Towards global carbon pricing
Direct and indirect linking of carbon markets

Rob Dellink, Stéphanie Jamet, Jean Chateau, Romain Duval

Please cite this article as:
http://dx.doi.org/10.1787/eco_studies-2013-5k421kk9j3vb
Towards global carbon pricing:
Direct and indirect linking of carbon markets

by
Rob B. Dellink, Stéphanie Jamet, Jean Chateau and Romain Duval*

Emissions trading systems (ETS) can play a major role in a cost-effective climate policy framework. Both direct linking of ETSs and indirect linking through a common crediting mechanism can reduce costs of action. We use a global recursive-dynamic computable general equilibrium model to assess the effects of direct and indirect linking of ETS systems across world regions. Linking of domestic Annex I ETSs leads to moderate aggregate cost savings, as differences in domestic permit prices are limited. Countries benefit directly from linking by either buying permits and avoiding investing in high-cost mitigation options, or by exploiting relatively cheap mitigation options and selling permits at a higher price. Although the economy of the main permit sellers, such as Russia, is negatively affected by the real exchange rate appreciation that is induced by the large export of permits, on balance they also still benefit from linking. The cost-saving potential for developed countries of well-functioning crediting mechanisms appears to be very large. Even limited use of credits would nearly halve mitigation costs; cost savings would be largest for carbon-intensive economies. However, one open issue is whether these gains can be fully reaped in reality, given that direct linking and the use of crediting mechanisms both raise complex system design and implementation issues. The analysis in this paper shows, however, that the potential gains to be reaped are so large, that substantial efforts in this domain are warranted.

JEL classification: H23, O41, Q54

Keywords: Climate mitigation policy, emissions trading systems, general equilibrium models, linking carbon markets

* Contact: Rob Dellink (rob.dellink@oecd.org), OECD Environment Directorate. The authors would like to thank Jean-Marc Burniaux, Jan-Corfee-Morlot, Helen Mountford, Cuauhtemoc Rebolledo-Gomez, Sébastien Jean and Nick Johnstone for their input, suggestions and comments. The views expressed in this paper are those of the authors and do not necessarily represent the views of the OECD or of its member countries.

Note by Turkey: The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no single authority representing both Turkish and Greek Cypriot people on the island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the “Cyprus issue”.

Note by all the European Union member states of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.
Putting a price on greenhouse gas (GHG) emissions through price mechanisms such as carbon taxes and emissions trading systems (ETSs) can go a long way towards building up a cost-effective climate policy framework. Indeed these price instruments are intrinsically cost effective as they equalise marginal abatement costs across individual emitters while giving them continuing incentives to search for cheaper abatement options through both existing and new technologies.

While experience with GHG emissions taxes remains limited (e.g. Sweden), the international community has made some progress towards implementing ETSs. Several domestic/regional GHG emission trading or cap-and-trade schemes are already in place (including the EU ETS in the EU, RGGI in the United States, the Norwegian ETS and emission trading in Japan) or are emerging (see OECD, 2012 for a full overview). These vary significantly in terms of their target, size, and other design features. At present there are virtually no direct links between these systems, other than the link between the EU and Norwegian ETSs. However, in 2012, the European Commission and Australia agreed to start linking the newly-introduced Australian carbon price and the EU ETS from 2015 and to achieve full linking by 2018. As more ETSs are expected to emerge in the future, direct linking is likely to gain prominence.

Linking can also occur “indirectly” when multiple ETSs allow part of the emission reductions to be achieved in countries outside the ETS, for example through a common offset or crediting mechanism. The existence of “flexibility mechanisms” (such as the Clean Development Mechanism (CDM) of the Kyoto Protocol) enable emission-reduction commitments under the ETSs to be met by undertaking emission reductions – often referred to as offsets – in other geographical areas. When different ETSs accept credits from a common crediting mechanism, this induces some convergence in permit prices and thereby some indirect linking between the ETSs.

Compared with a fragmented approach, under which a number of regions would meet their emission reduction objectives in isolation, direct or indirect linking of ETSs can reduce mitigation costs by fostering partial or even full (in the case of direct linking) convergence in carbon prices, and thus in marginal abatement costs, across the different ETSs (Jaffe and Stavins, 2007, 2008). Linking can also reduce carbon leakage, which arises when emission reductions in one set of countries are partly offset by increases in the rest of the world. This is straightforward for indirect linking, which lowers carbon prices in all regions covered by ETSs. Direct linking may also reduce carbon leakage by alleviating the very high carbon prices and the associated leakage that could otherwise prevail in certain regions. Other significant, but difficult to quantify, gains from (direct) linking arise from enhanced liquidity of permit markets.

The economic aspects of linking ETSs have received a fair amount of attention in the literature already. Tuerk et al. (2009) provide a good non-technical introduction to the main issues involved. A more fundamental analysis of different architectures of linking is given in e.g. Flachsland et al. (2009) and Jaffe and Stavins (2007, 2008). Grull and Taschini (2012)
analyse the conditions under which linking will lead to full convergence in carbon prices. Anger (2008) provides a numerical assessment of linking the EU ETS to other ETS systems and investigates the role of the CDM, but uses a fairly limited two-sector partial equilibrium model. Mehling et al. (2011) assess whether the main features of the US regional ETSs would be an obstacle to linking with the EU ETS.

This paper aims at numerically assessing the economic effects of direct and indirect linking of ETSs in the Annex I regions. To this end, we use the OECD global recursive-dynamic computable general equilibrium model ENV-Linkages. ENV-Linkages provides numerical projections for GHG emissions, economic activity and economic growth in a multi-sector, multi-gas setting for the major world regions. The global general-equilibrium approach ensures that all major feedback mechanisms that link the economies are taken into account.

Our results first confirm the general rule that the greater the difference in carbon prices across countries prior to linking, the larger the cost savings from linking. Countries with higher pre-linking carbon prices gain from abating less and buying cheaper permits. Countries with lower pre-linking prices benefit from abating more and selling permits, although their economy may be negatively affected by the real exchange-rate appreciation triggered by the large permit exports (the Dutch disease effect). Under an illustrative 20% emission cut (relative to 1990 levels) in each Annex I region by 2020, if domestic Annex I ETSs were linked, permit buyers would include Canada, Australia-New Zealand and, to a lesser extent, the European Union and Japan. Russia would be the main seller.

