What the OECD indicators have shown so far…

The US can draw on the most highly educated labor force among the principal industrialized nations, when measured in terms of the formal qualifications attained by 25-to-64-year-olds in the labor force. However, this advantage is largely a result of the “first-mover advantage” which the US gained after World War II by massively increasing enrolments. While the US had, well into the 1960s, the highest high school completion rates among OECD countries, in 2005 it ranked, with a high school completion rate of 76%, 21st among the 27 OECD countries with available data, followed only by Spain, New Zealand, Portugal, Turkey and Mexico. Similar trends are visible in college education, where the US slipped between 1995 and 2005 from the 2nd to the 14th rank, not because US college graduation rates declined, but because they rose so much faster in many OECD countries. Graduate output is particularly low in science, where the number of people with a college degree per 100,000 employed 25-to-34-year-olds was 1,100 compared with 1,295 on average across OECD countries and more than 2,000 in Australia, Finland, France and Korea (Education at a Glance, 2007).

…and what PISA adds to this.

The OECD Program for International Student Assessment (PISA) extends the picture that emerges from comparing national degrees with the most comprehensive and rigorous international assessment of student knowledge and skills. PISA represents a commitment by the 57 participating countries to monitor the outcomes of education systems in terms of student achievement on a regular basis, within an internationally agreed common framework, and in innovative ways that reflect judgments about the skills that are relevant to adult life. PISA seeks to assess not merely whether students can reproduce what they have learned in science, mathematics and reading, but also how well they can extrapolate from what they have learned and apply their knowledge in new situations. PISA also collects extensive data on student, family and institutional factors that can help to explain differences in the performance of countries.

Decisions about the scope and nature of the assessments and the background information to be collected were made by leading experts in participating countries, and steered jointly by countries on the basis of shared, policy-driven interests. Substantial efforts and resources were devoted to achieving cultural and linguistic breadth and balance in the assessment materials. Stringent quality assurance mechanisms were applied in translation, sampling and data collection.

This briefing note summarizes results from the latest PISA assessment, carried out in 2006 with an extensive two-hour test comprising both open-ended and multiple choice tasks in science, reading and mathematics. More than 400,000 15-year-old students from 57 countries, including the 30 OECD countries took part. These countries make up close to 90% of the world economy.

The full report PISA 2006: Science Competencies for Tomorrow’s World, its executive summary, data tables, and full micro-level PISA 2006 database can be downloaded free of charge at www.pisa.oecd.org. References to tables and figures in this note relate to the full report.

Questions can be directed to:

Andreas Schleicher
Head of the Indicators and Analysis Division
OECD Directorate for Education
Tel: +33 1 4524 9366, email Andreas.Schleicher@OECD.org
PERFORMANCE IN SCIENCE

PISA defines science competency as the extent to which a student: i) possesses scientific knowledge and uses that knowledge to identify questions, acquire new knowledge, explain scientific phenomena and draw evidence-based conclusions about science-related issues; ii) understands the characteristic features of science as a form of human enquiry; iii) shows awareness of how science and technology shape the material, intellectual and cultural environment; and iv) engages in science-related issues and with the ideas of science, as a reflective citizen.

PISA 2006 assessed students’ ability to perform scientific tasks in a variety of situations, ranging from those that affect their personal lives to wider issues for the community or the world. The open-ended and multiple-choice tasks measured students’ performance in relation both to their science competencies and to their scientific knowledge.

Global trends

The best performing countries
- Finland, with an average of 563 score points, is the highest performing country on the PISA 2006 science assessment.
- Six other high-scoring countries have mean scores of 530 to 542 points: Canada, Japan and New Zealand and the non-OECD countries/economies Hong Kong-China, Chinese Taipei and Estonia.
- Australia, the Netherlands, Korea, Germany, the United Kingdom, the Czech Republic, Switzerland, Austria, Belgium, Ireland and the non-OECD countries/economies Liechtenstein, Slovenia, Macao-China also score above the OECD average of 500 score points (Figure 2.11b).
- One way to interpret differences in PISA science scores is in terms of the progress students typically make over a school year. For the 28 OECD countries in which a sizeable number of 15-year-olds are enrolled in at least two different grades, the performance difference between students in two grades, after adjusting for a range of school and socio-economic factors, is equal to 38 score points on the PISA science scale (Table A1.2).

Key results for the US

15-year-olds in the US achieve a mean score of 489 score points in science, on a scale that has an OECD average of 500 score points and for which two thirds of the OECD student population perform between 400 and 600 score points.
- Among OECD countries, Italy, Portugal, Greece, Turkey and Mexico have lower mean scores than the US; Sweden, Hungary, Ireland, Belgium, Austria, Switzerland, the Czech Republic, the United Kingdom, Germany, Korea, the Netherlands, Australia, New Zealand, Japan, Canada and Finland, as well as students in the combined area of the European Union, have higher mean scores than the US. Denmark, France, Iceland, the Slovak Republic, Spain, Norway and Luxembourg cannot be distinguished from US performance with statistical significance (Figure 2.11b).

In relative terms, the US ranks 21st among the 30 OECD countries, but the confidence interval extends from the 18th to the 25th rank.
- In 2003, the US had ranked 19th (confidence interval 17th to 23rd rank) among 29 OECD countries with comparable data and in 2000 14th among 27 OECD countries with comparable data (confidence interval 8th to 24th). However, the 2006 science scale is not directly comparable with the science scale used in the 2003 and 2000 assessments.
While basic competencies are generally considered important for the absorption of new technology, high-level competencies are critical for the creation of new technology and innovation. The report also cites evidence that individuals with high-level skills generate relatively large externalities in knowledge creation and utilization.

- On average across OECD countries, 1.3% of 15-year-olds reach Level 6 of the PISA 2006 science scale, the highest proficiency level. In New Zealand and Finland this figure is at least 3.9%. In the United Kingdom, Australia, Japan and Canada, as well as the non-OECD countries/economies Liechtenstein, Slovenia and Hong Kong-China, between 2% and 3% reach Level 6 (Table 2.1a).

- Over one in five students in Finland (21%) and over one in six in New Zealand (18%) reach at least Level 5. In Japan, Australia and Canada, and the partner economies Hong Kong-China and Chinese Taipei, this figure is between 14% and 16% (OECD average 9%). By contrast, 12 of the countries in the survey have less than 1% of students reaching either Level 5 or Level 6, and in 25 countries 5% or fewer reaching the two highest levels (Table 2.1a).

- Even if different age cohorts are concerned and PISA cannot establish the causal nature of the relationship, the proportion of Level 5 and 6 performers at age 15 is a good predictor for a country’s research intensity, explaining, across OECD countries, 70% of the cross-country variation in the number of researchers per thousand employed in full-time equivalents (Box 2.3).

The report cites the number of students at very low proficiency as an important indicator too, not in relation to scientific personnel but in terms of citizens’ ability to participate fully in society and in the labor market.

- Across the OECD, on average 19.2% of students perform below the baseline Level 2, including 5.2% below Level 1 (Table 2.1a).

- The majority of students did not reach Level 2 in ten countries. These included one OECD country, Mexico (Table 2.1a).

- In contrast, there are five countries or economies where around 10% or fewer perform at Level 1 or below: Finland and Canada, and the non-OECD countries/economies Estonia, Hong Kong-China and Macao-China (Table 2.1a).

While the US performs below-average overall, it has an average level of top performers.

- 1.5% of US 15-year-olds reach Level 6 on the science scale, demonstrating that they can consistently identify, explain and apply scientific knowledge, and knowledge about science, in a variety of complex life situations (OECD average 1.3%). They can link different information sources and explanations and use evidence from those sources to justify decisions. They clearly and consistently demonstrate advanced scientific thinking and reasoning, and they demonstrate use of their scientific understanding in support of solutions to unfamiliar scientific and technological situations (Table 2.1a).

- 9.1% of US 15-year-olds reach at least Level 5 (OECD average 9%) (Table 2.1a).

- The number of students at Level 6 cannot be reliably predicted from a country’s average performance. With an average of 522 score points, Korea performs well above the OECD average while the United States, with an average score of 489 score points, performs below the OECD average. Nevertheless, the United States and Korea have similar percentages of students at Level 6 (Table 2.1a).

The US has a comparatively large proportion of poor performers.

- 24.4% of US 15-year-olds do not reach Level 2, the baseline level of achievement on the PISA scale at which students begin to demonstrate the science competencies that will enable them to participate actively in life situations related to science and technology (Table 2.1a). To reach Level 2 requires competencies such as identifying key features of a scientific investigation, recalling single scientific concepts and information relating to a situation, and using results of a scientific experiment represented in a data table as they support a personal decision. In contrast, students at Level 1 often confuse key features of an investigation, apply incorrect scientific information, and mix personal beliefs with scientific facts in support of a decision.
Different from mathematics and reading, males and females show no difference in average science performance in the majority of countries, including 22 of the 30 OECD countries (Table 2.1c).

