ENVIRONMENT DIRECTORATE
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY

REPORT OF THE PILOT EXERCISE ON CLASSIFICATIONS FOR SELECTED CHEMICALS ASSESSED AT COCAM

ANNEX 3: COLLATED CLASSIFICATION PROPOSALS FOR COCAM 4 AND COCAM 5

Series on Testing and Assessment
No. 210

JT03362685

Complete document available on OLIS in its original format
This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.
REPORT OF THE PILOT EXERCISE ON CLASSIFICATIONS FOR SELECTED CHEMICALS ASSESSED AT COCAM

ANNEX 3: COLLATED CLASSIFICATION PROPOSALS FOR COCAM 4 AND COCAM 5
About the OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 34 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in eleven different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides; Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; and Safety of Manufactured Nanomaterials. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (http://www.oecd.org/chemicalsafety/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organisations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This annex lists all of the submissions made by participating member countries and BIAC to the pilot exercise to suggest classifications according to the Globally Harmonised System (GHS) for four chemicals assessed in the OECD Cooperative Chemicals Assessment Programme (CoCAP). Individual submissions, given here as they were made, are ordered firstly by phase (phase 1 = CoCAM 4; phase 2 = CoCAM 5) and, within each phase, by chemical, in the same order as the chemicals and submitting countries are covered in the report, as shown in the table of contents below.

CoCAM 4 – Phase One of the Exercise

Classifications for 2,4-Dimethylaniline (CAS. 95-68-1) ... 8

Received classification for 2,4-Dimethylaniline (CAS. 95-68-1) ... 8
RIVM classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1) ... 9
CH classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1) .. 12
IT classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1) .. 17
Russian Federation classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1) 24
BIAC (JCIA) classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1) 37
JP Classification for the Environment: proposal for 2,4-Dimethylaniline (CAS. 95-68-1) 27

Classifications for Nonane (CAS. 111-84-2) .. 28

Received classification for Nonane (CAS. 111-84-2) ... 28
RIVM-NL classification proposal for Nonane (CAS. 111-84-2) .. 29
CH classification proposal for Nonane (CAS. 111-84-2) .. 35
IT classification proposal for Nonane (CAS. 111-84-2) .. 39
Russian Federation classification proposal for Nonane (CAS. 111-84-2) 47
BIAC (JCIA) classification proposal for Nonane (CAS. 111-84-2) ... 52
JP Classification for the Environment: proposal for Nonane (CAS. 111-84-2) 53

Classifications for 2NA EDTA (CAS. 139-33-3) ... 53

Received classification for 2NA EDTA (CAS. 139-33-3) ... 53
RIVM-NL classification proposal for Disodium EDTA (CAS. 139-33-3) ... 54
CH classification proposal for Disodium EDTA (CAS. 139-33-3) .. 56
IT classification proposal for Disodium EDTA (CAS. 139-33-3) .. 62
Russian Federation classification proposal for Disodium EDTA (CAS. 139-33-3) 70
BIAC (JCIA) classification proposal for Disodium EDTA (CAS. 139-33-3) 73
JP Classification for the Environment: proposal for Disodium EDTA (CAS. 139-33-3) 74

Classification for Titanium Dioxide (CAS. 13463-67-7) ... 74

Received classification for Titanium Dioxide (CAS. 13463-67-7) .. 74
BIAC (JCIA) classification proposal for Titanium Dioxide (CAS. 13463-67-7) 76

CoCAM 5 – Phase Two of the Exercise

2-Vinylpyridine (2-VP) (CAS 100-69-6) ... 77

The Netherlands (RIVM) ... 77
Switzerland (Human Health only) ... 81
Russian Federation ... 84
Denmark ... 88
France .. 94
Japan (Human Health only) .. 96

2,4-Dimethylaniline (CAS 95-68-1) ... 98

The Netherlands (RIVM) .. 98
Switzerland (Human Health only) .. 102
Russian Federation .. 102
Denmark ... 105
France ... 109
Japan (Human Health only) .. 110
Nonane (CAS 111-84-2) .. 110
The Netherlands .. 110
Switzerland ... 111
Russian Federation .. 112
Denmark ... 113
France ... 114
Japan ... 114
CoCAM 4 – Phase One of the Exercise

Classifications for 2,4-Dimethylaniline (CAS. 95-68-1)

Notified classification for 2,4-Dimethylaniline (CAS. 95-68-1)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHACHEM 1</td>
<td></td>
<td>Acute Tox. 4 (o)(d)</td>
<td></td>
<td>eye Irrit.</td>
<td>STOT RE 1</td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute tox. 2 (i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 2</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 3</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 4</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 5 (n)</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 6 (n)</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 7</td>
<td></td>
<td>Acute tox. 4 (o)</td>
<td>Skin Irrit.</td>
<td>eye Irrit.</td>
<td>STOT RE 2</td>
<td>Muta. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute tox. 3 (d)(i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 8</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 9 (n)</td>
<td></td>
<td>Acute tox. 3 (o)(d)(i)</td>
<td></td>
<td></td>
<td>STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHS-J</td>
<td></td>
<td>Acute tox. 4 (o)(i)</td>
<td>eye Irrit.</td>
<td>STOT SE 1 (b)</td>
<td>STOT RE 1 (b)</td>
<td>Muta. 2</td>
<td>Carc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HSNO CCID</td>
<td></td>
<td>6.1E (o)</td>
<td></td>
<td>6.5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.1B (fish)</td>
<td>9.1B (fish)</td>
</tr>
</tbody>
</table>

Note:
(i): inhalation (o): oral (d): dermal (b): blood system
RIVM-NL classification proposal for 2,4-Dimethylaniline (CAS. 95-68-1)

Key Studies and Justification for proposed draft classification

Acute toxicity
Key information: In an experiment for the single oral dose toxicity of dimethylanilines in rats and mice, the following LD₅₀ values (in mg/kg bw) were determined: 2,4-dimethylaniline: rats 470, mice 250. No reliable information is available for the dermal route, and no information is available for the inhalation route regarding acute toxicity.

Conclusion: Acute Tox 3 (oral) based on LD₅₀ of 250 mg/kg in mice. Although the rat is the preferred species, the mouse data are valid and give rise to more conservative classification. Classification not possible for the dermal and inhalation routes due to lack of data.

Corrosion/irritation skin
Key information: 2,4-Dimethylaniline has a weak irritant effect on the skin of rabbits.

Conclusion: Classification is not possible due to lack of details on scoring, observation time, number of rabbits etc.

Corrosion/irritation eye
Key information: 2,4-Dimethylaniline has an irritant effects on the eyes of rabbits.

Conclusion: Classification is not possible due to lack of details on scoring, observation time, number of rabbits etc.

Sensitisation (skin & respiratory)
Key information: No information was available concerning skin sensitisation in animals for any of the dimethylaniline isomers.

Conclusion: Classification not possible due to lack of data.
ENV/JM/MONO(2014)31/ANN

STOT-SE
Key information: None. No information on the acute studies or the first treatments in the repeated dose studies.
Conclusion: No classification possible due to lack of information/details

STOT-RE
Key information: The most general target for dimethylanilines was the blood. Increased methemoglobin resulted in hemolysis, reduction of hemoglobin and erythrocyte concentration and cyanosis at sufficiently high doses of ≥ 50 mg/kg bw/day for 2,6-, 2,3-, 2,5-, 3,4- and 3,5-dimethylanilines while hematological changes were observed at 10 mg/kg bw/day for 2,4-dimethylaniline (OECD TG 422 and 407).
Hemosiderin deposition in the liver, kidney and spleen were similarly observed as a secondary effect to the loss of functional erythrocytes. Extramedullary haematopoiesis, increased size of erythrocytes and swelling of the spleen occurred as compensatory actions. Additionally, the hemolysis led to changes in other blood parameters like WBC count, or increase of reticulocytes (OECD TG 422 and 407). Also, high urine volumes along with a decrease of the specific density, reduced pH and reduction of urinary levels of protein and ketone bodies generally occurred in treated with any category substances, generally at high doses (TG 422 and 407).
Effects on the kidney such as papillary necrosis, dilatation of renal tubules, and/or hyaline droplets were observed at 10 mg/kg bw/day in animals treated with 2,4-dimethylaniline. 2,4-Dimethylaniline also showed stronger renal effects comparing to 2,6-dimethylaniline dosing (6-month feeding study).
There were increased relative and/or absolute weights of the liver (enlarged liver) or hypertrophy at 10 mg/kg bw/day in animal treated with 2,4-dimethylaniline.
Conclusion: It is difficult to conclude on the relevant classification for STOT-RE, since no details are available on the quantity or severity of the effects, and, for most effects, at which dose and which duration they are observed. However, based on the effects on kidney (papillary necrosis, dilatation of renal tubules, high urine volume, reduced pH, protein and ketone bodies), but, depending on the severity probably also based on the effects on blood (increased methemoglobin, hemolysis, decreased Hb and erythrocyte conc and cyanosis), and liver (absolute weight, hypertrophy) in rats at 10 mg/kg in a 28 day study following OECD TG 407 classification as STOT RE 1 would be justified (guidance value STOT-RE1 for 28 day study is <30 mg/kg bw/day).

Mutagenicity
Key information: In bacterial reverse mutation assays with multiple strain of S. typhimurium and E. coli (OECD 471), 2,4-dimethylaniline were found to be mutagenic in TA100. One bacterial reverse mutation study showed positive results on 2,4-dimethylanilines with rat or hamster S9 mix. In in vitro chromosome aberration studies (TG 473), 2,4-dimethylaniline showed chromosomal aberrations. In in vivo gene mutation assays with Muta™ mice (nasal tissue, bone marrow and liver), 2,5- and 2,6-dimethylanilines increased mutation frequency of lacZ and cII genes in the nasal tissue, and 2,5-dimethylaniline also increased mutation frequency of lacZ gene in the bone marrow. On the other hand, 3,5-dimethylaniline showed a negative result in the in vivo gene mutation assay. In in vivo micronucleus assays, all six isomers of dimethylanilines was non-clastogenic in the bone marrow and 2,5-, 2,6- or 3,5-dimethylaniline in the peripheral blood in mice. 2,6-Dimethylaniline did not affect DNA repair in a DNA repair host-mediated assay or an unscheduled DNA synthesis assay in vivo. In SCG
(Comet) assays in vivo, all six isomers of dimethylanilines induced DNA damage in the bone marrow (only for 3,4- and 3,5-dimethylanilines), lung, kidney or liver in mice.

Conclusion: Muta 2 based on positive comet assay in vivo, positive bacterial reverse mutation assay and positive in vitro chromosomal aberration study for 2,4-dimethylaniline although micronucleus assay was negative. Supporting data comes from structural analogs 2,5- and 2,6 dimethylaniline which are positive in in vivo gene mutation assay with MutaTM mice.

Carcinogenicity

Key information: A carcinogenicity study demonstrated that 2,4-dimethylaniline induced pulmonary tumors in female mice. In addition, 2,4-dimethylaniline is mutagenic.

Conclusion: Classification not possible due to lack of detail.

It is possible or even likely that 2,4-dimethylaniline is carcinogenic based on pulmonary tumors in female mice. However, all information on tumor incidence, rate, historical controls, mechanism of action etc that would substantiate this statement and allow assignment in a carcinogenicity sub-category is missing. Supporting evidence for carcinogenicity comes from the analogs 2,6-dimethylaniline where increased tumor incidence in nasal adenocarcinomas and carcinomas, papillary adenomas and rhabdomyosarcomas, subcutaneous fibromas and fibrosarcomas were observed after treatment, and 2,5-dimethylaniline which lead to increased subcutaneous fibromas and fibrosarcomas and vascular tumors after administration.

Reproductive toxicity

Key information: Information on reproductive toxicity in animals is only available for 2,6-dimethylaniline. No data for 2,4-dimethylaniline

Conclusion: No classification is possible due to lack of data.

Reproductive tox data are available for the structural analog 2,6-dimethylaniline (OECD 407) where reproductive toxicity effects were seen at doses with maternal toxicity. Although the metabolic profile is similar for those two isomers, 2,4-dimethylaniline exhibits systemic toxicity at doses lower than those for 2,6-dimethylaniline. It is not known how or whether this will affect the reproductive toxicity of 2,4-dimethylaniline.

Aspiration hazard

Key study: None available

Conclusion: No classification possible due to lack of data

Environment

Key information: All category members are not expected to undergo hydrolysis in the environment due to the lack of hydrolysable functional groups. Inherent biodegradation test [OECD TG 302C] for 2,4-dimethylaniline showed 0% biodegradation after two weeks. Ready biodegradation tests [OECD TG 301C] with the analogs 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline and 3,5-dimethylaniline resulted in 3, 1, 0 and 3 % biodegradation after 28 days, respectively => Not rapidly degradable.

2,4-Dimethylaniline is not expected to bioaccumulate in the aquatic environment based on a measured bioconcentration factor of <10. These results show a low potential for bioaccumulation of dimethylanilines for aquatic organisms. => Not bioaccumulative
Acute fish: No reliable studies were identified. The predicted 96-hour LC50, based on read across from 3,5-dimethylaniline = 33.9 mg/L. The predicted 96-hour LC50, based on ECOSAR (v 1.11) = 37.2 mg/L.

Acute invertebrate \([Daphnia magna]\): 48 h EC50 = 9.9 mg/L [DIN38412, static]

Acute algae: No reliable studies were identified. The predicted 72-hour EC50, based on read across from 3,4-dimethylaniline = 8.59 mg/L; The predicted 96-hour EC50, based on ECOSAR (v 1.11) = 37.0mg/L.

Chronic fish: No studies available and not read across candidates available.

Chronic invertebrate: No reliable studies were identified. The predicted 21 d NOEC, based on read across from 3,4-dimethylaniline = 0.0095 mg/L.

Chronic algae: No reliable studies were identified. The predicted 72 h NOEC, based on read across from 2,5-dimethylaniline = 2.03 mg/L.

Conclusion aquatic acute: Aquatic Acute 2 based on lowest L(E)C50 of 9.9 mg/l in invertebrates.

Conclusion aquatic chronic: Based on the data for the substance self, the classification is Aquatic Chronic 2 based on surrogate chronic toxicity of 9.9 mg/l in invertebrates in combination with not rapid degradability due to the absence of aquatic chronic toxicity data. Using available chronic aquatic toxicity data for the available analogs, the classification should be Aquatic Chronic 1 based on not rapid degradability and a NOEC in invertebrates of 0.0095, 0.096, 0.03 and 0.1 mg/L in invertebrates using read-across from 3,4-, 2,5-, 3,5-, and 2,3-dimethylaniline although 2,6-dimethylaniline had a NOEC in invertebrates of 2.23 mg/L.

Detailed justification for the suitability of the read-across is missing and the justification given in the beginning of the SIAP is poor which lowers the confidence in the read-across results for chronic aquatic toxicity.

\(CH\) classification proposal for 2,4-Dimethylaniline (CAS 95-68-1)

General Comment
It would be helpful to clearly indicate which is the key study and which are supporting studies and to find a table with the data that is important for classification at the end of the human health part of the SIAP.

Acute Toxicity
Oral
Cat 3
based on LD50 value in mice 250 mg/kg bw
Classification based on the information in the SIAP is possible.

Inhalation
Not classified
No valid data available which allows classification.
Irritation
Skin
Not classified
Classification is not possible since relevant data (Scoring points) is missing. This data is also not found in the SIAR and the IUCLID file.

Eye
Not classified
Classification is not possible since relevant data (Scoring points) is missing. This data is also not found in the SIAR and the IUCLID file.

Sensitization
Not classified
No data available for classification

Germ cell mutagenicity
Cat 2
based on the mutagenicity in vitro (OECD 471, 473) and in vivo (SCG (Comet) Assay

Carcinogenicity
Cat 2
based on the induction of pulmonary tumors in female mice and the in vivo genotoxic activity

Reproductive toxicity
Not classified
Data is conclusive. However, it is not sufficient for classification.

STOT SE
Not classified
No data available and therefore classification is not possible.

STOT RE
Not classified
Although adverse effects were observed at low concentrations (NOAEL of 2 mg/kg bw/day due to effects on the blood, liver and kidneys), details on the severity of this effects for classification into Cat. 1 are missing. Further investigations are needed to determine the relevance of the observed adverse effects.
Therefore, the data is not sufficient for classification into Cat.1.
ENV/JM/MONO(2014)31/ANN

Environmental Hazards

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Classification</th>
<th>hazard statement</th>
<th>Rational for the classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Hazardous to the aquatic environment (acute)</td>
<td>Category 2</td>
<td>H401 Toxic to aquatic life</td>
<td>Classification is based primarily on acute toxicity to the most sensitive species Daphnia magna (48h-EC50 9.9 mg/L).</td>
</tr>
<tr>
<td>11 Hazardous to the aquatic environment (chronic)</td>
<td>Category 2</td>
<td>H411 Toxic to aquatic life with long lasting effects</td>
<td>Classification is based on acute toxicity data for Daphnia magna (see above) and the fact, that the substance is not readily biodegradable. The conclusion on the absence of rapid biodegradation is based on read-across of ready-biodegradation-tests results for four structural analoges 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline and 3,5-dimethylaniline.</td>
</tr>
</tbody>
</table>

Key studies used for classification:

Water solubility
Calculation by WSKOW (version 1.41a) with melting point of -14.3 °C and log Kow of 1.68
Result (calculated): 6.1 g/L at 25 °C
Reference: OECD SIDS dossier for the Dimethylaniline Category, submitted by Japan for CoCAM-3

Partition coefficient octanol-water
OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method)
Result: log Kow 2.02 at 23°C, pH=8
Reference: ECHA, REACH registration dossier for CAS 2,4 xylidine, robust study summary based on study report (Exp Key Partition coefficient.001, report date: 2008-03-13); http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d86c937-6ea4-4d7f-e044-00144f67d249/AGGR-0a0f02a1-e7cd-4788-8e70-b1796e6ebd0_DISS-9d86c937-6ea4-4d7f-e044-00144f67d249.html#AGGR-0a0f02a1-e7cd-4788-8e70-b1796e6ebd0

Biodegradation
Similar to OECD TG 302 B (Inherent biodegradability: Zahn-Wellens/EMPA Test); test duration: 16d; deviations from standard test conditions: only municipal wastewater sludge is used and the concentrations of the test substances and sludge were lower; reliability: 2 (valid with restrictions)
Result (measured): DOC removal: 14% (3h), 21% (3d), 74% (14d)
Conclusion: 2,4-Dimethylaniline is inherently biodegradable
Bioaccumulation

Test species: *Cyprinus carpio*

OECD TG 305 (Bioconcentration: Flow-through Fish Test); test (uptake) duration: 6 weeks; test concentrations: 0.1 mg/L and 1.0 mg/L (nominal), 0.0874-0.0958 and 0.859-0.909 (measured, 1d-6wk); reliability: 2 (valid with restrictions)

Results: BCF 4.1-4.3 (0.89 mg/L), BCF <10 (0.092 mg/L)

Conclusion: BCF <10 (low potential for bioconcentration)

Acute (short-term) aquatic toxicity

Fish

Test substance: CAS 108-69-0 3,5-Dimethylaniline

Test species: *Oryzias latipes*

OECD TG 203, performed under GLP, exposure: 96h, semi-static conditions, concentration: ; reliability: 1 (reliable without restriction)

Result: 96h-LC50 33.9 mg/L (measured)

Reference: EA (Environmental Agency), Japan (1998b) Final report of Fish (Oryzias latipes), Prolonged Toxicity Test: 14-Day Study of 3,5-Dimethylaniline, Study No. 7B804G, conducted by Mitsubishi Chemical Safety Institute Ltd.

Remark: This study was used for read-across for acute toxicity for fish because it is the lowest measured data for a structurally close analogue.