Secondly, the cost-saving potential for developed countries of well-functioning crediting mechanisms appears to be very large, reflecting the vast low-cost abatement potential in a number of emerging and developing countries. Even limited use of CERs amounting to 20% of Annex I emission reductions would already almost halve mitigation costs in these countries, and raising this cap on offset credit use would bring further cost reductions. Cost savings would be largest for the more carbon-intensive Annex I economies, such as Australia, Canada and Russia. China has the potential to be by far the largest seller, and the United States the largest buyer in the offset credit market, each of them accounting for about half of transactions by 2020 under the illustrative mitigation scenario mentioned above.

Thirdly, the mitigation cost savings from direct linking of ETSs in Annex I countries are much smaller than those from indirect linking through a well-functioning crediting mechanism. This finding essentially reflects the much greater heterogeneity in marginal abatement costs between Annex I and non-Annex I countries than among Annex I countries themselves, as well as the much greater low-cost abatement potential available in non-Annex I countries. In fact, under the illustrative scenario considered in this paper, allowing Annex I regions to meet up to 50% of their domestic commitments through the use of offsets would trigger major carbon price convergence, thereby exhausting the gains from linking and making direct linking of little additional value.

These gains from linking are unlikely to be fully reaped in reality. Both direct linking and the use of crediting mechanisms require careful set-up of the regulatory issues. In particular, setting up a well-functioning sectoral or other large-scale crediting mechanism may prove a major challenge. The analysis in this paper shows, however, that the potential gains to be reaped are so large that substantial efforts in this domain are warranted.

The set-up of this paper is as follows: Section 1 briefly outlines the methodology used, with a focus on the specification of the ENV-Linkages model. Section 2 presents the results
of the numerical simulations and identifies the main outcomes of the analysis. Some sensitivity analysis is carried out in Section 3. Section 4 discusses how direct and indirect linking could be established in practice, while Section 5 concludes.

1. Methodology

1.1. Short description of the ENV-Linkages model

The OECD ENV-Linkages model is a recursive-dynamic neo-classical Computable General Equilibrium (CGE) model. It is a global economic model to study the economic impacts of environmental policies. The ENV-Linkages model is the successor to the OECD GREEN model for environmental studies (Burniaux et al., 1992). In the version of the model used here (ENV-Linkages Version 2.1, as documented in OECD, 2009), the model represents the world economy in 12 countries/regions, each with 25 economic sectors (see the Annex A), including five different technologies to produce electricity. A fuller model description is given in OECD (2009); here we just present the main features of the model.

All production in ENV-Linkages is assumed to operate under cost minimisation with an assumption of perfect markets and constant return-to-scale technology. The production technology is specified as nested CES production functions in a branching hierarchy (cf. Annex A). This structure is replicated for each output, while the parameterisation of the CES functions may differ across sectors. Adjustments are made for specific sectors, including the agricultural sectors and non-fossil fuel based electricity technologies by specifying a factor endowment specific to the sector that represents natural resource use. The nesting of the production function for the agricultural sectors is further re-arranged to reflect substitution between intensification (e.g. more fertiliser use) and extensification (more land use) of activities.

The model adopts a putty/semi-putty technology specification, where substitution possibilities among factors are assumed to be higher with new vintage capital than with old vintage capital. This implies relatively slow adjustment of quantities to price changes. Capital accumulation is modelled as in the traditional Solow/Swan neo-classical growth model.

The energy bundle is of particular interest for analysis of climate change issues. Energy is a composite of fossil fuels and electricity. In turn, fossil fuel is a composite of coal and a bundle of the “other fossil fuels”. At the lowest nest, the composite “other fossil fuels” commodity consists of crude oil, refined oil products and natural gas. The value of the substitution elasticities are chosen as to imply a higher degree of substitution among the other fuels than with electricity and coal.

The structure of electricity production assumes that a representative electricity producer maximises its profit by using the five available technologies to generate electricity using a CES specification with a large value of the elasticity of substitution. The production of the non-fossil electricity technologies (net of GHG and expressed in Terawatt per hour) has a structure similar to the other sectors, except for a Leontief-structure top nesting combining a sector-specific natural resource, on the one hand, and all other inputs, on the other. This specification acts as a capacity constraint on the supply of these electricity technologies as the supply of the sector-specific natural resource is limited.

Household consumption demand is the result of static maximisation behaviour which is formally implemented as an “Extended Linear Expenditure System” (Lluch, 1973; Howe, 1975). A representative consumer in each region – who takes prices as given – optimally allocates disposable income among the full set of consumption commodities and savings. Saving is
considered as a standard good and therefore does not rely on a forward-looking behaviour by the consumer. The government in each region collects various kinds of taxes in order to finance government expenditures. Assuming fixed public savings (or deficits), the government budget is balanced through the adjustment of the income tax on consumer income.

International trade is based on a set of regional bilateral flows. The model adopts the Armington specification, assuming that domestic and imported products are not perfectly substitutable. Moreover, total imports are also imperfectly substitutable between regions of origin. Allocation of trade between partners then responds to relative prices at the equilibrium.

Market goods equilibria imply that, on the one side, the total production of any good or service is equal to the demand addressed to domestic producers plus exports; and, on the other side, the total demand is allocated between the demands (both final and intermediary) addressed to domestic producers and the import demand.

ENV-Linkages is fully homogeneous in prices and only relative prices matter. All prices are expressed relative to the numéraire of the price system that is arbitrarily chosen as the index of OECD manufacturing export prices. Each region runs a current-account balance, which is fixed in terms of the numéraire. One important implication from this assumption in the context of this paper is that real-exchange rates immediately adjust to restore current-account balance when countries start exporting/importing emission permits.

Emissions of CO$_2$ from combustion of fossil fuels are linked in ENV-Linkages directly to the related energy use by the different sectors. Process-related emissions of CO$_2$ are linked to the output of the emitting sector. Similarly, emissions of other greenhouse gases (N$_2$O, CH$_4$, PFCs, HFCs and SF$_6$) are linked to economic activity in the various sectors. In this way, emissions increase when the related activities expand. Over time, there is, however, some relative decoupling of emissions from the underlying economic activity through autonomous technical progress, implying that emissions grow less rapidly than economic activity.

Emissions can be abated through three channels: i) reductions in emission intensity of economic activity; ii) changes in structure of the associated sectors away from the “dirty” input to cleaner inputs; and iii) changes in economic structure away from relatively emission-intensive sectors to cleaner sectors. The first channel, which is not available for emissions from combustion of fossil fuels, entails end-of-pipe measures that reduce emissions per unit of the relevant input. The second channel includes, for instance, substitution from fossil fuels to renewable in electricity production, or investing in more energy-efficient machinery (which is represented through higher capital inputs but lower energy inputs in production). An example of the third channel is a substitution from consumption of energy-intensive industrial goods to services. In the model, the choice between these three channels is endogenous and driven by the price on emissions.

