Nanotechnology and Agricultural Trade

July 17, 2009

Steve Froggett, PhD
Scientific Advisor
U.S. Department of Agriculture
Office of Scientific & Technical Affairs
steve.froggett@fas.usda.gov
Summary

1. The use of nanotechnology in agriculture and forestry will likely have environmental benefits.

2. It’s critical to approach this promising technology in a rational manner (Not all nano is the same).

3. Non-Science based regulation of this technology could hurt innovation and trade without promoting health or safety.

4. Overly restrictive, non-science based measures may prevent or significantly limit all potential benefits; to farmers and the environment alike.
Potential Environmental Benefits

1. The use of nanotechnology in agriculture and forestry will likely have environmental benefits.

 – Enabling the “Green Economy”

 – Decreasing fossil fuel consumption

 – Increasing equipment life-span

 – Increase recycling capabilities
Agricultural Benefits

– Increasing farm sustainability while decreasing environmental impact.
 • Sensors in the fields enabling targeted, minimal application of nutrients, water and/or pesticides.

– Increasing global food security.
 • Decreasing input costs, increasing yields and decreasing post harvest loss.

– Post-harvest, non-food biomass.
 • Cellulosic nano crystals for biofuels

– Improving food safety.
 • ‘Smart’ packaging enabling less food waste
Forestry Benefits

– Increasing forest management sustainability while decreasing environmental impact.
 • Increasing markets for biomass, which promotes the health of the forest

– Paper products
 • Stronger, longer lasting, lighter products

– Biomass based building materials
 • Stronger longer lasting, replace petroleum based materials

– Enable better fire retardants and wood preservation
 • Less biomass needs to be harvested
Approach

2. It is important to approach this promising technology in a rational manner.

- Nano-scale materials have been around for awhile.

- Nanomaterials are not all equally hazardous.

- As with any new technology, we should ensure that regulatory approaches are risk-based and cost-effective.

- Scientists have an obligation to help dispel unfounded rumors about nano-related hazards.
Risk

3. Regulation that is not grounded in sound science could have harmful economic impacts without promoting health or safety.

 – Could disrupt trade and be used as a tool for protectionism.

 – May not increase levels of protection.

 – Could draw attention away from genuine risks and waste public funds.
Regulatory Approach

The United States’ current position is that, in general, *existing statutory authorities are adequate to address regulatory oversight* of nanotechnology and its applications in production agriculture (e.g. use of pesticides and fertilizers), food additives, and food packaging.
U.S. Regulatory Oversight of Agriculture and Forestry

- U.S. Food and Drug Administration
 - Federal Food, Drug, & Cosmetic (FFDCA)

- U.S. Environmental Protection Agency
 - Toxic Substances Control Act (TSCA)

- USDA - Animal and Plant Health Inspection Service
 - continues to review the science and reserves the possibility to exercise regulatory authority in the future, if necessary.
Other Countries Approaches to Nanotechnology Regulation

OECD countries:
- European Union, Japan, Canada, Korea and Australia & New Zealand

Non-OECD:
- China, India, Russia, Brazil and South Africa
Potential Trade Disruptions

4. Overly restrictive, non-science based measures may prevent or significantly limit all potential benefits; to farmers and the environment alike.

• Broad definition of ‘nanotechnology’ (size dependent)

• Nanotech as a process triggers regulatory oversight

• Mandatory product labeling

• List of approved nano particles implies others are hazardous without any evidence.
Summary

1. The use of nanotechnology in agriculture and forestry will likely have environmental benefits.

2. It’s critical to approach this promising technology in a rational manner (Not all nano is the same).

3. Non-Science based regulation of this technology could hurt innovation and trade without promoting health or safety.

4. Overly restrictive, non-science based measures may prevent or significantly limit all potential benefits; to farmers and the environment alike.