New Land Use Statistics for Norway
by Statistics Norway

Current Developments of Supply and Demand in the Labour Market in Israel
by the Central Bureau of Statistics of Israel

Going Global
Eurostat Seminar on Global Value Chains and Economic Globalisation
by the Central Statistics Office of Ireland
Contents

3 New land use statistics for Norway
 Margrete Steinnes, Land use and land cover statistics for Norway, Statistics Norway

7 Current developments of supply and demand in the labour market in Israel
 Mark Feldman, Director of Labour Sector and Elana Dror, Director of Economic Indicators Sector, Central Bureau of Statistics of Israel

9 Measuring entrepreneurship: improving timeliness
 Mariarosa Lunati, Statistics Directorate, OECD

12 Going global
 Dr. Steve MacFeely, Assistant Director General, Central Statistics Office Ireland

13 Recent publications

14 Forthcoming meetings

The Statistics Newsletter is published by the OECD Statistics Directorate.

This issue and previous issues can be downloaded from the OECD website: www.oecd.org/std/statisticsnewsletter

Editor-in-Chief: Martine Durand
Editor: David Brackfield
Editorial and technical support: Sonia Primot

For further information contact: the Editor, the Statistics Newsletter, std.statnews@oecd.org

Readers are invited to send their articles or comments to the email address above.

Deadline for articles for the next issue: 31st October 2013
Statistics Norway published new official statistics for land use and land resources in Norway in 2012. The statistics were produced using a bottom-up approach where existing maps and registers were combined using spatial analysis and the merging of databases. This article provides a brief overview of the methods used in the compilation of the statistics.

Statistics showing the extent of land specific uses and available land resources are a key basis for decision making. As in many countries, legal instruments protect the natural and culture environment in Norway. In addition, planning principles such as regional coordination and management of development patterns, centre structures, transport, energy supply and use and protection of contiguous natural areas, are applied.

The volume, quality and availability of digital map data have all been considerably improved in recent years. This has led to national statistics on land resources and land use now based on more detailed data sources, which enable a more precise delimitation of the various types of land than previously.

The improved data includes building outlines instead of just the building point, the Cadastre with property polygons instead of properties represented by points, and roads represented by polygons instead of lines.

Classification of Land

In order to produce cost-effective land use statistics covering Norway, existing cartographic databases and registers, including the classifications/nomenclature these are based on, must be used. Statistics Norway has created a hierarchical classification system, “Standard for classification of land use and land cover”, which is mainly based on existing standards and nomenclatures. The complete standard can be viewed at ssb.no/stabas/.

Main Features of the Methodology

The method applied is based on utilising the highest quality data sources available, but where no optimal data source exists, the next best quality data sources are used. In practical terms, the method is an automatic geographic information system (GIS) that defines, classifies and assembles the data into a hierarchy.

The final hierarchy is made up of data sets from various data sources that are processed and made compatible before being assembled. A full area resource map is used to calculate land resources in the undeveloped areas and also partly for the delimitation of built-up areas, but this is overridden if other map data indicates that areas are developed.

Since several of the data sources overlap, general criteria are needed for determining when a certain type of data is favoured since the method is automatic and no manual assessments of individual objects are made. In order to ensure that such criteria work well in all municipalities the criteria are based on defined core datasets. Criteria on how to form polygons from the simplest objects (points and lines) are based on information from adapted core datasets.

Adapting Buildings

The population of buildings and associated data on building number and type is taken from Statistics Norway’s copy of the official Cadastre on 1st January for the relevant year. The building-part of the Cadastre is a point dataset. Where possible, the buildings from the Cadastre are linked to the building outline in a scale of 1:5000.

Linking the building data and building outline enables a more accurate calculation of the base area of the buildings. Additionally, a building that spans multiple properties affects the land use classification of all the properties. In cases where only the building point from the Cadastre is used, the land use is affected only for the property where the building point is located.

Delimitation of Built-up Areas

In the statistics on land use and land resources all areas with buildings are classified as built-up. In addition, the building types within a built-up area determine the classification of that area.

In order to produce the dataset where buildings determine the land use, a number of datasets need to be used: land resource map, properties, roads, water and coastlines, in addition to building points from the Cadastre and the building outlines. The methodology used to adapt
built-up areas and calculate the utilisation rate is shown in Figure 1.