1.2. Calibration and baseline projection

The process of calibration of the ENV-Linkages model is broken down into three stages. First, a number of parameters are calibrated, given some elasticity values, on base-year (2001) values of variables. This process is referred to as the static calibration. Each of the 12 regions is underpinned by an economic input-output table for 2001, based on the GTAP 6.2 Database (Dimaranan, 2006). Second, the 2001 database is updated to 2005 by simulating the model dynamically to match historical trends over the period 2001-05; thus all variables are expressed in 2005 real USD. Third, the business-as-usual (BAU) baseline projection is obtained by defining a set of exogenous socio-economic drivers (demographic
trends, labour productivity, future trends in energy prices and energy efficiency gains) and running the model dynamically again over the period 2005-2050. The main elements in designing the BAU projection are described in detail in OECD (2009) and Duval and de la Maisonneuve (2010).

The BAU baseline scenario assumes that there are no new climate change policies implemented, and projects future emissions on the basis of assumptions on the long-term evolution of output growth, relative prices of fossil fuels and potential gains in energy efficiency. It thus provides a benchmark against which policy scenarios aimed at achieving emission cuts can be assessed.

The BAU projection is based on the so-called conditional convergence assumption that total factor productivity in developing countries converges towards those in developed countries over the coming decades (for details, see Duval and de la Maisonneuve, 2010). Average annual world GDP growth (in constant purchasing power parity – PPP – in 2005 USD) is assumed to be around 3.5% between 2006 and 2050. This is slightly lower than the 2000-06 average. Overall, average world GDP per capita in constant PPP USD is expected to rise more than three times between 2006 and 2050.

World emissions of the greenhouse gases carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydro fluorocarbons (HFCs), per fluorocarbons (PFCs) and sulphur hexafluoride (SF6) have roughly doubled since the early 1970s, and are expected to double again, reaching about 72 gigatons CO2 equivalent (Gt CO2eq) in 2050, excluding emissions from land-use, land-use change and forestry. Critical drivers of projected emissions for the period until 2050 other than GDP growth include assumptions about future fossil fuel prices and energy efficiency gains in line with IEA projections (IEA, 2008). Finally, the BAU projection assumes that the EU Emissions Trading Scheme (EU ETS) will be sustained in the future, with a gradual convergence in the carbon price to USD 25 per tonne of CO2 and a stabilisation at this level (in real terms) beyond 2012. Marginal abatement costs for emissions from fossil-fuel combustion are driven by the detailed representation of energy use in the model, as emission factors per unit of energy use are fixed (but varying across energy carriers). For the other emission sources, marginal abatement cost curves are based on information from US EPA and approximated through a substitution between output and emissions, following Hyman et al. (2002).

2. Simulation results

In order to illustrate the effects of linking different regional ETSs, the ENV-Linkages model is used here to run an illustrative mitigation scenario (A1 act). In the case of this scenario without linking, each Annex I region is assumed to use an ETS to cut its GHG emissions unilaterally below 1990 levels by 20% by 2020 and by 50% by 2050. We assume that permits are fully auctioned to all sectors in all countries covered by the ETS. On its own, this commitment would be insufficient to achieve ambitious climate objectives. World emissions would still rise by about 20% and 50% by 2020 and 2050 respectively, vs. about 85% by 2050 in a baseline scenario with no further mitigation policy action (BAU). It would, therefore, need to be fairly rapidly tightened and/or supplemented with further action, including in non-Annex I countries if a stringent long-term stabilisation target is to be met. This illustrative A1 act scenario does not directly reflect the emission reductions as pledged by Annex I countries in the Copenhagen Accord (cf. Dellink et al., 2011) but is more stylised, in order to shed maximum light on a number of lessons about the economic impacts of linking.
2.1. Direct linking of carbon markets in the Annex I regions

Direct linking occurs if the tradable permit system's authority allows regulated entities to use emission allowances from another ETS to meet their domestic compliance obligations. Direct linking can be “two way” if each system recognises the others’ allowances, or “one way” if one system recognises the other system’s allowances but the other does not reciprocate. Linking ETSs directly tends to lower the overall cost of meeting their joint targets by allowing higher cost emission reductions in one ETS to be replaced by lower cost emission reductions in the other. Once ETSs are linked, this cost effectiveness is achieved regardless of the magnitude of the initial emission-reduction commitment across countries or regions as trading of emission allowances ensures that marginal abatement costs of individual emitters are equalised. The initial allocation of allowances does have a distributional effect as it determines the direction of the trade flows. The potential gains from linking are greater the larger the initial difference in carbon prices – and thereby in the marginal costs of reducing emissions – across individual ETSs.

Another advantage of linking is its ability to reduce competitiveness concerns in regions with higher pre-linking carbon prices. By allowing carbon prices to converge across linked schemes the distortion between domestic and foreign prices would be reduced and thus the loss in domestic output would be limited. Indeed full convergence in prices will be achieved provided the recognition of allowances is mutual and there are no limits on trading.

These two key elements of linking carbon markets, i.e. improving cost-effectiveness and reducing competitiveness concerns, will be quantitatively assessed for the stylised scenario simulations in the next two sub-sections. Linking can also deliver a number of other benefits that go beyond the scope of the gains that can be illustrated with a CGE model like ENV-Linkages, such as strengthening the carbon markets through larger trading volumes. While the importance of these cannot be quantified, the other main benefits, and some reasons for concern, will be discussed in the third sub-section below.

2.1.1. Improving cost-effectiveness

Simulations of the A1 act scenario under alternative assumptions about trading possibilities (“linked” or “not linked”) among Annex I countries show that the reduction in mitigation costs is fairly limited in our illustrative scenario. This is mainly because carbon price differences prior to linking are estimated to be relatively small across the larger Annex I economies that account for the bulk of Annex I GDP (Figure 1, Panel A). Linking substitutes additional emission reductions in regions that had lower marginal abatement costs before linking (especially Russia) (Figure 1, Panel B) for emission increases in the others (Figure 1, Panel B).

In the unlinked case, meeting their domestic caps alone is found to cost Annex I regions about 1.5% and 2.8% of their income equivalent variation on average by 2020 and 2050, respectively (Figure 2). The associated reduction in overall mitigation costs from linking their carbon markets for Annex I countries is just under 10%, or about 0.2 percentage points of income by 2050 (Figure 2, Panel B). Larger gains from linking could be found under more heterogeneous emission-reduction commitments by Annex I countries than considered here.

