Publications


  • 29-July-2016

    English

    Test No. 421: Reproduction/Developmental Toxicity Screening Test

    This screening Test Guideline describes the effects of a test chemical on male and female reproductive performance. It has been updated with endocrine disruptor endpoints, in particular measure of anogenital distance and male nipple retention in pups and thyroid examination.

    The test substance is administered in graduated doses to several groups of males and females. Males should be dosed for a minimum of four weeks. Females should be dosed throughout the study, so approximately 63 days. Matings "one male to one female" should normally be used in this study. This Test Guideline is designed for use with the rat. It is recommended that each group be started with at least 10 animals of each sex. Generally, at least three test groups and a control group should be used. Dose levels may be based on information from acute toxicity tests or on results from repeated dose studies. The test substance is administered orally and daily. The results of this study include clinical observations, body weight and food/water consumption, oestrous cycle monitoring, offspring parameters observation/measurement, thyroid hormone measurement, as well as gross necropsy and histopathology. The findings of this toxicity study should be evaluated in terms of the observed effects, necropsy and microscopic findings. Because of the short period of treatment of the male, the histopathology of the testis and epididymus should be considered along with the fertility data, when assessing male reproductive effects.

  • 29-July-2016

    English

    Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test

    This screening Test Guideline describes the effects of a test chemical on male and female reproductive performance. It has been updated with endocrine disruptor endpoints, in particular measure of anogenital distance and male nipple retention in pups and thyroid examination.

    The test substance is administered in graduated doses to several groups of males and females. Males should be dosed for a minimum of four weeks. Females should be dosed throughout the study, so approximately 63 days. Matings "one male to one female" should normally be used in this study. This Test Guideline is designed for use with the rat. It is recommended that each group be started with at least 10 animals of each sex. Generally, at least three test groups and a control group should be used. Dose levels may be based on information from acute toxicity tests or on results from repeated dose studies. The test substance is administered orally and daily. The results of this study include clinical observations, body weight and food/water consumption, oestrous cycle monitoring, offspring parameters observation/measurement, thyroid hormone measurement, as well as gross necropsy and histopathology. The findings of this toxicity study should be evaluated in terms of the observed effects, necropsy and microscopic findings. Because of the short period of treatment of the male, the histopathology of the testis and epididymus should be considered along with the fertility data, when assessing male reproductive effects.

  • 29-July-2016

    English

    Test No. 473: In Vitro Mammalian Chromosomal Aberration Test

    The purpose of the in vitro chromosome aberration test is to identify agents that cause structural chromosome aberrations in cultured mammalian somatic cells. Structural aberrations may be of two types: chromosome or chromatid.

    The in vitro chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. Cell cultures are exposed to the test substance (liquid or solid) both with and without metabolic activation during about 1.5 normal cell cycle lengths. At least three analysable concentrations of the test substance should be used. At each concentration duplicate cultures should normally be used. At predetermined intervals after exposure of cell cultures to the test substance, the cells are treated with a metaphase-arresting substance, harvested, stained. Metaphase cells are analysed microscopically for the presence of chromosome aberrations.

  • 29-July-2016

    English

    Test No. 476: In Vitro Mammalian Cell Gene Mutation Tests using the Hprt and xprt genes

    The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced by chemical substances. In this test, the used genetic endpoints measure mutation at hypoxanthine-guanine phosphoribosyl transferase (HPRT), and at a transgene of xanthineguanine phosphoribosyl transferase (XPRT). The HPRT and XPRT mutation tests detect different spectra of genetic events.

    Cells in suspension or monolayer culture are exposed to, at least four analysable concentrations of the test substance, both with and without metabolic activation, for a suitable period of time. They are subcultured to determine cytotoxicity and to allow phenotypic expression prior to mutant selection. Cytotoxicity is usually determined by measuring the relative cloning efficiency (survival) or relative total growth of the cultures after the treatment period. The treated cultures are maintained in growth medium for a sufficient period of time, characteristic of each selected locus and cell type, to allow near-optimal phenotypic expression of induced mutations. Mutant frequency is determined by seeding known numbers of cells in medium containing the selective agent to detect mutant cells, and in medium without selective agent to determine the cloning efficiency (viability). After a suitable incubation time, colonies are counted.

  • 29-July-2016

    English

    Test No. 489: In Vivo Mammalian Alkaline Comet Assay

    The in vivo alkaline single cell gel electrophoresis assay, also called alkaline Comet Assay is a method measuring DNA strand breaks in eukaryotic cells.

    Each treated group is composed of a minimum of 5 animals of one sex (or of each sex as appropriate). A positive and a vehicle control group are also used. Administration of the treatment consists of daily doses over duration of 2 days or more, ensuring the test chemical reaches the target tissue which can be the liver, the kidney or other tissues if justified.

    Tissues of interest are dissected and single cells/nuclei suspensions are prepared and embedded in agarose on slides. Cells/nuclei are treated with lysis buffer to remove cellular and/or nuclear membranes. The nuclear DNA in the agar is then subjected to electrophoresis at high pH. This results in structures resembling comets which by using suitable fluorescent stain, can be observed by fluorescent microscopy. Based on their size DNA fragments migrate away from the head to the tail, and the intensity of the comet tail relative to the total intensity (head plus tail) reflects the amount of DNA breakage.