- In 12 countries, females outperform males, on average, while males outperform females in 8 countries. Most of these differences are small.
- In no OECD country is the gender difference larger than 12 points on the science scale.
- Some non-OECD countries show larger differences. In Qatar and Jordan, females are 32 and 29 points ahead of males, respectively.

However, similarities in average performance mask certain gender differences:

- Some countries show larger gender differences in particular science competencies. In most countries, females perform better in *identifying scientific issues*, while males are stronger at *explaining phenomena scientifically* (Tables 2.2c, 2.3c).
- Males perform substantially better than females when answering “Physical systems” questions – 26 points better on average, rising to 45 points in Austria (Table 2.10).
- In most countries more females attend higher performing, academically oriented tracks and schools than do males. As a result of this, in many countries gender differences in science are substantial within schools or programs, even if they appeared small overall. From a policy perspective – and for teachers in classrooms – gender differences in science performance therefore warrant continued attention.

Overall, 15-year-old males and females in the US perform at equal levels. However, gender differences are apparent in some aspects, as is the case in many countries.

- Males are overrepresented in the group of low performers: 26% of males perform below the baseline Level 2, while this is the case for only 23% of females (Table 2.1b).

There are gender differences on two of the three science competencies that were measured.

- On the PISA *identifying scientific issues* scale, which required students to recognize issues that can be explored scientifically, and to recognize the key features of a scientific investigation, females in the US are 16 score points ahead (OECD average difference 17 score points) (Table 2.2c).
- On the PISA *explaining phenomena scientifically* scale, in which students have to apply knowledge of science in a given situation to describe or interpret phenomena scientifically and predict changes, males in the US are 13 points ahead (OECD average difference 15 score points) (Table 2.3c).
- On the PISA *using scientific evidence* scale, which requires students to interpret evidence to draw conclusions and to explain them, to identify the assumptions, evidence and reasoning that underpin them and to reflect on their implications, there are no significant gender differences (on average across OECD countries females are 3 score points ahead of males) (Table 2.4c).

Females are ahead in knowledge about science, while gender differences vary in content-related knowledge.

- On the PISA *knowledge about science*, which includes understanding the purposes and nature of scientific enquiry and understanding scientific explanations, which are the results of scientific enquiry, females score 10 points higher than males (OECD average difference 10 score points) (Table 2.7).
- On the *living systems* scale, males score 9 points higher than females (OECD average difference 4 points) (Table 2.9).
- On the *physical systems* scale, males score 20 points higher than females (OECD average difference 26 score points) (Table 2.10).
- On the remaining knowledge of science scales, there are no significant gender differences for US 15-year-olds.

Females tend to attend higher performing schools and programs.

- Once the program level and destinations are accounted for, the advantage of males increases from 1 to 6 score points (OECD average difference 9 score points) (Table 2.5).
EQUITY IN LEARNING OPPORTUNITIES

Home background influences educational success and experiences at school often appear to reinforce its effects. Although PISA shows that poor performance in school does not automatically follow from a disadvantaged socio-economic background, socio-economic background does appear to be a powerful influence on performance.

This represents a significant challenge for public policy striving to provide learning opportunities for all students irrespective of their socio-economic backgrounds. National research evidence from various countries has often been discouraging. Often simply because of limited between-school variation in the school factors that may influence student performance, schools have appeared to make little difference. And most importantly, either because privileged families are better able to reinforce and enhance the effect of schools, or because schools are better able to nurture and develop young people from privileged backgrounds, it has often appeared that schools reproduce existing patterns of privilege, rather than bringing about a more equitable distribution of outcomes.

The internationally comparative perspective that emerges from PISA is more encouraging. While all countries show some relationship between home background and educational outcomes, some countries demonstrate that high average quality and a moderate impact of socio-economic background on learning outcomes can go together.

<table>
<thead>
<tr>
<th>Global trends</th>
<th>Key results for the United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools and societies face major challenges with the integration of immigrants.</td>
<td>15% of 15-year-old students in the US have an immigrant background, this compares to 9.3% on average across the OECD. These students lag considerably behind.</td>
</tr>
<tr>
<td>• International migration has become a key issue in most OECD countries, sparking intense debate on how immigrants can be successfully integrated into societies and labor markets. PISA 2006 assesses the educational success of 15-year-old students from immigrant families and shows that serious challenges lie ahead for many education systems.</td>
<td>• In the US first-generation immigrant students – that is, students who are born outside the country of assessment and who also have foreign-born parents – lag, on average, 57 score points behind their native counterparts, a sizeable difference considering that 38 score points are roughly equivalent to the OECD average of a school year’s difference. This performance lag is comparable to the OECD average (58 score points) (Table 4.2c).</td>
</tr>
<tr>
<td>• Among 15-year-old students, the proportion of students who are foreign born or who have foreign born parents now exceeds 10% in Germany, Belgium, Austria, France, the Netherlands and Sweden as well as the non-OECD countries Croatia, Estonia and Slovenia, and is 15% in the United States, 17% in Jordan, between 21 and 23% in Switzerland, Australia, New Zealand and Canada, and the non-OECD country Israel, 36% in Luxembourg, 37% in Liechtenstein, and over 40% in the non-OECD countries/economies Macao-China, Hong Kong-China and Qatar (Table 4.2c). These migrant students constitute a very heterogeneous group with a diverse range of skills, backgrounds and motivations and that performance difference between countries are also influenced by differences in immigration intake policies.</td>
<td>• Two-thirds of the performance difference between students with an immigrant background and native students in the US is accounted for by the less advantaged social, economic and cultural status of students with an immigrant background (the performance lag is reduced from 48 to 17 score points). This is much more than on average across the OECD, where this accounts for little over a third of the performance lag (Table 4.3c).</td>
</tr>
<tr>
<td>• Among the countries with significant shares of 15-year-olds with an immigrant background, first-generation students – that is, students who are born outside the country of assessment and who also have foreign-born parents – lag, on average, 58 score points behind their native counterparts, a sizeable difference considering that 38 score points are roughly equivalent to the OECD average of a school year.</td>
<td>Second-generation immigrant students do not perform significantly better than first-generation immigrant students.</td>
</tr>
<tr>
<td>• Second-generation immigrant students are born in the US and therefore could benefit from the education system in the host country, but these students still lag 43 score points behind (OECD average difference 55 score points). Second-generation immigrant students do not perform significantly better than first-generation immigrant students in the US (OECD average difference 15 score points) (Table 4.2c).</td>
<td></td>
</tr>
<tr>
<td>• 35% of second-generation immigrant students in the US do not demonstrate basic science competencies in PISA (performing below the baseline PISA proficiency Level 2)</td>
<td></td>
</tr>
</tbody>
</table>
year’s difference (Table 4.2c). The performance disadvantage of first-generation immigrant students ranges from 22 score points in Canada and the non-OECD country Croatia to between 77 and 95 score points in Germany, Sweden, Denmark, Austria, Belgium and Switzerland. In contrast, first-generation immigrant students perform at the same level as their native peers in Australia, New Zealand and Ireland as well as in the non-OECD countries/economies Serbia, Israel, Macao-China and the Russian Federation. Much of this difference remains even after accounting for other socio-economic factors (Table 4.3c).

• Second-generation immigrant students are born in the country of assessment and therefore have benefited from participation in the same formal education system as their native peers for the same number of years, unlike first-generation immigrant students who may have started their education in another country. Second-generation immigrant students perform relatively better than first-generation immigrant students in Sweden, Switzerland and Canada, as well as in the partner economies Hong Kong-China and Macao-China, suggesting that participation in the education and social system from birth onwards can bring an advantage, although in the cases of Sweden and Switzerland these students still perform below the national average in PISA (Figure 4.2a, Table 4.2c).

• The science achievement of the highest performers among students with an immigrant background varies much less across countries than the achievement of the lowest performing students with an immigrant background. At the bottom end of the scale, 31% of second-generation immigrant students do not demonstrate basic science competencies in PISA (performing below the baseline PISA proficiency Level 2). Even in some countries with good science performance overall, there are high proportions of poorly performing immigrants. In Luxembourg, Denmark, the Netherlands, Switzerland, Austria and Germany, for example, the proportion of second-generation immigrant students who do not reach Level 2 is at least three times as high as the proportion of native students who do not reach Level 2 (Figure 4.2b, Table 4.2b).