In addition to improving the overall cost effectiveness of the linked ETS system, linking is expected to benefit each participating region (e.g. Jaffe and Stavins, 2007). The larger the change in the carbon price after linking, the larger the income gain, other things being equal. In turn, the carbon price level prior to linking depends on the size of the country's
commitment, as well as on the availability of cheap abatement opportunities. In the A1 act scenario considered here, countries with lower pre-linking carbon prices (mainly Russia) gain because the equilibrium price of the linked system exceeds their pre-existing marginal abatement costs, enabling them to abate more and sell the saved permits with a surplus while, conversely, regions with higher pre-linking carbon prices (Australia-New Zealand, Canada, Japan) benefit from the lower carbon price.
While such basic reasoning suggests that permit trading among Annex I regions could benefit all participants, the multi-region case is more complicated than evaluating two-region linking. As countries cannot prevent others from linking, and some regions will always benefit from linking their carbon markets, they effectively are faced with a choice of joining a group of countries that have already linked or remaining outside. *Ceteris paribus*, the regions that are linking strengthen their competitive position *vis-à-vis* outsiders, and it may then become rational to join this group, even if the outcome is worse than in the starting situation where none of the systems are linked. These countries cannot easily avoid this welfare reduction, as the alternative, where the other Annex I countries link their markets but they remain outside this joint scheme is also not beneficial for them.5

Figure 2. Impact of linking regional Annex I ETSs on mitigation policy costs under the A1 act scenario

Panel A. 2020

Panel B. 2050

Mitigation cost (income equivalent variation relative to baseline, in %)

With linking

Without linking
Various market imperfections complicate the picture. In our model simulation, non-EU Eastern European countries – which together form the “Rest of Annex I” region of the ENV-Linkages model – are actually found to lose on balance from linking by 2050 (Figure 2). This is partially because their large permit exports lead to a real exchange-rate appreciation, which in turn results in a fall in the exports and output of their manufacturing sector, where scrapping capital entails costs. Nevertheless, these “Dutch disease” effects are particularly large in the ENV-Linkages model, partly due to the assumption of fixed net international capital flows. The OECD ENV-Linkages model incorporates many market imperfections and distortions and, therefore, the impact of permit trading on each participating region has to be interpreted in a second-best context. One important consequence of this is that capital allocation in the BAU scenario is not optimal. As countries sell permits abroad, imports must rise and/or other exports must decline in order to satisfy the exogenous balance-of-payments constraint. Restoring the external balance requires an appreciation of the real exchange rate, which triggers costly reallocation of capital across sectors, reduces aggregate output and, in some cases, investments. This latter effect reduces future consumption. In the specific case of the non-EU Eastern European countries, their emission profile is such that in later decades they switch from being permit seller to being permit buyer. But the dynamic effects of worsened terms of trade and reduced capital accumulation then imply a negative impact on income and welfare. As ENV-Linkages is a recursive-dynamic model, there is no intertemporal evaluation of the net present value of such variations in consumption.

2.1.2. Mitigating competitiveness concerns

Linking “levels the playing field” by avoiding the most expensive emission reductions in favour of buying permits, and exploiting cheap reduction options where available. This benefits especially those sectors that are emission-intensive and trade-exposed. In practice, however, the (real gross) output losses of energy-intensive industries would still be unevenly distributed across countries after linking. Those countries with the lowest pre-linking marginal abatement costs (Russia and non EU Eastern European countries, Figure 1, Panel A) face the largest losses (Figure 3, Panel A). In the unlinked case, the low carbon price in Russia implies a relative improvement in the international competitive position of the energy-intensive industries compared with its Annex I competitors. After linking, the higher carbon price in Russia affects the output of the energy-intensive industry negatively, and moreover it is profitable to reduce activity in these sectors in order to sell more emission permits on the international market.

Carbon leakage can arise: i) when emission-intensive, trade-exposed industries in countries with stringent mitigation policies lose market share in favour of industries located in countries that are faced with less stringent or no mitigation policies; or ii) when agents (consumers and producers) substitute away from emission-intensive goods in acting countries and reduce the world demand for fossil fuels. This, in turn, reduces world market prices of fossil fuels, resulting in an increased demand for fossil fuels and higher emissions in non-acting countries. The simulations find that leakage rates are relatively small, in line with the finding of Burniaux et al. (2013) that leakage rates rapidly decline when more countries are acting as competitiveness impacts become weaker. Linking across ETSs does not affect the total emissions of the linked schemes since the number of permits is simply the sum of those issued under each system, at least in the absence of strategic behaviour. However, linking can still affect carbon leakage towards uncapped countries. If linking lowers
the carbon price in regions that experience higher leakage before linking, then leakage towards uncapped countries is reduced. Conversely, if linking raises the carbon price in regions that initially face low leakage rates, then leakage towards uncapped countries is increased. In the A1 act scenario, model simulations point to a small overall reduction in leakage from linking among Annex I regions (Figure 3, Panel B).
2.1.3. Other potential benefits from direct linking

In particular, linking schemes can improve cost effectiveness by increasing the size and liquidity of carbon markets. In the A1 act scenario presented above where Annex I ETSs are linked, the size of the carbon market is projected to reach 2.5% of Annex I GDP in 2020. A larger market size tends to dampen the impact of unanticipated shocks, thereby lowering overall carbon price volatility and enhancing incentives for firms to make emission reduction investments. Furthermore, transaction costs are expected to be smaller in a larger, more liquid market, especially if some regional schemes are too small to foster the development of institutions for reducing such costs. Larger market size also reduces problems that may arise if some sellers or buyers have market power (Hahn, 1984). Finally, market liquidity can lower the cost of insuring against carbon price uncertainty by fostering the development of derivative markets.

Compared with a global emissions trading system, it has also been argued that a linked system of regional ETSs may be an easier way to reflect the principle of “common but differentiated responsibilities and respective capabilities” across regions, and thereby to extend participation to developing countries (Jaffe and Stavins, 2007). Permit allocation rules make it possible to differentiate across regional commitments and costs under a top-down approach. However, such differentiation can also be achieved through regions’ own assessment of their responsibilities and reflecting their specific national circumstances – as revealed de facto by their target choice – under a bottom-up approach. The gains from linking Annex I ETSs to potential non-Annex I country ETSs would be larger than those achieved through linking within Annex I only, if the heterogeneity in pre-linking carbon prices (and hence in commitments or actions) between Annex I and non-Annex I is higher than within Annex I.

