underrepresented groups in scientific research.\(^{25}\)

Oregon – Innovation Plan

Oregon lawmakers have agreed to fund nearly all of Gov. Ted Kulongoski’s innovation proposals, including investments in seven new industry initiatives and the creation of two new signature research centers. The innovation plan passed by lawmakers falls $10 million short of the original $38 million proposal introduced by the Oregon Innovation Council and included in Gov. Kulongoski’s fiscal year 2007-08 budget released in December 2006. Gov. Kulongoski signed four bills encompassing the initiative, with one bill including $9 million over the biennium for Oregon’s first signature research center, the Oregon Nanoscience and Microtechnologies Institute (ONAMI) - $1 million less than the governor’s recommendation - and $2.5 million for a new signature research center, the Bio-Economy and Sustainable Technologies (BEST) Center. Research conducted by the BEST Center will focus on clean energy, bio-based products and green building.\(^{26}\) Additionally, SB 5508 includes $2.9 million to support manufacturing competitiveness, such as advanced training and R&D to ensure a competitive workforce, and $4.2 million for the Wave Energy initiative to help build a sustainable industry on the Oregon coast by using ocean waves to generate electricity. The Food Processing Innovation and Productivity Center will receive $3.4 million for R&D and training.

Funding for the state’s second new signature research center is designated within HB 5035. The legislation includes $5.25 million for the Oregon Translational Research and Drug Development Institute to develop and commercialize new drugs to fight infectious diseases. The institute also will provide access to drug development resources that many companies cannot afford to build themselves, according to the governor’s press office. SB 579 expands the authority of the Oregon Growth Account (OGA) Board and Oregon State Treasurer’s office, giving them the authority to invest money from the OGA account into funds designated to make seed investments in new and existing emerging companies. The budget does not include funding for the proposed $5 million Cluster Accelerator Fund, a partnership with the Oregon Economic Development Department to strengthen the state’s innovation pipeline in selected technology areas.

North Carolina - TBED Initiatives

After running on a month-long stopgap budget, North Carolina lawmakers reached a $20.7 billion budget agreement for fiscal year 2007-08 earlier this week that includes funding for major research initiatives, public and higher education, and TBED-related items.

Under the budget agreement signed Tuesday by Gov. Mike Easley, University of North Carolina (UNC)-Chapel Hill is slated to receive $25 million this year, $40 million next year and a recurring $50 million in future years to expand cancer research. Funding for the initiative comes from a 10 percent increase in tobacco products other than cigarettes, $21.2 million in general fund revenue over the biennium, and $8 million from the Tobacco Trust Fund each year.

In keeping with a legislative mandated study enacted last year, the budget appropriates $5 million to establish the North Carolina Biofuels Center. The action plan, **Fueling North Carolina’s Future: North Carolina’s Strategic Plan for Biofuels Leadership**, outlines nine strategies for the coming decade to strengthen the state’s future in biofuels development and use. The budget also provides $1 million to establish the North Carolina Green Business Fund as a special revenue fund within the Department of Commerce. The fund will invest in projects focusing on three priority areas: encouraging the development of the biofuels industry; fostering the development of the green building industry; as well as attracting and leveraging private-sector investments in clean technology and renewable energy products.

The North Carolina Biotechnology Center appropriation for FY 2007-08 is $15.6 million, with $3 million earmarked to create regional innovation centers that focus on research and technology transfer in biotechnology-related fields.\(^{30}\)
Budget funding for other initiatives includes $14 million for the One North Carolina Fund; $4.8 million for the One North Carolina Small Business Fund to provide grants under North Carolina’s SBIR/STTR program; $4 million to the e-NC Authority to increase availability of internet connectivity in rural areas of the state; and $1.5 million for the Support Defense and Security Technology Accelerator, a business incubator focused on homeland security and defense industries.

Education initiatives in both K-12 and higher education fared well in the budget. The budget provides $4.4 million to fund the Focused Education Reform Pilot program, which will offer teacher recruitment and retention bonuses, teacher mentoring and science and math instructional assistance. A new School Technology Pilot program will receive $3 million, which – along with a grant from the Golden LEAF Foundation and private sector funds – will be used to establish eight pilot high schools that incorporate technology in the classroom by providing computers for all teachers and students. UNC System initiatives funded within the budget include:

- $6 million for matching funds for UNC system campus endowed professorships;
- $5 million in additional operating funds for the bioengineering program at North Carolina State University (NCSU) College of Engineering;
- $3 million to create a research competitiveness fund to support strategic investments in emerging areas such as nanoscience, marine science and biomanufacturing, emphasizing interdisciplinary research;
- $2 million for tuition waivers aimed at recruiting and retaining top tier graduate students in science and technology;
- $1.5 million to expand initiatives at NSCU for R&D of bioenergy technologies;
- $1.5 million for math and science teacher recruitment efforts for NCSU and UNC-Chapel Hill;
- $1.4 million for a joint graduate school of nanoscience and nanotechnology at the Millennium Campus of UNC-Greensboro and North Carolina A&T State University;
- $1 million in additional operating funds for the Bioinformatics Research Institute and Technology Enterprise Initiative at North Carolina Central University; and,
- $500,000 for NCSU Entrepreneurship and Regional Cluster-based Economic Development Funds to expand activities, foster new microenterprises, capture the production of new high-technology based products, and pursue focused recruitment and retention efforts in high-priority job clusters.27

Maryland - Venture Capital

The Maryland Technology Development Corporation has awarded more than $500,000 to seven startup technology companies. The program, TEDCO’s Maryland Technology Transfer Fund (MTTF), is designed to help businesses transfer technology from Maryland universities and federal laboratories into the marketplace. The grants range between $70,000 and $75,000. TEDCO reports that MTTF has provided funding to 71 companies. With a total investment of $4,078,793, these companies have gone on to receive downstream funding from angel and venture investors, federal awards and other resources exceeding $152.4 million.

Pennsylvania – Energy and Science Education

As part of the budget deal agreed upon earlier this week between Gov. Ed Rendell and Pennsylvania lawmakers, two of the governor’s major TBED priorities - the Jonas Salk Legacy Fund and an alternative energy fund - will be voted on later this year. Under the budget agreement, lawmakers committed to a roll call vote in November to decide on the Jonas Salk Legacy Fund, which proposes borrowing $500 million from the state’s tobacco settlement proceeds to invest in scientific research. The initiative will be matched on a dollar-for-dollar basis, yielding $1 billion in new bioscience investments, according to the governor’s press office.

27 HB 1473 is available from the North Carolina General Assembly at: http://www.ncga.state.nc.us/
$250,000 for the Oklahoma Alliance for Manufacturing Excellence and $300,000 for the creation of a Small Rural Manufacturers Program at Oklahoma State University.

Lawmakers did not allocate funding for two of the governor’s major economic development initiatives. Gov. Henry’s proposed budget included $50 million to the Economic Development Generating Excellence endowment fund and $15 million to the Opportunity Fund from surplus general revenue funds. Both initiatives were funded last year. The budget awaits Gov. Henry’s anticipated signature.

Minnesota - Energy Initiative, Funding for TBED

Funding for energy and TBED initiatives were highlighted in the fiscal year 2007-09 biennial budget at the close of the legislative session in Minnesota late last month. Winning nearly unanimous approval from the legislature was Gov. Tim Pawlenty’s Next Generation Initiative announced during his State-of-the-State Address.

The $170 million Agriculture and Veterans Omnibus Bill, which provides funding for the initiative, creates the Next Generation Energy Board to research and recommend how the state can most efficiently achieve energy independence. The bill also focuses on Minnesota’s 25x25 goal, similar to the national 25x25 initiative. Minnesota energy companies are required under the bill to provide 25 percent of electricity from renewable sources by 2025. The goal also aims for agriculture, forestry and working lands to produce 25 percent of the total energy consumed in Minnesota and expand the Fuel Replacement Goal to 25 percent by 2025. Other major components include:

- $4.25 million for a renewable energy research pool that includes $1.25 million to continue Clean Energy Resource Teams and $2 million for plug-in hybrid electric vehicles and other automotive technology demonstrations, such as E85 conversion kit testing;
- $3 million for the E85 Everywhere initiative to double the number of E85 pumps in the state;
- $1.4 million in Next Generation Energy Grants for biofuels and biomass research, including the creation of a biomass fuel supply depot in LeSueur or Scott County and a feasibility study and assessment of forest resources by the Bois Forte Band of Chipewa;
- $1 million in 25x25 grants for on-farm biogas recovery facilities or methane digesters and another $1 million to continue the state’s rebate program;
- An aggressive energy saving goal for Minnesotans to reduce use of fossil-fuel by 15 percent by 2015;
- A goal of 1,000 certified Energy Star commercial buildings in the state by 2010.

To ensure Minnesota achieves maximum economic benefits from enhanced renewable energy activities, the bill calls for the commissioners of the Minnesota Department of Employment and Economic Development (DEED), Agriculture, Commerce and the Public Utilities Commission to develop a strategy that focuses on this goal.