• In general, immigrant students attend schools with a more disadvantaged socio-economic intake, which poses a double disadvantage for them. These differences are particularly pronounced in Denmark, the Netherlands, Luxembourg, Germany, Norway, Austria, the United States, Belgium, France, Switzerland and the non-OECD countries/economies Slovenia and Hong Kong-China. However, in several countries all students attend schools with (OECD average 31%). The equivalent figure for native students is 21%. Regarding the top performers in science, 10% of native students perform at the top two proficiency levels in the PISA science assessment (Levels 5 and 6), but only 5% of second-generation immigrant students and 3% of first-generation immigrant students do (OECD averages 6%) (Table 4.2b).

Immigrant students tend to be doubly disadvantaged.

• Students with an immigrant background in the US attend schools with a more disadvantaged socio-economic intake. For example, native students tend to attend schools with an advantaged socio-economic intake (index value 0.11 points, OECD average 0.04 points), while immigrant students tend to attend schools with a disadvantaged socio-economic intake (index value -.59 points, OECD average -0.41). Similarly, while native students are enrolled in schools with a favourable student/teacher ratio (index value -.07 points, OECD average 0.00 points), immigrant students tend to be enrolled in schools with a much less favourable student/teacher ratio (index value .42 points, OECD average -0.08 points). (Table 4.3d).

Immigrant students report similar attitudes to science than do native students.

• Regardless of their immigrant status, all students in the US report comparable levels of future-oriented science motivation, enjoyment of science and personal value of science (Figure 4.4).
similar socio-economic intake, regardless of their immigrant background (Australia, New Zealand, Portugal, Canada and Ireland and as well as the non-OECD countries the Russian Federation, Serbia, Estonia and Latvia) (Figure 4.3).

PISA data show that immigrant students report no signs of a lack of engagement in learning science

- Throughout the OECD immigrant students tend to report higher or comparable levels of future-oriented science motivation, enjoyment of science and personal value of science than do their native peers (Figure 4.4).

Some countries succeed not only in securing high average performance standards, but also in minimizing between-school performance variation.

- On average, around one-third of all variation in student performance (33%) is between schools, but this varies widely from one country to another (Table 4.1a).

- In Germany and the non-OECD country Bulgaria performance variation between schools is about twice the OECD average. It is over one and a half times the average in the Czech Republic, Austria, Hungary, the Netherlands, Belgium, Japan and Italy, and the non-OECD countries Slovenia, Argentina and Chile. In most of these countries, the grouping and tracking of students by school affects this result (Table 4.1a).

- In other countries, school differences play only a minor part in performance variation. In Finland less than 5% of the overall performance variation among OECD countries lies between schools and in Iceland and Norway it is still less than 10%. Other countries in which performance is not very closely related to the schools in which students are enrolled include Sweden, Poland, Spain, Denmark and Ireland as well as the non-OECD countries Latvia and Estonia. It is noteworthy that Finland shows also the highest overall performance in science together with a modest performance variation overall, suggesting that parents can rely on both high and consistent performance standards across schools (less than 5% of the variation in Finnish students’ performance is between schools and the overall variation is also below the OECD average level) (Table 4.1a).

- Students’ socio-economic differences accounts for a significant part of between-school differences in some countries. This factor contributes most to between-school variance in the United States, the Czech Republic, Luxembour, Belgium, the Slovak Republic, Germany, Greece and New Zealand, and the non-OECD countries Bulgaria, Chile, Argentina and Uruguay (Table 4.1a).

While average performance of 15-year-olds in the US is below the OECD average, there is less variation in performance levels among schools.

- In the US 23% of all variation in students’ performance is between schools, which is below the OECD average of 33% (Table 4.1a). However, a large part of the performance differences between schools in the US are attributable to socio-economic background factors.

- In other education systems, notably in Finland, parents can rely on both high and consistent performance standards across schools (less than 5% of the variation in Finnish students’ performance is between schools and the overall variation is also below the OECD average level) (Table 4.1a).
Some countries succeed in ensuring that students perform well irrespective of the socio-economic contexts from which they come, while in other countries there are large socio-economic disparities.

- Less than 10% of the variation in student performance is explained by student background in five of the seven countries with the highest mean science scores of above 530 (Finland, Canada and Japan, and the non-OECD countries/economies Hong Kong-China and Estonia). These countries demonstrate that quality and equity can be jointly achieved. This compares to an OECD average of 14.4%. In the other two high-scoring countries, New Zealand and Australia, 16 and 11% of variation can be explained by student background (Table 4.4a).

- The countries where student background explains the largest proportion of performance variation (strongest socio-economic gradients) are Luxembourg, Hungary and France, and the non-OECD countries Bulgaria and Chile (Table 4.4a).

- The countries where two students of different socio-economic background has the largest difference in expected science scores (steepest socio-economic gradients) are France, New Zealand, the Czech Republic, the United States, the United Kingdom, Belgium and Germany, and the non-OECD countries Bulgaria and Liechtenstein (Table 4.4a).

Socio-economic disparities have a strong impact on student performance in the US.

- 18% of the variation in student performance in the US is explained by students' background – this is significantly above the OECD average of 14.4% (Table 4.4a).

- The US is among the participating countries where two students of different socio-economic background had the largest difference in expected science scores (steepest socio-economic gradients). Other countries include France, New Zealand, the Czech Republic, the United Kingdom, Belgium and Germany, and the non-OECD countries Bulgaria and Liechtenstein (Table 4.4a).

In some countries, the key issue to address is a relatively high number of students with low proficiency in science and other competencies.

- Among the lowest performing countries in PISA, a very high proportion of students have low levels of proficiency, indicating a need to improve standards across the board, for example through improvements in the curriculum. In Mexico and Turkey, as well as the non-OECD countries Kyrgyzstan, Qatar, Azerbaijan, Tunisia, Indonesia, Brazil, Colombia, Argentina, Montenegro, Romania, Thailand, Jordan, Bulgaria and Uruguay, more than 40% of 15-year-old students perform at Level 1 or below (Table 2.1a).

In the US there is a large proportion of low performers relative to overall performance in science.

- In the US, 24% of students do not demonstrate basic science competencies in PISA (performing below the baseline PISA proficiency Level 2), compared to 19% across the OECD on average, but the proportion of top performers is at the OECD average level (9%) (Table 2.1a).

- New Zealand, one of the best performing countries on average, still had 14% of students performing at Level 1 or below. Other countries with a comparatively large gap between higher and lower performing students included the United Kingdom, France, Japan and Germany (Table 2.1a).
STUDENT ENGAGEMENT IN SCIENCE

In PISA, student attitudes, and an awareness of the life opportunities that possessing science competencies may open, are seen as key components of an individual’s scientific literacy. PISA therefore collected data on students’ support for scientific enquiry, their self-beliefs as science learners, their interest in science and their sense of responsibility towards resources and environments.

Issues of motivation and attitudes are particularly relevant in science, which plays a key part in today’s societies and economies, but appears not always to be taken up enthusiastically by young people at school. Engagement in science is considered important because i) continued investment in scientific endeavor relies on broad public support, which can be influenced by citizens’ responses to science and technology; ii) scientific and technological advances are important influences on nearly everyone’s life; and iii) a continued supply of scientific personnel requires a proportion of the population to take a close interest in science. Attitudes at age 15 can also influence whether students continue to study science and take a career path in science.

Many of the PISA measures presented in this section summarize student responses to a series of related questions. The questions were selected from larger constructs on the basis of theoretical considerations and previous research and the theoretically expected behaviour of the scales and indices was validated both within and across countries. The report focuses on those measures for which the relationship with student performance is consistent at least within countries. The PISA measures on student attitudes need to be interpreted with caution: Many factors contribute to forming student attitudes about science. Attitudes can be influenced by students’ peers in the classroom, the culture of their school, their home and family culture, and more generally their national culture. Furthermore, all of the attitudinal results are based on students’ self-reports and cultural factors can influence the way in which responses are given.