2.2. Indirect linking of carbon markets through a common crediting mechanism

2.2.1. Improving cost-effectiveness

Linking can also occur “indirectly” when at least two different ETSs allow part of their emission reductions to be achieved in other countries, as can happen for example through a common crediting mechanism such as the Clean Development Mechanism (CDM), which is one of the flexibility mechanisms of the Kyoto Protocol.

The CDM allows emission-reduction projects in non-Annex I countries – i.e. developing countries, which have no GHG emission constraints – to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO₂eq. These CERs can be purchased and used by Annex I countries to meet part of their emission-reduction commitments. In principle, assuming that developing country emitters do not take on binding emission commitments in the near future, well-functioning crediting mechanisms could improve the cost-effectiveness of GHG mitigation policies in developed countries, both directly and indirectly through partial linking of their ETS as well as reduce carbon leakage and competitiveness concerns by lowering the carbon price in developed countries.

Well-functioning crediting mechanisms appear to have very large potential for saving costs, reflecting the vast low-cost abatement potential existing in a number of emerging and developing countries, particularly China. Compared with the scenario A1 act without direct linking between Annex I countries, allowing Annex I countries to meet 20% of their unilateral commitments through reductions in non-Annex I countries is estimated to reduce their mitigation costs by roughly 40% (Figure 4).
Raising the cap on offsets allowed from 20% to 50% would bring substantial further benefits. Cost savings are found to be largest for those Annex I regions that would otherwise face the highest marginal abatement costs – and, therefore, the highest carbon price levels (Figure 5) – and/or are most carbon intensive. Australia-New Zealand and Canada fall into both categories, while Russia falls into the latter. Non-Annex I regions would enjoy a slight income gain from exploiting cheap abatement opportunities and selling them profitably in the form of offset credits. In this illustrative scenario, China would be by far the largest seller and the United States the largest buyer in the offset credit market, accounting for about half of worldwide sales and purchases by 2020, respectively (Figure 6).
The offset schemes also imply a substantial shift in the size of the different carbon markets. On the domestic markets of the Annex I countries, the revenues from carbon pricing are lower, as the increased amount of domestic emissions is more than outweighed by the reduction in the permit price, especially when the amount of offsets is limited to 20% (cf. Figure 5). Furthermore, there is less scope for trading among the Annex I countries (see below). Finally, sizable international transfers are involved in the purchase of the CER credits. As the ENV-Linkages model projects very low CER prices (due to the assumption of a well-functioning offset market), these flows do not represent a major percentage of GDP. Dellink et al. (2011) investigate the size of the carbon markets in more detail, using the same model.
but focusing on the specific policies associated with the pledges made in the annexes of the Copenhagen Accord.

One caveat to these cost-saving and trade-flow estimates is that they assume a crediting mechanism with no transaction costs and no uncertainty on delivery, as is apparent from the very low projected offset prices in these simulations (Figure 5). In practice, there are numerous market imperfections and policy distortions which may prevent some of the non-Annex I abatement potential from being fully reaped. These include transaction costs and bottlenecks, information barriers, credit-market constraints, and institutional and regulatory barriers to investment in host countries. The well-functioning crediting mechanism that is modelled here is largely equivalent to an international (asymmetric) ETS covering all non-Annex I countries, in which each of them is assigned a target equal to their baseline emissions. Furthermore, it is sometimes argued that purchase of CER credits may not lead to a fully proportional emission reduction in the host country, for instance due to additionality concerns. The simulations assume full integrity of the credits (cf. endnote 2); see Section 4 for a more detailed discussion.

2.2.2. Ensuring convergence in carbon prices

Crediting mechanisms indirectly link the ETSs of countries covered by binding emission caps if credits from a single mechanism (e.g. the CDM) are accepted in several different ETSs. Indeed, they result in partial convergence of carbon prices and marginal abatement costs across the different ETSs, which improve their cost effectiveness as a whole.

As Figure 5 clearly shows, the variance in carbon prices across Annex I regions is found to decline dramatically as the cap on the use of offsets is relaxed, becoming fairly small for instance under a 50% cap. As a result, once schemes are indirectly linked through crediting mechanisms, the additional gains from direct linking are much smaller than discussed in Section 2.1.10

As a matter of fact, the more lax are constraints on the use of credits, the stronger the indirect linkage between systems and the smaller the additional gains from explicit linking will be. For instance, ENV-Linkages simulations suggest that if Annex I regions are allowed to meet up to 50% of their domestic commitments through the use of offsets, the overall
additional gain from direct linking would be close to zero, although some countries would still benefit significantly (Figure 7). Full linking between ETSs implies that the 50% cap on offsets applies to the Annex I region as a whole rather than to each country individually, and is allocated across countries in a cost-effective manner. Under this set up, the region Australia-New Zealand is estimated to lose because it benefits from a smaller amount of offsets.

Figure 7. **Estimated gains from direct linking across Annex I ETSs that are already linked through a crediting mechanism**

- Indirect linking through the crediting mechanism and no direct linking
- Full linking and access to the crediting mechanism

Panel A. 2020
Mitigation cost (income equivalent variation relative to baseline, in %)

Panel B. 2050
Mitigation cost (income equivalent variation relative to baseline, in %)

Note: Full linking implies linking between all Annex I ETSs plus indirect linking through the crediting mechanism.
3. Alternative set ups for linking ETSs

3.1. Alternative baselines for CDM credits

The choice of a project baseline against which certified emission rights (CERs) are granted does not only have an impact on the volume of credits generated, but also matters for carbon leakage. This is because an emissions baseline established before the project is implemented can vary, depending on the assumptions made about policies and projects in other sectors and regions, and their effect on output and emissions within the project boundary. Three approaches can be identified in setting a baseline:

1. **Accounting** for the impact of all other CDM projects on the projects expected emissions. If these other projects lower the international carbon price and thus reduce leakage from countries covered by binding emission caps within the project boundary, they should lower the project's emission baseline. This would be the “theoretically correct” baseline under current UNFCCC guidelines. However, implementing this approach is complex and costly, and would likely remain so even under a scaled-up CDM.

2. **Excluding** the impact of all other projects on the project's expected emissions. Because of the complexity and cost of the first approach, the CDM Executive Board currently takes as the baseline the project's emission level under a scenario where some countries – currently most of the Annex I countries – have emission commitments while the rest of the world does not. This therefore does not account for the effect of other CDM projects on the output from, and therefore credit generated by, any particular project. Implicitly, this assumes that all individual CDM projects have a marginal effect on the world economy. This is the approach that is adopted in the base simulations in Section 2.

