FTTn/VDSL2 Broadband Networks
Capabilities and Economics

Richard N. Clarke
Assistant Vice President
AT&T - Public Policy
rnclarke@att.com

Fibre Investment and Policy Challenges
OECD Workshop
Stavanger, Norway
10-April-08
Overview of presentation

- What is AT&T’s fiber strategy?
- What is FTTn/VDSL2 network architecture?
- What are its capabilities?
- What are its economics?
- Why is it a good broadband strategy?

The FTTn/VDSL2 technologies, architectures, services and costs described in this presentation are generic – unless explicitly identified to be those of AT&T U-verse.
Competitive NGN environment in the USA

- **Wireline deployments**
 - ADSL2+ (Covad/Embarq)
 - FTTn/VDSL2 (AT&T)
 - FTTH/PON (Verizon/Surewest)
 - FTTH/point-to-point (Utopia)
 - HFC DOCSIS 3.0 (Comcast)
 - BPL (Current/Duke)

- **Wireless (terrestrial)**
 - HSPDA/HSUPA/HSPA+ (AT&T)
 - EV-DO Rev.A/B (Verizon/Sprint)
 - Wi-Fi (Earthlink/T-Mobile)
 - WiMAX (Clearwire/Sprint)
 - LTE (AT&T/Verizon)

- **Satellite** (HughesNet/WildBlue)

These services currently offer throughputs up to 50 Mbps and at prices as low as $15/month
AT&T’s fiber strategy

- Reach more customers in less time
- Invest efficiently
- Deploy quickly to compete sooner in the marketplace
- Deliver a pure IPTV solution
- Build a converged broadband platform for the future

AT&T U-verse FTTn/VDSL2 platform

- Pass 30 million living units over 5 years (2006-2010)
 - Cost per home passed in the low-US$300 range
What is FTTn/VDSL2 network architecture?
FTTn/VDSL2 schematic

WWW
ISP Backhaul / Backbone
Central Office

FTTn/PON (Greenfield)

FTTn/VDSL2

VDSL2 fiber node

Copper-pair cable
Fiber cable
Video distribution technologies

Broadcast RF video

- Network must support **all content simultaneously** from head end to customer
- Content **limited** by total bandwidth

VDSL2: switched IP video

- **Switched multicast** IP distribution of content
- Network delivers to home only the customer’s chosen content
- **Shared platform** with VoIP and HSIA
What are FTTn/VDSL2’s capabilities?
Evolving service capabilities

<table>
<thead>
<tr>
<th>Service Profile</th>
<th>2007</th>
<th>2008</th>
<th>Future?</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTV streams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDTV streams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VoIP lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target throughput</td>
<td>25 Mbps</td>
<td>25 Mbps</td>
<td>25-37 Mbps</td>
</tr>
</tbody>
</table>

Service capabilities improve as bandwidth expands and/or video encoding/compression becomes more efficient.
Service requirements

- **Standard definition IPTV (SDTV)**
 - MPEG2 coding: ~3 Mbps
 - MPEG4 AVC/H.264 coding: generally at 1.5-2 Mbps

- **High definition IPTV (HDTV)**
 - MPEG2 coding: ~16 Mbps
 - MPEG4 AVC/H.264 coding
 - Currently: 8-9 Mbps
 - Future: ≤ 6 Mbps

- **High speed Internet access (HSIA)**

- **Voice over Internet Protocol (VoIP)**

Figures are industry approximations and not an indication of AT&T’s actual encoding rates.
Transmission innovations: capped VBR

<table>
<thead>
<tr>
<th>Constant bit rate</th>
<th>Capped variable bit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIA</td>
<td>HSIA bursts into video bandwidth</td>
</tr>
<tr>
<td>SDTV</td>
<td>SDTV</td>
</tr>
<tr>
<td>SDTV</td>
<td>SDTV</td>
</tr>
<tr>
<td>SDTV</td>
<td>SDTV</td>
</tr>
<tr>
<td>HDTV</td>
<td>HDTV</td>
</tr>
</tbody>
</table>

