Innovation Policy in an Enterprise-Centred Innovation System

Presentation at the Conference

Review of China’s National Innovation System and Policy

coop-organised by Organisation for Economic Cooperation and Development (OECD) and Ministry of Science and Technology (MOST), China

Jakob Edler
Manchester Institute of Innovation Research, MBS, University of Manchester

Beijing, August 27
Purpose and content

Not analysing the Chinese situation, but…

1. Rationales: a comprehensive look on “innovation policy” (very brief)
2. Selected issues illustrated with international examples
3. Conclusion
The need for adequate policy mix and framework conditions

• All policy – and framework conditions shaped by public policy – is relevant that shapes and influences the conditions for the generation and diffusion of innovations.
• Increasingly recognised: demand orientation (and related sectoral policies and frameworks) as complement to traditional supply policies

➢ Needed: a comprehensive, holistic view for policies in enterprize centred innovation systems
➢ The „mix“ is not trivial: see current EU Policy Mix Initiative
Policies in innovation systems: The challenge of connections and the right mix

Source: OMC policy mix group 2007, Ken Guy; modified J. Edler
2. Selected issues illustrated with international examples

Covering a (small) selection of challenges in China:

A. Enabling SMEs (*Market Development – Innovation*)
 - Absorptive capacity and broadened innovation activity

B. Intelligent cooperation (*Science Base and Innovation*)
 - Making use of strong Universities and raising attractiveness

C. Broad discourse (*Innovation – Science Base – Policy – Societal Goals*)
 - Creating forward looking, inclusive and responsive strategies
A. Enabling SMEs

• Why?
 – Countries in transition to enterprise-focused systems tend to focus on the science base and on activating large companies, forget the breadth of the economy
 – SME as major source of new ideas and employment, the basis of the economy
 – Specific challenges faced by SME in terms of innovation: risk, early financing, intellectual property, partnership, Human Resource, market entry/credibility, ability to adopt latest management techniques and technology
Small Business Innovation Research Programme, USA

– Biggest US partnership programme, since 1982/83
– Mandatory: 2.5% of large mission oriented programmes in major Federal Ministries / Agencies (with budget above $100 million) reserved for SMEs
– Mission: technological commercialisation, support for early stage development
– Projects in cooperation (large firms, Universities, SME / start ups)
– Since 1983: 19.2 Billion USD, 50,000 patents
– Assessment largely positive, both in terms of firm creation/growth and contribution to mission (some countries have copied (e.g. SWE))
– Key features:
 • Application bottom up within missions (need focused)
 • Three stage approach, last stage: potential public procurement by agency (combining bottom up and mission orientation)
 • Enforced: Intellectual property with SME (protection against large companies)
 • Essential: Local infrastructure and additional venture capital
Manufacturing Extension Programme USA

- Mission: to enable SMEs to access latest innovation expertise and technology, build up own absorptive capacity and related networks
- Large network of ME-centres across the country
- 2005: almost 25000 companies served
- Activities done: Training, Techn. Assistance, Assessment
- Mixed financing through all three policy levels and private sources (main responsibility: National Institute of Standards and Technology in DoC)
- Results: on national, regional, firm level
 - productivity gains, modernization (diffusion), increased networking, management and absorptive capacity (creation and application of innovation)
 - Quantitative: 1 USD has 6 USD effect
 - in networked economy effects also for large companies (suppliers, clients)
- Challenge: build up of multiplicator expert network
B. Intelligent cooperation in systems with strong Universities

Example: Competence Centre Programmes (CCP)

- Why:
 - University orientation towards companies and their need low
 - Ability of companies to express needs low
 - Research systems too fragmented
 - Little mobility science - industry
 - Financial incentive needed to stimulate co-operation, especially longer term

- Main Idea: Financing of "quasi-institutes" (or networks) run together by universities and industry for a limited time period (generally 7 years),

- Examples: U.S. (NSF Engineering Research Centres (ERC), Australia (CRC), Sweden VINNOVA’s CC, Hungary (KKK), Austria (K plus).
Intelligent Cooperation in systems with strong Universities

Example: Competence Centre Programmes (CCP)

- **Objectives (example Kplus Programme Austria):**
 - improve the long-term co-operation between science and industry;
 - stimulate pre-competitive research and multi-firm co-operations;
 - improve the transfer of know-how (especially through people);
 - focus and create critical masses;
 - use public funding to trigger additional private expenditures;
 - define new areas of research through bottom-up approaches;
 - ensure internationally competitive quality of K plus centres through a strict selection process and
 - periodic evaluation;
 - create examples of best practice in research management (spill back in Universities)

- Programmes are planned and implemented by specialised agencies, and have gained from international policy learning
Intelligent Cooperation in systems with strong Universities
Example: Competence Centre Programmes (CCP)

- **Effects:**
 - Overall very positive
 - Built up economic rationales in Universities and business centred strategy planning
 - New powerful corporate structures
 - Flexible multi-party cooperations (from 1 on 1 to large consortia)
 - High returns for companies
 - **Attraction also for foreign companies (embeddedness)**
 - CCP can support high tech strategies and S&T based initiatives with a more bottom up, company inclusive approach
 - Regionally focused
C. Creating broad innovation and technology discourse

Why?

- Future direction in R&D and Innovation determined by 3 pillars: market developments (demand, production capabilities), scientific knowledge production and long term societal preferences/needs

- Often, public R&D programmes
 - only catch part of the picture,
 - are not coordinated with sectoral policies and needs,
 - do not meet common preferences by industry and (public) science („imposed“)
 - do not reflect long term developments

- Modern innovation policy:
 - supports discourse to define long term goals and capabilities and bring them in line with societal needs
 - Brings together private and public actors for strategic action
Creating broad innovation and technology discourse: The example of Technology Platforms

- European discourse structures facilitated by the European Commission
- Aims:
 - design long term strategic research agendas in Europe and road maps
 - organise variable funding (research programmes, industry, ppp)
- 34 TP established as of August 2007
- Features
 - Industry driven (including SME), but also scientists and societal groups (plus policy makers), including Non-European MNEs
 - Largely bottom up and self-governed (differentiated structures / processes)
 - Not only science – industry, but also: clear signals to policy makers and markets, creating culture of innovation discourse
- Effects (observed): new level of future oriented discourse, very influential on companies, governments and public discourse, setting the scene for research and development in selected areas
Conclusion

- Countries in the transition: often focus on the science based model.
- Needed: a combination of science based and innovation diffusion model
 - Link science base and innovation production intelligently
 - Provide for a broad innovation culture, absorptive capacity: include all actors, entrepreneurial spirit in Universities, innovation management and life long learning in companies
 - Open and inclusive (foreign actors) up discourse among and with stakeholders

- Again: if policies shall be effective, and if learning, cooperation and embedding (foreign companies) are key elements:
 - strong institutional framework and compliance needed
 - Strategic intelligence on all levels (learning, credibility, responsiveness)
A related conference to come

Innovation and Sustainability in a Globalised Economy.
A dialogue with China

November 22 and 23 at Manchester

organised by
Manchester Institute of Innovation Research (MIoIR)
Manchester Architecture Research Centre (MARC)
Centre for Chinese Studies

University of Manchester
Thank you very much for your attention

Contact:
Jakob Edler
Professor of Innovation Policy and Strategy
Research Director
Manchester Institute of Innovation Research (MIoIR)
Manchester Business School
University of Manchester
Harold Hankins Building
Manchester
UK M13 9PL
0044 (0) 161 275-0919 (-9044 or -5921)

Jakob.Edler@mbs.ac.uk