Utilisation Rate

It is natural in many cases for properties with buildings to be classified as built-up, and for the buildings to determine the more detailed land use category. However, the use of a whole property is not necessarily determined by the buildings. For instance, a park is still a park, and not a retail area, despite the presence of a newsstand in the park. In such cases, only a small area surrounding the building is normally classified according to the building, while the rest of the property is allocated a land category from other sources. This is done by placing a buffer (an area of specified distance around a map item) around the building. The park is classified as a park, while a small area surrounding the newsstand is classified as a retail area.

It can generally be assumed that the smaller the part of the area that is taken up by the buildings the weaker the correlation between the use of a property and the building types. A threshold based on the utilisation rate of the property has therefore been set, defined as the ratio between the area of the building’s base and the area of the property.

Based on an analysis of the utilisation rate in areas already known as built-up, a threshold for the utilisation rate of 4 per cent was chosen. Where the utilisation rate is higher than this, the entire area is regarded as built-up and classified according to the building types found therein. This rule is applicable regardless of how the area is classified in the land resource map. This means that the statistics are less dependent on when the land resource map is updated. If a housing estate has been built in a forest area the threshold for when these properties should be included is the same, 4 per cent, whether the land resource map is updated to show the properties as built-up or they continue to be classified as forest.

In order to limit errors, more stringent requirements for the utilisation rate of the largest properties have been set. Additionally, some building types, such as works buildings associated with agriculture and fishing require less space, and an exception from the 4 per cent threshold is also made for these. The exceptions are shown in Table 1. Examples of how classifications based on utilisation rate and size work in practice are presented in Figure 2.
Classification of Built-up Areas

The classification of a built-up area is determined by the buildings located in the area. This applies regardless of whether the area’s definition is based on the land resource map and property boundaries, or whether the area is defined according to the buffer method.

Where a built-up area contains buildings that belong to different land use categories, the area is defined as mixed on the map. In the statistics, the area will be broken down into the different land use categories of the various buildings, based on the base areas of the buildings. In this example, 40 per cent of the base area is workshops and thus classified as workshops and 60 per cent as residential.

<table>
<thead>
<tr>
<th>Area</th>
<th>Land types in AR-STAT</th>
<th>Building types</th>
<th>Utilisation threshold rate per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10 decares</td>
<td>All land types</td>
<td>All</td>
<td>4</td>
</tr>
<tr>
<td>Over 10 decares</td>
<td>Built-up</td>
<td>All</td>
<td>4</td>
</tr>
<tr>
<td>Over 10 decares</td>
<td>All excluding built-up</td>
<td>All</td>
<td>10</td>
</tr>
<tr>
<td>All sizes</td>
<td>Forest, farmland and pastures</td>
<td>Works buildings in agriculture</td>
<td>50</td>
</tr>
<tr>
<td>All sizes</td>
<td>All land types</td>
<td>Boathouses</td>
<td>50</td>
</tr>
</tbody>
</table>

Quality of the Statistics

The methodology focuses on using the most detailed map sources in order to produce the best possible figures for status. The data sources are likely to become more populated and of a higher quality in the coming years and this will affect the statistics on changes. Consequently, the calculation method codes the data sources for the land so that an overview can be retained of changes in the use of data sources.

Potential for Analyses Based on the Maps

The new dataset for land use and land resources opens up a variety of possibilities for new analyses. Statistics Norway has used the dataset in several different contexts, and plans to further develop statistics based on the data in the years ahead.

To date, only one year (2011) of the land use and land resources data set has been produced and published (ssb.no/arealstat). When more years become available, (the statistics will be published annually), these can be used to create land accounts where changes in land use and land resources are entered in the
Table 2. Order of priority for merging of datasets

<table>
<thead>
<tr>
<th>Priority</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roads</td>
</tr>
<tr>
<td>2</td>
<td>Railways</td>
</tr>
<tr>
<td>3</td>
<td>Inland water</td>
</tr>
<tr>
<td>4</td>
<td>Airports</td>
</tr>
<tr>
<td>5</td>
<td>Greenhouses classified as fully cultivated land</td>
</tr>
<tr>
<td>6</td>
<td>Built-up areas</td>
</tr>
<tr>
<td>7</td>
<td>Buildings with a buffer zone</td>
</tr>
<tr>
<td>8</td>
<td>Sports facilities</td>
</tr>
<tr>
<td>9</td>
<td>Objects from Land use, 1:5 000</td>
</tr>
<tr>
<td>10</td>
<td>Objects from Land cover, 1:50 000</td>
</tr>
<tr>
<td>11</td>
<td>Parking spaces</td>
</tr>
<tr>
<td>12</td>
<td>Harbour/dock areas</td>
</tr>
<tr>
<td>13</td>
<td>Energy facilities</td>
</tr>
<tr>
<td>14</td>
<td>Land resource map, AR-STAT</td>
</tr>
</tbody>
</table>

Analysis can also be aimed at the development of special resources, such as cultivated land. In this way, focus can be placed on characteristics of the land being developed, the purpose of the development and the proximity to other elements, such as urban areas.