  • 29-July-2016

    English

    Financial Management of Flood Risk

    Disasters present a broad range of human, social, financial, economic and environmental impacts, with potentially long-lasting, multi-generational effects. The financial management of these impacts is a key challenge for individuals and governments in developed and developing countries. G20 Finance Ministers and Central Bank Governors and APEC Finance Ministers have recognised the importance and priority of disaster risk management strategies and, in particular, disaster risk assessment and risk financing. The OECD has supported the development of strategies for the financial management of natural and man-made disaster risks, under the guidance of the OECD High-Level Advisory Board on Financial Management of Large-scale Catastrophes and the OECD Insurance and Private Pensions Committee. This work has included the elaboration of an OECD Recommendation on Good Practices for Mitigating and Financing Catastrophic Risks and a draft Recommendation on Disaster Risk Financing Strategies  The Financial Management of Flood Risk extends this work by applying the lessons from the OECD’s analysis of disaster risk financing practices and the development of its guidance to the specific case of floods.

  • 29-July-2016

    English

    Test No. 232: Collembolan Reproduction Test in Soil

    This Test Guideline is designed for assessing the effects of chemicals on the reproduction of collembolans in soil. The parthenogenetic Folsomia candida is the recommended species for use, but an alternative species such as sexually reproducing Folsomia fimetaria could also be used if they meet the validity criteria. This Guideline can be used for testing both water soluble and insoluble substances but it is not applicable to volatile ones. The Guideline aims to determine toxic effects of the test substance on adult mortality and reproductive output expressed as LCx and ECx respectively, or NOEC/LOEC value. The number of treatment concentrations varies depending on endpoints to be determined. For a combined approach to examine both the NOEC/LOEC and ECx, eight concentrations in a geometric series with four replicates for each concentration as well as eight control replicates should be used. In each test vessel, 10 juveniles F. candida (or 10 males and 10 females adults F. fimetaria) should be placed on 30 g of modified OECD artificial soil using a 5 % organic matter content. The duration of a definitive reproduction test is 4 weeks for F. candida or 3 weeks for F. fimetaria.

  • 29-July-2016

    English

    Regulatory Policy in Peru - Assembling the Framework for Regulatory Quality

    Regulation is one of the key levers of government intervention. When properly designed, it can help achieve environmental and social objectives, and contribute to economic growth. The OECD Review of Regulatory Policy of Peru assesses the policies, institutions, and tools employed by the Peruvian government to design, implement and enforce high-quality regulations. These include administrative simplification, evaluation of regulations, public consultation, and the governance of independent regulators, amongst others. The review provides policy recommendations based on best international practices and peer assessment to strengthen the government’s capacity to manage regulatory policy.

  • 29-July-2016

    English

    Test No. 475: Mammalian Bone Marrow Chromosomal Aberration Test

    The mammalian in vivo chromosome aberration test is used for the detection of structural chromosome aberrations induced by test compounds in bone marrow cells of animals, usually rodents (rats, mice and Chinese hamsters). Structural chromosome aberrations may be of two types: chromosome or chromatid.

    Animals are exposed to the test substance (liquid or solid) by an appropriate route of exposure (usually by gavage using a stomach tube or a suitable intubation cannula, or by intraperitoneal injection) and are sacrificed at appropriate times after treatment. Prior to sacrifice, animals are treated with a metaphase-arresting agent. Chromosome preparations are then made from the bone marrow cells and stained, and metaphase cells are analysed for chromosome aberrations. Each treated and control group must include at least 5 analysable animals per sex. The limit dose is 2000 mg/kg/body weight/day for treatment up to 14 days, and 1000 mg/kg/body weight/day for treatment longer than 14 days.

  • 29-July-2016

    English

    Test No. 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene

    The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced by chemical substances. This TG includes two distinct in vitro mammalian gene mutation assays requiring two specific tk heterozygous cells lines: L5178Y tk+/-3.7.2C cells for the mouse lymphoma assay (MLA) and TK6 tk+/- cells for the TK6 assay. Genetic events detected using the tk locus include both gene mutations and chromosomal events.

    Cells in suspension or monolayer culture are exposed to, at least four analysable concentrations of the test substance, both with and without metabolic activation, for a suitable period of time. They are subcultured to determine cytotoxicity and to allow phenotypic expression prior to mutant selection. Cytotoxicity is usually determined by measuring the relative cloning efficiency (survival) or relative total growth of the cultures after the treatment period. The treated cultures are maintained in growth medium for a sufficient period of time, characteristic of each selected locus and cell type, to allow near-optimal phenotypic expression of induced mutations. Mutant frequency is determined by seeding known numbers of cells in medium containing the selective agent to detect mutant cells, and in medium without selective agent to determine the cloning efficiency (viability). After a suitable incubation time, colonies are counted.

  • << < 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 > >>