Invertebrates

Test species: *Daphnia magna*

DIN 38412, Part II (Daphnia short-time test), exposure: 48h, static conditions; concentration: The concentration steps of the test solution were selected so as to give 3-4 EC values in a range between EC0 and EC100, of which at least one value was below and one above EC50.; reliability: 2 (valid with restrictions)

Result: 48h-EC50 9.9 mg/L (95%CL: 5.6-17 mg/L)

Algae

Test species: *Desmodesmus subspicatus*

OECD TG 201 (Alga, Growth Inhibition Test), performed under GLP, exposure: 72h, static conditions, concentrations: 6.25, 12.5, 25, 50, 100 mg/L; reliability: 1 (reliable without restriction)

Results: 72h-ErC50 28.6 (27.5 – 29.9) mg/L (growth rate, nominal); 72h-EyC50 15.5 (14.4 – 16.8) (yield, nominal)

Reference: ECHA, REACH registration dossier for CAS 2,4 xylidine, robust study summary based on study report (report date: 2010-07-04); http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d86c937-6ea4-4d7f-e044-00144f67d249/AGGR-fa6d9cb4-9fbd-4011-8a1f-75bd60576a15_DISS-9d86c937-6ea4-4d7f-e044-00144f67d249.html#AGGR-fa6d9cb4-9fbd-4011-8a1f-75bd60576a15
Chronic (long-term) aquatic toxicity
No reliable data is available for 2,4-Dimethylaniline

IT classification proposal for 2,4-Dimethylaniline (CAS 95-68-1)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data</td>
<td>Acute Tox 3, H301; Acute Tox 4, H332</td>
<td>No data</td>
<td>Eye Irrit 2B, H320</td>
<td>No data</td>
<td>INCONCLUSIVE</td>
<td>STOT RE 2, H373</td>
<td>Muta. 2, H314</td>
<td>INCONCLUSIVE</td>
<td>No data</td>
<td>Acute Aquatic 2, H401</td>
<td>Chronic Aquatic 1, H410</td>
<td></td>
</tr>
</tbody>
</table>

Mammalian toxicity endpoints

<table>
<thead>
<tr>
<th>CAS: 95-68-1</th>
<th>Chemical name: 2,4-Dimethylaniline</th>
</tr>
</thead>
</table>

Organism
CF-1 mouse Male
Sprague-Dawley rat Male

<table>
<thead>
<tr>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
</table>
| Method: T03-03: Single oral dose toxicity was determined in which the LD50 and its 95% confidence limits were estimated by the moving average. | LD_{50} = 250 mg/kg/bw
LD_{50} = 470 mg/kg bw | Vernot et al. (1977) in the SIAR | Acute Tox 3, H301 |

Mouse LD_{50} = 250 mg/kg/bw was chosen as it is lower than rat LD50 even if rat is the preferred species for oral acute toxicity tests. According to the rat value the resulting classification should have been Acute Tox 4, H302.
<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wistar rat male/female</td>
<td>No specified</td>
<td>$\text{LC}_{50} = 1.53,\text{mg/l}$ (approx. 306 ppm)</td>
<td>HRC 1988a (not published) in BUA161 report 1994 (IUCLID Data Set)</td>
<td>Acute Tox 4, H332</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 hour</td>
<td></td>
<td>This data not included in SIDS Initial Assessment Profile and SIAR. Derived from IUCLID</td>
</tr>
<tr>
<td>rabbit</td>
<td>No data</td>
<td>$\text{LD}_{50} = 3,300,\text{mg/kg}$ (DFGOT vol.19 (1998)).</td>
<td>GHS Classification Guidance for the Japanese Government (Sep 5, 2008 version)</td>
<td>Acute Tox 5, H313</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This data not included in SIDS Initial Assessment Profile, SIAR and IUCLID. As for CLP also the Japanese system doesn’t take the category 5.</td>
</tr>
<tr>
<td>New Zealand White rabbit</td>
<td>OECD Guideline 404 (Acute Dermal Irritation / Corrosion)</td>
<td>White New Zealand rabbits caused slight erythema in 2/3 animals 24 hours after removing the patch following semi-occlusive application of undiluted chemicals for 4 hours, but effects were reversible.</td>
<td>Hofmann and Weigand 1986 in the SIAR</td>
<td>Not Classified</td>
</tr>
</tbody>
</table>
Corrosive/irritant eyes

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>white New Zealand rabbits</td>
<td>OECD Guideline 405 (Acute Eye Irritation / Corrosion)</td>
<td>In two test of eye irritation white New Zealand rabbits caused swelling and redness of the conjunctiva, iritis and clouding of the cornea after instillation. All irritation symptoms were reversible 7 days after application.</td>
<td>Hofmann and Weigand 1986</td>
<td>Eye Irrit 2B, H320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The BUA report says that: “according to guideline 83/467/EEC the product was classified as an irritant.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As scores are not reported we couldn’t check the adequacy of the resulting classification as Eye Irrit 2B.</td>
</tr>
</tbody>
</table>

Sensitizer Skin and respiratory tract

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

Gene mutation

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD TG 471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Hamster Lung cells (CHL/IU) with and without rat liver S9</td>
<td>Chromosome aberration test OECD TG 473</td>
<td>Clastogenic, with S9 mix</td>
<td>NITE (2002)</td>
<td></td>
</tr>
</tbody>
</table>
Comet assay
Mouse (ddY) Males
Positive (lung, kidney, liver)
Hayashi et al., 2000: unpublished data

Single Cell Gel Electrophoresis (SCG) (Comet) Assay
Mouse (B6C3F1) Males
Positive (liver)
Przybojewska (1999)

In vivo negative, but a possibility that this isomer shows in vivo genotoxic potential cannot be ruled out because it induced DNA damage in various tissues in vivo (SIAR)

Carcinogenicity				
---	---	---	---	
Organism	Methods	Data	Reference	GHS classification
Sprague-Dawley rat male	No specified	After 2 years, a total of 39% of the rats developed subcutaneous fibromas and fibrosarcomas and hepatomas.	Russfield et al., 1973, cited in BUA 161	Inconclusive

Reproductive/Developmental toxicity				
---	---	---	---	
Organism	Methods	Data	Reference	GHS classification
No data				

Single dose toxicity				
---	---	---	---	
Organism	Methods	Data	Reference	Classificazione GHS
No data	No data	For animals, there is a description of "Hyperpnea was seen." in 4 hours inhalation exposure test employing rats	GHS Classification Guidance for the Japanese Government (Sep 5, 2008)	INCONCLUSIVE

Adopting the read across with 2,6 DMA for which the EU harmonized classification is available (carc cat 2), Carc. 2, H351 could be applied to all the members of the category.

classified into the Category 2 (DFGOT vol.19 (1998)) in Germany DFG.

• group 3 ("Not classified")according to IARC Suppl.7 (1987)
(DFGOT vol.19 (1998)), and there is a description of "Methemoglobin was produced about 1 hour and a half after administration" in the oral administration test where the lethal dose in rats were calculated (DFGOT vol.19 (1998)). All these symptoms were seen within the range of the guidance value of Category 1. caused methemoglobinemia on humans." is described in DFGOT vol.19 (1998). As mentioned above, it was classified into Category 1 (blood systems). In addition, in ICSC (2007), "The high concentration exposure may cause lowering of consciousness. The high concentration exposure may produce methemoglobin."
These effects may occur backwardly. Although there is a description of "Medical follow up is needed, the details of doses are unknown."

<table>
<thead>
<tr>
<th>Repeated dose toxicity</th>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C57: CD(SD) rats</td>
<td>OECD 407</td>
<td>50 mg/kg bw/day in females Effects: decreased hemoglobin</td>
<td>NITE, 2002</td>
<td>STOT RE 2, H373</td>
</tr>
<tr>
<td></td>
<td>Osborne-Mendel rats</td>
<td>No specified</td>
<td>Supporting study 375 ppm (18.75 mg/kg bw/day) oral (6 moths) Effects on the kidneys and liver</td>
<td>Lindstrom et al, 1963</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspiration Toxicity</th>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

Environmental toxicity endpoints

<table>
<thead>
<tr>
<th>Acute toxicity</th>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>RA con 3,5 DMA</td>
<td>EC50 [mg/L]96h= 33,9</td>
<td>RA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECOSAR</td>
<td>EC50 [mg/L]96h= 37,2</td>
<td>ECOSAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>DIN38412</td>
<td>EC50 [mg/L]= 9,9</td>
<td>Kühn et al.,</td>
<td>Acute Aquatic 2, The classification is based on the lowest</td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Methods</td>
<td>Data</td>
<td>Reference</td>
<td>GHS classification</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>RA con 3,4 DMA</td>
<td>NOEC [mg/L] = 0,0095</td>
<td>RA</td>
<td>Chronic Aquatic 1, H410</td>
<td>M=10</td>
</tr>
<tr>
<td>Alghe</td>
<td>RA con 3,4 DMA</td>
<td>NOEC [mg/L] = 2</td>
<td>RA</td>
<td>(Chronic Aquatic 2, H411)</td>
<td>The CLP classifications notified to the ECHA Inventory were made before the adoption of the II ATP to CLP, so that they are based on LC50 and not on NOEC.</td>
</tr>
</tbody>
</table>
Russian Federation classification proposal for 2,4-Dimethylaniline (CAS 95-68-1)

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Substance data / Note</th>
<th>Criteria of Category according to GHS</th>
<th>Conclusion/Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosives</td>
<td>No data available</td>
<td>There are no chemical groups associated with explosive properties present in the molecule</td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable gases</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing gases</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Gases under pressure</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable liquids</td>
<td>Boiling point: 214°C</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>Flash point: no data available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammable solids</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-reactive substances and mixtures</td>
<td>No data available</td>
<td>There are no chemical groups present in the molecule associated with explosive or self-reactive properties</td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric liquids</td>
<td>No data available</td>
<td>Substance is known to be stable at room temperature for prolonged periods of time (days)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric solids</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-heating substances and mixtures</td>
<td>No data available</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Substances and mixtures which, in contact with water, emit flammable gases</td>
<td>Soluble (6069 mg/l); the chemical structure of the substance does not contain metals or metalloids</td>
<td>The chemical structure of the substance does not contain metals or metalloids</td>
<td>Not classified.</td>
</tr>
<tr>
<td>Oxidizing liquids</td>
<td>Study scientifically unjustified as the substance is incapable of reacting exothermically with combustible materials on the basis of its chemical structure</td>
<td>The substance does not contain oxygen, fluorine or chlorine</td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing solids</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Organic peroxides</td>
<td>Substance is not organic peroxides</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Property</td>
<td>Classification</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Corrosive to metals</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / oral</td>
<td>The acute oral LD50 in male rats was 470 (360 - 690) mg/kg; in male mice it was 250 (150 - 420) mg/kg. / Data from IUCLID, the reliability of the study: 4 (not assignable)</td>
<td>Not classified. The reliability of the study: 4 (not assignable)</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / dermal</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / inhalation</td>
<td>The 4-hour LC50 in the rat was calculated to be 1.53 mg/l (approx. 306 ppm) / Data from IUCLID, the reliability of the study: 4 (not assignable)</td>
<td>Not classified. The reliability of the study: 4 (not assignable)</td>
<td></td>
</tr>
<tr>
<td>Skin corrosion/irritation</td>
<td>Weak irritant to skin</td>
<td>Not classified. Classification is not possible due to lack of details on study</td>
<td></td>
</tr>
<tr>
<td>Serious eye damage/ eye irritation</td>
<td>Irritant effects on the eyes of rabbits</td>
<td>Not classified. Reliability of the study: 4 (not assignable)</td>
<td></td>
</tr>
<tr>
<td>Respiratory or skin sensitization</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Germ cell mutagenicity</td>
<td>Positive result (mouse, in vivo, in vitro)</td>
<td>Positive evidence obtained from in vivo somatic cell genotoxicity tests which are supported by positive results from in vitro mutagenicity assays Category 2</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Substance induced pulmonary tumours in female mice. It can be predicted that all members of the category may be carcinogenic due to their in vivo genotoxic activity</td>
<td>The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1 Category 2</td>
<td></td>
</tr>
<tr>
<td>Reproductive toxicity</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Specific target organ toxicity – Single exposure</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Specific target organ toxicity</td>
<td>NOAEL (rat, oral, 28d) = 2 mg/kg</td>
<td>Category 1: oral, rat, 28d Category 1</td>
<td></td>
</tr>
</tbody>
</table>
- **Repeated exposure**
 - Substance can have an adverse effect on the blood, liver and kidneys
 - C ≤ 30 mg/kg bw/d

- **Aspiration hazard**
 - No data available
 - Not classified

Hazardous to the aquatic environment/acute hazard

<table>
<thead>
<tr>
<th>Substance</th>
<th>Hazardous to the aquatic environment/acute hazard</th>
<th>Hazardous to the aquatic environment/long-term hazard</th>
<th>Hazardous to the ozone layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish: No reliable studies were identified. The predicted 96-hour LC₅₀, based on read across from 3,5-dimethylaniline = 33.9 mg/L; The predicted 96-hour LC₅₀, based on ECOSAR (v 1.11) = 37.2 mg/L</td>
<td>Category Acute 2: 48 h EC₅₀ (for crustacea) > 1 but ≤ 10 mg/l</td>
<td>Category Chronic 2: 1.00 < L(E)C₅₀ ≤ 10.0 and lack of rapid degradability and/or BCF ≥ 500 or, if absent log Kₐw ≥ 4</td>
<td></td>
</tr>
<tr>
<td>Invertebrate [Daphnia magna]: 48 h EC₅₀ = 9.9 mg/L [DIN38412, static]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae: No reliable studies were identified. The predicted 72-hour EC₅₀, based on read across from 3,4-dimethylaniline = 8.59 mg/L; The predicted 96-hour EC₅₀, based on ECOSAR (v 1.11) = 37.0 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Not readily degradable.**
 - BCF < 10

Hazardous to the aquatic environment/long-term hazard

<table>
<thead>
<tr>
<th>Substance</th>
<th>Hazardous to the aquatic environment/long-term hazard</th>
<th>Hazardous to the ozone layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrate: No reliable studies were identified. The predicted 21 d NOEC, based on read across from 3,4-dimethylaniline = 0.0095 mg/L</td>
<td>Category Chronic 2: 1.00 < L(E)C₅₀ ≤ 10.0 and lack of rapid degradability and/or BCF ≥ 500 or, if absent log Kₐw ≥ 4</td>
<td></td>
</tr>
<tr>
<td>Algae: No reliable studies were identified. The predicted 72 h NOEC, based on read across from 2,5-dimethylaniline = 2.03 mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous to the ozone layer

<table>
<thead>
<tr>
<th>Substance</th>
<th>Hazardous to the ozone layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance not listed in Annexes to the Montreal Protocol</td>
<td>Substance not listed in Annexes to the Montreal Protocol</td>
</tr>
</tbody>
</table>
BIAC (JCIA) classification proposal for 2,4-Dimethylaniline (CAS 95-68-1)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Acute tox. 4 (o)(i)</td>
<td>NC</td>
<td>eye Irrit. 2</td>
<td>NC</td>
<td>STOT SE 1 (b)</td>
<td>STOT RE 1 (b)(l)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>Aqua. Acute 2</td>
<td>Aqua. Chro. 2</td>
<td></td>
</tr>
<tr>
<td>Data lacking</td>
<td>oral: LD50 (rat) 470 mg/kg bw (DFG-MAK)</td>
<td>Data sufficient</td>
<td>based on previous conclusion (DFG-MAK); but scores not reported</td>
<td>No data</td>
<td>adverse effects observed at low concentrations (250 mg/kg bw: effects on kidney and blood)</td>
<td>28d 20mg/kg rats effects on kidney and blood</td>
<td>data not sufficient: +ve comet assay, +/-ve bacterial reverse mutation assay, +/-ve chromosomal aberration</td>
<td>data not sufficient: but possible/likely based on pulmonary tumors in female mice</td>
<td>No data</td>
<td>Daphnia magna 48h EC50 = 9.9 mg/L</td>
<td>Daph acute (EC50 9.9 mg/L), read across not RB</td>
<td></td>
</tr>
</tbody>
</table>

Note:
(i): inhalation (o): oral (d): dermal (b): blood system (l): liver
NC = not classified

JP Classification for Environment: proposal for 2,4-Dimethylaniline (CAS 95-68-1)

<table>
<thead>
<tr>
<th>Aquatic Acute Classification</th>
<th>2,4-dimethylaniline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aq Ac 2</td>
<td>Aq Ac 2</td>
</tr>
<tr>
<td>Daphnia 48h EC50 = 9.9 mg/L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquatic Chronic Classification</th>
<th>Aq Ch 1(read-across)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not readily biodegradable</td>
<td></td>
</tr>
<tr>
<td>Daphnia 21d NOEC 0.0095 mg/L (3,4-dimethylaniline)</td>
<td></td>
</tr>
</tbody>
</table>
Classifications for Nonane (CAS. 111-84-2)

Notified classifications for Nonane (CAS. 111-84-2)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHACHEM 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eye Irrit. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 2</td>
<td>Asp. Tox. 1</td>
<td></td>
<td>Aqua. Chro. 1</td>
</tr>
<tr>
<td>ECHACHEM 3</td>
<td>Asp. Tox. 1</td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 4</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td>Skin Irrit. 2</td>
<td>Eye Irrit. 2</td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 5</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 3 (i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro. 4</td>
</tr>
<tr>
<td>ECHACHEM 6</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro. 1</td>
</tr>
<tr>
<td>ECHACHEM 7</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td>Skin Irrit. 2</td>
<td>Eye Irrit. 2</td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 8</td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>ECHACHEM 9</td>
<td>Asp. Tox. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Acute 1</td>
<td>Aqua. Chro. 1</td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 10</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td>Skin Irrit. 2</td>
<td>Eye Irrit. 2</td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro. 4</td>
</tr>
<tr>
<td>ECHACHEM 11</td>
<td>Asp. Tox. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOT SE 3*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro. 1</td>
</tr>
<tr>
<td>ECHACHEM 12</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td>Skin Irrit. 2</td>
<td>Eye Irrit. 2</td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 13</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td></td>
<td></td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHACHEM 14</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td></td>
<td></td>
<td></td>
<td>STOT SE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro. 4</td>
</tr>
<tr>
<td>ECHACHEM 15</td>
<td>Asp. Tox. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOT SE 3*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHS-J</td>
<td>Asp. Tox. 1</td>
<td>Acute Tox. 4 (i)</td>
<td>Skin Irrit. 2</td>
<td>Eye irrit. 2A 2B</td>
<td></td>
<td>STOT SE 3*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notification

---|---|---|---|---|---|---|---|---|---|---|---
HSNO CCID | 6.1D (i) 6.1E (o) | 6.3B | 6.4 | | | | | | | 9.1A (fish, crustacean, algal)

Note:
(i): inhalation (o): oral (d): dermal

RIVM-NL classification proposal for Nonane (CAS. 111-84-2)

---|---|---|---|---|---|---|---|---|---|---|---|---
Proposed draft classification - RIVM | NCP | NCN (i) NCN* (o, d) | NCP | NCP | NCP | STOT-SE 3 | NCN* | NCN* | NCP | NCN* | Aquatic Acute 1 M-factor 1 | Aquatic Chronic 1 M-factor 1

Note: (i): inhalation (o): oral (d): dermal
NCP: No classification possible, see further remarks in the justification on the reason why no classification could be made
NCN: No classification needed. Based on available information the substance does not need classification.
*: based on read-across

Background information on the substance
Nonane is characterized as a linear molecule (n-paraffin or normal paraffin) with a carbon number of C9 and is a category member of the C9-C14 Aliphatic [≤ 2% aromatic] hydrocarbon solvent category. Individual category member substances are comprised of aliphatic hydrocarbon molecules with carbon numbers between C9 and C14; approximately 80% of the aliphatic constituents for a given substance fall within the C9-C14 carbon range and <100 ppmV benzene. The distinguishing characteristics of this category are the limit on carbon range (C9-C14) and the limitation of aromatic constituents to <2% (in most cases the levels of aromatics are well below 2%) of the total hydrocarbons present.

Key studies and Justification for proposed draft conclusion

Acute toxicity
Key information: Acute inhalation study conducted according to OECD TG 403 is available. The following LC50 value for nonane was determined 23775 mg/m³ (vapour). Acute dermal information is only available for structural analogues. Acute single application, 14-day dermal toxicity was conducted to according to, or similar to OECD TG 402 in rabbits or rats on category members. The dermal LD50 values resulted
greater than the limit doses of 2.0 g/kg. Acute 14-day, single dose, oral gavage, toxicity studies were conducted similar to OECD TG 401 in rats for category members and constituents. C9 aliphatic constituents were not covered; however as the higher molecular weight constituents are not acutely toxic by oral administration, it is expected that the C9 aliphatic constituents would be similarly non-toxic. The LD50 results of the oral studies in rats ranged from 5.0 to 15.8 g/kg.

Conclusion: No classification for inhalation acute toxicity. Based on read across, classification is also not necessary for acute dermal or oral toxicity. Nonane: LC50 inhalation = 23775 mg/m3 = 23.78 mg/L
Read-across: LD50 dermal ≥ 2.0 g/kg
Read-across: LD50 oral = > 5.0 g/kg to 15.8 g/kg

Corrosion/irritation skin
Key information: The isoparaffinic, normal paraffinic, and mixed aliphatic category members produced minimal to slight skin irritation when tested in rabbits and are also not normally irritating to human skin but can produce irritant responses if evaporation is inhibited and to humans. It should also be noted that prolonged or repeated exposure to hydrocarbon solvents can lead to severe irritant dermatitis due to defatting of the skin.

Conclusion: Classification is not possible due to lack of details on scoring, observation time, number of rabbits etc.

Corrosion/irritation eye
Key information: The member of the category produced minimal to slight eye irritation when tested in rabbits.
Conclusion: Classification is not possible due to lack of details on scoring, observation time, number of rabbits etc.

Sensitisation (skin & respiratory)
Key information: The category members do not cause skin sensitization (no further data included).
Conclusion: Classification not possible due to lack of data

STOT-SE
Key information: According to the SIAP, members of the C9-C14 (< 2% aromatics as well as members of constituents of these solvents have been tested for acute central nervous system. Aliphatic hydrocarbons with carbon numbers up to approximately C10 can produce acute, reversible effects to the central nervous system. Based on available information hydrocarbon solvents with carbon numbers greater than C10 do not produce acute CNS effects at the maximally attainable vapor concentrations. Rats were exposed to n-alkanes ranging from C₉-C₁₃ for 8 hour periods. In the study of nonane, Sprague-Dawley rats were exposed to concentrations ranging from 2414 to 5280 ppm. The authors reported mortality among the rats and calculated that the LC₅₀ value for nonane was 4467 ppm (23,775 mg/m3). The authors also reported that there was
evidence of acute CNS effects and that both the time to onset and severity of effects was related to the vapor concentrations to which the rats were exposed. In studies of n-decane, n-undecane, n-dodecane and n-tridecane the rats were exposed for 8 hours to the maximally attainable vapor concentrations. There were no deaths and no evidence of CNS effects. The authors also measured blood/air and brain/air ratios for these substances and reported that these ratios declined with increasing carbon number above C_{10}.