The FY 2007-09 Budget appropriates $49.2 million for the Business and Community Development Division within DEED over the biennium. Included in this amount is a one-time appropriation of $1.75 million to the BioBusiness Alliance of Minnesota for bioscience business development programs to promote and position the state as a global leader in bioscience business activities. Additional programs receiving funding, include:

- $750,000 for a one-time appropriation to Minnesota Technology Inc. to support its small business growth acceleration program;
- $250,000 in FY18 for the University Enterprise Laboratories to support early-stage and emerging bioscience companies;
- $200,000 over the biennium to help small businesses access federal funds through the Small Business Innovation Research and Small Business Technology Transfer programs; and
- $125,000 in FY18 to develop and operate a bioscience business marketing program to market Minnesota bioscience business and business opportunities to other states and countries.

E. The Prospect of New Federal Funding Initiatives - COMPETES

As noted, in comparison to the US economy, federal funding for R&D has shrunk over the past decade. There is a prospect, however, of a significant new infusion of federal funding largely intended to bolster basic research and support the nation HT efforts.

After months of negotiations, the House and Senate recently approved the most significant bill in years to bolster U.S. research. The America Creating Opportunities to Meaningfully Promote Excellence in Technology, Education and Science (COMPETES) Act authorizes over $43 billion in new federal spending over the next three years, which will support U.S. math and science education and federal research agencies. In fact, the legislation would double the budget authorizations of the National Science Foundation (NSF), the Department of Energy’s (DOE) Office of Science, and the National Institute of Standards and Technology (NIST) laboratory activities.

Earlier this year, both houses of Congress passed legislation that incorporated many of the recommendations provided by the influential National Academies report Rising Above the Gathering Storm. The reconciled bill passed by the House and Senate contains many provisions that directly result from the report. These include a requirement that all research agencies contribute funds to multidisciplinary research and that DOE create a program to support researchers early in their careers.
The COMPETES Act provides a major increase in funding authorizations for federal research agencies; however, the amounts included in the final bill more closely resemble the authorizations in the more frugal House bill rather than the more generous Senate legislation. Agency and program authorizations affected by the bill include:

- NSF - $22.1 Billion authorized over three years
- NSF EPSCoR - $401 Million authorized over three years
- NIST - $2.65 Billion authorized over three years
- NIST MEP - $363.8 Million authorized over three years
- NIST TIP - $372 Million authorized over three years

The legislation establishes several new federal programs to encourage innovation and commercialization. The new NIST Technology Innovation Program will replace the existing Advanced Technology Program by providing competitive grants to small- and medium-sized businesses commercializing a critical new technology. Single companies may receive up to $3 million over three years, while joint ventures may be eligible for $9 million over five years. The bill also creates a new ARPA-like program within DOE to develop technologies that help overcome the country’s long-term energy challenges.

President Bush signed the COMPETES Act in August 2007, despite the Administration’s strong reservation about some aspects of the legislation, including ARPA-E. In a statement following the initial passage of the Senate bill, the president argued that the ARPA-E program would redirect resources from basic research priorities at DOE. The current bill omits several of the measures that had originally drawn the ire of the Administration, including a requirement that all federal science agencies set aside 8 percent of their R&D budget for novel, pan-disciplinary research.30

F. A Brief Conclusion

It is important to note the process of federal budgeting that may significantly influence the true fate of COMPETE. With the war in Iraq, competing priorities of Democrats and Republicans over the federal deficit, and issues such as health and welfare policies, the final budgeting for COMPETE may be significantly different. An earlier initiative by the Bush administration with similar goals this federal initiative has largely languished, in part because of the significantly different budget priorities of his administration with a newly elected majority in the House and US Senate, and the fact that the US is making only marginal attempts to deal with outstanding domestic policy issues.

In addition, a new presidential administration that will be in place by 2008 may also alter the federal commitment. No presidential hopeful has, thus far, made any significant announcement on national science and technology, or the role of science in long-term economic development. Significant new federal funding may indeed appear – some increase seems inevitable as HT industry and the science community will attempt to influence the platform of each party and HT businesses continue to expand their lobbying power.

As discussed in this brief, even with the successful implementation of COMPETE, states and local governments will likely continue to be the most prolific generators of new HT initiatives, based on rational assessments of best practices, new ideas, and increasingly the sense of competition and devotion to new growth theory. In the course of a growing era of state initiatives, the respective role of federal and state governments, and therefore the attention of the S&T community, will continue to be substantially altered– again, a relatively new phenomenon. Further, the role of lawmakers and the HT sector in driving new publicly funded initiatives and tax initiatives, and the academic community, is growing in complexity as only partially discussed in this paper. The politics of HT policymaking (why

30 The American Institute of Physics plans to run a series of articles in its FYI science policy news bulletin examining the details of the new legislation and its likely implications for U.S. scientific research. The latest issue of FYI is available at http://www.aip.org/fyi/