<table>
<thead>
<tr>
<th>Global trends</th>
<th>Key results for the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>In general, students show strong support for scientific enquiry.</td>
<td></td>
</tr>
<tr>
<td>• 93% agree that science is important for understanding the natural world.</td>
<td></td>
</tr>
<tr>
<td>• 92% agree that advances in science and technology usually improve people’s living conditions.</td>
<td></td>
</tr>
<tr>
<td>• Also when asked about scientific enquiry in the context of specific tasks in the PISA 2006 science assessment students tended to express high levels of support.</td>
<td></td>
</tr>
<tr>
<td>• However, general support for science needs to be distinguished from the personal value of science: 75% agree that science helps them to understand things around them, but only 57% agree that science is relevant to them personally (Box 3.1).</td>
<td></td>
</tr>
<tr>
<td>Students tend to report a stronger belief in the technological potential of science than in its capacity to make social improvements.</td>
<td></td>
</tr>
<tr>
<td>• On average across OECD countries, 25% of students (and over 40% in Iceland and Denmark) did not agree with the statement “advances in science usually bring social benefits”. That said, over 90% of students report that they agree with this statement in Korea and the non-OECD countries/economies Thailand, Hong Kong-China,</td>
<td></td>
</tr>
<tr>
<td>US 15-year-olds report a strong appreciation of science in general – among OECD countries only students in Turkey, Portugal, Mexico, Spain, Korea and Poland report stronger general appreciation of science.</td>
<td></td>
</tr>
<tr>
<td>• 94% agree that science is important for understanding the natural world (OECD average 93%) (Figure 3.2).</td>
<td></td>
</tr>
<tr>
<td>• 92% agree that advances in science and technology usually improve people’s living conditions (OECD average 92%) (Figure 3.2).</td>
<td></td>
</tr>
<tr>
<td>US 15-year-olds also express a high level of acknowledgement of the economic and social benefits of science.</td>
<td></td>
</tr>
<tr>
<td>• 90% agree that science is valuable to society (OECD average 87%) (Figure 3.2).</td>
<td></td>
</tr>
<tr>
<td>• 87% agree that advances in science usually help to improve the economy (OECD average 80%) (Figure 3.2).</td>
<td></td>
</tr>
<tr>
<td>• 76% agree that advances in science and technology usually bring social benefits (OECD average 75%) (Figure 3.2).</td>
<td></td>
</tr>
<tr>
<td>• As in most countries, the general value of science which students report is closely related to their performance in science. In the US, the top quarter of students on an index constructed from the above five questions attain 529 score points on the science scale, while the bottom quarter attain only 449 score points (Table 3.5).</td>
<td></td>
</tr>
</tbody>
</table>
Most students express confidence in being able to do scientific tasks (self-efficacy), but more so for some tasks than others. For example, on average among students in OECD countries:

- 76% say they can explain why earthquakes occurred more frequently in some areas than in others (Figure 3.5).
- 64% say they can predict how changes to an environment would affect the survival of certain species (Figure 3.5).
- 51% say they can discuss how new evidence could lead to a change in understanding about the possibility of life on Mars (Figure 3.5).
- Just under one-half of students (47%) say that they find school science topics easy (Figure 3.7).

Self-efficacy is closely related to performance, even if the causal nature of this relationship cannot be established. The quarter of students expressing the strongest belief in their ability to do science tasks are, on average across OECD countries, about one and a half proficiency levels ahead of the quarter whose express the weakest self-belief (Table 3.3).

- The quarter of students with the lowest sense of self-efficacy in tackling science problems are over twice as likely to be in the lowest performing quarter of students in the country (Table 3.3).

Most students express confidence in being able to do scientific tasks (self-efficacy), but more so for some tasks than others. For example, on average among students in OECD countries:

- 76% say they can explain why earthquakes occurred more frequently in some areas than in others (Figure 3.5).
- 64% say they can predict how changes to an environment would affect the survival of certain species (Figure 3.5).
- 51% say they can discuss how new evidence could lead to a change in understanding about the possibility of life on Mars (Figure 3.5).
- Just under one-half of students (47%) say that they find school science topics easy (Figure 3.7).

Self-efficacy is closely related to performance, even if the causal nature of this relationship cannot be established. The quarter of students expressing the strongest belief in their ability to do science tasks are, on average across OECD countries, about one and a half proficiency levels ahead of the quarter whose express the weakest self-belief (Table 3.3).

- The quarter of students with the lowest sense of self-efficacy in tackling science problems are over twice as likely to be in the lowest performing quarter of students in the country (Table 3.3).

The majority of students report that they were motivated to learn science, but only a minority report interest in a career involving science:

- 72% say that it is important for them to do well in science; 67% say that they enjoy acquiring new knowledge in science; 56% say that science is useful for further studies; but only 37% say they would like to work in a career involving science and 21% say that would like to spend their life doing advanced science (Figure 3.10).
- Within each country, students who reported that they enjoyed learning science were more likely to have higher levels of science performance (Table 3.9).

Students from families with a more advantaged socio-economic status are more likely to show a general interest in science.

- This relationship is strongest in Ireland, France, Belgium and Switzerland. Those with a more advantaged socio-economic status are also more
likely to identify how science may be useful to them in the future (Table 3.22).

One significant feature of a student’s background is whether they have a parent in a science-related career.

- Among the 18% for whom this is so, one-third (6% of students) see their own futures in such careers. A further 19% of students without a parent in a science-related career report that they expect to be in a science-related career at age 30, making a total of 25% of students (Table 3.14).

US 15-year-olds report a comparatively high level of future-oriented motivation to learn science.

- 45% say that they would like to work in a career involving science (OECD average 37%); 45% say that they would like to study science after high school (OECD average 31%); 30% say that they would like to work on science projects as an adult (OECD average 27%); and 24% say that they would like to spend their life doing advanced science (OECD average 21%) (Figure 3.13).

- 38% of students say that they expect a science-related career at age 30 (OECD average 25%). Those who say so score, on average, 511 points while students not saying so score 477 points (Table 3.12).

Like in many other countries, science-related activities outside school attract only a small minority of students on a regular basis.

- 20% say they regularly or very often watch television programs about science (OECD average 21%); 16% say they regularly or very often read science magazines or science articles in newspapers (OECD average 20%); 13% say they regularly or very often visit websites on science (OECD average 13%); 7% say that they regularly or very often borrow books on science (OECD average 8%), 5% say the regularly or very often listen to radio programmes about advances in science (OECD average 7%), and 4% say they regularly or very often attend a science club (OECD average 4%) (Figure 3.16).

Students report great concern for environmental issues and a strong desire to address them, but report generally to be pessimistic about things improving in this sphere.

- Despite a general interest in these issues, students know most about certain high profile areas, and for example only about half as many students express awareness of issues related to genetically modified crops as with that of deforestation (Figure 3.17).

- Awareness of environmental issues varies by country, but there is a strong association between students’ level of environmental awareness and science performance in all participating countries. This suggests not just that students with a strong understanding of science tend to report being aware of environmental issues, but also that relative ignorance in science may cause these issues to go unnoticed by many citizens (Table 3.16).

- On average across countries, the quarter of students reporting the least awareness of environmental issues are three times as likely to be among the lowest performing quarter of students. In contrast, there is much less of an association between

US 15-year-olds report an average level of awareness of environmental issues (Figure 3.17).

- 73% of the students say that they are aware of the consequences of clearing forest for other land use (OECD average 73%).

- 54% say that they are aware of acid rain (OECD average 60%).

- 53% say that they are aware of the increase of greenhouse gases in the atmosphere (OECD average 58%).

- 51% say that they are aware of nuclear waste (OECD average 53%).

- 39% say that they are aware of the use of genetically modified organisms (GMOs) (OECD average 35%).

- Environmental awareness and science performance are closely linked, both within and across countries. US 15-year-olds scoring in the top quarter of an index constructed from the above questions score 545 points, while students in the bottom quarter score 422 points (Table 3.16).
There is some degree of pessimism among the students about the future of the natural environment.

In some countries, there are significant gender differences in science attitudes

- Gender differences in attitudes to science are most prominent in Germany, Iceland, Japan, Korea, the Netherlands and the United Kingdom, and in the partners Chinese Taipei, Hong Kong-China and Macao-China, where males report more positive characteristics on at least five aspects of attitude (Table 3.21).

- Of the attitudes measured in PISA, the largest gender difference is observed in students’ self-concept regarding science, that is, students’ views of their own academic capabilities in science. In 22 out of the 30 OECD countries in the survey, males report to think significantly more highly of their own science abilities than do females (Table 3.21).

On average, US 15-year-olds report similar levels of concern for environmental issues as students in other countries (Figure 3.19) but a somewhat lower sense of responsibility for sustainable development (Figure 3.21).

- 88% of students agree that industries should be required to prove that they safely dispose of dangerous waste material (OECD average 92%).

- 90% of students agree with having laws that protect the habitats of endangered species (OECD average 92%).

- 89% agree that it is important to carry out regular checks on the emissions from cars as a condition for their use (OECD average 91%).

- 77% agree that to reduce waste, the use of plastic packaging should be kept to a minimum (OECD average 82%).

- 75% agree that electricity should be produced from renewable sources as much as possible, even if this increases the cost (OECD average 79%).

- 63% agree that it disturbs them when energy is wasted through the unnecessary use of electrical appliances (OECD average 69%).

- 56% agree with having laws to regulate factory emissions even if this would increase the price of products (OECD average 69%).

Students report an above-average level of optimism regarding environmental issues…

- 26% of students report that the problems associated with energy shortages will improve over the next 20 years (OECD average 21%).

- 22% consider this to be the case for water shortages (OECD average 18%).

- 21% consider this to be the case for air pollution (OECD average 16%).

- 17% consider this to be the case for nuclear waste (OECD average 15%).