Land use in urban areas is also published by Statistics Norway (ssb.no/arealbruk). This can also be done for other special areas such as coastal zones, holiday home areas, mountain regions, flood zones, protected areas and cultural monument areas. The new dataset will be used in analyses related to planning, starting with municipal planning. The new dataset has already been used in the Census of Agriculture as a basis for the sample of agricultural properties and figures for land use and land resources within the properties.

In the statistics on access to recreational areas and areas for recreational walking we now use the new dataset as a basis for selecting areas that can be used for recreational purposes.
This article describes a new method, developed by the Central Bureau of Statistics of Israel, for analysing the supply and demand in the Israeli labour market. The analysis is based on two on-going surveys: the Job Vacancy Survey, and the Labour Force Survey. The analysis is conducted by detailed occupations (3 digit ISCO code). The findings from this research have already helped decision makers in different areas, such as the preparation of special training programs in occupations where demand surpasses supply and policies related to foreign workers.

Labour Supply – is defined as employees (including members of cooperatives) who worked in the last 12 months or sought work, including: those who worked part-time involuntarily, unemployed persons and those not in the labour force.

Supply includes three components: employed persons seeking work; unemployed persons; and those who did not participate in the weekly labour force and sought work in the last year (21.7%, 56.8% and 21.5% of total labour supply in 2012, respectively).

Labour Demand – is defined as the number of job vacancies.

Supply to demand ratio – refers to the ratio between applicants to work in a specific occupation and job vacancies in this occupation.

The data is not seasonally adjusted and is not adjusted for festival and/or trading day factors.

Being able to compare the demand for labour as measured by the job vacancy survey, to the estimate of labour supply produced by the labour force survey allows a diagnosis of the extent of balance in the labour market at the macro level and better planning of vocational training at the micro level. It also allows the identification of job opportunities by occupation.

Methodological Note

Job Vacancy Survey

Sampling
The sampling frame for the Job Vacancy Survey includes all employers fitting the definition of the survey population reporting at least five employees. Under the Israeli National Insurance Institute (NII) Law all employers must insure their workers and report the number of workers and the wages paid to them monthly. The sample unit in the Job Vacancy Survey is the NII file. The sample of the survey is a one-stage stratified sample. The strata are defined by two nested variables: branch of economic activity and number of employees (usually grouped into four size-groups). Units that belong to the top size-group in a given branch are sampled with certainty (thus known as "certainty" units) and are contacted on a monthly basis. In all other size groups a random sample is drawn, the sampling probability increasing with the group size. The units thus chosen are sampled together and then allocated evenly over the three months (known as "probabilistic" units) of the quarter and are contacted once every quarter in a given month.

Estimation Method

Each unit that has been sampled and has answered the questionnaire and is found to belong to the survey population is assigned a “weight” that reflects the number of units in the population that it represents.

For the chosen probabilistic units, the weight is calculated by multiplying the inverse of the sampling probability by an adjustment factor that equals the ratio between the number of units that belong to the strata and the number of respondents in the strata, to compensate for non-response.

For the certainty units, the weight equals the ratio between the total of employees in the strata according to the data of the NII and the number of employees in the units that replied.

The Job Vacancy Survey population does not include:

- Small businesses (less than 5 employees).
- The Public Sector
- The ‘Agriculture’ industry.
- The ‘Services for Households by Domestic Personnel’ industry.

Based on a specific survey conducted in June-July of 2008, the number of job vacancies in small businesses was approximately 17% of all job
vacancies in the business sector, and the number of job vacancies in the agriculture industry was less than 3%. This means that job vacancies, as measured by the Job Vacancy Survey, represent an underestimate of labour demand in the business sector.

Labour Force Survey

Sampling
The survey is planned so that in each panel the sample size is around 2,700 households. The sample obtained for 2010-2011 was about 0.5% of the population of households.