Human effects: There are a number of reports dealing with the potential for hydrocarbon solvent exposure to cause chronic neurological effects in humans. A review of the epidemiological literature regarding exposure to hydrocarbon solvents, focusing on white spirit, a C9-C11 aliphatic hydrocarbon solvent containing approximately 15-20% aromatics and described by the CAS RN of 8052-41-3, 64742-82-1, and 64742-88-7 has been conducted. Similar reviews have been conducted by the International Programme on Chemical Safety (IPCS) and Scientific Committee on Occupational Exposure Limit (SCOEL). The IPCS and SCOEL evaluations were also re-evaluated by the ECHA Committee for Risk Assessment (RAC). These evaluations include retrospective epidemiological studies involving painters with long-term exposure to white spirit. Confounding factors in these studies include co-exposure to other solvents and a lack of measured exposure data. Epidemiological studies reported an increased incidence of complaints of memory impairment, fatigue, impaired concentration, irritability, dizziness, headache, anxiety and apathy. Several studies that included neuropsychological tests demonstrated impairment in some of these tests; primarily in the short-term visual memory test and in the symbol-digit test. In some studies, life-time exposure to high concentrations of white spirit was correlated with an increase incidence of effect. Using a weight of evidence approach, the RAC concluded that chronic exposure to these white spirits cause adverse central nervous system (CNS) effects that can progress in severity. These CNS effects can include deficits in psychomotor, perception, memory parameters, and disturbances in mood. With respect to the C9-C14 aliphatic hydrocarbon (<2% aromatics) category, it is not known whether the effects attributed to white spirit were due to the aliphatic or aromatic constituents or a combination thereof.

Conclusion: STOT-SE category 3, based on narcotic effects (the information provided sufficient information to make a conclusion)

Human experience: There are well documented see above (key information) that CNS effects (memory impairment, fatigue, impaired concentration, irritability, dizziness, headache, anxiety and apathy) are observed with respect to exposure to C9-C14 aliphatic hydrocarbon (<2% aromatics) category members.

Animal data: LC_{50} value for nonane was 4467 ppm (23,775 mg/m^3), authors also reported that there was evidence of acute CNS effects and that both the time to onset and severity of effects was related to the vapor concentrations to which the rats were exposed.

STOT-RE

Key information: There were six repeated inhalation toxicity studies in rats, 2 with mixed aliphatic solvents and 4 with isoparaffinic solvents. The full range of the constituents was covered by the samples tested. In summary, excluding liver weight changes as being adaptive in response and the kidney change in male rats as being alpha 2u-globulin mediated and not relevant to humans, the overall NOECs were the highest concentrations tested in most of the studies (1390 mg/m^3 – 10,400 mg/m^3). The lowest NOEC value obtained was 1390 mg/m^3 (vapour??) based on severe reductions in on body weight gain in females.
Seven repeated oral toxicity studies (five OECD TG 403 and two OECD TG 422) in rats have been conducted, one C10-C13 aliphatic solvent, one C11-C14 aliphatic solvent, two isoparaffinic solvents (C10-C12, C12), two normal paraffinic (C10, C11) and a study of the analogue substance tetramethylecyclohexane (rats and beagle dogs). In aggregate these seven studies covered all constituents for the C9-C14 hydrocarbon (<2% aromatics) therefor covering C9 constituent. There were some reports of kidney changes in male rats in the studies of the lower molecular weight paraffinic and mixed aliphatic solvents. The kidney effects were only in male rats and the histological findings were consistent with an alpha 2u-globulin mediated response. There were also some reports of reduced weight gain. This was attributed due to the use of corn oil as a diluent in some studies. Assuming liver weight increases to be adaptive rather than adverse and kidney changes in male rats to be not relevant to humans, a NOAEL of 1000 mg/kg/day was obtained.

A 28 day dermal administration study in rabbits was conducted with C12-C14 normal paraffins. The protocol was equivalent to OECD 410. The repeated dermal treatment under occlusive patch conditions caused severe dermal irritation in the highest treatment group (2000 mg/kg/day), leading to early termination. There was no evidence of systemic effects in the animals from the highest dose group, because of the early terminations of some animals. Conclusions based on this experimental group were considered unreliable. Accordingly, the overall NOAEL for hydrocarbons C12-C14 n-paraffins (<2% aromatic) was judged to be 500 mg/kg/day.

Conclusion: Based on read-across, no classification needed.

In summary, the members of the C9-C14 aliphatic [<2% aromatics] hydrocarbon solvent category did not appear to produce significant systemic effect. This is assuming that the studies were conducted following standard guidelines and the data presented in the SIAP is judged adequate. The principal findings in the repeated dose studies were increased liver weights in males and females and kidney changes in male rat. There were no pathological changes, levels of liver enzymes markers were not elevated, and the weight differences were reversed when rats were held without treatment for 28 days. The kidney changes were found only in male rats and were consistent with effects mediated by alpha 2u-globulin, an effect that has been determined not to be relevant to humans.

Mutagenicity

Key information: Category members (C9-C14 aliphatic, <2% aromatic hydrocarbons) fluids are not mutagenic using in vitro genotoxicity assays. In bacterial tests, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not induce mutations in an in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies conducted under in vitro conditions, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids did not produce effects. C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were not genotoxic when tested by gavage in an in vivo mouse bone marrow micronucleus assay, when tested by inhalation in a mouse micronucleus test, and when tested in dominant lethal studies utilizing an inhalation route of exposure.

Conclusion: Based on read-across, no classification need.

Members of the C9-C14 Aliphatic [≤ 2% Aromatic] Hydrocarbon Solvents Category have shown no mutagenic activity in a number of in vitro bacterial, mammalian cell mutagenicity tests and were not active when tested in in vitro tests for chromosome aberration and sister chromatid exchange. These substances were not genotoxic when tested under in vivo conditions in bone marrow assays for chromosome damage and in dominant lethal tests.
Carcinogenicity

Key information: A carcinogenicity study on male and female F-344 rats and B6C3F1 mice were exposed for two years to vapors of Stoddard solvent IIC (CAS RN 64742-88-7) is available.

Summary rats: The NTP concluded that under the conditions of these 2-year inhalation studies, there was some evidence of carcinogenic activity of Stoddard solvent IIC in male F344/N rats based on increased incidences of adrenal medulla neoplasms (pheochromocytoma). There was no evidence of carcinogenic activity of Stoddard solvent IIC in female F344/N rats exposed to 550, 1100, or 2200 mg/m³.

Summary mice: The NTP further concluded there was no evidence of carcinogenic activity of Stoddard solvent IIC in male B6C3F1 mice exposed to 550, 1100, or 2200 mg/m³. There was equivocal evidence of carcinogenic activity of Stoddard solvent IIC in female B6C3F1 mice based on increased incidences of hepatocellular adenoma. The NTP considered that the increased liver tumor incidence in female mice was equivocal based on a statistical analysis which indicated that this increase could be explained by the increased body weights of the mice in that group. The NTP also appeared to put little weight on the renal tumors in male rats as other data were obtained during this study to show that levels of α2u-globulin were increased providing support for the view that these tumors, although treatment-related, are not relevant to humans.

Conclusion: Classification not possible due to lack of detail.

The SIAP provides a good overview of the studies mentioned above however we consider that additional factors necessary in order to be able classify the nonane for carcinogenicity are not present. Such as historical controls, the incidence of malignant pheochromocytomas, incidence in females etc.

Reproductive and developmental Toxicity

Key information: Overall there were no effects on either fertility or development in any of the studies presented.

Two repeated dose/reproductive toxicity screening tests on category members (C₁₀, C₁₁ normal paraffinic solvents) in which exposure was oral;

- A reproduction/developmental Toxicity Screening Test in Sprague-Dawley rats, similar to OECD Guideline 422, was conducted using Undecane (CAS RN: 1120-21-4). The administration was carried out by oral gavage in doses of 0, 100, 300 or 1000 mg/kg/day. There were no significant differences in body weight gain, Liver and adrenal weights were elevated in the high dose group, but there were no unusual histological findings. There were also no differences in mating frequency. No effects of undecane administration were observed on the sex cycle of females and copulation and conception of males and females. In addition, no effects of undecane administration were observed on the weights of reproductive organs (testis, epididymis and ovary) and there were no abnormalities noted in the dissection and histopathological examination. There were no histopathological findings in cases where animals failed to successfully mate; abnormal deliveries (2 in the 300 mg/kg/day group and 1 in the 1000 mg/kg/day group) were confirmed to be spontaneous and at frequencies similar to historical controls. Those cases observed in the present study were considered to be unrelated to undecane. There were no differences in the number of live pups born in the control, 100 mg/kg, or the 1000 mg/kg treated animals; there was a decrease in the 300 mg/kg group, but as no difference was noted in the 1000 mg/kg treated animals, this finding was determined by the authors to not be test material related. There was no difference in the number of pups alive on post-natal day 4. The body weights at post-natal day 4 of both males and females in the 1000 mg/kg group were slightly reduced (-5.6% and -4.1%), but were not significantly different from the
weights of offspring in the control group, and there were no notable clinical or pathological effects. The NOAEL for reproductive performance and developmental effects is considered to be 1000 mg/kg/day.

- A Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test similar to OECD Guideline 422 was conducted using decane, CAS RN: 124-18-5. Animals were dosed with 0, 25, 150, or 1000 mg/kg/day. In the assessment of developmental and reproductive effects there were no treatment-related effects at any dose level on any of the reproductive parameters evaluated in this study. These included measures of reproductive performance (mating, conception, gestation length, and litter size), offspring survival (gestation and postnatal survival indices, percent pre- and post-implantation loss). There were no treatment-related effects at any dose level on any of the developmental parameters evaluated in this study including external abnormalities of pups, number of live and still births, mortality, sex determination, and weights of pups. Based on these data, the no-observable-adverse-effect level (NOAEL) for developmental toxicity was 1000 mg/kg/day and the NOAEL for reproductive dose and reproductive toxicity was 1000 mg/kg/day.

Two developmental toxicity studies on category members (C₉-C₁₁ mixed aliphatic solvent, C₁₀-C₁₂ isoalkanes) in which exposure was by inhalation;

- A Prenatal Developmental Toxicity Study equivalent or similar to OECD Guideline 414 with Hydrocarbons, C₉-C₁₁, isoalkanes, cyclics, < 2% aromatics (CAS RN 64742-48-9). The test material was administered to pregnant female rats by inhalation exposure to vapor concentrations of 0, 300 or 900 ppm (5220 mg/m³). Pregnancy rate, mortality, body weight gain and gross postmortem observations were unaffected by treatment. Hydrocarbons, C₉-C₁₁, normal paraffins, isoalkanes, cyclics, < 2% aromatics treatment at either dose level had no effect on reproductive endpoints, fetal size, sex distribution, ossification variation, or fetal examination endpoints. Thus, there was no evidence of maternal or fetal toxicity at either exposure level of Hydrocarbons, C₉-C₁₁, normal, isoalkanes, cyclics, < 2% aromatics tested. Based on these results, both the maternal and developmental NOAELs were greater than or equal to 900 ppm (5220 mg/m³).

- Hydrocarbons, C₁₀-C₁₂, isoalkanes, < 2% aromatics (CAS RN 90622-57-4) was administered to pregnant female Sprague-Dawley rats by inhalation exposure to vapor concentrations of 0, 300 or 900 ppm. Hydrocarbons, C₁₀-C₁₂, isoalkanes, < 2% aromatics treatment at either dose level had no effect on reproductive endpoints, fetal size, sex distribution, ossification variation, or fetal examination endpoints. Pregnancy rate, mortality, body weight gain and gross postmortem observations were unaffected by treatment. Thus, there was no evidence of maternal or fetal toxicity at either exposure level of the chemical tested. Based on these results, both the maternal and developmental NOAELs were greater than or equal to 900 ppm (5220 mg/m³).

Supporting information:
Repeated dose/reproductive toxicity screening test on a C₀-C₁₆ analogue substance in which exposure was dermal; Reproductive toxicity test on a C₀-C₁₆ analogue substance in which the exposure was oral, and a classical developmental toxicity study on a C₀-C₁₆ analogue substance. The studies for reproductive and/or development that have conducted with the these analogues show no effects on either fertility or development in any of these studies.

34
The two analogue substances are hydrodesulfurized kerosine (CAS RN 64742-81-0, analogue) and jet fuel (JP-8, analogue). These two analogue substances are petroleum fuels, described as containing primarily C₉-C₁₆ aliphatic constituents with aromatic contents limited to a maximum of 25% (although the samples used in these tests contained about 20% aromatics. The data provided by tests of category and analogue substances subsumed the carbon numbers and molecular types found in the C₉-C₁₄ aliphatic (<25 aromatic) category.

Additionally, there have been 7 repeated exposure studies in which the reproductive organs were examined and found to have not been affected by test material administration.

Conclusion: Based on read-across no need for classification.

Environment

Acute Aquatic Toxicity

Key information: Specific substance toxicity LC50 or EC50s values for nonane for the trophic levels are not available in the SIAP. Therefore, there is not sufficient information to classify nonane, for acute (short-term) aquatic hazard. According to the SIAP, measured acute toxicity data are available for fish, invertebrates and freshwater algae but these are reported to be in the range between 0.01 to 0.2 mg/L for paraffinic hydrocarbons with a carbon of 10 and below. In light of this information one classify nonane based on read-across. This is assuming that the read-across is adequately justified. Nonane can be classified as Aquatic Acute 1 since the 0.01 – 0.2 mg/L is below the cut-off of 1mg/L. Using the lowest L(E)C50 value of 0.01 mg/L yields an M-factor of 1.

Conclusion: Based on read-across, Aquatic acute 1: M = 1

Chronic Aquatic Toxicity

Key information: There is information on one trophic level Daphnia. In absence of chronic toxicity for fish and algae, the classification is based on the chronic and toxicity data on Daphnia and surrogate chronic data in fish and algae.

The n-paraffin constituents belonging to the C₉-C₁₄ Aliphatic [≤ 2% aromatic] hydrocarbon solvent category have the potential to biodegrade rapidly (80 to 100% in 28 days). Based on read-across nonane is expected to be readily biodegradable. The NOEC value of 0.005 mg/L for *Daphnia magna*, is below ≤ 0.01 mg/L limit. Using table 4.1.2 of the GHS guidance, nonane is classified as Chronic category 1 with and M factor of 1.

Conclusion: Based on surrogate data: nonane is classified as chronic category 1 with and M factor of 1.

CH classification proposal for Nonane (CAS. 111-84-2)

General Comment

It would be helpful to clearly indicate which is the key study and which are supporting studies and to find a table with the data that is important for classification at the end of the human health part of the SIAP.
Classification

Based on the available data, Nonane needs not to be classified for acute toxicity (dermal, oral, and inhalation), skin sensitization, germ cell mutagenicity, reproductive toxicity, and STOT RE. However, the classification is based on read-across for most endpoints. Therefore, it could be that the classification will change as soon as data for Nonane is available.

The classification for irritation is not possible since data (Scoring points) is missing. Data for carcinogenicity is conclusive. However, it is not sufficient for classification. No data is available for the endpoint STOT SE, and therefore classification is not possible.

Aspiration Toxicity

Cat 1

(based on the physical and chemical properties, particularly the low viscosity of 1.008 mm²/s at 20 °C)

Classification based on the information in the SIAP is not possible. However, the relevant information can be found in the IUCLID file.

Environmental Hazards

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Classification</th>
<th>hazard statement</th>
<th>Rational for the classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Hazardous to the aquatic environment (acute)</td>
<td>Category 1</td>
<td>H400 Very toxic to aquatic life</td>
</tr>
<tr>
<td>11</td>
<td>Hazardous to the aquatic environment (chronic)</td>
<td>Classification not possible</td>
<td>---</td>
</tr>
</tbody>
</table>

Key studies used for classification:

Water solubility

Result (measured): 0.22 mg/L at 25°C

Partition coefficient octanol-water
Result (measured): Log Pow 5.65

Biodegradation
No reliable test data is available for nonane.

QSAR-Method: BIOWIN model
Result (estimated): Ready biodegradability prediction: YES; Ultimate biodegradation timeframe (BIOWIN 3): DAYS-WEEKS
Reference: BIOWIN v.4.10 (EPISUITE v.4.00), US EPA
Remark: Biowin5 and 6 also predict ready biodegradability, but for degradation in the OECD301C test only; using data from the Chemicals Evaluation and Research Institute Japan (CERIJ) database.

Bioaccumulation
No reliable test data is available for nonane.

QSAR-Method: BCFBAF model
Result (estimated): Log BCF = 2.021 (BCF = 104.9 L/kg wet-wt)
Reference: BIOWIN v.4.10 (EPISUITE v.4.00), US EPA

Acute (short-term) aquatic toxicity
Fish
QSAR Method: Aquatic Toxicity Predictions Obtained Using the Petrotox computer model (v 3.04) for Hydrocarbons, 2010, CONCAWE, Brussels, Belgium
Result (estimated): Freshwater fish 96-h LL50 (Lethal Loading Rate) value is 1.125 mg/L based on mortality
Reference: ECHA, registration dossier for nonane, QSAR Key Short-term toxicity to fish.001; http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d8ab6df-cedb-01d9-e044-00144f67d249/AGGR-48ba6862-fc75-4d82-974c-dd9c76ca0264/DISS-9d8ab6df-cedb-01d9-e044-00144f67d249.html#AGGR-48ba6862-fc75-4d82-974c-dd9c76ca0264

QSAR Method: ECOSAR model for neutral organics
Result (estimated): 96h LC50 fish 0.368 mg/L
Reference: ECOSAR v.1.00 (EPISUITE v.4.00), US EPA
Remark: ECOSAR v1.00 SAR Limitations: Maximum LogKow: 5.0 (Fish 96-hr LC50; Daphnid LC50, Mysid LC50)

37
Invertebrates
Test substance: n-nonane
Test species: *Daphnia magna*
Test method: 48h static freshwater-test at 20°C, test concentrations: 0, 0.32, 1.0, 3.2, 5.6, 10 mg/L (nominal); 0, 0.04, 0.04, 0.5, 2.1, 2.2 (initial measured); reliability: 2 (valid with restrictions)
Result (measured): 48h EC50 0.2 mg/L
Reference: The evaluation of the hazards of harmful substances carried by ships. Joint group of experts on the scientific aspects of marine pollution - GESAMP - reports and studies no. 17, 1982. Report date: 1987-05-07; Data source: ECHA, registration dossier for nonane, Exp Key Short-term toxicity to aquatic invertebrates.001; http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d8abd6f-cedb-01d9-e044-00144f67d249/AGGR-f34e06f7-110c-4891-a8f5-7f228e416309_DISS-9d8abd6f-cedb-01d9-e044-00144f67d249.html#AGGR-f34e06f7-110c-4891-a8f5-7f228e416309

Algae
QSAR Method: Aquatic Toxicity Predictions Obtained Using the Petrotox computer model (v 3.04) for Hydrocarbons, 2010, CONCAWE, Brussels, Belgium
Result (estimated): freshwater algae 72-h EL50 (Effect Loading Rate) value is 1.098 mg/L based on biomass
Reference: ECHA, registration dossier for nonane, QSAR Key Toxicity to aquatic algae and cyanobacteria.001; http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d8abd6f-cedb-01d9-e044-00144f67d249/AGGR-e67cb827-46d9-4e0c-8e8d-90cb13f8209_DISS-9d8abd6f-cedb-01d9-e044-00144f67d249.html#AGGR-e67cb827-46d9-4e0c-8e8d-90cb13f8209

Chronic (long-term) aquatic toxicity
No reliable data is available for nonane
Mammalian toxicity endpoints

Acute toxicity Oral

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

Acute toxicity Inhalation

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat Harlan-Wistar male</td>
<td>OECD Guideline 403 (Acute Inhalation Toxicity)</td>
<td>LC50 – 4h = 23760 mg/m³ (23.8 mg/L)</td>
<td>Carpenter, C.P. et al., 1978</td>
<td>No classified</td>
<td>This data not included in SIDS Initial Assessment Profile, SIAR and IUCLID. Data by registration dossier from ECHA Chem</td>
</tr>
</tbody>
</table>

Acute toxicity Dermal

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

Corrosive/irritant skin

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat hairless CDHrBi</td>
<td>No specified</td>
<td>Nonane induced erythema within</td>
<td>Babu, R.J. et al., 2004</td>
<td>Skin Irrit 2, H315</td>
<td>not included in SIDS Initial Assessment Profile, SIAR and</td>
</tr>
<tr>
<td>Corrosive/irritant eyes</td>
<td>1 hr and showed moderate irritation (erythema score 2.2 ± 0.4) at 24 hrs.</td>
<td>IUCLID. Data by registration dossier from ECHA Chem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Methods</td>
<td>Data</td>
<td>Reference</td>
<td>GHS Classification</td>
<td>Rationale/Comments</td>
</tr>
<tr>
<td>Early lacrimation, slight irritation of eyes</td>
<td></td>
<td>Carpenter, C.P. et al., 1978</td>
<td>Inconclusive</td>
<td>Scores lacking, not included in SIDS Initial Assessment Profile, SIAR and IUCLID. Data by registration dossier from ECHA Chem</td>
<td></td>
</tr>
</tbody>
</table>

| Sensitizer Skin and respiratory tract | | |
| **Organism** | Guinea-Pig | Magnusson and Kligman Guinea-Pig Maximization test | Skin sensitization studies do not show skin sensitization in guinea pigs for C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids. C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not skin sensitizers or photosensitizers in humans. | ExxonMobil (1988 b,c; 1962; 1991c) | No classified (read across) | C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not skin sensitizers. Skin sensitization studies on nonane are not available. |

<p>| Gene mutation | | |
| Organism | | | | | | |</p>
<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial reverse mutation assay (e.g. Ames test) OECD Guideline 471</td>
<td>under the conditions of this assay, there was no evidence of mutagenic activity, with metabolic activation and without metabolic activation</td>
<td>Zeiger, E. et al. (1992)</td>
</tr>
</tbody>
</table>
| Bacterial reverse mutation assay (OECD TG 471) | *in vitro* or *in vivo* genotoxicity: C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not mutagenic | Cepsa Quimica (1985)
Shell (1999)
Chevron Philips (1982)
Shell (1998a) |
| In vitro Mammalian Chromosome Aberration Test (OECD TG 473) | Mutagenic bacterial tests: C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were negative in vitro mammalian cell gene mutation | Shell (1998b) |
INEOS OLIGOMERS (1996) |
| Genetic Toxicology: In Vitro Sister Chromatid Exchange Assay in Mammalian Cells (OECD TG 479) | | Chevron Philips (1983) |

Nonane is not mutagenic in Ames test (Data by registration dossier from ECHA Chem). Supportive information: C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not mutagenic using in vitro or in vivo genotoxicity assays.
<table>
<thead>
<tr>
<th>Carcinogenicity</th>
<th>Organism</th>
<th>Methods</th>
<th>data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonane</td>
<td></td>
<td></td>
<td>SIAR</td>
<td>Inconclusive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C9-C14 Aliphatic Hydrocarbon Solvents [< 2% Aromatics]. C9-C14 Aliphatic Hydrocarbon Solvents [< 2% Aromatics] are unlikely to be human carcinogens, but it is not possible to exclude that nonane is a carcinogen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Methods</td>
<td>Data</td>
<td>Reference</td>
<td>GHS Classification</td>
<td>Rationale/Comments</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SIAR</td>
<td>No classified (read across)</td>
<td>C₉₋C₁₄ Aliphatic Hydrocarbon Solvents [≤ 2% Aromatic] are not expected to be reproductive or developmental toxicant.</td>
<td></td>
</tr>
</tbody>
</table>

C₉₋C₁₄ Aliphatic Hydrocarbon Solvents [≤ 2% Aromatics]. C₉₋C₁₄ Aliphatic Hydrocarbon Solvents [≤ 2% Aromatics] are unlikely to be human carcinogens.