3. **Setting** the baseline as the BAU emission level in a hypothetical “no world action” scenario where no country has binding emission commitments. In this case, CDM projects would receive fewer credits than under Approach 1, as they would be required to more than offset any leakage within the project boundary resulting from binding emission caps in other sectors and regions. However, this approach would ceteris paribus imply either a lower credit volume than Approach 2, or more domestic action in host countries. This alternative addresses some of the concerns with current practice whereby “market leakage” is not taken into account in CDM baselines (cf. Vöhringer et al., 2006), and this section analyses to what extent it will affect the model results.

Under all three approaches, Kallbeken (2007) finds that the CDM lowers the carbon-price differential between countries that face binding emissions caps and other countries, and thereby reduces leakage (all other factors being equal). However, these leakage reductions are typically smaller under Approach 2 as used in Section 2. This is because Approach 2 does not account for the fact that implementing all other CDM projects together reduces international carbon prices, leakage and thereby the projected emissions of any other project considered.

Figure 8 shows how the alternative definition of the baseline for assigning credits using Approach 3 could virtually eliminate the leakage from the Annex I mitigation actions. The figure shows both the cases of indirect linking only (i.e. there is no direct linking of ETSs in Annex I countries) and full linking (i.e. both indirect linking through the crediting mechanism and direct linking of Annex I ETSs).

In our set-up of the model scenarios, the market for CERs is entirely demand driven: as CERs are cheaper than domestic reductions, but there is a binding limit (in this case 50% of Annex I emission reductions) on their use, the size of the CDM market is not affected by
the alternative baseline assumption. Rather, the non-Annex I regions will undertake the additional domestic action to compensate for the leakage that may occur, as required to earn the maximum volume of credits. Obviously, this comes at a cost for the non-Annex I regions, and the equilibrium price of CERs increases by some 25% (Figure 8, right axis).

3.2. Alternative policies: Binding sectoral caps in non-Annex I countries

In the analysis above, mitigation actions outside the Annex I countries are based on a crediting mechanism, as no caps are placed on emissions in developing countries. In the policy arena, sectoral approaches have also been put forward as a prominent means to address competitiveness issues. To investigate how sectoral caps and crediting mechanisms compare, we investigate a binding sectoral cap on both energy intensive industries (EIIs) and power sectors in non-Annex I countries, equal to a 20% reduction from 2005 levels by 2050, and consider different scenarios regarding the type of linking between regional ETSs (no linking, linking between the sectoral schemes covering the EII industries in non-Annex I countries, and full linking to the Annex I ETS). In all cases, Annex I countries implement together the A1 act scenario through a single ETS covering their joint emissions, as discussed in Section 2.

A binding sectoral cap covering EIIs and the power sector in non-Annex I countries could substantially reduce emissions worldwide. Owing to the fast emission growth expected in non-Annex I countries, a 20% emission cut in these sectors in non-Annex I countries (from 2005 levels) would achieve a larger absolute reduction in world emissions than a 50% cut in Annex I countries by 2050. The costs associated with binding sectoral caps would vary across non-Annex I countries, as shown in Figure 9. They would depend on how stringent the target is relative to BAU, the availability of cheap abatement options (the shape of the marginal abatement cost curve), the carbon intensity of output, and whether international permit trading between EIIs in non-Annex I countries is allowed. In the illustrative scenario considered here, India is found to incur larger mitigation costs than China, mainly due to its faster projected BAU emission growth, which in turn reflects in part faster population growth. However, that gap would be reduced substantially if

Figure 8. Impact of an alternative baseline for the crediting mechanism on leakage and the price of CERs

![Figure 8](image-url)
international permit trading (internal linking) was allowed across non-Annex I regions. While non-Annex I countries face a smaller emission reduction relative to BAU than Annex I countries (~25% vs. ~30% by 2020 and ~40% vs. ~60% by 2050 for total emissions) and benefit from their larger potential to reduce emissions more cheaply, non-Annex I countries would incur larger costs (more than 3% of their joint income in 2020, compared with less than 1.5% for Annex I countries), reflecting their higher carbon intensity, particularly by 2020, and the concentration of mitigation efforts in EIIs only.

Linking sectoral ETSs in non-Annex I countries to economy-wide ETSs in Annex I countries could also generate aggregate economic gains by exploiting the heterogeneity of (marginal) abatement costs between the two areas. As Figure 9 shows, these additional gains are limited, and mostly concentrated in the Annex I countries. Note also that such linking could have significant redistributive effects across countries. Therefore, allocation rules may need to be adjusted upon linking to ensure that the gains from linking are shared widely across participating countries.

4. Practical issues raised by linking

The benefits of linking ETSs are of course conditional on the success of establishing a well-functioning domestic ETS in the participating countries. ETSs are by no means infallible. Experiences with e.g. the EU ETS have shown that it may be difficult to set the permit volumes at the level that generates a desired market outcome, and that the predictability and stability of the schemes may suffer in case of large volatility, e.g. caused by economic shocks. Nonetheless, the large potential benefits of well-functioning ETSs are clearly illustrated in this paper. Furthermore, while linking ETSs either directly or indirectly...
can be an important step towards the emergence of a single international carbon price, linking ETSs that are already domestically established raises a number of difficulties and risks in practice that will need to be addressed. These concerns cannot in general be analysed within the context of the model.

One of the major risks associated with a linked system of several independent and heterogeneous ETSs and crediting mechanisms is that its overall environmental performance could be weak. This is partly because the region with the lower carbon price \textit{ex ante} has an incentive to relax its cap in order to generate additional revenue from exporting allowances – and a larger gain from linking more broadly once systems are linked (Helm, 2003; Rehdanz and Tol, 2005). In order to alleviate this, the region with the higher carbon price may also relax its target, thereby triggering a “race to the bottom”. Another source of environmental concern is that linking would automatically lead to the spreading across regions of provisions to contain the cost of mitigation (cost-containment measures), such as carbon price caps (“safety valves”) and the use of crediting mechanisms (see OECD, 2009; Ellis and Tirpak, 2006; Jaffe and Stavins, 2007; and Flachsland et al. 2009). For example, the use of the safety valve implies that the overall target is relaxed once the price cap is reached, while in the absence of linking the scheme without any safety valve would retain control over its own target.11 Likewise, linking to an offset credit system whose environmental integrity is weaker than that of an ETS could raise environmental concerns in countries that have more restrictive policies regarding the use and quality of offsets. Furthermore, linking ETSs also implies that volatility on a carbon market in one particular country or region will spread automatically to the other ETSs. To some extent, this can mitigate the negative consequences of the unanticipated shock that caused the volatility in the region of origin, but it also makes the other regions more vulnerable to such a shock.