As of 2012 the format of the Labour Force Survey changed from a quarterly survey to a monthly survey.

The sample drawn each year is divided into four mutually exclusive groups, known as panels. The panels are introduced into the survey investigation in four consecutive quarters, one panel in each period. Each panel is investigated for a number of periods, sometimes with a break between the investigations. Since the new survey is monthly, the annual sample is now divided into twelve panels. The difference between the different rotation methods of panels is in the percentage of overlap between consecutive months, between parallel months of consecutive quarters, or between parallel months of consecutive years.

Estimation Method
The data collected in the survey undergo keying, coding and checking. Because the data relate only to the sample, they have to be transformed so that estimates for the entire population can be derived. This is achieved by means of multiplying each of the survey data by a factor, or “weight”. Using these weights, estimates are calculated from each quarterly sample. Annual estimates are calculated as averages of the four quarterly estimates.

The estimation method is intended to reduce both sampling errors and bias likely to occur as a result of the differences between responding and non-responding households.

As of 2010, adjustments to population estimates are based on the results of the 2008 Population Census. To provide a basis for comparisons, the data for 2009 were calculated again.

The survey does not cover the following populations: (a) persons who worked in the past (before the last 12 months) or did not work in Israel at all (immigrants, housewives, students who recently finished school, etc.) and sought work; (b) employed persons who usually work in a full-time job and sought other work.

This implies that labour supply by occupation is underestimated in the quarterly estimates of labour supply data. It is important to note that the Job Vacancy Survey relates to the business sector, excluding the sectors mentioned above, while the Labour Force Survey covers the whole economy.

Some of the main findings (see figure 1) show that in the 1st quarter of 2013:

1. The supply to demand ratio was less than 1, with the demand for workers surpassing the supply in the following occupations: Systems analysts; Software developers; and among Bricklayers and related workers.

2. A supply to demand ratio of more than 7 was found for Sales and marketing managers.

The number of job vacancies rose in the 1st quarter of 2013 to 64,000 jobs (compared with 63,100 job vacancies in the 4th quarter of 2012). The supply to demand ratio declined to 5.8 (compared with 6.5 in the 4th quarter of 2012), while the supply to demand ratio among known occupations declined to 3.6 (compared with 3.7 in the 4th quarter of 2012).

It should be noted that among employed persons seeking work (labour supply), there are those whose occupation is unknown. Employed people seeking work (that have a known occupation), accounted for approximately 59% of the total supply in the 1st quarter of 2013.
Future Developments

As mentioned earlier, since 2012, the Labour Force Survey is a monthly survey. The Job Vacancy Survey is also a monthly survey. The Central Bureau of Statistics hope that by 2014 it will be able to match the two surveys on a monthly basis. In a couple of years, the Israeli Labour Force Survey will be extended to include additional issues related to labour market developments. As a result, the labour supply estimate in total and by occupation will improve and will include: (1) employed persons who usually work full time and sought other work, (2) persons who did not work in the last 12 months but worked during the last 24 months and sought work, by occupation.

OECD: Entrepreneurship at a Glance 2013

Measuring entrepreneurship: improving timeliness

Mariarosa Lunati (mariarosa.lunati@oecd.org), Statistics Directorate, OECD

The third edition of OECD Entrepreneurship at a Glance was released in July 2013; a product of the OECD-Eurostat Entrepreneurship Indicators Programme (EIP). The publication contains a wide range of internationally comparable measures of entrepreneurship designed to meet policy needs in the area of entrepreneurship. Indeed, the global financial and economic crisis has increased attention on entrepreneurship as an important source of growth and employment creation; sound statistics on the entrepreneurial phenomenon across the world, namely the different entrepreneurial performance of countries and the factors affecting it, assist policy decisions to ensure favourable business conditions for entrepreneurs and encourage would-be entrepreneurs.

Launched in 2006, the EIP develops internationally-comparable and policy-relevant indicators of entrepreneurship and maintains a database of statistics on entrepreneurship produced by National Statistics Offices (NSOs) of the OECD and Partner countries according to harmonised definitions and methodology. Specifically, the statistics collected measure in a comparable way the birth, death, survival and growth of enterprises, as well as their contribution to employment creation. In that sense, the contribution of the EIP is highly valuable, as it provides today the only international collection of entrepreneurship data based on official statistics.