Reproductive/Developmental toxicity

No data available for the substance Nonane. The available data on potential reproductive and developmental effects of members of the C₉₋C₁₄ Aliphatic [≤ 2% Aromatic] Hydrocarbon Solvents Category are limited to animal studies. These studies suggest that these solvents are not expected to be reproductive or developmental.
| Single dose toxicity | | | | | |
|----------------------|------------------|---------------|------------------|------------------|
| Organism | Methods | Data | Reference | GHS Classification | Rationale/Comments |
| No data | No data | No data | No data | No data | No data |

| Repeated dose toxicity | | | | | |
|------------------------|------------------|---------------|------------------|------------------|
| Organism | Methods | Data | Reference | GHS Classification | Rationale/Comments |
| mouse C57BL male | OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity in Rodents) | NOAEL oral: gavage = 0.1 g/kg all lesions except the proliferative and inflammatory lesions in the non-glandular forestomach (species-specific target organ). | study report, 2003 (unpublished) | No classified | Effect of specific target organ is not relevant to humans because it is species specific |
| rat Harlan-Wistar male | equivalent or similar to Guideline OECD Guideline 413 (Subchronic Inhalation Toxicity: 90-Day) | NOAEC male inhalation: vapour = 8400 mg/m³ air (analytical) Serum glutamic pyruvic transaminase value for blood taken was statistically significantly greater than that of controls. However, the increases were not observed after 8 or 13 weeks suggesting a transient effect. | Carpenter, C.P. et al., 1978 | No classified | |

| Aspiration Toxicity | | | | | |
|---------------------|------------------|---------------|------------------|------------------|
| Organism | Methods | Data | Reference | GHS | Rationale/Comments |
| | | | | | |

44
Environmental toxicity endpoints

Acute toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>QSAR</td>
<td>96 h LL₅₀=1.125</td>
<td>Aquatic Toxicity Predictions Obtained Using the Petrotox Model for Hydrocarbons (CONCAWE, Brussels, Belgium 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic Invertebrates</td>
<td>other guideline: As described in: The evaluation of the hazards of harmful substances carried by ships. Joint group of experts on the scientific aspects of marine pollution - GESAMP - reports and studies no. 17, 1982.</td>
<td>48 h EC₅₀=0.2 mg/L</td>
<td>Aquatic toxicity of compounds that may be carried by ships (Marpol 1973, Annex II). A Progress report for 1986. For: Ministry of Housing, Physical Planning and Environment (Adema, D.M.M. and van den Bos Bakker, G.H.)</td>
<td>Acute Aquatic 1, H400 M factor =1</td>
<td></td>
</tr>
</tbody>
</table>
Aquatic Plants

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>QSAR</td>
<td>NOELR 28d = 0.252 mg/L</td>
<td>Aquatic Toxicity Predictions Obtained Using the Petrotox Model for Hydrocarbons (CONCAWE, Brussels, Belgium 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic Invertebrates</td>
<td>/</td>
<td>NOEC = 0.005 mg/l</td>
<td>(ExxonMobil, 2012a)</td>
<td>Acute Chronic 1, H410 M factor =1</td>
<td></td>
</tr>
<tr>
<td>Aquatic Plants</td>
<td>QSAR</td>
<td>The estimated freshwater algae 72-h NOELR (No Observed Effect Loading Rate) = 0.246 mg/L based on biomass.</td>
<td>Aquatic Toxicity Predictions Obtained Using the Petrotox Model for Hydrocarbons (CONCAWE, Brussels, Belgium 2010)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Russian Federation classification proposal for Nonane (CAS. 111-84-2)

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Substance data / Note</th>
<th>Criteria of Category according to GHS</th>
<th>Conclusion/ Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosives</td>
<td>No data available</td>
<td>There are no chemical groups associated with explosive properties present in the molecule</td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable gases</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing gases</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Gases under pressure</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable liquids</td>
<td>Flash point = 38 °C at 1 atm / This study is reported in the IUC\LD 5 DataSet but it cannot be found in the SIAP</td>
<td>Category 3: Flash point \geq 23°C and \leq 60°C Based on IUC\LD’s data</td>
<td>Category 3</td>
</tr>
<tr>
<td>Flammable solids</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-reactive substances and mixtures</td>
<td>No data available</td>
<td>There are no chemical groups present in the molecule associated with explosive or self-reactive properties</td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric liquids</td>
<td>No data available</td>
<td>Substance is known to be stable at room temperature for prolonged periods of time (days)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric solids</td>
<td>Substance is a liquid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-heating substances and mixtures</td>
<td>No data available</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Substances and mixtures which, in contact with water, emit flammable gases</td>
<td>Slightly soluble (0,2 mg/l at 25°C), the chemical structure of the substance does not contain metals or metalloids</td>
<td>The chemical structure of the substance does not contain metals or metalloids</td>
<td>Not classified.</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Data/Conclusion</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Oxidizing liquids</td>
<td>Study scientifically unjustified as the substance is incapable of reacting exothermically with combustible materials on the basis of its chemical structure. The substance does not contain oxygen, fluorine or chlorine.</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Oxidizing solids</td>
<td>Substance is a liquid</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Organic peroxides</td>
<td>Substance is not organic peroxides</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Corrosive to metals</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / oral</td>
<td>LC\textsubscript{50} > 5000 mg/kg / data for C9-C14 aliphatic, < 2% aromatic hydrocarbon</td>
<td>2000 < Category 5 ≤ 5000</td>
<td>Not classified. Based on read-across data.</td>
</tr>
<tr>
<td>Acute toxicity / dermal</td>
<td>The dermal LD\textsubscript{50} results, greater than the limit doses of 2.0 g/kg, indicate that C9-C14 Aliphatic Hydrocarbon Solvents (≤ 2% Aromatics) were not acutely toxic by dermal administration</td>
<td>2000 < Category 5 ≤ 5000</td>
<td>Category 5. Based on read-across data. It’s not proven that the value > 5000 mg/kg.</td>
</tr>
<tr>
<td>Acute toxicity / inhalation</td>
<td>LC\textsubscript{50} = 23775 mg/m3 = 23.775 mg/l The inhalation LC\textsubscript{50} data indicated that the C9-C14 Aliphatic Hydrocarbon Solvents (≤ 2% Aromatics) were not acutely toxic by inhalation</td>
<td>Category 5 is substances which are of relatively low acute toxicity but which, under certain circumstances, may pose a hazard to vulnerable population</td>
<td>Not classified. Data classification for acute inhalation toxicity is not enough, it's possible to establish 5 category as for potentially dangerous substance</td>
</tr>
<tr>
<td>Skin corrosion/irritation</td>
<td>Similarly, the isoparaffinic, normal paraffinic, and mixed aliphatic category members produced minimal to slight skin irritation when tested in rabbits</td>
<td>Not classified. Classification is not possible due to lack of details on study</td>
<td></td>
</tr>
</tbody>
</table>
and are also not normally irritating to human skin but can produce irritant responses if evaporation is inhibited or prevented.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious eye damage/ eye irritation</td>
<td>The members of the C9-C14 aliphatic (<2% aromatics) category produced minimal to slight eye irritation when tested in rabbits</td>
<td>Not classified. Classification is not possible due to lack of details on study</td>
</tr>
<tr>
<td>Respiratory or skin sensitization</td>
<td>Category members do not cause skin sensitization</td>
<td>Not classified. Classification is not possible due to lack of details on study</td>
</tr>
<tr>
<td>Germ cell mutagenicity</td>
<td>Members of the C9-C14 Aliphatic [≤ 2% Aromatic] Hydrocarbon Solvents Category have shown no mutagenic activity in a number of in vitro bacterial, mammalian cell mutagenicity tests and were not active when tested in in vitro tests for chromosome aberration and sister chromatic exchange</td>
<td>Not classified. Based on read-across data</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Male and Female F-344 rats and B6C3F1 mice were exposed for two years to vapors of Stoddard solvent IIC (CAS RN 64742-88-7). The NTP concluded that under the conditions of these 2-year inhalation studies, there was some evidence of carcinogenic activity of Stoddard solvent IIC in male F344/N rats based on increased incidences of</td>
<td>Not classified. Based on read-across data. Classification is not possible due to lack of details on study</td>
</tr>
<tr>
<td>Toxicity Type</td>
<td>Description</td>
<td>Classification</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Reproductive toxicity</td>
<td>NOAEL was determined to be ≥ 1000 mg/kg bw/day. Based on this study and the lack of systemic toxicity, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, are not expected to be reproductive toxicants.</td>
<td>Not classified.</td>
</tr>
<tr>
<td>Specific target organ toxicity – Single exposure</td>
<td>Rats were exposed to n-alkanes ranging from C9-C13 for 8 hour periods. In the study of nonane, Sprague-Dawley rats were exposed to concentrations ranging from 2414 to 5280 ppm. The authors reported mortality among the rats and calculated that the LC50 value for nonane was 4467 ppm (23,775 mg/m3). The authors also reported that there was evidence of acute CNS effects and that both the time to onset and severity of effects was related to the vapor concentrations to which the rats were exposed.</td>
<td>Category 3:</td>
</tr>
<tr>
<td></td>
<td>Central nervous system depression including narcotic effects in humans such as drowsiness, narcosis, reduced alertness, loss of reflexes, lack of coordination, and vertigo are included.</td>
<td>Based on narcotic effects</td>
</tr>
<tr>
<td>Specific target organ toxicity – Category 3</td>
<td>The members of the C9-C14</td>
<td>Not classified</td>
</tr>
</tbody>
</table>
Repeated exposure | Aliphatic [< 2% aromatics] Hydrocarbon Solvents Category did not appear to produce significant systemic toxicity | Based on available read-across data, the classification criteria are not met
--- | --- | ---
Aspiration hazard | Kinematic viscosity = 1.008 mm²/s at 20°C | Substance is hydrocarbon and has a kinematic viscosity ≤ 20.5 mm²/s at 40°C | Category 1. Kinematic viscosity decreases with increase of the temperature
Hazardous to the aquatic environment/ acute hazard | EC₅₀ (48h, Daphnia magna) = 0.2 mg/l / This study is reported in the IUCLID 5 DataSet but it cannot be found in the SIAP | Category Acute 1: EC₅₀ (48h for crustacean) ≤ 1 mg/l | Category 1 Based on IUCLID’s data
Hazardous to the aquatic environment/ long-term hazard | NOEC (Daphnia magna) = 0.005 mg/l, readily degradable | Category Chronic 1: NOEC or ECₓ ≤ 0.01 | Category 1
Hazardous to the ozone layer | Substance not listed in Annexes to the Montreal Protocol | Substance not listed in Annexes to the Montreal Protocol | Not classified
BIAC (JCIA) classification proposal for Nonane (CAS. 111-84-2)

Proposed draft classification

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As. P. Tox.</td>
<td></td>
</tr>
<tr>
<td>Acute Tox.</td>
<td>Skin Irrit.</td>
<td>Eye Irrit. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As. P. Tox. 1</td>
<td>Acute Tox. 4</td>
<td>Skin Irrit. 2</td>
<td>Eye Irrit. 2</td>
<td>NC</td>
<td>STOT SE 3* **</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Proposed draft classification

- **Phys-chem data**
 - Inhalation: LC50 (rat) 3200 ppm (ACGIH)
 - Based on previous conclusion (HSDB); but scores not reported
 - Based on previous conclusion (HSDB); but scores not reported

- **Category member CNS effects** (memory impairment, fatigue, impaired concentration, irritability, dizziness, headache, anxiety and apathy) and respiratory tract irritation observed (HSDB)

- Data not sufficient (read across) data not sufficient: lack of study detail data not sufficient (read across) data not sufficient: lack of study detail data not sufficient (read across) data not sufficient

Note:

*: may cause respiratory irritation

**: may cause drowsiness or dizziness

(i): inhalation (o): oral
JP Classification for Environment: proposal for Nonane (CAS. 111-84-2)

<table>
<thead>
<tr>
<th>Aquatic Acute Classification</th>
<th>Aq Ac 1 (read-across)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L(E)C50 values of 0.01 to 0.2 mg/L for paraffinic hydrocarbon ≤ C10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquatic Chronic Classification</th>
<th>Aq Ch 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not readily biodegradable</td>
</tr>
<tr>
<td></td>
<td>Daphnia 21d NOEC = 0.005 mg/L</td>
</tr>
</tbody>
</table>

Classifications for 2NA EDTA (CAS. 139-33-3)

Notified classification for Disodium EDTA (CAS. 139-33-3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHA CHEM 1</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 2</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>Skin Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 3</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>Skin Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 5</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>Skin Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 6</td>
<td></td>
<td>Acute Tox. 4 (i)</td>
<td></td>
<td></td>
<td>skin Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 7</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 9</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 10</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
<td></td>
<td>eye Irrit.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Carc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM 11</td>
<td></td>
<td>Acute Tox. 4 (o)</td>
<td></td>
</tr>
<tr>
<td>ECHA CHEM</td>
<td></td>
<td>Acute Tox. 4</td>
<td>Skin Irrit.</td>
<td>eye Irrit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RIVM-NL classification proposal for Disodium EDTA (CAS. 139-33-3)

Key studies and Justification for proposed draft conclusion

Acute toxicity:

Inhalation: according to SIAP “Mortality was observed at 1103 mg/m³ (1.103 mg/l) following a single 6-h exposure.” No LC50 value is given in SIAP. Following the worst-case scenario, this value may be assumed to be LC50. In addition, for acute toxicity LC50 is defined as a four hour value meaning that the six hour value also has to be translated into a four hour value. Taking into account all uncertainties, it has to be concluded that information provided in SIAP is not detailed and clear enough to reach harmonized classification of the chemical assessed. Information missing: clear LC50-value.

Dermal: according to SIAP structural analogues showed “LD₅₀ values ranging from >1800 to >2000 mg/kg bw”. Based on the available data a classification in category 5 cannot be excluded. Taking into account all uncertainties, it has to be concluded that information provided in
SIAP is not detailed and clear enough to reach harmonized classification of the chemical assessed. Information missing: clear LD50-value and lack of data allowing proper judgement for Category 5 (testing up to 5000 mg/kg bw).

Oral: according to SIAP “oral LD50 values for Na₂EDTA were > 2000 mg/kg bw. Based on the available data a classification in category 5 cannot be excluded. Taking into account all uncertainties, it has to be concluded that information provided in SIAP is not detailed and clear enough to reach harmonized classification of the chemical assessed. Information missing: clear LD50-value and lack of data allowing proper judgement for Category 5 (testing up to 5000 mg/kg bw).

Skin and eye irritation: according to SIAP “The aminocarboxylic acid-based chelants are not irritating to moderately irritating to the intact skin, and slightly to moderately irritating to the eyes in rabbits. The irritancy potential is related to the pH of the individual salt. Thus, more acidic members of the category such as disodium EDTA have inherently greater irritancy potential.” However, it has to be concluded that information provided in SIAP is not detailed and clear enough to reach harmonized classification of the chemical assessed. Information missing: scorings from the irritation tests.

Skin sensitization: according to SIAP “The aminocarboxylic acid-based chelants are not skin sensitizers based on studies in mice and guinea pigs. Therefore no classification is needed for skin sensitization.

Mutagenicity: according to SIAP “Available data from in vitro [Na₂EDTA] and in vivo [Na₃EDTA] testing of representative chelant category members indicate that these materials generally do not induce gene mutations or chromosomal aberrations in vitro or in vivo. Although there have been some positive findings reported in vitro and in vivo for some category members, these positive effects have been generally attributed to the threshold mechanisms of pH changes and the chelation of critical nutrient metals such as zinc.” Therefore no classification is needed for mutagenicity.

Carcinogenicity: according to SIAP no evidence of carcinogenicity was found for the structural analogue, Na₃EDTA trihydrate. Therefore no classification is needed for carcinogenicity.

Reproductive toxicity:

Reproductive toxicity: according to SIAP “The weight of evidence from a two-generation reproductive toxicity study in rats shows that dietary ingestion of 1% Na₃EDTA (approx. 920 mg/kg bw/day) had no effect on reproduction; however, no litters were produced at 5% (approx. 4600 mg/kg bw/day); the NOAEL for reproductive toxicity was 920 mg/kg bw/day.” From the repeated dose description: “In a 13-week repeated-dose toxicity study, rats (both sexes) fed Na₃EDTA (0, 1, 5, 10%) showed mortality at the highest dose. In addition, there was decreased food consumption (emaciation at 10%) and diarrhea at doses of 5% (approximately 4206 mg/kg bw/day) and above. Taking into account that no litters were produced at dose which showed only diarrhea as adverse effect, classification as Reproductive toxicant category 2 is proposed.
Developmental toxicity: according to SIAP “Studies on developmental toxicity showed a specific fetotoxic and teratogenic potential of EDTA, Na₂EDTA and CaNa₂EDTA; a LOAEL of 1000 mg/kg bw/day was determined. Increased proportions/litter and significantly lower fetal body weights are indicative for an impaired fetal development. The pattern of malformations comprised cleft palate, severe brain deformities, eye defects, micro- or agnathia, syndactyly, clubbed legs and tail anomalies. These effects were exhibited in studies using maternally toxic dose levels.” As developmental effects are due to the specific mechanism of Zn depletion, and not due to maternal toxicity, Na₂EDTA should be labeled as developmental toxicant. However, there are not enough information to decide if it should be Category 1B or Category 2.

Specific target organ toxicity following repeated exposure: no relevant effects were found in SIAP for Na₂EDTA or structural analogues at dose levels relevant for classification. Therefore no classification is needed for this endpoint.

Aquatic environment, acute toxicity: according to SIAP LC/EC50 for Na₂EDTA is 320 – 860 mg/l, and is not readily biodegradable. However, for algae there is only data from 24 DAYS study (or is this typo?). Therefore we should use the structural analogue, Na₄EDTA, with EC50 of 1.01 mg/l. Therefore, classification as Aquatic Acute Category 2 is proposed for acute aquatic toxicity.

Aquatic environment, chronic toxicity: data included in SIAP is not sufficient for classification (NOEC (algae) for Na₂EDTA is FOR 24 DAYS STUDY. and data from structural analogues is also insufficient). Therefore classification for chronic aquatic toxicity is not possible. However, using the surrogate system (aquatic acute tox from the structural analogue, Na₄EDTA, with EC50 of 1.01 mg/l and not rapid degradability) Na₂EDTA should be classified as Aquatic Chronic 2.

General Comment
It would be helpful to clearly indicate which is the key study and which are supporting studies and to find a table with the data that is important for classification at the end of the human health part of the SIAP.

Acute Toxicity

Oral

Cat. 5
based on LD₅₀ value in rats 2000-3980 mg/kg bw
Classification based on the information in the SIAP is not possible. The most relevant data for classification was found in the IUCLID file.

Inhalation

Cat. 4
based on LC₅₀ value in rats >1103 mg/m³ ~ 1.103 mg/l for 6h which was extrapolated to 4h
Classification based on the information in the SIAP is only partly possible. The most relevant data for classification was found in the IUCLID file.
Dermal
Not classified
No data available

Irritation
Skin
Not classified
Classification based on the information in the SIAP is not possible since relevant data (Scoring points) is missing. The most relevant data for classification was found in the IUCLID file.

Eye
Not classified
Classification based on the information in the SIAP is not possible since relevant data (Scoring points) is missing. The most relevant data for classification was found in the IUCLID file.

Sensitization
Not classified
Classification based on the information in the SIAP is not possible since relevant data (Scoring points) is missing. The most relevant data for classification was found in the IUCLID file.

Germ cell mutagenicity
Not classified
based on no mutagenicity in vitro (Ames test, Chromosome aberration test) and in vivo (OECD 474)
Classification based on the information in the SIAP is only partly possible. The most relevant data for classification was found in the IUCLID file.

Carcinogenicity
Not classified
based on no evidence of carcinogenicity in a two-year study in mice and rats with Na₂EDTA

Reproductive toxicity
Not classified
Data is conclusive. However, it is not sufficient for classification.
STOT SE
Oral
Not classified
based on LD_{50} value in rats 2000-3980 mg/kg bw and the clinical signs that were only observed at higher doses
Classification based on the information in the SIAP is only partly possible. The most relevant data for classification was found in the IUCLID file.