- Hybrid between CBR and VBR
 - Variable bit rate video encoding enables HSIA to use bandwidth not being currently used by video streams
 - VDSL2 QoS service segmentation protects quality of VoIP and video while allowing HSIA data to “burst” into video bandwidth

Figures are industry approximations and not an indication of AT&T’s actual encoding rates.
VDSL2 bandwidth capability

VDSL2 Bandwidth vs. Copper Loop Length

Design specification examples:

25 Mbit/sec
- Single pair
- 3000 foot maximum copper distance

37 Mbit/sec
- Single pair - 2000 foot max copper distance
- 2 bonded pair – 2000 to 3000 foot max copper distance

Figures are from ATIS and are illustrative only, they not intended to depict AT&T’s particular experience. Actual throughputs will depend on the specific characteristics of the loop plant and network equipment deployed.
VDSL2 future

- Available bandwidth is increasing
 - Improvements in signal processing/crosstalk reduction
 - Pair bonding
 - Loop-shortening
- Service-specific bandwidth requirements are falling
 - Compression technologies continue to improve
 - Transmission technologies allow increased utilization efficiency
- Future of technical platform is bright
What are FTTn/VDSL2’s economics?
Telecom network cost rules

- The closer equipment is to the customer’s home, the greater its share of total network cost
 - Drops and loops are the most expensive on a per-home basis
 - Shared facilities further back in the network are less expensive on a per-home basis

- The cheapest network equipment is the equipment that is already in place
VDSL2 economics

- Video service-specific infrastructure deployed out to Video Hub Offices
- Fiber extended into neighborhoods until customers are within ~3000 feet (1 km) of a VDSL2 fiber node
- Network linking fiber nodes is made highly resilient
- VDSL2 reuse of embedded copper loops and drops – the most expensive network components
 - Minimal disturbance of neighborhood rights-of-way
 - Does not disturb customers’ lawns and driveways
 - Only required work is on the side of the customer’s house and possibly on the in-home wiring
VDSL2 economics

- Costs of the AT&T U-verse buildout have been reasonable
 - Cost to extend fiber into neighborhoods and install video multicast-capable nodes has been in the low US$300 range
 - Success-based costs (NID, STB, install) in US$600-$700 range

- Customer reaction has been strong
 - Growing market share
 - This response occurs in the face of highly-entrenched facilities-based competition from:
 - Cable television/modem networks (DOCSIS-HFC)
 - Direct broadcast satellite systems (DBS)
Why is FTTn/VDSL2 a good broadband strategy?
FTTn/VDSL2 advantages

- **Absolute cost**
 - Cost per subscriber is about half PON FTTH cost of ~US$2000

- **Cost structure**
 - FTTn/VDSL2 costs are predominantly success-based
 - FTTH costs are more heavily fixed

- **Time to market**
 - Deployment is much faster than FTTH

- **Real options**
 - Capabilities of VDSL2 are expanding
 - Costs of fiber deployments are dropping
 - High real options cost of deploying FTTH immediately
Bandwidth debate:
What is important to the customer?

Arguments for FTTH have focused on position that “more is better”

- Without IPTV, video capacity is limited
- Inability of current “network middle” to accommodate ultrahigh bandwidth access
- Inadequate business case for delivery of ultrahigh bandwidth non-video applications
- Extremely expensive – may not be broadly viable
- Requires very high market share for financial success

But what matters to customers is available content, end-to-end performance and good value

- Limitless carriage of IP video content
- Consistent with evolving “middle of the network” capacities and costs
- Sound business case based on demonstrated large-scale residential demand
- Cheaper and more accessible to larger population
- Accommodates facilities-based competition
Conclusions

- Both FTTH and FTTN/VDSL2 are:
 - Exceptionally capable technologies
 - Able to offer customers vastly expanded services of all types
 - Require very significant capital investments
- It is not obvious that one technology is a better choice than another from either a technical or economic point-of-view
 - It likely will take at least 5-10 years to resolve fully the relative economics and capabilities
- We should be pleased that private companies are undertaking the investments today to deploy both of these advanced broadband networks
Thanks for your attention

http://www.atis.org/standardsdeliver/docs/DSL.pdf