The analysis of the official entrepreneurship statistics highlights important facts, which in some cases confirm and in others challenge ideas and anecdotal evidence based on experience at the level of single countries. Two examples illustrate this point; on one side, as somewhat

Figure 1. High-growth enterprises rate, measured by employment growth

expected, the latest data show that fewer enterprises had stellar growth during the crisis. The share of high-growth enterprises fell to between 2.0% and 4.0% in 2010, consistently below levels seen (between 3.5% and 6.0%) in 2006 in virtually all OECD countries (Figure 1).

On the other, it might surprise that the survival rates of enterprises after one year from the enterprise creation are very similar across countries, and even between the manufacturing and services sectors, i.e. they range from 85% to 90%, despite the differences in the regulatory frameworks and market conditions that still prevail.

The specifications of the core indicators on the EIP (e.g. how enterprise births or deaths should be computed, what are the enterprise events that should be taken into account and within which timeframe) and their production process are such that the comparable, official statistics on entrepreneurship become available with a delay of typically two or three years. The global financial crisis, however, has highlighted the need for more timely information on the situation of new and small businesses. To that purpose, the EIP has also developed series on recent trends in firm creations and bankruptcies, based on different national sources and non-harmonised definitions; a different nomenclature is used for these data: “creations” instead of “births”, and “bankruptcies” instead of “deaths”.

The timely series of the EIP allow one to observe that start-up rates remained, at the end of 2012, below the pre-crisis levels in many countries, particularly in the Euro area (Figure 2). There are tentative signs of improvements in some economies, notably Australia and the United Kingdom, but these are, to varying degrees, mirrored by higher failure rates. Moreover, a not insignificant factor behind the pick-up in start-ups has been an increase in own-account workers, which may indicate adjustment strategies rather than entrepreneurialism.

Timeliness is important for informed policy making, and two directions are pursued by the Entrepreneurship Indicators Programme to respond to this need. One consists in encouraging NSOs to reduce, when this is feasible, the delays for producing official statistics on entrepreneurship, without compromising the quality and comparability of the data that make the distinguishing features of the EIP. The second is to expand the ongoing work on the timely series, to improve understanding of the characteristics of each national series and how they compare with the official, harmonised series.
OECD/WTO Trade in Value Added (TiVA) database

To better respond to the challenges presented by globalisation and in particular the rise of global value chains, in March 2012 the OECD and WTO launched a joint initiative to develop a database on Trade in Value Added (TiVA). The international fragmentation of production that has come to characterize global value chains has limited the ability of conventional gross trade statistics to fully reveal who benefits from trade and who actually trades with whom. In simple terms therefore the TiVA initiative is an attempt to address these issues by decomposing gross trade flows into their value-added components by origin industry and country, providing a new perspective on trade and trade relationships.

A first release of the database was launched in January 2013 with a subsequent update, with data for 57 economies and 18 industries, this May as input into the OECD’s Ministerial meetings and G20 sessions. Highlights from the data show that:

Open and efficient services markets matter - Services comprise about two-thirds of GDP in most developed economies. However, based on gross terms, reported trade in services typically account for just over one-quarter of total trade in goods and services in OECD countries. Accounting for the value added by services in the production of goods shows that the service sector contributes over 50% of total exports in the United States, the United Kingdom, France, Germany and Italy.

Exports require imports - To improve productivity and remain competitive in a world dominated by GVCs requires access to efficient imports of goods as well as services. Between one-third to half of the total value of exports of transport parts and equipment by most major producers originated abroad in 2009, reflecting the emergence of regional production hubs. Similar patterns emerge in other sectors. For example, in China and Korea, two of the world’s largest exporters of electronic goods in 2009, the foreign content of exports of these products was over 40%. In Mexico, the share was about 55%.

Significant shares of intermediate imports are used to produce exports - In most economies, around one-third of intermediate imports are destined for the export market with much higher shares in many countries. In Hungary for example two-thirds of all intermediate imports are destined for the export market after further processing. The widespread international fragmentation of production well illustrates the multiplicative nature of tariffs.

Trade patterns change - Bilateral trade balance positions can change significantly when measured in value added terms. For example, China’s bilateral trade surplus with the United States was over USD 60 billion (33%) smaller in value added terms in 2009 compared to traditional gross measures.