STOT RE
Oral
Not classified
based on NOAEL of 692 mg/kg bw/day and clinical observations that were only found in the higher doses
Classification based on the information in the SIAP is possible. However, additional information that supports the classification was found in the IUCLID file.

Environmental Hazards

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Classification</th>
<th>hazard statement</th>
<th>Rational for the classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Hazardous to the aquatic environment (acute)</td>
<td>Category 3</td>
<td>Classification is based on read-across of acute toxicity to the most sensitive fish species Lepomis macrochirus for the close structural analogue Na4EDTA (96h LC${50}$ 41 mg H$_2$EDTA/L).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H402 Harmful to aquatic life</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hazardous to the aquatic environment (chronic)</td>
<td>Category 3</td>
<td>Chronic NOEC values for fish and daphnia for the structural analogue are above 1 mg/L. Therefore classification for chronic aquatic toxicity is based on acute toxicity to the most sensitive fish species Lepomis macrochirus for the close structural analogue Na4EDTA (96h LC${50}$ 41 mg H$_2$EDTA/L) and the lack of rapid biodegradation of disodium EDTA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H412 Harmful to aquatic life with long lasting effects</td>
<td></td>
</tr>
</tbody>
</table>
Key studies used for classification:

Water solubility
Test method: No information on method
Result (measured): 108 g/L at 20°C, pH=5.3
Reference: O'Neil, Maryadele J. et al. (2006); Source of data: The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals (14th Edition - 1st Electronic Update); ECHA, registration dossier for disodium dihydrogen ethylenediaminetetraacetate, Exp Key Water solubility.001; http://apps.echa.europa.eu/registered/data/dossiers/DISS-97dbed15-c225-0814-e044-00144f67d031/AGGR-e7e9ccce-a2ee-411d-ac3c-9cd1e06f2e7a_DISS-97dbed15-c225-0814-e044-00144f67d031.html#AGGR-e7e9ccce-a2ee-411d-ac3c-9cd1e06f2e7a

Partition coefficient octanol-water
Test method: Shake flask method, no further details specified
Result: log Pow -4.3 at 25°C, pH=4.5

Biodegradation
Test substance: CAS 6381-92-6 Ethylenediaminetetraacetic acid, disodium salt, dehydrate
Test method: OECD TG 301 B (Ready Biodegradability: CO2 Evolution Test); initial conc. 61.9 mg/L; test duration: 28d; reliability: 2 (valid with restrictions)
Result: 0-10% in 28d
Conclusion: not readily biodegradable

Bioaccumulation
Test substance: Na4EDTA (radiolabelled)
Test method: No guideline method. 28d flow-through bioconcentration test at 21°C and pH 7.4, test concentrations: 0.76 and 0.08 mg/L. The study was conducted according to the methods described by Branson DR, Blau GE, Alexander HC, and Neely WB (1975). Transactions of the American Fisheries Society, Vol. 104, No. 4: 785-792; reliability 2 (valid with restrictions)
Test species: *Lepomis macrochirus*
Result: BCF ca. 1.8 at 0.08 mg/L, BCF ca. 1.1 at 0.76 mg/L
Conclusion: The test substance is not considered to have a potential for bioaccumulation.
Acute (short-term) aquatic toxicity

Fish
Test substance: tetrasodium EDTA
Test species: *Lepomis macrochirus*
Test method: 96h acute test static waters of different hardness (test method details reported);
Results: 41 mg H$_4$EDTA/L in very soft water (10-13 mg/l CaCO$_3$); 159 mg H$_4$EDTA/L in medium hard water (103 mg/l CaCO$_3$); 532 mg H$_4$EDTA/L in hard water (280-320 mg/l CaCO$_3$)
Remark: read-across of acute toxicity for fish from the structurally similar analogue Na$_4$EDTA to the target substance Na$_2$EDTA

Invertebrates
Test substance: disodium EDTA
Test species: *Daphnia magna*
Test method: DIN 38412, part 11; 48h static; concentrations: 58, 100, 180, 320 and 580 mg/L; reliability 2 (valid with restrictions)
Result: 48h EC50 140 mg/L
Reference: ECHA, registration dossier for disodium dihydrogen ethylenediaminetetraacetate, Exp Key Short-term toxicity to aquatic invertebrates.001, report date: 1989-09-26; http://apps.echa.europa.eu/registered/data/dossiers/DISS-97dbed15-c225-0814-e044-00144f67d031/AGGR-fibbed38a-6565-4d59-b1a4-74eacfdfa1b0_DISS-97dbed15-c225-0814-e044-00144f67d031.html#AGGR-fibbed38a-6565-4d59-b1a4-74eacfdfa1b0

Algae
No reliable test data available for disodium EDTA.
Chronic (long-term) aquatic toxicity

Fish
Test substance: CaNa$_2$EDTA
Test method: OECD TG 210 (Fish, Early-Life Stage Toxicity Test), 35d flow-through test according GLP, test concentrations: 0.0, 1.1, 3.3, 7.7, 16.4 and 35.1 mg/L (EDTA-anion: 0.0, 0.8, 2.3, 5.4, 11.5 and 24.6 mg/L); reliability: 1 (valid without restrictions)
Test species: *Danio rerio*
Result: NOAEC \geq 25.7 mg H$_2$EDTA/L; Over the whole study period (day 0 - 35) no statistically significant decreases in survival were observed in any of the concentration groups in comparison to the control group.
Reference: ECHA, registration dossier for disodium dihydrogen ethylenediaminetetraacetate, Read across Subs Key Long-term toxicity to fish.001, report date: 2001-02-27; http://apps.echa.europa.eu/registered/data/dossiers/DISS-97bed15-c225-0814-e044-00144f67d031/AGGR-642759ad-6b54-413a-8fae-cb9ec193908a_DISS-97bed15-c225-0814-e044-00144f67d031.html#AGGR-642759ad-6b54-413a-8fae-cb9ec193908a
Remarks: CaNa$_2$EDTA is considered as a very close structural analogue to the target substance H$_2$Na$_2$EDTA. Therefore the data is used for read-across.

Invertebrates
Test substance: disodium EDTA
Test method: EEC Guideline XI/681/86, Draft 4; "Prolonged toxicity study with Daphnia magna: Effects on reproduction", 21d semi-static according GLP, Test concentrations (nominal): 100, 50.0, 25.0, 12.5, 6.25, 3.13 and 1.56 mg/L; reliability: 1 (valid without restrictions)
Test species: *Daphnia magna*
Result: 21d NOEC (reproduction) 25 mg/L (nominal)
Mammalian toxicity endpoints

Acute toxicity Oral

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (Wistar)</td>
<td>OECD Guideline 401</td>
<td>> 1780 LC₅₀ < 2000 mg/kg bw</td>
<td>BASF AG (1983).</td>
<td>Acute Tox 4, H₃₀₂</td>
<td>This study is reported in the IUCLID DataSet but it cannot be found in the SIAR</td>
</tr>
</tbody>
</table>

Acute toxicity Inhalation

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (Wistar)</td>
<td>OECD Guideline 412</td>
<td>6/20 deaths at 1000 mg/m³ (one day expos. only); exposure related congestion, edema, hemorrhage and inflammation after 5-days; fully reversible after 14 days; no NOAEC could be assigned</td>
<td>BASF SE, 2010</td>
<td>Not Classified</td>
<td></td>
</tr>
</tbody>
</table>

Acute toxicity Dermal

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No animal data are available as reported in SIAP table 4.</td>
</tr>
</tbody>
</table>
Taking into account the poor dermal absorption (Foremann, 1954)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit Vienna white strain</td>
<td>Comparable to OECD 404 guideline study (1992) with acceptable restrictions</td>
<td>well defined erythema was observable in animal 2, which was fully reversible within 72 h. 1-15 min exposure also did not cause edema or erythema. Not irritating under the conditions of the study</td>
<td>BASF AG. (1973)</td>
<td>Not Classified</td>
<td>No classification according to GHS criteria as the mean value is 1,3 for erythema in 1/2 animal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit Vienna white</td>
<td>equivalent or similar to OECD Guideline 405 (Acute Eye Irritation / Corrosion)</td>
<td>Both animals showed some redness of the conjunctivae (score 1), 24 h after application of the TS. Non irritating</td>
<td>BASF AG 1973</td>
<td>Not Classified</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>No specified</td>
<td>In both study (Na2EDTA Olson 1962a; Pinkerton and)</td>
<td>Olson 1962a; Pinkerton and</td>
<td></td>
<td>Only 1 animal used in both studies.</td>
</tr>
</tbody>
</table>
dehydrate) result slight irritant

Schwebel, 1976a

| Sensitizer Skin and respiratory tract |
| Organism | Methods | Data | Reference | GHS Classification | Rationale/Comments |
| Guinea pig, strain Hartley, female | Guinea pig maximization test OECD 406 | The authors concluded that although erythema was observed after the first challenge in 3/10 animals (the criterion for a positive test), it was not due to delayed hypersensitivity since it was mild and transient in nature and was observed only in 1/10 animals after the second challenge. Not sensitizing | Manciaux, 2000 | Not Classified |

| Gene mutation |
Organism	Methods	Data	Reference	GHS Classification	Rationale/Comments
Ames	negative	DeFlora, 1981 Dunkel et al., 1999	Not classified		
Mouse lymphoma, L5178Y/TK+/-	negative	Dunkel et al., 1999 Whittaker et al. 2001	Not classified		
Syrian Hamster Ovary Cell Transformation	negative	LeBoeuf et al., 1990	Various negative findings in *in vitro* and *in vivo* tests		
The positive result obtained in micronucleus test (Zordan et al., 1990) with extremely high dose is not confirmed in the SIAR. |
<table>
<thead>
<tr>
<th>Assay</th>
<th>CHL Fibroblasts/CA</th>
<th>Weak positive</th>
<th>Ashby and Ishidate, 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN (mouse bone marrow)</td>
<td>Negative, (5)</td>
<td>Negatives</td>
<td>BASF AG 2000</td>
</tr>
<tr>
<td>Cytogenicity (mouse germ cell)</td>
<td>Negative/Positive?</td>
<td>Zordan et al., 1990</td>
<td></td>
</tr>
<tr>
<td>Dom. Lethal (mouse)</td>
<td>Negative</td>
<td>Muraldihara and Narasimhamurthy, 1991</td>
<td></td>
</tr>
<tr>
<td>MN (mouse bone marrow)</td>
<td>Negative tested, dihydrate of 139-33-3</td>
<td>Russo and Levis, 1992</td>
<td></td>
</tr>
</tbody>
</table>

Carcinogenicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer 344 rats</td>
<td>standard carcinogenicity study</td>
<td>An oral two-year study with Na₂EDTA trihydrate in mice and rats indicated no evidence of carcinogenicity</td>
<td>NCI-CG-TR-11, 1977 in RAR-EU</td>
<td>Not classified</td>
<td>No data available for Na₂EDTA</td>
</tr>
</tbody>
</table>

Reproductive/Developmental toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wistar albino rats</td>
<td>No indicated</td>
<td>The weight of evidence from a two-generation reproductive toxicity study in rats shows that dietary ingestion of 1% Na₂EDTA (approx. 920</td>
<td>Yang, 1952</td>
<td>Not classified</td>
<td>Members of the aminocarboxylic acid-based chelants category would not be expected to exhibit reproductive and developmental effects in the absence of a metal deficiency which is not expected under normal nutrition.</td>
</tr>
</tbody>
</table>
mg/kg bw/day) had no effect on reproduction; however, no litters were produced at 5% (approx. 4600 mg/kg bw/day); the NOAEL for reproductive toxicity was 920 mg/kg bw/day.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprague-Dawley rats</td>
<td>No indicated</td>
<td>Developmental study: LOEL = 1,000 mg/kg bw/day (dietary exposure) Effects: implantation sites having dead, resorbed or malformed fetuses, increased incidence in malformed live pups and a decreased mean fetal body weight. These effects are observed in the presence of maternal toxicity and are related to plasma zinc concentrations.</td>
<td>Swenerton and Hurley, 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Methods</td>
<td>Data</td>
<td>Reference</td>
<td>GHS Classification</td>
<td>Rationale/Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Wistar rat</td>
<td>No indication. Guideline study, following GLP</td>
<td>Conc. of 30, 300 or 1000 mg/m³; 6/20 deaths at 1000 mg/m³ (one day expos. only); exposure related congestion, edema, hemorrhage and inflammation after 5-days; fully reversible after 14 days; no NOAEC could be assigned</td>
<td>BASF SE, 2010</td>
<td>STOT SE 3.H335</td>
<td>Not classified as STOT SE 1 or 2</td>
</tr>
</tbody>
</table>

Repeated dose toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holtzman rats</td>
<td>No specified</td>
<td>4206 . mg/kg bw</td>
<td>Wynn et al. 1970</td>
<td>Not classified</td>
<td></td>
</tr>
</tbody>
</table>

Effect: Decreased body weights and food consumption; mortality, & diarrhea. There were no effects of treatment on hematocrit, hemoglobin, total and differential white cell counts, prothrombin time or serum calcium levels at 13 weeks.

Aspiration Toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

Environmental toxicity endpoints
Acute toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>Directive 84/449/EEC, C.1 "Acute toxicity for fish"</td>
<td>LC$_{50}$ = 320 mg/L</td>
<td>Balk, 1989</td>
<td>Not Classified</td>
<td>This study is reported in the IUCLID DataSet but it cannot be found in the SIAR. In the SIAR another study is reported which is missing in the IUCLID DataSet.</td>
</tr>
<tr>
<td>Aquatic Invertebrates</td>
<td>DIN 38412 Part 11</td>
<td>EC$_{50}$ = 140 mg/L</td>
<td>BASF AG. 1989</td>
<td>Not Classified</td>
<td>Toxicity is associated to the chelation of essential nutrients by the category members and it is not considered a relevant environmental hazard in view of the abundance of such nutrients in aquatic environments. Indirect effects like nutrient deficiency and eutrophication could only qualitatively be assessed; they are unlikely to occur in the environment although they cannot be excluded.</td>
</tr>
<tr>
<td>Aquatic Plants</td>
<td>Study Na$_2$EDTA EU Method C.3</td>
<td>EC$_{50}$ = 2.77 mg/L</td>
<td>BASF AG (1995)</td>
<td>Not Classified</td>
<td></td>
</tr>
</tbody>
</table>

Chronic toxicity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methods</th>
<th>Data</th>
<th>Reference</th>
<th>GHS Classification</th>
<th>Rationale/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>Not Classified</td>
<td>Adequate chronic toxicity data are not available. However acute toxicity fish and aquatic invertebrates LC50 and EC50 are greater than 100 mg/L so that no classification seems to be appropriate</td>
</tr>
<tr>
<td>Aquatic Plants</td>
<td>Study on Na$_2$EDTA EU</td>
<td>NOEC=0.39 mg/L</td>
<td>BASF AG (1995)</td>
<td>Not Classified</td>
<td>Toxicity is associated to the chelation of essential nutrients by the category</td>
</tr>
<tr>
<td>Method C.3</td>
<td>members and is not considered a relevant environmental hazard in view of the abundance of such nutrients in aquatic environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account. (RAR Na₂EDTA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Russian Federation classification proposal for Disodium EDTA (CAS. 139-33-3)

<table>
<thead>
<tr>
<th>Hazard class</th>
<th>Substance data / Note</th>
<th>Criteria of Category according to GHS</th>
<th>Conclusion/Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosives</td>
<td>No data available</td>
<td>There are no chemical groups associated with explosive properties present in the molecule</td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable gases</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing gases</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Gases under pressure</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable liquids</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Flammable solids</td>
<td>No data available</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-reactive substances and mixtures</td>
<td>No data available</td>
<td>There are no chemical groups present in the molecule associated with explosive or self-reactive properties</td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric liquids</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Pyrophoric solids</td>
<td>No data available / Study scientifically unjustified</td>
<td>Substance is known to be stable at room temperature for prolonged periods of time (days)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-heating substances and mixtures</td>
<td>No data available</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Substances and mixtures which, in contact with water, emit flammable gases</td>
<td>Substance has a high water solubility (105 g/l at 20°C)</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing liquids</td>
<td>Substance is a solid</td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td>Oxidizing solids</td>
<td>No data available</td>
<td>Substance contains oxygen, which is chemically bonded</td>
<td>Not classified</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
<td>Classification/Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Organic peroxides</td>
<td>Substance is not organic peroxides</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Corrosive to metals</td>
<td>No data available</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / oral</td>
<td>LC<sub>50</sub> (rat) = 2000 – 3980 mg/kg bw</td>
<td>300 < Category 4 ≤ 2000 Category 4</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / dermal</td>
<td>No data available on this substance</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Acute toxicity / inhalation</td>
<td>No deaths (1.13 mg/L, 7 hr)</td>
<td>Not classified. The information is not enough for classification</td>
<td></td>
</tr>
<tr>
<td>Skin corrosion/irritation</td>
<td>Slightly irritating. The aminocarboxylic acid-based chelants are not irritating or only slightly irritating to the intact skin. The irritancy potential is related to the pH of the individual salt. Thus, more acidic members of the category such as disodium EDTA have inherently greater irritancy potential.</td>
<td>Not classified. Based on available data, the classification criteria are not met</td>
<td></td>
</tr>
<tr>
<td>Serious eye damage/ eye irritation</td>
<td>Slightly irritating. The aminocarboxylic acid-based chelants are only slightly to moderately irritating to the eyes in rabbits. The irritancy potential is related to the pH of the individual salt. Thus, more acidic members of the category such as disodium EDTA have inherently greater irritancy potential.</td>
<td>Not classified. Based on available data, the classification criteria are not met</td>
<td></td>
</tr>
<tr>
<td>Respiratory or skin sensitization</td>
<td>The aminocarboxylic acid-based chelants are not skin sensitisers.</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Germ cell mutagenicity</td>
<td>Negative test results</td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>No data available on this substance. Na3EDTA trihydrate and CaNa2EDTA were not carcinogenic in rats and mice, respectively. The amino carboxylic acid-based chelants category members are not expected to be carcinogens.</td>
<td>Based on read-across data</td>
<td></td>
</tr>
<tr>
<td>Reproductive toxicity</td>
<td>The weight of evidence from a two-generation reproductive toxicity study in rats shows that dietary ingestion of 1% Na2EDTA (approx. 920 mg/kg bw/day) had no effect on reproduction; however, no litters were produced at 5% (approx. 4600 mg/kg bw/day); the NOAEL for reproductive toxicity was 920 mg/kg bw/day. Studies on developmental toxicity showed a specific fetotoxic and teratogenic potential of Na2EDTA.</td>
<td>Category 2: Substances for which there is some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on sexual function and fertility, or on development</td>
<td></td>
</tr>
<tr>
<td>Specific target organ toxicity – Single exposure</td>
<td>Conc. of 30, 300 or 1000 mg/m³; 6/20 deaths at 1000 mg/m³ (one day expos. only, rat); exposure related congestion, edema, hemorrhage and inflammation after 5-days; fully reversible after</td>
<td>Not classified</td>
<td></td>
</tr>
</tbody>
</table>

The data is not enough for classification
BIAC (JCIA) classification proposal for Disodium EDTA (CAS. 139-33-3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>NC</td>
<td>NC</td>
<td>Data not sufficient: no LC50 in acute inhal study</td>
<td>Data sufficient</td>
<td>Data sufficient</td>
<td>Data not sufficient</td>
<td>Data sufficient</td>
<td>Data sufficient</td>
<td>Data sufficient (read across)</td>
<td>Data not sufficient (but conclusive)</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

Note:
(i): inhalation (o): oral

NC = not classified

Comment: All of the hazardous classes indicating above are “Classification is not possible” or “Not classified.”
Classification for the Environment: proposal for Disodium EDTA (CAS. 139-33-3)

<table>
<thead>
<tr>
<th>Aquatic Acute Classification</th>
<th>EDTA(2Na)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not classified</td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>Not sufficient; chelation not considered relevant for aquatic environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquatic Chronic Classification</th>
<th>EDTA(2Na)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not classified</td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>Not sufficient; chelation not considered relevant for aquatic environment</td>
</tr>
</tbody>
</table>

Classification for Titanium Dioxide (CAS. 13463-67-7)

Notified classification for Titanium Dioxide (CAS. 13463-67-7)

<p>|--------------------|------|------------|-------------|------------|---------------|---------|---------|--------|-------|---------|-------------|-------------| tuners |
| ECHACHEM 1 | | Acute Tox. 4 (i) | | | | | | | | | | | 41 |
| ECHACHEM 2 | | | Eye Irrit. 2 | STOT SE 3 | STOT RE 1 | | | | | | | | 36 |
| ECHACHEM 3 | | | | | | | | | | | | | 18 |
| ECHACHEM 4 | | | Skin Irrit. 2 | Eye Irrit. 2 | STOT SE 3 | | | | | | | | 17 |
| ECHACHEM 5 | | | | | STOT SE 2 | | | | | | | | 10 |
| ECHACHEM 6 | | Acute Tox. 4 (i) | | | | | | | | | | | 9 |
| ECHACHEM 7 | | Acute Tox. 4 (o) | Skin Irrit. 2 | Eye Irrit. 2 | STOT SE 3 | STOT RE 1 | | | | | | | 8 |
| ECHACHEM 8 | | | Eye Irrit. 2 | STOT SE 3 | STOT RE 1 | | | | | | | Aqua. Chro. 4 | 7 |
| ECHACHEM 9 | | | Eye Irrit. 2 | STOT SE 3 | STOT RE 1 | | | | | | | | 5 |</p>
<table>
<thead>
<tr>
<th>ECHACHEM</th>
<th></th>
<th></th>
<th></th>
<th>STOT SE</th>
<th>STOT RE</th>
<th>Carc.</th>
<th>Aqua. Chro.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ECHACHEM</td>
<td>Eye Irrit.</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td></td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>ECHACHEM</td>
<td>Eye Irrit.</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ECHACHEM</td>
<td>Acute Tox. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>ECHACHEM</td>
<td>Skin Irrit. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>ECHACHEM</td>
<td>Acute Tox. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>Carc. 2</td>
<td></td>
<td></td>
<td>Aqua. Chro.</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>ECHACHEM</td>
<td>Acute Tox. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>ECHACHEM</td>
<td></td>
<td>STOT SE</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>ECHACHEM</td>
<td></td>
<td>STOT SE</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>ECHACHEM</td>
<td></td>
<td>STOT SE</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>ECHACHEM</td>
<td></td>
<td>STOT SE</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ECHACHEM</td>
<td>Eye Irrit. 2</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td>Carc. 2</td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
<tr>
<td>GHS-J</td>
<td>Eye Irrit. 2B</td>
<td>STOT SE</td>
<td>STOT RE</td>
<td></td>
<td></td>
<td></td>
<td>Aqua. Chro.</td>
<td>4</td>
</tr>
</tbody>
</table>
BLAC (JCIA) classification proposal for Titanium Dioxide (CAS. 13463-67-7)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>Eye Irrit. 2B</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>Carc. 2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Proposed draft classification

- No data: data not sufficient: no LC50 in acute inhal study
- Data not sufficient: lack of study detail
- Data not sufficient: based on previous conclusion (IUCLID); but scores not reported
- Data not sufficient
- Data not sufficient
- Data not sufficient: based on previous conclusion (IARC)
- Data not sufficient
- Data not sufficient

NC = not classified
CoCAM 5 – Phase Two of the Exercise

2-Vinylpyridine (2-VP) (CAS 100-69-6)

The Netherlands (RIVM)

Note: Classification was proposed for skin corrosion even though this was not listed as an endpoint. However, the information was available and we felt it was proper to use in this case since the data available was useful for the classification of eye irritation.