Linking would automatically lead to the spreading of a number of other design features specific to one particular scheme, such as provisions for credits to be banked or borrowed from future commitment periods. As a result, governments in the linked regions would lose control over several features of their existing ETS. The impact of linking an ETS with intensity targets to an ETS with absolute targets depends on the permit allocation rules. If the cap on emissions in the system with the intensity target is set \textit{ex ante} on the basis of projected GDP growth, then that scheme is \textit{de facto} equivalent to an ETS with an absolute cap, and linking does not affect overall emissions. By contrast, if the permit authority of the intensity target scheme regularly adjusts the supply of permits in order to meet its intensity target, overall emissions will fluctuate. Overall environmental performance does not have to be undermined if emissions merely fluctuate around the level that would prevail under absolute caps, but it could be affected if GDP growth is higher than anticipated, or if the intensity target system creates an incentive to increase production and emissions in order to obtain additional credits, as could be the case under firm or sector-level (as opposed to economy-wide) intensity targets.

Against this background, in order to facilitate future linking, participating governments should seek to agree on their targets and the ETS design features to be harmonised prior to linking, including cost containment measures, decisions to link to another system, and how to co-ordinate monitoring, reporting and verification efforts (OECD, 2009; Haites and Wang, 2006). However, this has not happened so far in practice. Centralised institutions that support implementation of the UNFCCC, the Kyoto Protocol, and any future protocol could help by providing an international framework to discuss issues of linking national and regional ETSs. The recent decision to link the Australian ETS to the EU ETS is an important step in this process and can provide valuable information on the opportunities and pitfalls involved.
Although linking ETSs tends in general to lower the mitigation cost of each of the participating regions, it also affects the distribution of costs within schemes. Within regions where linking leads to a carbon price increase, permit sellers gain while permit buyers lose, (and vice versa within regions where linking results in a carbon price decline). However, these distributional effects are similar in nature to those of international trade, and as such they do not provide a compelling argument for limiting linking. Some of the associated political-economy problems can be reduced through permit allocation rules if necessary, for instance through allowing transitory grandfathering upon linking in regions with lower pre-linking carbon price.

In its current form, the CDM raises a number of concerns that are comparatively greater than those arising from direct linking and which, if not addressed, will undermine its ability to deliver the expected benefits. The so-called additionality criterion, under which only emission reductions that can be attributed to the mitigation project give rise to carbon credits (technically called Certified Emission Reductions, or CERs), is key to ensuring the environmental integrity of the CDM. Otherwise, CERs would amount to a mere income transfer to recipient countries without reducing net global GHG emissions more than would have happened without the mechanism. In practice, it has been argued that a large share of CDM projects do not bring about actual reductions in emissions (ECCP, 2007; Schneider, 2007; Wara and Victor, 2008). One way for different systems to protect their integrity vis-à-vis imported credits could be to use discount factors when allowing permits from linked schemes or CER credits into their system (Kollmuss et al., 2010; Schneider, 2009). The CDM can also create perverse incentives to raise initial investment and output in carbon-intensive equipment, so as to get emission credits for reducing emissions later, depending on expectations about how future baselines will be set. Another incentive problem is that the large financial inflows from which developing countries may benefit under a future CDM could undermine their willingness to take on binding emission commitments at a later stage (OECD, 2009).

A number of other risks stem from the development of increasingly large carbon markets as more countries undertake mitigation actions. For instance, the size of carbon markets is estimated to reach 2.3% of GDP in Annex I countries by 2050 under the linked A1 act scenario, and 5% of world GDP under a global ETS that stabilises overall GHG concentration below 550 ppm CO₂ eq. Three major risks can be identified that would have to be addressed:

- **Lack of market liquidity:** Liquid primary markets foster the emergence of derivative instruments that would lower the cost for firms to insure against future carbon price uncertainty. Liquid markets would also reduce the opportunities for market manipulation. Market liquidity could be enhanced through the regular spot sales of short-term permits, allowing banking and ensuring credible commitments on future mitigation policies.
- **Risk associated with the development of derivative markets:** This risk will be partly addressed by identifying and certifying financial-market authorities responsible for carbon markets.
- **A counterparty risk** that could lead to market dysfunction as a large share of current trading is conducted through bilateral over-the-counter negotiations between participants. This risk can be mitigated by extending the access to clearinghouses and/or introducing penalties for performance failure in contracts.
5. Concluding remarks

Both direct and indirect linking of emissions trading schemes (ETSs) can help to reduce the cost of international climate mitigation action. In the long run, it is essential to achieve ambitious global emission reductions at low cost, and this paper has provided evidence that linked ETSs can play a pivotal role in this regard. Especially the opportunity to tap into the least-cost mitigation measures around the globe can reduce the cost of climate action. However, various design issues will have to be addressed for direct and indirect linking to deliver their full benefits. If these can be overcome, implementing ETSs and allowing international trading of the associated permits, i.e. linking domestic carbon markets, can achieve the dual goal of increasing the environmental ambition and the cost-effectiveness of international mitigation action. This is essential for a successful international climate policy framework in the coming years.

Notes

1. Annex I regions are those countries that have agreed to reduce their greenhouse gas emissions under the Kyoto Protocol. Although the United States never ratified the Kyoto Protocol and Canada recently withdrew, we include them in our analysis as Annex I countries.

2. Note that in the simulations, differences in integrity of the permits from different trading schemes are ignored: permits are assumed to be fully substitutable once the schemes are linked. This assumption is discussed in Section 4.

3. One-way linking (when system A recognises system B’s allowances but the latter does not) ensures that the price in system A never exceeds the price in system B, and hence, would only limit competitiveness concerns for firms belonging to system A. However, under one-way credits to firms in system linking, firms in system A would be penalised by not being allowed to sell to B.

4. Sensitivity analysis confirms these small gains from direct linking, at least for relatively realistic distributions of commitments among Annex I countries.

5. Note that the analysis excludes the possibility for countries to renegotiate the emission-reduction targets when linking. Adding this option would complicate the analysis and cloud the insights on the benefits of linking existing systems.

6. Energy-intensive industries in this study include ferrous metal, chemicals, mineral products, pulp and paper and non-ferrous metals.

7. Carbon price volatility may still increase in one of the two schemes if the other is subject to larger and/or more frequent shocks, and is large enough to have significant influence on the overall carbon price after linking.