Taking into account the origin of value added is only the beginning of the OECD’s work in this area. Further indicators can be expected in a number of areas in the coming years. Two important areas in this respect concern ‘trade in jobs and skills’, where indicators will begin to be rolled out for some countries later this year and over the longer term; and how income (profits) generated from trade flows, in particular how income generated via knowledge based assets, is further distributed between affiliate companies will also be explored. The Statistical Information System also lends itself to the calculation of indicators in a number of other areas such as carbon footprints, where the OECD will look to update its earlier results, notably as part of the OECD Green Growth Indicators.

For further information on the initiative and for details on accessing the database see: www.oecd.org/trade/valueadded
A special seminar was held at Trinity College, Dublin on April 18th to launch a Eurostat initiative on Global Value Chains and Economic Globalisation. This seminar was held in conjunction with the Central Statistics Office in Ireland and the Institute for International Integration Studies at Trinity College.

The seminar was an important event as it marked the publication of the “Global Value Chains and Economic Globalisation – Towards a New Measurement Framework” prepared by Timothy J. Sturgeon of the Industrial Performance Centre at the Massachusetts Institute of Technology (MIT) which had been commissioned by Eurostat.

The seminar also dealt with the broader aspects of economic globalisation and included presentations from Eurostat, the United Nations (UN) and the Organisation for Economic Co-operation and Development (OECD). Ms. Maria-Helena Figueira, Director of Global Business Statistics at Eurostat chaired the seminar. The mix of speakers made for a very thought provoking and varied day, interspersed with active and lively discussion and debate. The seminar programme was:

- Welcome address – Padraig Dalton, Director-General, CSO
- Economic globalisation: Setting the scene – Professor Louis Brennan, Director of the Institute for International Integration Studies
- The Eurostat initiative – Walter Radermacher, Chief Statistician of the European Union
- Measuring global value chains: The data gaps and how to fill them – Dr. Timothy Sturgeon, Massachusetts Institute of Technology
- Evolution of Ireland's FDI intensity – Dr. Frank Barry, Professor of International Business, Trinity College Dublin
- UN concept paper on the measurement of international trade and economic globalisation – Ronald Jansen, Chief of United Nations Trade Statistics Branch
- The OECD/WTO TiVA database and its context in international activities – Nadim Ahmad, Head of Division, OECD Statistics Directorate.

The presentations were followed by a wider panel discussion. The panel comprised of:

- Walter Radermacher, Eurostat
- Dr. Timothy Sturgeon, MIT
- Ronald Jansen, UNSD
- Nadim Ahmad, OECD
- Hubert Escaith, WTO
- Konrad Pesendorfer, Statistics Austria
- Martin Luppes, Statistics Netherlands
- Dr. Peter Boegh Nielsen, Statistics Denmark

There was general agreement that the measurement of global value chains and economic globalisation is an extremely important topic and one that must be addressed. The need for cooperation between the key global and regional statistical institutes clearly emerged from the debate. The "Sturgeon Paper" has presented a range of recommendations and issues that warrant careful consideration.

The presentations and the videos can be viewed on the Central Statistics Office of Ireland website at: www.cso.ie/en/newsandevents/conferencesseminars/eurostatseminarglobalvaluechainsandeconomicglobalizationtheeurostatinitiative/#d.en.54348

Special Eurostat Seminar on Global Value Chains and Economic Globalisation
Trinity College Dublin, 18 April, 2013

Going global
Dr. Steve MacFeely (steve.macfeely@cso.ie), Assistant Director General, Central Statistics Office Ireland

Global SDMX Implementation: Modernising Official Statistics
SDMX Global Conference, 11-13 September 2013, Paris

OECD is hosting and BIS and Eurostat will be acting as co-organisers on behalf of the SDMX Sponsors.

The theme of this year’s conference is the global SDMX implementation and the role that SDMX can play in modernising official statistics. The conference will respond to the information needs of statistical managers and SDMX users to implement and maximise the value of adopting SDMX in data exchange.

www.oecd.org/std/sdmxglobalconference11-13september2013paris.htm
The Employment Outlook 2013 says that jobless rates will fall only slightly over the next 18 months, from 8.0% in May 2013 to 7.8% at the end of 2014, leaving around 48 million people out of work in the 34 OECD countries.