Acute Toxicity

Inhalation

Classification proposal: Not possible

Key Data:

Rationale:

Lack of reliable data. Three experimental studies in animals (2 in rats and 1 in mouse) all scored unreliable (Klimisch score 4). Agree with assigned reliability mainly due to the lack of information regarding the experimental details for example, information on purity and concentration of substance used, type of exposure and descriptive details etc. Secondary information on humans is available however this is also considered limited for classification purposes.

Level of detail: SIAP, SIAR and dossier

Dermal

Classification proposal: Cat 1

Key Data:

LD₅₀ of 640 mg/kg bw in rabbit and 160 mg/kg bw in guinea pigs

Rationale: Lowest LD₅₀ was used

Level of detail: SIAP

Oral

Classification proposal: Cat 2

Key Data:

LD₅₀ in rats range between 50 mg/kg bw < LD₅₀ > 300 mg/kg bw (OECD 423)

Rationale: Based on lower and upper limits of range

Level of detail: SIAP

Irritation

Eye

Classification proposal: Cat 1

Key Data: Data relating to animal studies that indicates 2-VP to be corrosive to the skin. Reliable (with restriction) secondary source of experimental result (1994): skin necrosis was observed at all test sites 48h after application in rabbit (New Zealand White)

Rationale: Testing and evaluation strategy for serious eye damage and eye irritation, Step 1b (Figure 3.3.1, GHS Guidance)

Level of detail: SIAR and dossier
Skin
Classification proposal: Not possible
Key Data: The substance is considered corrosive therefore most likely to be highly irritant.
Rationale: Lack of data, scoring data not provided
Level of detail: SIAP/SIAR/dossier

Skin Corrosion
Classification proposal: Cat 1B
Key Data: Reliable (with restriction) secondary source of experimental result
 (1994): skin necrosis was observed at all test sites 48h after application in rabbit (New Zealand White)
Other considerations: Study report (1983) GLP compliant: skin irritation was determined by a 24-h occluded skin irritation test in guinea pigs and was found to be severe.
Rationale: skin necrosis observed (in at least 1of 3 tested animals) after exposure ≤ 1 hour (guidance Table 3.2.1).
Level of detail: SIAR and dossier

Sensitization

Respiratory Sensitization
Classification proposal: Not possible
Key Data:
Rationale: Lack of data
Level of detail: SIAP/SIAR/dossier

Skin Sensitization
Classification proposal: Cat 1
Key Data: Equivalent or similar study to OECD 429 in mouse (LLNA) indicated the substance to be positive for sensitizing, stimulation index > 3.
Rationale: For Cat 1 in animal studies, a stimulation index of three or more in considered a positive response in the LLNA
Other considerations: positive data from patch testing: in one case study the authors suspected cross-sensitization among pyridine derivatives and in second case study the author concluded that an employee became sensitized to 2-vinylpyridine despite wear full protective gear (patient developed severe dermatitis at the site of contact, secondary eczematization over the flexures and periungual areas and marked systemic upset); positive animal data from non-standard methods or reporting of minimal data; and structural alert for pyridine as a known sensitizers
Level of detail: SIAP, SIAR and Dossier

Germ Cell Mutagenicity
Classification proposal: Not possible
Key Data: - 2-VP induced gene mutations in a bacterial test in E. coli with exogenous metabolic activation.
- In four other studies (3-reliable with restrictions and 1 not reliable), mutagenicity to *Salmonella typhimurium* was observed in only one study in the presence of exogenous reductive metabolic activation.

- 2-VP induced chromosomal aberrations in CHL/IU cells with or without exogenous metabolic activation.

- In a non-bacterial *in vitro* UDS assay (rat hepatocytes cells), 2-vinylpyridine showed negative results at a low concentration (2.5 mmol). 2-VP is cytotoxic at low concentrations.

Rationale: Lack of data. Based on the data, 2-VP could be considered *in vitro* mutagenic. But the data is not sufficient to draw a conclusion for classification purposes based on Figure 3.5.1 of the GHS guidance.

- *In vivo* data for 2-VP is not available (germ or somatic) and structural similarity to known germ cell mutagens was not investigated.

Level of detail: SIAP, SIAR and dossier

Carcinogenicity

Classification proposal: Not possible

Key Data:

Rationale: No reliable carcinogenicity studies were identified. In a limited tumorigenicity study in which female A/J mice were treated with 2-VP by intraperitoneal injections for 7 weeks, no tumors were seen.

Level of detail: SIAR and SIAP

Reproductive Toxicity

Classification proposal: Cat 2

Key Data:

- Reproduction /development toxicity screening study available (OECD 421; GLP: rats);
- Parental general toxicities are considered to be 20 mg/kg bw/day and more; **NOAEL** for reproductive toxicity is 20 mg/kg bw/day. This is based on dystocia at 50 mg/kg bw/day. **LOAEL** for developmental toxicity is 20 mg/kg bw/day, the lowest dose. This is based on decreased body weights in pups in all treatment groups. NOAEL could not be determined.

Other considerations: In the repeated dose 92-day study, increased relative ovary weights were observed and 1 female rat (1/20) exhibited ovarian congestion at 180 mg/kg bw/day. However, it is unknown as to how these changes affected reproductive parameters in this study.

Rationale: Observed effect of dystocia at 50 mg/kg bw/day. Prolonged parturition is considered an effect on sexual function. The dystocia effect is clear however what is unknown is whether the effect is itself direct or secondary in the presence of maternal toxicity.

Level of detail: SIAP, SIAR and dossier

STOT-SE

Inhalation

Classification proposal: Not possible

Key Data:

Rationale: No data
Level of detail: SIAP/SIAR/dossier

Dermal

Classification proposal: Not possible, useful information not available

Key Data: Clinical signs, such as lethargy, prostration, labored breathing, aggressive behavior, and convulsions, were observed in animals treated with lethal doses (≥ 300 mg/kg bw). Severe irritations were observed.

Rationale: Studies do not provide useful information for STOT-SE evaluation

Level of detail: SIAP, SIAR and dossier

Oral

Classification proposal: No classification

Key Data: Toxicological effects on stomach (28-d and 92-d repeated dose studies in rats): NOAELs for local and systemic effects = 12.5 mg/kg bw/day.

Rationale: These effects are covered by oral LD50 (LD50 in rats range between 50 mg/kg bw < LD50 > 300 mg/kg bw (OECD 423)). 2-VP is classified as Acute Toxicity Cat 2 (oral) therefore it is not necessary to classify as STOT-SE.

Level of detail: SIAP, SIAR and dossier

STOT-RE

Oral

Classification proposal: No classification

Key Data: 92-day repeated dose study in rats (EPA OPPS 870.31000; GLP)

Supporting information: 28-day repeated dose study in rats (Japanese guideline under GLP)

Rationale: Local gastric irritation (mainly protective effect) is normally an acute effect that is irreversible. Irritation/corrosion effects are more dependent on concentration rather than dose.

Level of detail: SIAR and dossier

Aspiration Toxicity

Classification proposal: Not possible

Key Data:

Rationale: Lack of data

Level of detail: SIAP/SIAR/dossier
Environment

Acute Aquatic Toxicity

Classification proposal: Acute Aquatic Cat 2
Key Data: Fish (Oryzias latipes) 96-h LC₅₀ = 6.5 mg/L (OECD 203; GLP);
Invertebrate (Daphnia magna) 48-h EC₅₀ = 9.5 mg/L (OECD 202; GLP)
and algae (Pseudokirchneriella Subcapitata) 72-h ErC₅₀ = 62 mg/L
(OECD 201; GLP)
Rationale: Information is available for three trophic levels and for
classification purposes the lowest aquatic toxicity value (Fish 96-h LC₅₀
= 6.5 mg/L) is used
Level of detail: SIAP, SIAR and dossier

Chronic Aquatic Toxicity

Classification proposal: Chronic Aquatic Cat 2
Key Data: Invertebrate (Daphnia magna) 21-d NOEC reproduction = 0.9
mg/L (OECD 211; GLP)
Algae (Pseudokirchneriella Subcapitata) 72-h NOErC = 27 mg/L
(OECD 201; GLP)
Rationale: Chronic information is available for invertebrates and algae. The
surrogate approach (according to Figure 4.1.1 of the GHS guideline
environment section) was used for classification purposes.
21-d NOEC for Daphnia = 0.9 mg/L; 72-h NOErC for algae = 27 mg/L;
96-h LC50 fish = 6.5 mg/L.
2-VP is not readily biodegradable.
Level of detail: SIAP, SIAR and dossier

Switzerland (Human Health only)

2-Vinylpyridine (CAS 100-69-6)

Acute Toxicity

Inhalation
Classification proposal: Not classified
Key Data: none
Rationale: No valid data available which allows classification.
Level of detail: SIAP/SIAR/dossier

Dermal
Classification proposal: Cat 2
Key Data: LD₅₀ of 160 mg/kg bw in guinea pig
Rationale: LD₅₀ for rabbit (640 mg/kg bw) and guinea pig (160 mg/kg bw) were
available. Since both studies have a reliability of two and both are
listed without any further priorisation, the lowest LD₅₀ was used for
classification purposes.
Level of detail: SIAP
Oral
Classification proposal: Cat 3
Key Data: LD_{50} >50 and <300 mg/kg bw in rats
Rationale: LD_{50} >50 and <300 mg/kg bw leads to a classification into Cat 3.
Level of detail: SIAP

Irritation

Eye
Classification proposal: Serious Eye Damage Cat 1
Key Data: Same as for skin corrosion
Rationale: 2-vinylpyridine caused skin necrosis in all rabbits 48 hours after dosing and was therefore classified as skin corrosive.
Level of detail: SIAP/SIAR/dossier

Skin
Classification proposal: Corrosive Cat 1
Key Data: The application of 0.5 ml [480 mg] undiluted 2-vinylpyridine to the shaved intact skin of New Zealand white rabbits (5 males and 1 female) for 1 hour (skin wiped after 1 hour) caused skin necrosis in all rabbits 48 hours after dosing.
Rationale: 2-vinylpyridine caused skin necrosis in all rabbits 48 hours after dosing and was therefore classified as corrosive.
Level of detail: SIAP/SIAR

Sensitization

Respiratory Sensitization
Classification proposal: Not classified
Key Data: none
Rationale: No valid data available which allows classification.
Level of detail: SIAP/SIAR/dossier

Skin Sensitization
Classification proposal: Cat 1
Key Data: Stimulation index >3 in mouse LLNA; strong positive reactions to 0.5% 2-vinylpyridine in human patch test and 80% response in GPMT
Rationale: All above mentioned test results lead to a classification into category 1.
Level of detail: SIAR/Dossier

Germ Cell Mutagenicity
Classification proposal: Not classified
Key Data: Positive in OECD TG 471, 472 and 473
No in vivo data identified
Rationale: Insufficient data. No information on structural analogs is available in the dossier.
Level of detail: SIAP/SIAR/dossier

Carcinogenicity
Classification proposal: Not classified
Key Data: none
Rationale: No adequate carcinogenicity study was identified.
Level of detail: SIAP/SIAR/dossier

Reproductive Toxicity
Classification proposal: Not classified
Key Data: On the basis of stillbirth in pups at 50 mg/kg bw/day, NOAEL for reproductive toxicity was estimated to be 20 mg/kg bw/day, while parental general toxicity was observed at 20 mg/kg bw/day. On the basis of the decreased body weights in pups in all treatment groups, LOAEL for developmental toxicity was estimated to be 20 mg/kg bw/day in rats, the lowest dose tested.
Rationale: Due to the fact that it is not clear whether the observed developmental effects are due to parental toxicity, a classification is not possible.
Level of detail: SIAP/SIAR/dossier

STOT-SE
Inhalation
Classification proposal: Not classified
Key Data: none
Rationale: No valid data available which allows classification.
Level of detail: SIAP/SIAR/dossier

Dermal
Classification proposal: Not classified
Key Data: none
Rationale: A classification is not possible since details on toxic effects were missing.
Level of detail: SIAP/SIAR/dossier

Oral
Classification proposal: Not classified
Key Data: Clinical signs of toxicity including excessive salivation, soft feces, reddening of legs and auricles, soiling of perioral and perianal regions, tachypnea, prostration, weakness, tremors, vasodilatation, and anorexia.
Rationale: The substance is not classified since the observed effects do not support a classification.
Level of detail: SIAP/SIAR/dossier

STOT-RE
Oral
Classification proposal: Not classified
Key Data: NOAEL of 12.5 mg/kg bw/day and clinical signs of toxicity (decrease in body weight, increased kidney, liver, ovary, testis weights and decreased spleen weight)
Rationale: The substance is not classified because all the observed clinical signs were either reversible or not substance related.
Level of detail: SIAP/SIAR/dossier

Aspiration Toxicity

Classification proposal: Not classified
Key Data: none
Rationale: No valid data available which allows classification.
Level of detail: SIAP/SIAR/dossier

Russian Federation

2-Vinylpyridine (CAS 100-69-6)

Human Health

Acute Toxicity

Inhalation

Classification proposal: Not classified
Key Data: LC\textsubscript{50}(rat): > 160 — < 5500 ppm
Reliability: 2 (reliable with restrictions)
Rationale: Classification is not possible due to lack of details on study (unknown time)
Level of detail: dossier

Dermal

Classification proposal: Cat 2
Key Data: LD\textsubscript{50} was 640 mg/kg bw in rabbits and 0.16 mL/kg in guinea pigs
Rationale: For classification purposes the lowest LD\textsubscript{50} was used (LD\textsubscript{50} in guinea pigs: 0.16 mL/kg = 159.73 mg/kg at density 0.9983 g/cm3)
Level of detail: SIAP

Oral

Classification proposal: Cat 3
Key Data: LD\textsubscript{50} in female rats was 50 – 300 mg/kg bw and LD\textsubscript{50} in male and female rats was 336 (240–472) mg/kg bw
Rationale: For classification purposes the lowest LD\textsubscript{50} was used
Level of detail: SIAR

Irritation

Eye

Classification proposal: Cat 2A
Key Data: Strong eye irritation was observed in rabbits. Corneal and adnexal staining was observed in all animals. Prompt irrigation with distilled water was palliative
Rationale: Data is enough for classification purposes
Level of detail: SIAR

Skin
Classification proposal: Cat 1B
Key Data: Skin necrosis was observed at all test sites of New Zealand White rabbits (5 males and 1 female/dose) 48 h after application. Duration of treatment / exposure: 1h. Reliability: 2 (reliable with restrictions).
Rationale: Data is enough for classification purposes
Level of detail: dossier

Sensitization

Respiratory Sensitization
Classification proposal: Not classified
Key Data: No information is available
Rationale: SIAP/SIAR/dossier
Level of detail: SIAP/SIAR/dossier

Skin Sensitization
Classification proposal: Cat 1B
Key Data: In a standardized skin sensitization test performed on 10 guinea pigs, 2 animals showed no response, 3 showed a weak response, 4 showed a moderate response, and 1 showed a potent response.
Rationale: Data is enough for classification purposes
Level of detail: SIAR

Germ Cell Mutagenicity
Classification proposal: Cat 2
Key Data: In a bacterial reverse mutation assay (Ames test) with multiple strains of Salmonella typhimurium and Escherichia coli (OECD TG 471 and 472 and Guidelines for screening mutagenicity testing of chemicals, Japan), 2-vinylpyridine showed clear mutagenic responses in Escherichia coli with exogenous metabolic activation, although no mutagenicity to Salmonella typhimurium was observed with or without exogenous metabolic activation. In addition, an in vitro chromosomal aberration test (OECD TG 473) showed positive results both with and without metabolic activation.
Rationale: Positive result from in vitro experiment
Level of detail: SIAP/SIAR

Carcinogenicity
Classification proposal: Not classified
Key Data: 2-vinylpyridine was administered at total doses of 200 μmol by i.p. injection to 25 female A/J mice per group. None of the animals developed significant number of lung adenomas or any other type of tumors. In contrast, the positive control (treated with the tobacco specific N-nitrosamine NNK) induced a high incidence of lung adenomas in A/J mice (24.0 ± 7.0/mice).
Rationale: On the basis of data from these bioassays, 2-vinylpyridine was considered to be non–tumorigenic in A/J mice. No information is available about carcinogenicity studies (inhalation/ dermal/ oral)
Level of detail: SIAP/SIAR/dossier
Reproductive Toxicity
Classification proposal: Cat 2
Key Data: Three female rats died during gestation and 4 female rats died during lactation at 125 mg/kg bw/day. Two female rats showed dystocia at 125 mg/kg bw/day and were euthanized. All newborn pups from 1 dam were stillborn at 50 mg/kg bw/day, which was estimated to be a toxicological effect. NOAEL for reproductive toxicity was estimated to be 20 mg/kg bw/day, while parental general toxicity was observed at 20 mg/kg bw/day (see the repeated dose section). In offsprings, body weights decreased in all dosing groups. LOAEL for developmental toxicity in rats was therefore estimated to be 20 mg/kg bw/day.
Rationale: Positive evidence from experiments in mammals
Level of detail: SIAR

STOT-SE
Inhalation
Classification proposal: Not classified
Key Data: No information is available
Rationale: SIAP/SIAR/dossier
Level of detail: SIAP/SIAR/dossier

Dermal
Classification proposal: Not classified
Key Data: No information is available
Rationale: SIAP/SIAR/dossier
Level of detail: SIAP/SIAR/dossier

Oral
Classification proposal: Not classified
Key Data: No information is available
Rationale: SIAP/SIAR/dossier
Level of detail: SIAP/SIAR/dossier

STOT-RE
Oral
Classification proposal: Cat 1
Key Data: NOAEL (rat, 28d) = 12.5 mg/kg bw/day, toxicological effects observed in the stomach
LOAEL (rat, 92d) = 20 mg/kg bw/day, the increased relative kidney weights in males and histopathological changes in the gastric epithelium
Rationale: For classification purposes NOAEL was used
Level of detail: SIAR

Aspiration Toxicity
Classification proposal: Not classified
Key Data: No information is available
Rationale: The substance is not a hydrocarbon and there is no human evidence
Level of detail: SIAP/SIAR/dossier

Environment

Acute Aquatic Toxicity
Classification proposal: Cat 2
Key Data: Fish (*Oryzias latipes*, 96 h): LC$_{50}$ = 6.5 mg/L (nominal)
Daphnia (*Daphnia magna*, 48 h): EC$_{50}$ = 9.5 mg/L (measured)
Algae (*Pseudokirchneriella subcapitata*, 72 h): ErC$_{50}$ = 62 mg/L (measured, growth rate)

Rationale: For classification purposes the lowest LC$_{50}$ was used
Level of detail: SIAP

Chronic Aquatic Toxicity
Classification proposal: Cat 2
Key Data: 2-vinilpyridine is considered to be not-readily biodegradable
Daphnia (*Daphnia magna*, 21 d): LOEC = 1.8 mg/L (measured)
Daphnia (*Daphnia magna*, 21 d): NOEC = 0.90 mg/L (measured)
Algae (*Pseudokirchneriella subcapitata*, 72 h) NOErC = 27 mg/L (measured; growth rate)

Rationale: For classification purposes NOEC was used
Level of detail: SIAP
2-vinylpyridine
CAS-no. 100-69-6

