China’s Emerging Innovation Trajectory: Critical Role of Foreign R&D Activities

Dr. Denis Fred Simon
Levin Graduate Institute, SUNY
State University of New York
“OECD Innovation Study Launch”
Beijing, CHINA
August 28, 2007
1. The New Face of Global Competition in the 21st Century

- IPR Wars
- Technology Wars
- Patent Wars
- Standards Wars
- Innovation Wars
- Talent Wars

Global Competition
Globalization has changed the nature of innovation

• Key success element: harnessing and managing transborder innovation—new core competency (Bartlett and Ghoshal)

• Competitive firms are those that perform well across three dimensions
 – Ability to link and leverage knowledge, information, and expertise across borders
 – Ability to shift to integrated systems of operation and management...software is critical as the “glue”
 – Ability to be a technology leader: establishing the rules and standards of the game

• Moreover, successful companies must operate with a high degree of “simultaneity”-- process and product + service differentiation count in the end as much as (if not more than) costs management—*[necessary but not sufficient]*
2. Three Periods of China Investment Fever

Phase 1, 1979-6/4/89
- Jump in Quickly: Market of 1 Billion
- Tiananmen Incident

Phase 2, 1991-2001
- Normalization Of Business
- Asian Biz Crisis I & II

Phase 3, 2001-Present
- Globalization
- China Joins WTO

R&D
Channels of Access: China has built an extensive network for acquiring technology

- Bilateral S&T Agreements
- Overseas Students & Scholars
- Overseas Chinese Links
- Membership in Int'l S&T Bodies
- Foreign Technical Experts
- Foreign Direct Investment and R&D
- Defense Cooperation + Exchanges
- Technology Transfer Agreements
- Illicit Acquisitions
- Reverse Engineering
- International S&T Conferences

Taiwan
Changing Drivers of PRC Growth

- Low Cost Labor Drives Growth (1985)
- Low Cost IP Drives Growth (2005+)

Source: DeWoskin and Stevenson, April 2005.
3. The Supply-Side of the Talent Pool: A Talent Shortage??

New enrollment at regular institutions of higher education (1,000 persons)

Year

Average annual growth: 13.0%

Average annual growth: 28.9%

New enrollment in graduate education (1,000 persons)

Year

Average annual growth: 12.4%

Average annual growth: 24.0%
From Official Data to Reality: “Real” Size of China’s Eng Grad Pool

1.09 million
UG Engineering Graduates (2005)

Minus non 4 yr Grads
478,000
Minus Grad School-PRC
435,000
Minus For. School
326,000
Minus Low Quality
245,000
Minus Misc Mismatch

196,000
Minus Those Choosing Other Options

REAL #
196,000 +/-

Source: D. Simon and C. Cao, Talent—China’s Emerging Competitive Edge (Cambridge U Press, 2008)
Specific Reasons for S&E Shortage in China

• Not enough students trained with relevant skills and knowledge for the current and future job market: McKinsey only 10%

• Skills mismatch: labor shortage may be actually larger – companies have a specific demand for experience-based skills that universities can’t meet
 – More aggressive wage programs could reduce shortages

• Legacy of Cultural Revolution

• Particular areas of deficiency:
 – Lack of creativity
 – Uneasiness about taking initiative
 – Absence of an aptitude for risk-taking
 – Low tolerance for failure to support technological entrepreneurship and innovation
 – Absence of “soft skills”—management, communications, etc.
 – Limited international exposure and cross-cultural awareness
Reversing the Brain Drain…
….Catalyst or Internal Brain Drain?

![Graph showing the number of overseas students studying and returning over years from 1978 to 2004.](image)
3. The growth of MNC R&D centers is being driven by a confluence of global and local competitive factors

- **Pull Factors**: Capabilities + Policies (positive) + Economics
 - Gain access to under- and unemployed scientists & engineers, (including those from former third-line industries) as well as growing number of returnees
 - Size of China market and use of market “weighting” to set or enhance new global standards
 - Commitment of PRC govt to science and technology
 - Education policy—improve and expand training of S&Es
 - Commitment to the open door
 - Cost factors + global supply chain

- **Push Factors**: Demographics + Competition + Policies (negative)
 - Dynamics of global competition: innovation speed + capacity building
 - Market saturation
 - Tax policies
 - Visa policies
 - Salaries and benefit packages
 - Availability of technically trained people
4. Impact of Foreign R&D in China

• Foreign R&D in China as part of NIS is still a very new phenomenon—too early to measure full impact
• Policymakers need to strategize around “capture” options
• Clear tie between domestic R&D growth and foreign investment, e.g. focus on process innovation
• Contributions may be more intangible than tangible
 – Training—technical, methodology (design), teaming
 – Technology transfer—codified + uncodified know-how
 – Standards—best practices, industry standards, quality
 – Management—project mgt, business mgt, work environment
 – Networks and Access to Resources—knowledge networks
 – Spinoffs—new business ventures
 – Spillovers—assistance to vendors & suppliers…plus labor circulation/turnover—may be key vehicle for local benefit
 – Contribution to forming an environment supporting creativity
5. Whither Foreign R&D in China

- The largest unknowns regarding foreign R&D in China’s innovation system remain on the “software” side not the hardware or technology side of the equation
 - Skills and comfort levels re: managing in a fluid, fast changing environment
 - Skills and comfort levels re: managing technology across borders and cultures…in a fluid, fast changing environment
 - Comfort levels with respect to working outside of guanxi networks as well as ethnic networks
 - Ability to stimulate creativity in an environment where petty jealousies and ad hoc interventions often occur
 - Ability to absorb returnees and allow them to become “catalysts”
 - Ability to develop/educate managers who are flexible, adaptive, problem-solvers with a capacity for critical analysis and thinking across disciplines: where in the system does this happen?
 - Ability to grow a leadership contingency with the global outlook needed to compete effectively in China’s increasingly open economy

- MNCs need to pursue collaborative as well as pre-emptive strategies to harness emerging Chinese capabilities as part of new competitive paradigm—Intel’s Dalian project!!
Can China Achieve All Three Goals?

- Innovative Nation
- Harmonious Society
- Collaborative Economy
- Creativity
- Stability
- Openness