8. Additionally, indirect linking can boost clean technology transfers to developing countries and facilitate the implementation of explicit carbon-pricing policies in developing countries at a later stage by putting an opportunity cost on their GHG emissions. These elements are, however, not captured in our model simulations.

9. For instance, under a USD 20 carbon price in Annex I countries, Bakker et al. (2007) tentatively estimate that the amount of emissions abated through credit projects in non-Annex I countries might be reduced by a factor of up to two if these barriers were taken into account.

10. Equivalently, having already linked carbon markets across the Annex I region will lower the cost reductions from indirect linking.

11. Partly for these reasons, the EU directive on linkage currently forbids linking the EU ETS to a scheme featuring a safety valve.

12. Grandfathering consists of allocating permits for free on the basis of historical emissions.

13. In the case with direct linking, this is slightly less (2.1% of Annex I GDP), as carbon prices are lower.

14. By comparison, for instance, in 2007 the US sub-prime mortgage market (total outstanding amount of sub-prime loans) amounted to about 9.5% of US GDP, or about 3% of world GDP at current exchange rates (OECD, 2007).
References

Dimaranan, B.V. (ed.) (2006), Global Trade, Assistance, and Production: The GTAP 6 Database, Center for Global Trade Analysis, Purdue University.

ANNEX A

Key characteristics of the ENV-Linkages model

Table A1. ENV-Linkages model sectors

<table>
<thead>
<tr>
<th>ENV-Linkages model sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
</tr>
<tr>
<td>Other crops</td>
</tr>
<tr>
<td>Livestock</td>
</tr>
<tr>
<td>Forestry</td>
</tr>
<tr>
<td>Fisheries</td>
</tr>
<tr>
<td>Crude oil</td>
</tr>
<tr>
<td>Gas extraction and distribution</td>
</tr>
<tr>
<td>Fossil fuel based electricity</td>
</tr>
<tr>
<td>Hydro and geothermal electricity</td>
</tr>
<tr>
<td>Nuclear power</td>
</tr>
<tr>
<td>Solar and wind electricity</td>
</tr>
<tr>
<td>Renewable combustibles and waste electricity</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
</tr>
<tr>
<td>Food products</td>
</tr>
<tr>
<td>Other mining</td>
</tr>
<tr>
<td>Non-ferrous metals</td>
</tr>
<tr>
<td>Iron and steel</td>
</tr>
<tr>
<td>Chemicals</td>
</tr>
<tr>
<td>Fabricated metal products</td>
</tr>
<tr>
<td>Paper and paper products</td>
</tr>
<tr>
<td>Non-metallic minerals</td>
</tr>
<tr>
<td>Other manufacturing</td>
</tr>
<tr>
<td>Transport services</td>
</tr>
<tr>
<td>Services</td>
</tr>
<tr>
<td>Construction and dwellings</td>
</tr>
<tr>
<td>Coal</td>
</tr>
</tbody>
</table>

Table A2. ENV-Linkages model regions

<table>
<thead>
<tr>
<th>ENV-Linkages regions</th>
<th>GTAP countries/regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTAP countries/regions</td>
<td></td>
</tr>
<tr>
<td>1 Australia-New Zealand Australia, New Zealand</td>
<td></td>
</tr>
<tr>
<td>2 Japan Japan</td>
<td></td>
</tr>
<tr>
<td>3 Canada Canada</td>
<td></td>
</tr>
<tr>
<td>4 United States United States</td>
<td></td>
</tr>
<tr>
<td>5 European Union 27 and EFTA Austria, Belgium, Denmark, Finland, Greece, Ireland, Luxembourg, Netherlands, Portugal, Sweden, France, Germany, United Kingdom, Italy, Spain, Switzerland, Rest of EFTA, Czech Republic, Slovakia, Hungary, Poland, Romania, Bulgaria, Cyprus, Malta, Slovenia, Estonia, Latvia, Lithuania</td>
<td></td>
</tr>
<tr>
<td>6 Brazil Brazil</td>
<td></td>
</tr>
<tr>
<td>7 China China, Hong Kong</td>
<td></td>
</tr>
<tr>
<td>8 India India</td>
<td></td>
</tr>
<tr>
<td>9 Russia Russian Federation</td>
<td></td>
</tr>
<tr>
<td>10 Oil-exporting countries Indonesia, Venezuela, Rest of Middle East, Islamic Republic of Iran, Rest of North Africa, Nigeria</td>
<td></td>
</tr>
<tr>
<td>11 Non-EU Eastern European countries Croatia, Rest of Former Soviet Union</td>
<td></td>
</tr>
<tr>
<td>12 Rest of the world Korea, Taiwan, Malaysia, Philippines, Singapore, Thailand, Viet Nam, Rest of East Asia, Rest of Southeast Asia, Cambodia, Rest of Oceania, Bangladesh, Sri Lanka, Rest of South Asia, Pakistan, Mexico, Rest of North America, Central America, Rest of Free Trade Area of Americas, Rest of the Caribbean, Colombia, Peru, Bolivia, Ecuador, Argentina, Chile, Uruguay, Rest of South America, Paraguay, Turkey, Rest of Europe, Albania, Morocco, Tunisia, Egypt, Botswana, Rest of South African Customs Union, Malawi, Mozambique, Tanzania, Zambia, Zimbabwe, Rest of Southern African Development Community, Mauritius, Madagascar, Uganda, Rest of Sub-Saharan Africa, Senegal, South Africa</td>
<td></td>
</tr>
</tbody>
</table>

1. Note by Turkey: The information in this document with reference to "Cyprus" relates to the southern part of the Island. There is no single authority representing both Turkish and Greek Cypriot people on the island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the "Cyprus issue".

2. Note by all the European Union member states of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.
Figure A1. Structure of production in ENV-Linkages

- Gross Output of sector i
- Substitution between GHGs Bundle and output (σ^{GHG})
- Net-of-GHG output
- Non-CO$_2$ GHG bundle
- Substitution between material inputs and VA plus energy (σ^m)
- Demand for intermediate goods and services
- Value-added plus energy
- Substitution between VA and energy (σ^f)
- Demand for capital and energy
- Substitution between capital and specific factor (σ^s)
- Demand for capital and specific factor
- Substitution between capital and specific factor (σ^t)
- CO$_2$
- "Armingtons specification" (σ^n)
- Demand by region of origin
- Domestic good and services
- Imported goods and services
- Demand for intermediate goods and services
- Demand for labour
- Demand for capital
- Demand for energy