HUMAN HEALTH

Acute Toxicity

<table>
<thead>
<tr>
<th></th>
<th>SIAP</th>
<th>SIAR</th>
<th>IUCLID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>nad</td>
<td>Acute Cat 2 H300. OECD TG 423 Substance tested >50 and <300 mg/kg rats. LD50: >50 and <300 mg/kg bw. Clinical signs of toxicity.</td>
<td></td>
<td>Conclusive</td>
</tr>
<tr>
<td>Inhalation</td>
<td>nad</td>
<td>nad</td>
<td>nad</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>Dermal</td>
<td>nad LD50 values reported: 640 mg/kg bw (rabbits) and 160 mg/kg (guinea pigs). No information on test methods, study design etc.</td>
<td>Acute Cat 2 H310 or Cat 3 H311. Key study: EPA OTS- guidance (GLP-compliance) LD50 in rabbit estimated to 640 mg/kg Supporting study: LD50 in guinea pig 160 mg/kg (Inconclusive, guideline not specified)</td>
<td>Acute Cat 2 H310 or Cat 3 H311. EPA OTS- guidance (GLP-compliance) LD50 in rabbit estimated to 640 mg/kg LD50 in guinea pig 160 mg/kg (Inconclusive)</td>
<td>Occlusion 24 hrs in both rat and guinea pig study, nowadays 4 hrs is used. It is not specified according to which guideline the study with guinea pigs is performed.</td>
</tr>
<tr>
<td>Skin irritation</td>
<td>nad Possible skin corrosion Cat 1; H318 but no information on method or score</td>
<td>Skin Corr Cat 1B H314 CFR 173.136-137 rabbit (undiluted) Exposure 1 hr skin necrosis after 48 hrs all animals.</td>
<td></td>
<td>Conclusive</td>
</tr>
</tbody>
</table>
Eye Irritation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nad Possible Eye Damage Cat 1; H314 based on possible skin corrosion Cat 1; H318 but no information on method or score</td>
<td>nad Possible Eye Damage Cat 1; H318 Moderate to strong eye irritation in rabbits. Corneal and adnexal staining was observed in all animals but no information on scores or reversibility is reported. Inconclusive.</td>
<td>nad</td>
<td>GLP compliance, reliability 2 with restrictions. Data not enough for classification but Skin Corr Cat 1B H314 Exposure 1 hr skin necrosis after 48 hrs all animals.</td>
</tr>
</tbody>
</table>

Skin sensitisation

| **Skin sens 1?** LLNA (mice) similar to TG 429 sensitizing. Supporting studies guinea pig. Indications from two human case reports. | **Skin sens 1** LLNA (mice) similar to TG 429 sensitizing. Supporting studies from a limited skins sensitization test performed on guinea pigs. Indications from two human case reports. | **Skin sens 1** LLNA (mice) similar to TG 429 (reliability 2 with restrictions). sensitizing. Stimulation index > 3.0. Supporting studies guinea pig. Indications from two human case reports | **Data too unspecific in SIAP. Further details on specifically the two human cases in SIAP, which made a classification possible, supported by further data in IUCLID on e.g. Stimulation index.** |

Mutagenicity

| **nad** TG 471, 472 and 473) Positive in vitro studies, but no in vivo or QSAR data. | **nad** TG 471, 472 and 473) Positive in vitro studies, but no in vivo or QSAR data | **nad** TG 471, 472 and 473) Positive in vitro studies, but no in vivo or QSAR data | **Data inconclusive.** |

Carcinogenicity

| **nad** | **nad** | **nad** | **Inconclusive. No reliable studies were identified.** |

Reproductive Toxicity
Parental general toxicity observed at 20 mg/kg/d. At 125 mg/kg/d 9 of 12 females died due to prolonged parturition. Remaining 3 total litter loss. Significant decreased bw gain during gestation. Fertility index were not significantly affected. In 50 mg/kg/dvone female was euthanized due to dystocia and one due to total litter loss. The dam with dystocia alle pups were still-born. Pup deaths suggests developmental effect. NOAEL 20 mg/kg/d for reproductive toxicity on the basis of dystocia. LOAEL for developmental toxicity estimated to 20 mg/kg/d is based on lower bw of pups in all treatment groups.

In a 92-day study (GLP, EPA OPPS 870.31000) increased relative ovary weights in female rat (1/20) exhibited ovarian congestion at 180 mg/kg/d.

<table>
<thead>
<tr>
<th>STOT SE</th>
<th>Oral</th>
<th>Inhalation</th>
<th>Dermal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nad</td>
<td>nad</td>
<td>nad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOT RE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2 studies; 1 species. It may still be some doubt regarding a classification based on these data as you cannot fully exempt the fact the the repro effects may be the result of a secondary effects of maternal tox.
<table>
<thead>
<tr>
<th>Route</th>
<th>Classification</th>
<th>Oral</th>
<th>No classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*92-day study acc. to EPA OPPS 870.31000 (90-day orl toxicity in rodents). Guideline under GLP compliance. *28-day study as key study. (MHLW Japan, 1997). *28 day orl study according to Japanese guidelines for repeated dose. Changes in organ weights and hyperkeratosis and acanthosis of the gastric epithelium (may be due to irritation) are seen. No toxicologically significant changes which have affected the function or morphology of a tissue/organ are seen. LOAEL for local and systemic effects 20 mg/kg/d. Overall NOAEL for local and systemic effects 12.5 mg/kg/d.</td>
<td>No classification</td>
<td>*92-day study acc. to EPA OPPS 870.31000 (90-day orl toxicity in rodents). Guideline under GLP compliance. *28-day study as key study. (MHLW Japan, 1997). *28 day orl study according to Japanese guidelines for repeated dose. Changes in organ weights and hyperkeratosis and acanthosis of the gastric epithelium (may be due to irritation) are seen. Hematology and clinical chemistry showed slight changes in atypical lymphocytes, polymorphonuclear leucocytes, number of lymphocytes, and ALT. LOAEL for local and systemic effects 20 mg/kg/d. Overall NOAEL for local and systemic effects 12.5 mg/kg/d.</td>
</tr>
<tr>
<td></td>
<td>Nad</td>
<td>Nad</td>
<td>Nad</td>
</tr>
<tr>
<td></td>
<td>Nad</td>
<td>Nad</td>
<td>Nad</td>
</tr>
</tbody>
</table>

Aspiration toxicity

<table>
<thead>
<tr>
<th></th>
<th>Nad</th>
<th>Nad</th>
<th>Nad</th>
</tr>
</thead>
</table>

ENVIRONMENT SIAP SIAR IUCLID **Comment**
| Aquatic acute | **Not applicable**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC/LC50 values > 1 mg/l --> criteria for classification not fulfilled for Aquatic acute 1</td>
<td></td>
</tr>
</tbody>
</table>

Aquatic chronic	**Chronic 1; H410 or Chronic 2; H411**
Not readily biodegradable (OECD 301).	
*Key studies: Lowest EC/LC50 in the range 1-10 mg/L (Fish, daphnia, OECD 202 & 203)
*Chronic NOEC < 0,22 mg/l (daphnia, OECD 211; NOEC based on the total number of juveniles per parent animal at the start of the test)
Note that the NOEC value of 0,90 mg/l (based on the total number of juveniles per parent animal at the start of the test) is not applicable as the adult mortality shows a dose dependant relationship and can not be regarded as accidental or inadvertant.
- Based on acute data a classification as Chronic 2, H411 is warranted.
- Based on chronic data, which should normally be given higher weight, it is not possible to conclude whether the classification should be Chronic 1 (H410) or Chronic 2 | **Same conclusion as SIAP.** | **Not possible to determine whether Chronic 1 or Chronic 2 should apply** |
| (H411) | | | ENV/JM/MONO(2014)31/ANN |

nad = not adequate data
France

Substance: 2-vinylpyridine

<Acute toxicity - oral>
Classification proposal: Category 3
Key Data: Acute oral toxicity study (MHLW, 2006)
Rationale: No mortality at 50 mg/kg bw (threshold for classification between Cat 1-2); all rats died at 300 mg/kg bw (threshold for classification between Cat 2-3).
Level of detail: SIAP/SIAR

<Acute toxicity - dermal>
Classification proposal: Category 1 can be envisaged
Key Data: Acute dermal toxicity study in rabbits (Toxikon, 1992) and Skin irritation study in guinea pigs (Eastman Kodak, 1983)
Rationale: According to the acute dermal toxicity study in rabbits, a classification as Acute tox cat 2 is required (200 < LD₅₀ = 640 mg/kg bw < 1000). According to the skin irritation study in guinea pigs, a classification as Acute tox cat 1 is required (50 < LD₅₀ = 0.16 mL/kg = 160 mg/kg bw < 200 mg/kg w). The most conservative classification is proposed.
Level of detail: SIAP

<Acute toxicity - inhalation>
Classification proposal: no conclusion
Key Data: no reliable information available
Rationale: data not sufficient to propose a classification for this endpoint (a study with a reliability of 2 (Trochimowicz, 2001) was only cited in the Dossier, but does not permit to conclude on classification for this endpoint: lack of study details; LC₅₀ between 0.7 mg/L (no death) and 24 mg/L (100% mortality)).
Level of detail: SIAP/SIAR/dossier

<Skin irritation>
Classification proposal: Category 1B can be envisaged
Key Data: Skin irritation study (Barr, 1994)
Rationale: No individual scores were available; however, a classification 1B can be envisaged based on the skin necrosis reported in the Dossier (observed at all test sites 48h after 1h application). This can also be supported by human data (severe skin burns with reddish-brown color lasted for several weeks).
Level of detail: SIAP/SIAR/dossier

<Eye irritation>
Classification proposal: no conclusion
Key Data: Eye irritation study (Eastman Kodak, 1983)
Rationale: No individual scores were available in order to conclude on this endpoint. Moderate to strong irritation reported in the Dossier. Data is not sufficient to propose a classification for this endpoint.
Level of detail: SIAP/SIAR/dossier

<Skin sensitisation>
Classification proposal: classification 1A can be envisaged
Key Data: Skin sensitization study
Rationale: A classification 1A or 1B may be envisaged based on the 80% positive response but the lack of details (protocol, individual data) does not permit to propose a firm classification for this endpoint.
Furthermore, case reports indicated sensitization in humans. The most conservative classification is proposed.
Level of detail: SIAP/SIAR/dossier

<Mutagenicity>
Classification proposal: none
Key Data: *In vitro* genotoxicity studies
Rationale: Conflicting results *in vitro*: positive results in *E. Coli* and in chromosomal aberration test; negative and positive results in *Salmonella*; UDS negative. No *in vivo* studies were available. There is no information on structure activity relationship to known germ cell mutagens. No classification is required.
Level of detail: SIAP/SIAR/dossier

<Carcinogenicity>
Classification proposal: no conclusion
Key Data: no reliable data
Rationale: Only one negative study in mice exposed by intraperitoneal injection: study not relevant for classification. No sufficient data is available for this endpoint in order to conclude on classification.
Level of detail: SIAP/SIAR/dossier

<Reproductive toxicity>
Classification proposal: Category 2
Key Data: Reproductive/developmental toxicity screening test
Rationale: All newborn pups from 1 dam were stillborn and all pups from 1 dam died during lactation at 50 mg/kg bw/day. At the highest dose, excessive maternal toxicity may explain the pup mortality.
Level of detail: SIAP/SIAR/dossier

<STOT SE>
Classification proposal: none
Key Data: Acute toxicity studies
Rationale: classification not required
Level of detail: SIAP/SIAR/dossier

<STOT RE>
Classification proposal: none
Key Data: Repeated toxicity studies
Rationale: classification not required (toxicity related to irritation of the gastric mucosa).
Level of detail: SIAP/SIAR/dossier

<Aspiration hazard>
Classification proposal: no conclusion
Key Data: -
Rationale: data not sufficient to conclude on a classification for this endpoint
Level of detail: SIAP/SIAR/dossier

Member Country (HH/ENV): FR (ENV)
Substance: 2-Vinylpyridine

<Acute aquatic toxicity>
Classification proposal: Category Acute 2
Key Data: Short term toxicity to fish of 2-vinylpyridine (MOE Japan, 2002)
Rationale: According to acute toxicity tests, fish is the most sensitive species to 2-vinylpyridine. As a consequence, the following toxicity threshold is taken into account for the classification: LC50(96h) = 6.5 mg/L
Level of detail: SIAP

<Chronic aquatic toxicity>
Classification proposal: Category Chronic 2
Key Data:
- Short term toxicity to fish of 2-vinylpyridine (MOE Japan, 2002)
- Ready biodegradability test (CITI, 1991b)
Rationale: Chronic toxicity of 2-vinylpyridine has been assessed on aquatic invertebrates and algae. No data on chronic toxicity of 2-vinylpyridine to fish is available in the dossier. As fish is the most sensitive specie to 2-vinylpyridine according to acute toxicity tests, chronic toxicity data has not been taken into account for the classification. Chronic classification of 2-vinylpyridine is based on acute toxicity to fish, considering the substance as not readily biodegradable. Nonetheless it should be noticed that a classification Category Chronic 1 could be applied based on the chronic data obtained with daphnia (NOEC = 0.90 mg/L). However, in this case, as no chronic data are available for the most sensitive species, no M factor can be chosen.
Level of detail: SIAP

Japan (Human Health only)

Substance: 2-Vinylpyridine

<Acute toxicity, oral>
Classification proposal: Category 3
Key Data: OECD TG 423 study (MHLW Japan, 2011)
Rationale: oral LD50 >50 and < 300 mg/kg bw in rats
Level of detail: SIAP/SIAR

<Acute toxicity, dermal>
Classification proposal: Category 2
Key Data: EPA OTS 798.1100, acute dermal toxicity test (Toxikon Co., 1992)
Rationale: dermal LD50 = 160 mg/kg bw in guinea pigs
Level of detail: SIAP/SIAR

<Skin Corrosion/Irritation>
Classification proposal: Classification not possible. It could be Category 1B if more detailed information was available for key data.
Key Data: Barr et al., 1994: unpublished data, cited in U.S. EPA HPVIS
Rationale: At 48 h after 1 h application, skin necrosis was observed in 6/6 rabbits, but no detailed information is available.
Level of detail: SIAP/SIAR/Dossier

<Serious eye damage/Eye Irritation>
Classification proposal: Classification not possible. It could be Category 1 or 2 if more detailed information was available for key data.
Key Data: Eastman Kodak Co., 1983 (eye irritation), Barr et al., 1994: unpublished data, cited in U.S. EPA HPVIS (skin corrosion)
Rationale: Eastman Kodak Co., 1983 showed strong or moderate eye irritation (could be Category 1 or 2), but detailed information such as reversibility or level of damage was not reported. If skin corrosion potential was confirmed, it could be Category 1.
Level of detail: SIAP/SIAR/Dossier

<Skin sensitization>
Classification proposal: Category 1 (subcategory cannot be classified)
Key Data: LLNA similar to TG429 (cited in ECHA web page), Human studies (Sasseville et al, 1996, Rajpar et al, 2006).
Rationale: positive result (stimulation index > 3) in LLNA (secondary data, but reliability=2); Due to lack of detailed information, subcategory cannot be classified. Patch test data in humans showed positive reaction (it was difficult to choose subcategory from the study results).
Level of detail: SIAP/SIAR/Dossier

<Germ cell mutagenicity>
Classification proposal: Category 2
Key Data: OECD TG 471 and 472, OECD TG 473
Rationale: positive results in in vitro mutagenicity tests.
Level of detail: SIAP

<Carcinogenicity>
Classification proposal: Classification not possible
Key Data:
Rationale: no adequate carcinogenicity studies.
Level of detail: SIAP/SIAR

<Reproductive toxicity>
Classification proposal: Classification not possible
Key Data: OECD TG 421 (MHLW, Japan)
Rationale: Although dystocia and decreased body weight in pups were observed, these changes were likely considered to be secondary effects. Further studies, such as OECD TG 415, or 416 may be needed for the purpose of the classification.
Level of detail: SIAP/SIAR

<Specific target organ toxicity, Acute toxicity>
Classification proposal: Category 3 (respiratory irritation)
Key Data: overall conclusion from all acute, repeated dose, and irritation studies
Rationale: Animal data indicate irritation potential of 2-vinylpridine (tachypnea, edema, and thickened mucosa). Respiratory tract irritation was reported in humans.
Level of detail: SIAP/SIAR

<Specific target organ toxicity, Repeated dose toxicity>
Classification proposal: Category 2
Key Data: A 92-day study [Eastman Kodak Co., 1983]
Rationale: LOAEL(oral)=20 mg/kg bw/day in rats based on kidney and gastric effects.
Level of detail: SIAP/SIAR
2,4-Dimethylaniline (CAS 95-68-1)

The Netherlands (RIVM)

Human Health

Acute Toxicity

Oral Classification proposal: Cat 4 (based on read-across from 2,6-dimethylaniline)

Key Data: The only toxicity study (Vernot et al 1977) available for 2,4-dimethylaniline is considered unreliable (Klimisch score 4). On the fact of, insufficient detail in the report published in the literature. The acute LD50 for 2,4-dimethylaniline was 470 mg/kg bw (male SD rat) and 25 mg/kg bw (male CF-1 mouse).

Two reliable studies for 2,6-dimethylaniline are available. The study performed according to OECD 423 under GLP was chosen as key study for classification purposes (MHLW Japan, 2005). The LD50 was between 300 and 2000 mg/kg bw in females.

Rationale: Based on lower and upper limits of range (Table 3.1.1 GHS guidance)

Level of detail: SIAP, SIAR and dossier

Carcinogenicity

Classification proposal: Category 1B or 2 (see rationale).

Key Data: There is no reliable carcinogenicity study for 2,4-dimethylaniline. On the other hand, there is a reliable study available for 2,6-dimethylaniline\(^1\) in rats (CRL:COBS CD (SD) BR rats) (Montgomery CA et al, 2002). The following effects were reported:

- The induction of several types of tumors and increase in incidence were observed.
 - Significant increases of carcinoademas or carcinomas of the nasal cavity in high dose (males 28/56 and females 24/56) and mid dose (female 1/56).
 - Papillary adenomas high dose (males 10/56 and females 6/56) and mid dose (2/56 males)
 - Rhabdomyosarcoma was observed in dosed rats of each sex.
 - Increased incidences of subcutaneous fibromas and fibrosarcomas in male and female rats
 - Increased incidence of neoplastic nodules of the liver in female. SIAR mentions that this could be related to the administration of the substance. But there is no

\(^1\) The reference cited in the SIAR for this study is ‘NTP, 1999’ however, in the IUCLID dossier the study details are reported under the ‘Montgomery CA et al, 2002’ reference.
description or reasoning why this conclusion was reached.

- Hematological changes

Supporting studies
Study performed on 2,4-dimethylaniline and 2,5-dimethylaniline (Weisburger et al, 1978) in male Charles river rats and male and female HaM/ICR mice. The following effects were reported:

- 2,5-dimethylaniline led to an increase in subcutaneous fibromas and fibrosarcoma in male rats and increase of vascular tumors was elevated when compared to control

- 2,4-dimethylaniline led to significant increase of pulmonary tumors at the high dose in female mice but not in male mice and male rats.

- Same group of authors reported the result of a feeding study of 2,5-dimethylaniline in male SD rats. After 2 years, a total of 39% of the rats developed subcutaneous fibrosarcomas and hepatomas

Rationale:
Based on read-across from 2,6-dimethylaniline. Considering the information above, 2,6-dimethylaniline can be considered carcinogenic for male and females CR CD rats. The substance caused significant increases in incidences of adenomas and carcinomas of the nasal cavity. Rhabdomyosarcoma (a rare tumor according to the SIAR)) was also observed in dosed rats and increased incidences of subcutaneous fibromas and fibrosarcomas in both sexes. Some carcinogenic indication of 2,4-dimethylaniline and 2,5-dimethylaniline is also reported. For example, the increase of similar tumors was reported: increase in subcutaneous fibromas and fibrosarcoma in male rats. In addition all dimethylanilines are considered to be mutagenic which is a possible mechanism for carcinogenicity.

Data on the incidence of tumors in the treatment group and control per dose are not reported for the above mentioned studies. This information is needed to confirm the findings of the above studies. For instance, the rarity of Rhabdomyosarcoma in treated animals in comparison to the control group. A better picture of the dose-response relationship is also desired in order to support the information. Such information would strengthen the evidence above and provide a clearer picture as to whether 2,4-dimethylaniline falls into a category 1B carcinogen or category 2.

Level of detail: SIAP, SIAR and dossier

STOT RE

Classification proposal: Cat 1 or 2 (Target organ systems blood,)
Key Data: Reliable sub-acute repeated dose study in rats (Crj:CD SD IGS) from 28-d studies following OECD 407 for 2,3-, 2,4-, 2-5-, 3,4- and 3,5- dimethylanilines and a screening study following OECD TG 422 for 2,6-dimethylaniline.
- The lowest NOAEL of 2 mg/kg bw/day was derived in 2,4-dimethylaniline due to effects on the blood, liver and kidneys at 10 mg/kg bw/day. The changes were usually fully recovered within a 2 week period except for the hemosiderin deposition and in some cases, the kidney necrosis. Nevertheless both of these effects are reduced in their severity during recovery (OECD TG 422 and 407).

Other reliable studies: included a NTP study (2-week, 13-week and 2-year) for 2,6-dimethylaniline, a non-GLP 28-day study for 2,4-, 2,5-, and 2,6-dimethylanilines, a 6-month feeding study for 2,4- and 2,6-dimethylanilines, and a 5 to 20-day study for 2,4- and 2,6-dimethylanilines in rats.

- The LOAEL of 2 mg/kg bw/day for 2,6-dimethylaniline in dogs was derived from a non-GLP 28-day study, in which dogs were dosed 2,4-, 2,5- or 2,6-dimethylanilines at 0, 2, 10 or 50 mg/kg bw/day, and fatty degeneration of the liver was observed at 2 mg/kg bw/day in the 2,6-dimethylaniline treatment. In contrast to rats, 2,6-dimethylaniline showed stronger toxicity comparing to 2,4- and 2,5-dimethylanilines in dogs.

Rationale:

The toxic effects of dimethylanilines of the studies mentioned above were closely comparable.