- 18% consider this to be the case for the extinction of plants and animals (OECD average 14%).

- 15% consider this to be the case for the clearing of forests for other land use (OECD average 13%) (Figure 3.20).

…and the less they know in science, the more optimistic they are.

- Students with higher performance in science, who report greater awareness of environmental issues, also report being more pessimistic about the future of the environment. The most
optimistic quarter of students achieved a score of only 456 points (OECD average 472 points) while the least optimistic quarter of students achieved a score of 508 points (OECD average 517 points) (Table 3.18).

SCHOOL AND SYSTEM-LEVEL FACTORS

What can schools and school policies do to raise performance and to moderate the impact that socio-economic background has on student performance? PISA 2006 examined various school and system level factors including the policies and practices in admitting, selecting and grouping students, school management and funding, parental pressure and choice, accountability policies, school autonomy, and school resources.

The association of these factors with student performance was also estimated, both before and after accounting for the demographic and socio-economic context of students, schools and countries. However, several limitations should be taken into account in the interpretation of the results: First of all, on average only 300 principals were surveyed and in seven countries fewer than 170 principals were surveyed. Second, although principals are able to provide information about their schools, generalizing from a single source of information for each school (and then matching that information with students’ reports) is not straightforward. Third, the learning environment in which 15-year-olds find themselves may only be partially indicative of the learning environment that shaped their educational experiences earlier in their schooling career, particularly in education systems where students progress through different types of educational institutions at the lower secondary and upper secondary levels. To the extent that the current learning environment of 15-year-olds differs from that of their earlier school years, the contextual data collected by PISA is an imperfect proxy for the cumulative learning environments of students, and their effect on learning outcomes is therefore likely to be underestimated.

Global trends

How do schools in different countries confront the formidable challenge of grouping students in order to provide effective instruction for a diverse student body? They vary considerably in the extent to which they group students, both across and within schools.

- While residence is the most important single factor determining the allocation of students to schools, about one-quarter (27%) of 15-year-old students in OECD countries are in schools that select by students’ academic record (Table 5.1).

- Not surprisingly, within countries, students in schools that select by academic criteria perform, on average, better. However, school systems where there are more schools selecting students by ability, perform neither better nor worse overall.

- The age of first selection in the education system varies from 10 to 17 across OECD countries. The first selection is at the age of 11 or below in Austria, Germany, the Czech Republic, Hungary, the Slovak Republic and Turkey and in the non-OECD countries Bulgaria and Liechtenstein, while it is at the age of 16 or above in Australia, Canada, Denmark, Finland, Iceland, New Zealand, Norway, Poland, Spain, Sweden, the United Kingdom, the United States and in the non-OECD countries Brazil, Jordan, Latvia, Thailand and Tunisia (Table 5.2).

Key results for the US

Concerning school admittance, school principals in the US report that…

- 81% of US 15-year-old students are in schools that select students according to their residence in a particular area (OECD average 47%).

- 8% are in schools that select by the students’ academic record (OECD average 27%).

- 22% are in schools that select by the students’ needs or desires for a special program (OECD average 19%).

- 10% are in schools that select according to whether there are other family members at the school (OECD average 17%).

- 9% are in schools that select by recommendations of feeder schools (OECD average 13%).

- 5% are in schools that select by parents’ endorsement of the instructional or religious philosophy of the school (OECD average 12%) (Table 5.1).

- In the US, students in schools that report selecting students by academic criteria did not perform better, once socio-economic and other school factors are accounted for (Table 5.21b).

School principals report ability grouping for all subjects less frequently than on average across OECD countries.

- 7% of US 15-year-old students are in schools that group students by ability for all subjects between or within classes (OECD average 14%)
Institutional tracking is closely related to the impact which socio-economic background has on student performance.

- The earlier students are stratified into separate institutions or programs, the stronger is the impact which the school’s average socio-economic background had on performance (Table 5.19a).
- 14% of students in OECD countries are in schools that divide children by ability for all subjects between or within classes and 54% are in schools that practice ability grouping for some subjects, but not for all subjects (Table 5.3).
- Schools that divide students by ability for all subjects tend to have lower average student performance, on average, even after accounting for socio-economic factors and other school factors (Table 5.19a).

In most countries, private schools outperform public schools but the picture reverses when socio-economic factors are accounted for.

- Students in private schools outperform students in public schools in 21 OECD countries, while public schools outperform private ones in four OECD countries.
- The picture changes, however, when the socio-economic background of students and schools is accounted for. Public schools then have an advantage of 12 score points over private schools, on average across OECD countries.
- That said, given the large advantage in gross terms, private schools may still pose an attractive alternative for parents looking to maximize the benefits for their children, including those benefits that are conferred to students through the socio-economic level of schools’ intake (Figure 5.5).

US 15-year-old students are less commonly enrolled in predominantly government-funded private schools than is the case across OECD countries.

- In the US, 93% of students are in public schools (OECD average 86%), 1% in predominantly government-funded private schools (OECD average 11%) and 7% in privately funded private schools (OECD average 4%) (Table 5.4).

Once socio-economic factors are accounted for, public and private schools show no performance differences.

- Private schools in the US outperform public schools by 63 score points, but they also have a significantly more advantaged socio-economic intake, as measured by the PISA index of economic, social and cultural status. Once the socio-economic intake of students and schools is accounted for, there is no performance difference between US public and private schools (Table 5.4).

Across OECD countries, 60% of students are enrolled in schools whose principals report that they compete with two or more other schools in the local area.

- School choice is most prevalent in 10 countries where 80% or more of principals report that students have a choice of at least two alternatives to their own school: Australia, the Slovak Republic, the United Kingdom, New Zealand and Japan, and the non-OECD countries/economies Indonesia, Hong Kong-China, Chinese Taipei, Macao-China and Latvia. On the other hand, in Iceland, Norway, and Switzerland, and in the non-OECD countries Qatar and Uruguay, the parents of at least one-half of the students have effectively no

The majority of US 15-year-old students are enrolled in schools that compete with two or more other schools in the same area.

- 64% of US 15-year-olds are enrolled in schools whose principals report that they compete with two or more other schools in the same area (OECD average 60%).
- 11% of students are enrolled in schools whose principals report that they compete with one other school in the same area (OECD average 14%)
- 26% of students are enrolled in schools whose principals report that there are no other schools in the same area (OECD average 26%) (Table 5.5).

Like in most countries, school principals most commonly report giving feedback to parents on their child’s performance relative...
choice of schools, according to school principals (Table 5.5).

- Across countries, having a larger number of schools that compete for students is associated with better results, but that effect is no longer visible once socio-economic factors are accounted for (Table 5.19c).

- Parents surveyed in 16 countries report generally to be positive and well-informed about their children’s schools, but this varies considerably across countries. For example, fewer than 50% of parents in Germany, but over 90% in Poland and the partner country Colombia report that the school provided regular and useful information on their child’s progress (Table 5.7).

- On average across OECD countries, the majority of students (54%) are enrolled in schools where school principals report giving feedback to parents on their child’s performance relative to the performance of other students at the school. In many OECD countries, the reporting of student performance information to parents is more commonly done relative to national benchmarks than relative to other students in the school. For example, in Sweden only 12% of 15-year-olds are enrolled in schools that report performance data to parents relative to those of other students in the school, while 94% of 15-year-olds are enrolled in schools that report data relative to national or regional standards or benchmarks. The pattern is similar in Japan, Finland, Norway, the United Kingdom, New Zealand as well as the non-OECD country Estonia (Table 5.9).

- In the United Kingdom and the United States, school principals of more than 90% of 15-year-olds enrolled in school report that school achievement data are posted publicly; in the Netherlands, as well as in the non-OECD countries Montenegro and Azerbaijan, this is still the case for more than 80%. In contrast, in Finland, Belgium, Switzerland and Austria, as well as in the non-OECD country Argentina, this is the case for less than 10% of the students and in Japan, Spain, Germany, Korea and Ireland, and in the non-OECD countries/economies Macao-China, Uruguay, Indonesia and Tunisia, it holds for less than 20%.