The report reveals big, widening disparities between countries. Unemployment in the US is projected to fall from 7.6% in May 2013 to below 7% by the end of 2014. In Germany, the unemployment rate will decline from 5.3% to under 5%. But in the rest of Europe, joblessness will remain flat or even rise in many countries. By end 2014, unemployment is expected to be just over 11% in France, around 12.5% in Italy, and close to 28% in Spain and Greece.

www.oecd.org/employment/outlook

Published every two years, the OECD Communications Outlook provides an extensive range of indicators for the development of different communications networks and compares performance indicators such as revenue, investment, employment and prices for service throughout the OECD area. These indicators are essential for industry and regulators who use benchmarking to evaluate policy performance.

This edition is based on data from the OECD Telecommunications Database 2013, which provides time series of telecommunications and economic indicators such as network dimension, revenues, investment and employment for OECD countries from 1980 to 2011. The data provided in this report map the second decade of competition for many OECD countries that fully opened their markets to competition in 1998.

www.oecd.org/sti/broadband/communications-outlook.htm

This joint OECD-WTO publication puts a spotlight on aid for trade to assess what is happening, what is not, and where improvements are needed. The analysis is focused on trends in aid-for-trade policies, programmes and practices. It shows that the Aid-for-Trade Initiative is delivering tangible results in improving trade performance and bettering people's lives, notably those of women, in developing countries.

The report highlights that aid for trade plays an important role in enabling firms in developing countries to connect with or move up value chains. In fact, the emergence of value chains strengthens the rationale for aid for trade.

Stakeholders remain actively engaged in the Aid-for-Trade Initiative. The 2013 monitoring exercise was based on selfassessments from 80 developing countries, 28 bilateral donors, 15 multilateral donors, and 9 providers of South-South co-operation. Views were also received from 524 supplier firms in developing countries and 173 lead firms, mostly in OECD countries.

www.oecd.org/dac/aft/aidfortradeataglanceconnectingtovaluechains.htm
Agenda

Forthcoming meetings

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
</tr>
</thead>
</table>
| 11-13 September 2013 | SDMX Global Conference, OECD Statistics Directorate. OECD Paris, France
www.oecd.org/site/africa-forum13 |
| 8 October 2013 | Expert Group on Pesticide Risk Indicators (EGPRI), OECD Environment Directorate. OECD, Paris, France
www.oecd.org/site/africa-forum13 |
www.oecd.org/site/africa-forum13 |
www.oecd.org/site/africa-forum13 |
| 7-8 November 2013 | Health Care Quality Indicators (HCQI) Expert Group, OECD Directorate for Employment, Labour and Social Affairs. OECD, Paris, France
www.oecd.org/site/africa-forum13 |
www.oecd.org/site/africa-forum13 |
| 2-4 December 2013 | Seminar on Innovative Approaches to Turn Statistics into Knowledge, OECD Statistics Directorate and the Instituto Nacional de Estadística y Geografía (INEGI). Aguascalientes, Mexico -
www.oecd.org/std/statknowledge.htm |
| 5-6 December 2013 | Ministerial Meeting of the OECD Territorial Development Policy Committee - Regions and Cities: where people and policies meet. Marseille, France
www.oecd.org/regional/ministerial |
| 5-6 December 2013 | Green Growth and Sustainable Development Forum, OECD Environment Directorate. Paris, France -
www.oecd.org/std/statknowledge.htm |
| 9 December 2013 | Workshop on E-Government Indicators. OECD Public Governance and Territorial Development Directorate. OECD, Paris, France
www.oecd.org/std/statknowledge.htm |
www.oecd.org/std/statknowledge.htm |
www.oecd.org/std/statknowledge.htm |
| 12-13 December 2013 | How was Life-Historical Factbook Workshop, OECD Statistics Directorate. OECD Paris, France
www.oecd.org/std/statknowledge.htm |

Other meetings

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
</tr>
</thead>
</table>
| 1-6 September 2013 | World Water Week. Stockholm, Sweden
www.worldwaterweek.org |
| 5-6 September 2013 | G20 Leader’s Summit. St. Petersburg, Federation of Russia
www.g20.org/docs/summit/summit_2013.html |
| 1-2 October 2013 | Global Economic Symposium (GES). Kiel, Germany
www.global-economic-symposium.org |
| 11-13 October 2013 | 2013 Annual Meeting of the World Bank and the International Monetary Fund. Washington D.C., United States
| 11-22 November 2013 | United Nations Climate Change Conference (COP19). Warsaw, Poland
| 13-14 November 2013 | WorldPensionsummit 2013. Amsterdam, Netherlands
www.worldpensionsummit.com |

Unless otherwise indicated attendance at OECD meetings and working parties is by invitation only.