Mapping Metadata between SDMX and DDI

Bryan Fitzpatrick
Rapanea Consulting Limited
March 2010
What is the Issue?

• SDMX and DDI are two standards for managing statistical metadata and data

• Statistical offices are interested in improving the management and automation of its statistical processes

• Key to managing the statistical processes is managing and using metadata of all sorts

• DDI and SDMX (along with other standards such as ISO11179 and the geographical standard, ISO 19115 or country variants) a relevant, useful, “fit-for-purpose” standards for use in this program

• SDMX and DDI both map metadata to data
The Use Case

• End-To-End Management of the Statistical Process
 – From conception of requirement to dissemination of the statistics
 • Typically multiple, repeating, ongoing cycles
 – Monthly, quarterly annually
 • Planning, data gathering, edit/impute/derive, weight and aggregate, analyse, disseminate
 • Integration, coherency, relatability goals
 – Metadata consistency, relatability of aggregate statistics
 • Automation of process and capture of knowledge
 • Metadata and data sharing
 – National Statistical Offices and International Organisations
 • All sorts of statistics – social, economic, agriculture, trade, transport…
 • Commonality across statistics areas and organisations/countries
SDMX and DDI

• SDMX
 – Focuses on the aggregate data dissemination end
 • Defining and describing multi-dimensional cubes
 – Often conceptual, spanning cycles and countries
 – Value added with and quality usage information
 » “Reference metadata”
 • Sharing the metadata and the data
 – Service interfaces for registry/repository
 • Origin in international agencies and “official statistics”
 – OECD, Eurostat, IMF, ECB, …
 • Emphasis on Concepts and Classifications
 – Classification is a major entity in its own right
 • Superb for managing aggregate statistical web sites
 – Useful models for evolution of classifications
SDMX and DDI

• DDI comes from the data archive organisations across many countries
 – trying to capture and store survey data for future use
 • and to document it so future users can understand it and make sense of it
 • mostly social science collections from researchers
 • funding organisations are requiring such data to be preserved for further use
 – mostly they had to grab data and try to salvage metadata after the event
 • but DDI now aims to capture all metadata “at source”
 – early versions were narrowly focused on an individual data set
 • grew out of their documentation processes
 – latest version (DDI V3) is much more extensive, better organised
 • common analysis/designer support with SDMX
 • an end-to-end model compatible with the Generic Statistical Business Process Model (GSBPM)
 • no Registry/Repository
DDI Metadata

- DDI has
 - Survey-level metadata
 - Citation, Abstract, Purpose, Coverage, Analysis Unit, Embargo, …
 - Data Collection Metadata
 - Methodology, Sampling, Collection strategy
 - Questions, Control constructs, and Interviewer Instructions organised into schemes
 - Processing metadata
 - Coding, Editing, Derivation, Weighting
 - Conceptual metadata
 - Concepts organised into schemes
 - Including 11179 links
 - Universes organised into schemes
 - Geography structures and locations organised into schemes
DDI Metadata

• DDI has (cont)
 – Logical metadata
 • Categories organised into schemes
 – (categories are labels and descriptions for question responses, eg, Male, Unemployed, Plumber, Queensland, ..)
 • Codes organised into schemes and linked to Categories
 – Codes are representations for Categories, eg “M” for Male, “Qld” for Queensland
 • Variables organised into schemes
 – Variables are the places where we hold the codes that correspond to a response to a question
 • Data relationship metadata
 – eg, how Persons are linked to Households and Dwellings
 • NCube schemes
 – descriptions for tables
DDI Metadata

• DDI has (cont)
 – Physical metadata
 • record structures and layouts
 – File instance metadata
 • specific data files linked to their record structures
 – Archive metadata
 • archival formats, locations, retention times, etc
 – Places for other stuff not elsewhere described
 • Notes, Other Material
 – References to “Agencies” which own artefacts but no explicit structure to describe them
 – Inheritance and links embedded in most schemes
 • but need to be ferreted out, not necessarily easily usable
SDMX Metadata

• SDMX has
 – Organisations organised into schemes
 • Organisations own and manage artefacts, and provide or receive things
 – Concepts organised into schemes
 – Codelists, including classifications
 • a Codelist combines DDI Categories and Codes
 – Data Structure Definitions (Key Families)
 • a DSD describes a conceptual multi-dimensional cube used in a Data Flow and referenced in Datasets
SDMX Metadata

• SDMX has
 – Data Flows
 • described by a DSD, linked to registered data sets, and categorised
 – Categories organised into schemes
 • not the same as a DDI Category
 • provide a basis for indexing and searching data
 – Hierarchical Codelists
 • maps relationships amongst inter-related classifications
 • explicit, actionable representations of relationships
 – Process metadata
 • a Process has steps with descriptions, transition rules, computation information, inputs, outputs
 • all actionable, linked to other SDMX artefacts or to external sources
SDMX Metadata

• SDMX has
 – Structure Sets
 • additional linking of related DSD and Flows
 – Reporting Taxonomies
 • information about assembling reports or publications
 – Reference Metadata, Metadata Structure Definitions, and Metadata Flows
 • additional, probably useful, options for attaching metadata to data
 – Annotations almost everywhere
 • good options for managed, actionable extensions
The objective

• Map and convert DDI and SDMX metadata
 – DDI
 • Concepts and Concept Schemes, Category Schemes and Code Schemes, Variables
 – Perhaps NCubes

 – SDMX
 • Concepts, Codelists (Classifications), Data Structure Definitions
 • Hierarchical codelists for mapping evolution of classifications

• Aim is round-trip migration of metadata with no loss
 – Probably integrated into an external metadata store
The Work

• Started in November 2009
 – at DDI Expert Group Meeting in Dagstuhl, Germany
 – Arofan Gregory and Bryan Fitzpatrick
 – not yet completed
 • aim to complete it over next few months
The Work

• ConceptScheme -> ConceptScheme
• Concept -> Concept
• CodeScheme -> Codelist
 – With information from CategoryScheme
• Code -> Code
 – With information from Category
• If multiple Code Schemes for one Category Scheme, information is duplicated
• Must hold information from DDIInstance and ResourcePackage somewhere
 – I used annotations on SDMX Comments element (not much use for anything else)
 – Really need annotations at SDMX outer element (Structure)
The Work

• Not all information from one standard has a natural correspondent in the other
 – aim to hold this information in “generic” places
 • Annotations in SDMX
 • OtherMaterial in DDI

• Some information has a direct correspondent but they are not compatible
 – IDs and URNs
The Future

• We will finish the mapping
 – and present it in DDI and SDMX forums

• We will use the mapping in practice
 – in process management work in National Statistical Offices

• We will look for more consistency and correspondence between SDMX and DDI
 – work to define a consistent Registry/Repository is underway
 – I will be looking for more cooperation and integration on metadata artefacts
Questions

- BryanM Fitzpatrick@Yahoo.CO.UK