- There are considerable differences in performance between students in schools that post their results publicly and students in schools that do not post them. Some of these differences are associated with other features of schools and school systems that tend to go along with strong accountability arrangements and with the socio-economic

<table>
<thead>
<tr>
<th>To regional benchmarks. Feedback is given:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Relative to the performance of other students at the school (66%); relative to other students in other schools (64%); and relative to national or regional benchmarks (86%). Similar to many other OECD countries, the reporting of student performance information to parents is most commonly done relative to national/regional benchmarks (Table 5.9).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In contrast to most other countries, most US schools post school achievement data publicly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In the US, 91% of 15-year-olds are enrolled in schools whose principals report that school achievement data are posted publicly (OECD average 38%). Unlike in many other OECD countries, there are no significant differences in performance between schools that post their results publicly and students in schools that do not post them (Tables 5.8 and 5.21b).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure from parents on schools is comparatively high, with school principals reporting that high academic standards are expected from…</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Many parents in schools attended by 36% of students (OECD average 21%).</td>
</tr>
<tr>
<td>• A minority of parents in schools attended by 49% of students (OECD average 47%).</td>
</tr>
<tr>
<td>• Very few parents in schools attended by 16% of students (OECD average 32%) (Table 5.6%).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School principals report a comparatively high use of achievement data for accountability purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 57% of students are in schools where achievement data are used in evaluation of the principal’s performance (OECD average 32%).</td>
</tr>
<tr>
<td>• 42% of students are in schools where achievement data are used in evaluation of teachers’ performance (OECD average 43%).</td>
</tr>
<tr>
<td>• 79% of students are in schools where achievement data are used in decisions about instructional resource allocation to the school (OECD average 30%).</td>
</tr>
<tr>
<td>• 97% of students are in schools where achievement data are tracked over time by an administrative authority (OECD average 65%) (Table 5.8).</td>
</tr>
</tbody>
</table>
background of students in schools that have such arrangements. However, once these factors are taken into account, there still remains a significant positive association between schools making their achievement data public and having stronger results (Tables 5.8 and 5.21b).

- On average across OECD countries, 21% of students are enrolled in schools where school principals report constant pressure from many parents who expected the school to set very high academic standards and to have the students achieve them. These report pressures are highest in New Zealand, Sweden and Ireland (Table 5.6).

Increased autonomy over many aspects of school management has become common over the past 20 years, with countries aiming to raise performance levels and responsiveness by devolving responsibilities. School principals in PISA were asked to what extent only schools, only the government, or both the school and the government decide on matters. They report that:

- The appointment of teachers is solely a school responsibility for almost all schools in 12 countries, but for almost no schools in seven countries. At least 95% of students attend schools where principals report that the school took sole responsibility for this in the Slovak Republic, New Zealand, the Netherlands, the Czech Republic, Iceland, Sweden, the United States and Hungary, and in the non-OECD countries/economies Lithuania, Montenegro, Macao-China and Estonia. Fewer than 10% are enrolled in such schools in Turkey, Greece, Italy and Austria, and the non-OECD countries Romania, Tunisia and Jordan (Table 5.10).

- The setting of budgets is solely a school responsibility for schools enrolling at least 90% of students in the Netherlands and New Zealand and in the non-OECD countries/economies Jordan, Macao-China, Indonesia and Hong Kong-China, but fewer than 10% in Poland and the non-OECD country Azerbaijan (Table 5.10).

- The determination of course content is solely a school responsibility in schools with 90% of students in Japan, Poland and Korea, as well as in the non-OECD countries/economies Macao-China and Thailand. But in Luxembourg, Greece and Turkey and the non-OECD countries Tunisia, Serbia, Montenegro, Uruguay, Croatia, Jordan and Bulgaria fewer than 10% of schools report determining content solely on their own (Table 5.10).

Compared to other countries, school principals in the US report comparatively high levels of autonomy for schools.

- 86% of US 15-year-old students are in schools whose principals report that only the school has considerable responsibility for formulating the school budget (OECD average 57%).

- 95% are in schools whose principals report that only the school has considerable responsibility for deciding on budget allocations within the school (OECD average 84%).

- 78% are in schools whose principals report that only the school has considerable responsibility for determining teachers’ salary increases (OECD average 21%).

- 98% are in schools whose principals report that only the school has considerable responsibility for selecting teachers for hire (OECD average 59%).

- 100% are in schools whose principals report that only the school has considerable responsibility for dismissing teachers (OECD average 50%).

- 76% are in schools whose principals report that only the school has considerable responsibility for establishing teachers’ starting salaries (OECD average 22%).

- 92% are in schools whose principals report that only the school has considerable responsibility for establishing students’ disciplinary policies (OECD average 82%).

- 52% are in schools whose principals report that only the school has considerable responsibility for establishing student assessment policies (OECD average 63%).

- 88% are in schools whose principals report that only the school has considerable responsibility for approving students for admission to the school (OECD average 74%).

- 82% are in schools whose principals report that only the school has considerable responsibility for choosing which textbooks are used (OECD average 80%).

- 50% are in schools whose principals report that only the school has considerable responsibility for determining course content (OECD average 43%).

- 69% are in schools whose principals report that only the school
Within countries, students in schools that exercise greater autonomy do not on average achieve better results, once the socio-economic context is accounted for. However, students in countries where certain aspects of autonomy are more common tend to do better in the science assessment, regardless of whether or not they themselves are enrolled in relatively autonomous schools.

- This is true for the aspects of school autonomy in formulating the school budget and deciding on budget allocations within the school, even after accounting for socio-economic background factors as well as other school and system level factors (Box 5.8).

Business and industry have an above-average influence on the school curriculum.

- 18% are in schools whose principals report that business and industry has no influence on the school curriculum (OECD average 36%); 67% where business and industry had a minor or indirect influence on the curriculum (OECD average 53%); and 15% where business and industry had a considerable influence on the curriculum (OECD average 11%) (Table 5.11).

In order to gauge the extent to which schools are able to employ an adequate supply of science teachers, school principals were asked if their school had any science teacher vacancies in the academic year in which PISA 2006 was conducted, and, if yes, whether the vacancies had been filled.

- On average, across OECD countries, 3% of students are in schools which report that one or more science teaching positions remained vacant, 59% in schools which report that all vacant science teaching positions had been filled either with newly appointed staff or by reassigning existing staff and 38% are in schools with no vacancies in science teaching positions.

- However, the proportion of 15-year-olds in schools with vacant science teacher positions ranges from less than 1% in Portugal, Greece, Poland, Italy, Spain, Ireland, the Slovak Republic, Sweden and Switzerland as well as the non-OECD countries Bulgaria, Hong Kong-China, Tunisia, Lithuania and Romania, to between 5 and 10% in Turkey, the United Kingdom, as well as the non-OECD countries/economies Colombia, Jordan, Slovenia, Israel, Chinese Taipei and Brazil, and to over 10% in Germany and Luxembourg and in the non-OECD countries Indonesia, Kyrgyzstan and Azerbaijan (Figure 5.14).

- On average across OECD countries 65% of principals in schools where there were vacancies report that instruction is hindered by a lack of qualified science teachers, but only 16% of principals in schools where there were no vacancies report the same.

In the US, the majority of students attend schools where all science teaching positions are filled, but 20 percent of school principals report that instruction was hindered by a lack of qualified science teachers.

- 26% of students are in schools where there are no vacant science teaching positions to be filled (OECD average 38%).

- 71% of students are in schools where all vacant science teaching positions had been filled (OECD average 59%).

- 3% of students are in schools where one or more vacant science teaching positions are not filled (OECD average 3%).

- 20% of students are in schools where, even though there are no vacant science positions, principals report that instruction was hindered to some extent or a lot due to a lack of qualified science teachers (OECD average 16%) (Table 5.13).

In 43 out of 57 participating countries at least 80% of 15-year-old students are still following some form of science education at school, whether a compulsory course, an optional course or a

In the US, 92% of 15-year-olds are taking some kind of science course, whether compulsory or optional (OECD average 87%).

- Across science courses, 64% of students are taking compulsory
In 25 of the participating countries at least 90% of students are enrolled in a science class at age 15. At least 95% of 15-year-old students report following science courses in Finland, the Slovak Republic, Iceland and France, and in the non-OECD countries Latvia, Slovenia, Montenegro and Bulgaria, and all students report following science courses in Norway and Poland and the non-OECD country Russian Federation.

On average across OECD countries, 28.7% of students report that they had four hours or more of regular science lessons at school. This percentage rises to 64.8% in New Zealand, 61.9% in United Kingdom, 56.8% in Canada, and 49.1% in the United States. Among the non-OECD countries/economies, the percentage is between 40% and 46% in Macao-China, the Russian Federation, Colombia and Hong Kong-China. In Norway, only 6.9% of students report that they studied science at school for four hours or more per week (Figure 5.17 and Table 5.17).

There are a number of countries where the majority of students report that they took two hours or less of science at school each week. This is the case in the Slovak Republic, the Netherlands and Luxembourg and also in the non-OECD countries Kyrgyzstan, Romania, Chile and Argentina.

Like in other OECD countries, students in the US spend most of their time learning science in regular lessons at school.

49% of students spend four hours or more a week in school science lessons (OECD average 29%), but 33% of students spend less than two hours a week in school science lessons (OECD average 33%).

68% of students spend less than two hours a week on science self-study or homework (OECD average 75%), but 9% spend four or more hours on this (OECD average 7%).

Only 3% of students spend four hours or more a week on out-of-school science lessons (OECD average 3%) (Table 5.17).

Learning time and school activities to promote students’ learning of science relate positively to learning outcomes.

Resources such as an adequate supply of teachers and quality of educational resources at school are, on average across countries, associated with positive student outcomes, but many of these effects are not significant after taking account of the fact that students with higher socio-economic status tend to get access to more educational resources. After accounting for this, there remains a significant association between several aspects of learning time as well as school activities to promote students’ learning of science and performance (Table 5.21b).

Even after accounting for socio-economic factors and other school factors, there remains a significant association between several aspects of US 15-year-olds learning time and learning outcomes.

There is a positive association between schools’ average learning time for regular lessons in school and for self-study or homework and science performance.

There is a negative association between schools’ average learning time for out-of-school lessons and science performance.

There is no association between science performance and school activities to promote students’ learning of science, although this is positively associated with performance across countries (Table 5.21b).

Shortage or inadequacy of educational resources is less frequently reported as hindering instruction than is the case on average across OECD countries.

33% of US 15-year-olds are enrolled in schools whose principals report that the shortage or inadequacy of computers for instruction hinders instruction (OECD average 37%).

33% are enrolled in schools whose principals report that the shortage or inadequacy of science laboratory equipment hinders
| 24% are enrolled in schools whose principals report that the shortage or inadequacy of computer software hinders instruction (OECD average 38%). |
| 20% are enrolled in schools whose principals report that the shortage or inadequacy of audio-visual resources hinders instruction (OECD average 37%). |
| 20% are enrolled in schools whose principals report that the shortage or inadequacy of library materials hinders instruction (OECD average 34%). |
| 17% are enrolled in schools whose principals report that the shortage or inadequacy of instructional materials hinders instruction (OECD average 25%). |
| 15% are enrolled in schools whose principals report that a lack or inadequacy of internet connections hinders instruction (OECD average 20%) (Table 5.15). |
MATHEMATICS PERFORMANCE

PISA 2003 looked in detail at mathematics performance. PISA 2006 provides a briefer update. PISA uses a concept of mathematical literacy that is concerned with the capacity of students to analyze reason and communicate effectively as they pose, solve and interpret mathematical problems in a variety of situations involving quantitative, spatial, probabilistic or other mathematical concepts.

<table>
<thead>
<tr>
<th>Global trends</th>
<th>Key results for the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the PISA 2006 mathematics scale…</td>
<td>US 15-year-olds achieve a mean score of 474 score points in mathematics, on a scale that had an OECD average of 498 score points (Table 6.2c).</td>
</tr>
<tr>
<td>- Four countries/economies outperform all other countries: Finland and Korea and the partners Chinese Taipei and Hong Kong-China (Table 6.2c).</td>
<td>In relative terms, the US ranked 25th among the 30 OECD countries, but the confidence interval extends from the 24th to the 26th rank (Figure 6.20b).</td>
</tr>
<tr>
<td>- Other countries with mean mathematics performances significantly above the OECD average are the Netherlands, Switzerland, Canada, Japan, New Zealand, Belgium, Australia, Denmark, the Czech Republic, Iceland and Austria, and the non-OECD countries/economies Macao-China, Liechtenstein, Estonia, and Slovenia (Table 6.2c).</td>
<td>- In 2003, the US had a mean score of 483 points and ranked 23rd (confidence interval 22nd to 24th rank) among 29 OECD countries with comparable data and in 2000, the US ranked 18th among the 27 participation countries (confidence interval 9th to 24th rank). However, the 2000 mathematics scale is not directly comparable with the mathematics scale used in the 2003 and 2006 assessments.</td>
</tr>
</tbody>
</table>

In order to perform the hardest mathematics tasks in PISA, students must put together complex elements of a question, use reflection and creativity to solve unfamiliar problems and engage in some form of argument, often in the form of an explanation.

- 13% of students are rated at the top two proficiency levels, Levels 5 and 6 in PISA 2006 (Table 6.2a).
- The highest percentages of students at Levels 5 and 6 are found in Korea (27%) and the partner Chinese Taipei (32%). Finland, Switzerland, Belgium and the Netherlands all had more than 20% of students at these top levels (Table 6.2a).
- With the exception of Mexico and Turkey, at least 5% of students in each OECD country reached Level 5 or 6 (Table 6.2a).

In mathematics, the US has a below-average proportion of top performers.

- 7.7% of US 15-year-olds reached at least Level 5 on the mathematics scale (OECD average 13%). These students can develop and work with models for complex situations, identifying constraints and specifying assumptions; select, compare, and evaluate appropriate problem solving strategies for dealing with complex problems related to these models; work strategically using broad, well-developed thinking and reasoning skills, appropriate linked representations, symbolic and formal characterisations, and insight pertaining to these situations (Table 6.2a).

Level 2 is considered a baseline level of mathematics proficiency at which students begin to demonstrate the kind of skills that enable them to use mathematics actively.

- Over three-quarters (78.7%) of students on average across OECD countries are proficient at least at this level (Table 6.2a).
- In Finland and Korea, and the partner economy Hong Kong-China, more than 90% of students perform at or above Level 2 (Table 6.2a).
- In every OECD country except Mexico, Turkey, Italy, Greece and Portugal at least 70% of students reaches Level 2.

72% of US 15-year-olds reach the baseline level 2 of mathematics performance, which requires students to recognize mathematical problems requiring only direct inferences, to extract information from a single source and to make literal interpretations of their results.

- 28% of US 15-year-olds performed below Level 2 and 10% below Level 1 (Table 6.2a).
are at Level 2 or above (*Table 6.2a*).

- The proportion falling short of this level varied widely across countries, from 6% in Finland to 56% in Mexico and, among non-OECD countries/economies, from 10% in Hong Kong-China to 89% in Kyrgyzstan (*Table 6.2a*).

It is only possible so far to compare mean scores in mathematics over a three-year period, from PISA 2003 to PISA 2006. For most countries, performance in mathematics remained broadly unchanged between PISA 2003 and PISA 2006. However, for a few countries there are notable performance differences.

- Two OECD countries, Mexico and Greece, and two non-OECD countries, Indonesia and Brazil show higher performance in PISA 2006 than in PISA 2003 (*Tables 6.3b, 6.3d*).
- In Mexico mathematics performance is 20 score points higher in PISA 2006 than in PISA 2003 but at 406 score points it is still well below the OECD average. In reading, Mexican females perform significantly higher in PISA 2006 than in PISA 2003 while the performance of males remained unchanged; in mathematics both males and females saw similar performance increases between the two surveys (*Tables 6.3b, 6.3d*).
- In Greece, mathematics performance is 14 score points higher in PISA 2006 than in PISA 2003. Most of the increase was driven in the lower and middle range of the performance distribution. It is also noteworthy that the performance difference is mainly due to the significantly higher performance of females in PISA 2006 (*Tables 6.3b, 6.3d*).
- In Indonesia, mathematics performance is 31 score points higher in PISA 2006 than in PISA 2003, which was, as in the case of reading, largely driven by the higher performance of males in PISA 2006 (*Tables 6.3b, 6.3d*).
- In Brazil, mathematics performance is 13 score points higher in PISA 2006 than in PISA 2003, which was mainly driven by performance improvements at the lower end of the distribution (*Tables 6.3b, 6.3d*).
- Mathematics performance in PISA 2006 is significantly lower in France (15 score points), essentially because of significantly lower performance at the lower end of the performance distribution. Among the non-OECD countries in Liechtenstein performance in PISA 2006 is 11 score points lower than in PISA 2003 (*Tables 6.3b, 6.3d*).

The difference in the U.S. mean mathematics performance between 2003 and 2006 (483 vs. 474) is not statistically significant (*Figure 6.21*).
In 35 of the 57 countries participating in PISA 2006, males perform significantly ahead of females. In 21 countries there is no significant difference, and in the non-OECD country Qatar, females outperform males. In 2006:

- Overall gender differences in mathematics are less than a third as large as for reading, 11 points on average across OECD countries. This has not changed since 2003 (Tables 6.2b, 6.2c).

- In 2006, males outperform females by above 20 points only in Austria (23 points) and the non-OECD countries Chile (28 points) and Colombia (22 points) (Table 6.2c).

- Males also had an above-average advantage of 12 to 20 points in Japan, Germany, the United Kingdom, Italy, Luxembourg, Portugal, Australia, the Slovak Republic, Canada, Switzerland and the Netherlands, and the non-OECD countries/economies Brazil, Indonesia, Hong Kong-China, Tunisia, Croatia, Chinese Taipei, Uruguay and Argentina (Table 6.2c).

US 15-year-old males outperform females by 9 score points (OECD average 11 score points) (Table 6.2c).
READING PERFORMANCE

PISA 2000 looked in detail at reading performance, while PISA 2003 and PISA 2006 provided briefer updates. It is now possible to see changes in reading performance over six years. PISA measures reading literacy in terms of students’ ability to use written information in situations that they encounter in their lives. This goes beyond the traditional notion of decoding information and literal interpretation. Students are shown different kinds of text, and required to retrieve information, to interpret the text and to reflect on and evaluate what they read.

Global trends

On the PISA 2006 reading scale:
- Korea has significantly higher performance in reading literacy than any other country, including Finland, the top performer in previous PISA reading surveys. Korea’s mean score, 556 score points, is nearly one proficiency level above the OECD average of 492 score points. Finland is a clear second with 547 points and partner economy Hong Kong-China a clear third with 536 points *(Table 6.1c).*

- Canada and New Zealand have mean reading scores between 520 and 530, and the following other countries score significantly above the OECD average: Ireland, Australia, Poland, Sweden, the Netherlands, Belgium and Switzerland as well as the non-OECD countries Liechtenstein, Estonia and Slovenia *(Table 6.1c).*

Key results for the US

In the US, because of an error in printing the test booklets, some of the reading items had incorrect instructions and the mean performance in reading cannot be accurately estimated. The impact of the error on estimates of student performance is likely to exceed one standard error of sampling. No results are therefore reported for the US.

A minority of students (8.6% on average across OECD countries) are proficient at the highest reading level, Level 5. These students are capable of sophisticated, critical thinking. In PISA 2006:

- Korea has the largest number of students at Level 5 (22%), followed by Finland and New Zealand (over 15%), Canada (14%) and Ireland, Poland and Belgium and the partner economy Hong Kong-China (over 11%) *(Table 6.1a).*

- At the other extreme, less than 1% are proficient at Level 5 in Mexico and in the non-OECD countries/economies Indonesia, Kyrgyzstan, Azerbaijan, Tunisia, Jordan, Thailand, Serbia, Romania and Montenegro it is less than one-half of a percent *(Table 6.1a).*

- Countries with large numbers at Level 5 vary considerably in terms of how many students are at low proficiency levels, and therefore their mean performance. For example, Finland and New Zealand have 17% and 16% respectively at Level 5, but New Zealand has 15% at Level 1 or below compared to just 5% in Finland. Finland’s average
Most students (80% across OECD countries) are capable of basic reading tasks at Level 2 - locating straightforward information, making low-level inferences of various types, working out what a well-defined part of a text means and using some outside knowledge to understand it.

- Longitudinal follow-up studies in Australia, Canada and Denmark suggest that the minority of students not capable of these tasks, those classified either at Level 1 or below, are likely to face difficulty using reading materials to fulfill their goals and to acquire knowledge. In PISA 2006:

- In every OECD country except Mexico, Turkey, the Slovak Republic and Greece, at least 73% of students are at Level 2 or above (Table 6.1a).

- Countries with the fewest students below Level 2 are: Finland (5%), Korea (6%) and the partner economy Hong Kong-China (7%). Between 10% and 15% of students are below Level 2 in Canada, Ireland, Australia, New Zealand, the Netherlands and Sweden, and the non-OECD countries/economies Macao-China, Estonia, Liechtenstein and Chinese Taipei (Table 6.1a).

- On the other hand, a majority of students are at Level 1 or below in non-OECD countries Kyrgyzstan, Qatar, Azerbaijan, Tunisia, Indonesia, Argentina, Montenegro, Colombia, Brazil, Romania, Serbia and Bulgaria (Table 6.1a).

It is now possible to track change in reading performance over a six-year period.

- The results suggest that, across the OECD area, reading performance has generally remained flat between 2000 and 2006. This needs to be seen in the context of significant rises in expenditure levels. As shown in Table 2.6, been 1995 and 2004 expenditure per primary and secondary student increased by 39% in real terms, on average across OECD countries.

- Two OECD countries (Korea and Poland) and five non-OECD countries/economies (Chile, Liechtenstein, Indonesia, Latvia and Hong Kong-China) have seen significant rises in reading performance since PISA 2000.

- Korea increased its reading performance between PISA 2000 and PISA 2006 from an already high level by 31 score points, thus reaching the highest reading performance among all participating countries – even surpassing Finland, the
performance of which remained stable at a high level. Korea achieved this increase mainly by significantly raising performance standards among the better performing students, while the performance at the lower end of the distribution remained essentially unchanged. Indeed, at the 95th percentile, the point above which the 5% best performing students scored, reading performance rose by 59 score points, to 688 score points, at the 90th percentile still by 55 score points and at the 75th percentile by 44 score points. In contrast, there was no significant change at the 5th and 10th percentiles for Korea (Tables 6.3a, 6.3c).

- Hong Kong-China was another country that saw a significant increase, by 11 score points since 2000, from an already high level of reading performance, reaching 536 score points in PISA 2006. Here the change was mainly driven by improvements among the lowest performing students, with the 5th percentile rising by 21 score points (Tables 6.3a, 6.3c).

- Poland increased its reading performance by 17 score points between PISA 2000 and PISA 2003 and another 11 score points between PISA 2003 and PISA 2006 and now performs at 508 score points, for the first time clearly above the OECD average. Between these two assessments, Poland raised its average performance mainly through increases at the lower end of the performance distribution. As a result, in PISA 2003 fewer than 5% of students fell below performance standards that had not been reached by the bottom 10% of Polish students in PISA 2000. Since PISA 2003, performance in Poland has risen more evenly across the performance spectrum (Tables 6.3a, 6.3c).

- The other countries that saw significant performance increases in reading between PISA 2000 and PISA 2006 – Chile (33 score points), Liechtenstein (28 score points), Indonesia (22 score points) and Latvia (21 score points) – performed, with the exception of Liechtenstein, significantly below the OECD average (Tables 6.3a, 6.3c).

- A number of countries saw a decline in their reading performance between PISA 2000 and PISA 2006, comprising nine OECD countries (in descending order) – Spain, Japan, Iceland, Norway, Italy, France, Australia, Greece, Mexico and the non-OECD countries, Argentina, Romania, Bulgaria, the Russian Federation and Thailand (Tables 6.3a, 6.3c).

In all OECD countries in PISA 2006, females perform better in reading on average than males. In
PISA 2006:

- In twelve countries, the gap is at least 50 score points. In Greece and Finland, females are 57 and 51 points ahead respectively, and the gap is 50 to 66 points in the non-OECD countries Qatar, Bulgaria, Jordan, Thailand, Argentina, Slovenia, Lithuania, Kyrgyzstan, Latvia and Croatia (Table 6.1c).

- The smallest gender gaps among OECD countries are in the Netherlands and the United Kingdom (24 and 29 points, respectively) (Table 6.1c).

- In Korea, males increased their performance by 20 score points between 2000 and 2006, but females at twice that rate. In Finland and Korea, over 60% of females are at high levels of reading proficiency, Level 4 or 5, compared to just over a third (36%) of boys in Finland and below half (47%) of boys in Korea.

Key features of PISA 2006

Content

- Although the main focus of PISA 2006 was science, the survey also covered reading and mathematics. PISA considers students’ knowledge in these areas not in isolation, but in relation to their ability to reflect on their knowledge and experience and to apply them to real world issues. The emphasis is on the mastery of processes, the understanding of concepts and the ability to function in various situations within each assessment area.

- The PISA 2006 survey also, for the first time, sought information on students’ attitudes to science by including questions on attitudes within the test itself, rather than only through a complementary questionnaire.

Methods

- Around 400,000 students were randomly selected to participate in PISA 2006, representing about 20 million 15-year-olds in the schools of the 57 participating countries.

- Each participating student spent two hours carrying out pencil-and-paper tasks. In three countries, some students were given additional questions via computer.

- PISA contained tasks requiring students to construct their own answers as well as multiple-choice questions. These were typically organised in units based on a written passage or graphic, of the kind that students might encounter in real life.

- Students also answered a questionnaire that took about 30 minutes to complete and focused on their personal background, their learning habits and their attitudes to science, as well as on their engagement and motivation.

- School principals completed a questionnaire about their school that included demographic characteristics as well as an assessment of the quality of the learning environment at school.

Outcomes

- A profile of knowledge and skills among 15-year-olds in 2006, consisting of a detailed profile for science, and an update for reading and mathematics.

- Contextual indicators relating performance results to student and school characteristics.

- An assessment of students’ attitudes to science.

- A knowledge base for policy analysis and research.

- Trend data on changes in student knowledge and skills in reading and mathematics.

Future assessments
- The PISA 2009 survey will return to reading as the major assessment area, while PISA 2012 will focus on mathematics and PISA 2015 once again on science.
- Future tests will also assess students’ capacity to read and understand electronic texts – reflecting the importance of information and computer technologies in modern societies.