The lowest NOAEL of 2 mg/kg bw/day was derived in 2,4-dimethylaniline due to effects on the blood, liver and kidneys at 10 mg/kg bw/day. The value 10 mg/kg bw/day falls within the guidance value range; oral (rat) ≤ 10 mg/kg bw/d for a 90-day study. For a 28-day study it is 30 mg/kg bw/day.

Then the question arise when is hemolytic anemia considered significant. In Europe we use 20% reduction in Hb or Hb plus MethHb. However, the Hb and MethHb values are not available making it difficult to assess the corresponding dose values. The substance would be at least Cat 2 because of the cyanosis at 50 mg/kg and probably Cat 1 because of the cyanotic dose of 50 mg/kg is close to 30 mg/kg for a 20-day study

Level of detail: SIAP, SIAR and dossier

Environment

Chronic Aquatic Toxicity

Classification proposal: Aquatic Chronic 1

Key Data:

All category member substances are not readily biodegradable.

- 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline and 3,5-dimethylaniline resulted in 3,1,0, and 3% biodegradation after 28 days, respectively. 2,4-dimethylaniline and 3,4-dimethylaniline resulted in 0 and 7% biodegradation after two weeks, respectively.

Bioaccumulation potential of dimethylanilines for aquatic potential is low.
- Measured partition coefficients between octanol and water (Log Kow) are in the range of 1.68-1.91.
- Measured BCF values for 2,4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline and 3,4-dimethylaniline are <10, <3.8, 2.4 and <10, respectively.
- Bioaccumulation potential for 2,3-dimethylaniline and 3,5-dimethylaniline are predicted to be low based on a BCF value of 7.6 and 7.5 (BIOWIN version 3.01) respectively.

Aquatic toxicity:
- Data on substance self: chronic data not available for all three trophic levels. Experimental data available for invertebrates (Daphnia magna) acute toxicity, 48-h EC₅₀ is 9.9 mg/L.
- 3,4-, 2,5-, 3,5-, 2,3-, 2,6-dimethylaniline 21-d NOECs for vertebrates: of 0.0095, 0.096, 0.03, 0.1 and 2.23 mg/L respectively
- 3,4-, 2,5-, 3,5-, 2,3-, 2,6-dimethylaniline 72-h NOECs for algae: 2.94, 2.0, 5.8, 4.32 and 32 mg/L respectively

Rationale:
There is limited data for the substance self (data for only 1 trophic). Adequate data for an acute study for invertebrates is available (Daphnia magna), 48-h EC₅₀ is 9.9 mg/L. Based on the substance self, the classification is Aquatic Chronic 2. This is based on the surrogate approach: surrogate chronic data for invertebrates in combination with not rapidly degradable due to the absence of chronic data.

Using available chronic toxicity data for all category members, the classification should be Aquatic Chronic 1. This is based on the NOECs for invertebrates (see above) and the substance in not rapidly degradable.

- Trend in the data: In acute aquatic toxicity fish studies LC50s were generally greater than 100 mg/L except 3,5-dimethylaniline. For daphnids EC50s were between 1.09 and 25 mg/L. The NOEC values for daphnids were generally less than 0.1 mg/L except for 2,6-dimethylaniline. One may expect to see the trend observed in the acute studies to carry over to the chronic studies where fish would not to be expected to be the most sensitive species. Based on this information the classification of Chronic 1 then could be considered as a ‘worst case scenario’.

Level of detail: SIAP, SIAR and dossier
Switzerland (Human Health only)

2,4-Dimethylaniline (CAS 95-68-1)

Acute Toxicity

Oral
Classification proposal: Cat 3
Key Data: LD\textsubscript{50} of 250 mg/kg bw in mice and 470 mg/kg bw in rats
Rationale: For classification purposes the lowest LD\textsubscript{50} was used.
Level of detail: SIAP

Carcinogenicity

Classification proposal: Cat 2
Key Data: Induction of pulmonary tumors in female mice in an \textit{in vivo} carcinogenicity study and the \textit{in vivo} genotoxic activity
Rationale:
Level of detail: SIAP

STOT RE

Classification proposal: Not classified
Key Data: NOAEL of 2 mg/kg bw/day due to effects on the blood, liver and kidneys
Rationale: Although adverse effects were observed at low concentrations (NOAEL of 2 mg/kg bw/day due to effects on the blood, liver and kidneys), details on the severity of this effects for classification into Cat. 1 are missing. Further investigations are needed to determine the relevance of the observed adverse effects. Therefore, the data is not sufficient for classification into Cat.1.
Level of detail: SIAP/SIAR/dossier

Russian Federation

2,4-Dimethylaniline (CAS 95-68-1)

Human Health

Acute Toxicity

Oral
Classification proposal: Not classified
Key Data: Data from SIAP: 2,4-dimethylaniline: LD\textsubscript{50} (in mg/kg bw): rats 470, mice 250
Data from dossier: The acute oral LD\textsubscript{50} for the test substance in male rats was 470 (360 - 690) mg/kg; in male mice it was 250 (150 - 420) mg/kg
Reliability: 4 (not assignable)

Rationale: Due to lack of details of the research in SIAP it’s better to specify the data in the dossier. The dossier provides us the same data, but gives more details about research including the reliability – 4. The data is unreliable, the classification is impossible.

Level of detail: SIAP, dossier

Carcinogenicity

Classification proposal: Cat 2

Key Data: “In bacterial reverse mutation assays with multiple strain of S. typhimurium and E. coli (OECD TG 471), 4-dimethylaniline was found to be mutagenic in TA100” + “2,4-dimethylaniline induced pulmonary tumours in female mice” + read across data (2,6-dimethylaniline) + “It can be predicted that all members of the category may be carcinogenic due to their in vivo genotoxic activity”.

Rationale: Studies has no details, but due to possibility of carcinogenic potential + according to 3.6.2.5.3 GHS: “it is recognized that genetic events are central in the overall process of cancer development. Therefore evidence of mutagenic activity in vivo may indicate that a substance has a potential for carcinogenic effects.” It’s possible to classify the substance as Cat 2.

Level of detail: SIAR

STOT RE

Classification proposal: Cat 1

Key Data: Effects on the kidney such as papillary necrosis, dilatation of renal tubules, and/or hyaline droplets were observed at 10 mg/kg bw/day in animals treated with 2,4-dimethylaniline. There were increased relative and/or absolute weights of the liver (enlarged liver) or hypertrophy at 10 mg/kg bw/day in animal treated with 2,4- dimethylaniline (OECD TG 422 and 407). 2,4-Dimethylaniline showed stronger hepatic effects comparing to 2,5- and 2,6- dimethylanilines dosing (non-GLP 28-day study). The lowest NOAEL of 2 mg/kg bw/day was derived in 2,4- dimethylaniline due to effects on the blood, liver and kidneys at 10 mg/kg bw/day. The changes were usually fully recovered within a 2 week period except for the hemosiderin deposition and in some cases, the kidney necrosis. Nevertheless both of these effects are reduced in their severity during recovery (OECD TG 422 and 407).

Rationale: The dossier data confirms this information by study with reliability 1: “A GLP- and OECD 407 compliant 28 day study in Crj: CD(SD) rats using oral gavage at 2, 10 and 50 mg/kg bw/day was conducted (NITE, Japan, 2002). The NOAEL of this study was considered to be 2 mg/kg bw/day according to hematological effects and changes in the kidney and liver”. Thus it is possible to apply the criteria of classification for 28days according to 3.9.2.9.5 and table 3.9.1 of GHS.

Level of detail: SIAR, dossier
Environment

Chronic Aquatic Toxicity

Classification proposal: Cat 2

Key Data:
- Based on the read-across data – not biodegradable.
- Invertebrate: No reliable studies were identified. The predicted 21 d NOEC, based on read across from 3,4-dimethylaniline = 0.0095 mg/L
- Algae: No reliable studies were identified. The predicted 72 h NOEC, based on read across from 2,5-dimethylaniline = 2.03 mg/L
- Invertebrate [Daphnia magna]: 48 h EC_{50} = 9.9 mg/L [DIN38412, static]

Rationale: There are only read-across data for chronic aquatic toxicity. But it’s possible to classify the substance upon data of acute aquatic toxicity and information on degradability.

Level of detail: SIAR
Denmark

<table>
<thead>
<tr>
<th>2,4-Dimethylaniline</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-no. 95-68-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMAN HEALTH</th>
<th>SIAP</th>
<th>SIAR</th>
<th>IUCLID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOT RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOT RE 1 ; H372 or STOT RE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H373</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key study 28-d study (TG 407 and 422), rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAEL repeated dose 2 mg/kg bw/day due to effects in blood, liver and kidneys, mainly fully recover after 2 weeks except for hemosiderin deposition and in some cases kidney necrosis. The LOAEL of dimethylaniline category for repeated oral dose ranged between 10-60 mg/kg bw/day in rats. Target organ systems were the blood, spleen, liver and kidneys. Effects on the kidney such as papillary necrosis, dilatation of renal tubules, and/or hyaline droplets were observed at 10 mg/kg bw/day in animals treated with 2,4-dimethylaniline in the 28 d. study -> sufficient evidence for STOT RE 1 classification?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOT RE 1 ; H372 or STOT RE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H373</td>
</tr>
<tr>
<td>Key study 28-d study (TG 407 and 422), rat</td>
</tr>
<tr>
<td>Significant haematological changes 10 mg/kg bw/d. Hemosiderin depositions in liver, kidney and spleen (secondary effect to loss of erythrocytes). Increase in relative and absolute liver weights and centrilobular hypertrophy of hepatocytes at 10 mg/kg bw/d. In addition, supporting evidens from other reliable studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOT RE 1 ; H372 or STOT RE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H373</td>
</tr>
<tr>
<td>Key study 28-d study (TG 407 and 422), rat reliability 1</td>
</tr>
</tbody>
</table>

SIAP: Adverse effects were observed at low concentrations (NOAEL of 2 mg/kg bw/day due to effects on kidneys, and probably also liver and blood). Lack of details on the severity, quantities etc. of these effects. At least a classification STOT RE Cat. 2. **SIAR:** Provides further details supporting the classification based on the effects of kidney and further details on the effects on liver and blood. Still unclear if a classification STOT RE Cat. 1 or 2 is warranted. **IUCLID:** No further information clearly supporting Cat. 1 or 2. Application of NOAEL in table 3.9.1. does not provide further clarification as the key data originates from 28-d study and the table is applicable for 90-d studies.
A carcinogenicity study demonstrated that 2,6-dimethylaniline induced pulmonary tumours in female mice. It can be predicted that all members of the category may be carcinogenic due to their in vivo genotoxic activity.

In the carcinogenicity study with 2,6-dimethylaniline a dose dependent increase in in the incidences of carcinoadenomas or carcinomas of the nasal cavity (28/56 high dose males, 24/56 high dose females and 1/56 mid dose females) and of the papillary adenomas (10/56 high dose males, 2/56 mid dose males, and 6/56 high dose females) was observed.

A supportive, not reliable study, feeding study of 2,4-dimethylaniline in male SD rats demonstrated that after 2 years, a total of 39% of the rats developed subcutaneous fibromas and fibrosarcomas and hepatomas.

SIAP: Induction of pulmonary tumours in female mice and the in vivo genotoxic activity, indicates carcinogenicity but data are lacking in order to classify in Category 1B or 2.

SIAR: A clear conclusion on the carcinogenicity of dimethylanilines is not possible based on the available data.

<table>
<thead>
<tr>
<th>ENVIRONMENT</th>
<th>SIAP</th>
<th>SIAR</th>
<th>IUCLID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* possible Carc. 2

nad = not adequate data
Not inherently biodegradable (OECD 302) nor readily biodegradable (OECD 301 - based on read-across to other dimethylanilines).

Acute EC/LC50 (lowest value) in the range 1-10 mg/l.
Chronic NOEC < 1,0 mg/l (based on read-across to other dimethylanilines). The available short-term and long-term aquatic toxicity data are rather consistent and supports that read-across is justified.
France

Substance: 2,4 dimethylaniline

<Acute toxicity - oral>
Classification proposal: Acute Tox 4
Key Data: Acute toxicity studies - Weight of evidence approach
Rationale: The available study on 2,4 dimethylaniline showed a LD$_{50}$ of 250 mg/kg bw (150-420 mg/kg bw) in mice and LD$_{50}$ of 470 mg/kg bw (320-690 mg/kg bw) in rats. However, this study can not be used as a key study for classification considering its reliability of 4. The LD$_{50}$ of the other considered dimethylaniline ranged from 300 to 2000 mg/kg bw. Based on a weight of evidence approach, a classification of Acute Tox 4 can be proposed for 2,4 dimethylaniline (300-2000 mg/kg bw).
Level of detail: SIAP/SIAR/dossier

<Carcinogenicity>
Classification proposal: Category 2
Key Data: Carcinogenicity studies – Weight of evidence approach
Rationale: No reliable study was available on 2,4 dimethylaniline (reliability of 3 and 4). However, a similar profile of carcinogenic effects was found across the dimethylaniline category. Based on a weight of evidence approach (structural similarity with 2,6 dimethylaniline for which a clear carcinogenicity effect was observed), a classification Carc cat 2 can be proposed for 2,4 dimethylaniline.
Level of detail: SIAP/SIAR

<STOT RE>
Classification proposal: no conclusion
Key Data: 28-day toxicity study
Rationale: Decreased hemoglobin in males at 10 mg/kg bw/day and in both sexes at 50 mg/kg bw/day but details on severity are lacking in order to conclude on a classification.
Level of detail: SIAP/SIAR

Member Country (HH/ENV): FR (ENV)
Substance: 2,4 dimethylaniline

<Aquatic acute toxicity>
Classification proposal: Category Acute 2
Key Data: Short term toxicity to aquatic invertebrate Daphnia magna of 3,4-Dimethylaniline
Rationale: Experimental data on acute aquatic toxicity for 3 trophic levels are available for 2,3-Dimethylaniline; 2,5-Dimethylaniline; 2,6-Dimethylaniline; 3,4-Dimethylaniline; 3,5-Dimethylaniline. In all case invertebrates are the most sensitive species. Considering the category approach, the lowest EC50(48h), i.e. EC50(48h) = 1.09 mg/L (3,4-dimethylaniline) is considered for classification of 2,4-Dimethylaniline. Same classification occurs based on data available for 2,4 dimethylaniline (EC50 = 9.9 mg/L for invertebrate and category approach indicate that invertebrate should be the most sensitive trophic level).
Level of detail: SIAP

<Aquatic Chronic toxicity>
Classification proposal: Category Chronic 1; M-factor = 10
Key Data: Long term toxicity to aquatic invertebrate Daphnia magna of 3,4-Dimethylaniline / All category member substances not readily biodegradable
Rationale: If only available experimental data dealing with 2,4-dimethylaniline are taken into account, then the chemical is classified as Category Chronic 2, considering that the substance is not rapidly biodegradable and that the lowest aquatic EC50 is between 1 and 10 mg/L. However, other classification occurs considering the category approach. According to experimental data carried out on acute aquatic toxicity for 3 trophic levels on 2,3-Dimethylaniline; 2,5-Dimethylaniline; 2,6-Dimethylaniline; 3,4-Dimethylaniline; 3,5-Dimethylaniline, invertebrates are the most sensitive species. Chronic toxicity tests have been performed for 2,3-Dimethylaniline; 2,5-Dimethylaniline; 2,6-Dimethylaniline; 3,4-Dimethylaniline; 3,5-Dimethylaniline. Considering the category approach, the lowest NOEC, i.e. NOEC(21d) = 0.0095 mg/L (3,4-dimethylaniline) should be considered for classification of 2,4-Dimethylaniline and leads to the classification Category Chronic 1.

Level of detail: SIAP

Japan (Human Health only)

Substance: 2,4-dimethylaniline

<Acute toxicity, oral>
Classification proposal: Category 3
Key Data: Vernot et al. (1977)
Rationale: oral LD50=250 mg/kg bw in mice
Level of detail: SIAP/SIAR

<Carcinogenicity>
Classification proposal: Category 2
Key Data: Weisburger et al. 1978 and other related data
Rationale: Weisburger et al. 1978 showed pulmonary tumour in female mice, but this study itself was not sufficient for classification (description in Dossier was not detailed enough). From all available data (in vivo genotoxicity data, analogue substance data), carcinogenic potential of 2,4-dimethylaniline was suspected.
Level of detail: SIAP/SIAR/Dossier

<Specific target organ toxicity, Repeated dose toxicity>
Classification proposal: Category 1
Key Data: OECD 407 (NITE, 2002)
Rationale: Hematological effects and changes in the kidney and liver in rats at 10 mg/kg bw/day
Level of detail: SIAP/SIAR

Nonane (CAS 111-84-2)

The Netherlands

Irritation

Skin
Classification proposal: Not possible
Key Data: Animal data: No measured data for substance self therefore read-across approach is used. Isoparaffinic, normal paraffinic and mixed
aliphatic category members produced minimal to slight skin irritation when tested in rabbits. A total of 60 studies were examined and results, skin irritation all mean values of 24, 48 and 72-h for erythema and edema are provided in the IUCLID dossier. Human data: Application of neat C9-C14 aliphatic, <2% aromatic hydrocarbons fluids under semi-occlusive conditions for 24 hours produced signs of dermal irritation in human volunteers in two studies. A third study that used a semi-occlusive path showed no dermal irritation to humans when neat C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were applied for 24 hours. Application of the hydrocarbons fluids are not irritating to human skin when evaluated in a repeated patch test as a 50% w/w preparation as reported in two studies. In another study at the same concentration of the application of hydrocarbon fluids to the skin without or in conjunction with UV irradiation did not elicit an irritation response in any of the study participants. Normally the category members are not irritating to the human skin but can produce irritant responses if evaporation is inhibited or prevented.

Rationale: GHS does not use the average of all animals over the three time points but the average per animal. This information is not available in the IUCLID dossier. In addition, there are no clear criteria within the GHS for classification based on human data.

Level of detail: SIAP, SIAR and dossier

Switzerland

Nonane (CAS 111-84-2)

Irritation

Skin

Classification proposal: Not classified

Key Data: The members of the C9-C14 aliphatic (<2% aromatics) category produced minimal to slight eye irritation when tested in rabbits. Similarly, the isoparaffinic, normal paraffinic, and mixed aliphatic category members produced minimal to slight skin irritation when tested in rabbits and are also not normally irritating to human skin but can produce irritant responses if evaporation is inhibited or prevented. However, cycloparaffinic hydrocarbon fluids are considered to be dermal irritants to rabbits and to humans. It should also be noted that prolonged or repeated exposure to hydrocarbon solvents can lead to severe irritant dermatitis due to defatting of the skin.

Rationale: Classification not possible since data (scoring points) is missing.

Level of detail: SIAP/SIAR/dossier
Russia Federation

Nonane (CAS 111-84-2)

Irritation

Skin
Classification proposal: Not classified
Key Data: The members of the C9-C14 aliphatic (<2% aromatics) category produced minimal to slight eye irritation when tested in rabbits. Similarly, the isoparaffinic, normal paraffinic, and mixed aliphatic category members produced minimal to slight skin irritation when tested in rabbits and are also not normally irritating to human skin but can produce irritant responses if evaporation is inhibited or prevented. However, cycloparaffinic hydrocarbon fluids are considered to be dermal irritants to rabbits and to humans. It should also be noted that prolonged or repeated exposure to hydrocarbon solvents can lead to severe irritant dermatitis due to defatting of the skin. The C9-C14 aliphatic (≤2% aromatics) Category members do not cause skin sensitization.
Dossier: no adverse effect observed (not irritating).
Rationale: The lack of details of data, classification is not possible.
Level of detail: SIAR, dossier
<table>
<thead>
<tr>
<th>Denmark</th>
</tr>
</thead>
</table>

Nonane (C9 alkane)
CAS-no. 111-84-2
(Read-across)

<table>
<thead>
<tr>
<th>HUMAN HEALTH</th>
<th>SIAP</th>
<th>SIAR</th>
<th>IUCLID</th>
<th>Comment</th>
</tr>
</thead>
</table>
| **Irritation** | *nad*
OECD TG 404 (according to/similar) (rabbit)
*Minimal to slight skin irritation
Not normally irritating to human skin but may be irritating if evaporation is inhibited. Prolonged or repeated exposure to hydrocarbon solvents can lead to severe irritant dermatitis due to defatting of the skin. Conclusion: severe irritant dermatitis due to defatting with prolonged or repeated exposure | *nad*
OECD TG 404 (according to/similar) (rabbit)
46/60 studies indicated irritation scores well-below the threshold for classification. Seven studies used occlusive dressing and did not report data useful for classification. Seven studies reported erythema scores for four of these studies were 2.0. According to sponsors, conclusion is: the isoparaffinic, normal paraffinic, and mixed aliphatic, C9-C14 Aliphatic Hydrocarbon Solvents (≤ 2% Aromatics) are not mild dermal irritants to rabbits. | *nad*
no further information than provided in SIAR | SIAP: Classification is not possible due to lack of details on scoring, observation time, number of rabbits etc.
SIAR: Read-across to C11-C14 n-alkanes (< 2% aromatics): Mildly irritating, scores below thresholds for classification. 7 studies and 4 were irritation score 2.0. Lack of details on scoring, observation time, number of rabbits etc. Indications that i should not be classified, but classification is not possible.
IUCLID: Indications that i should not be classified, but classification is not possible. |

nad = not adequate data
France

Substance: nonane

<Skin irritation>
Classification proposal: no conclusion
Key Data: Skin irritation studies
Rationale: No data on nonane and contradictory data on C11-C14 n-alkanes, < 2% aromatics. No sufficient data to conclude on classification for this endpoint.
Level of detail: SIAP/SIAR

Japan

Substance: Nonane

<Skin irritation>
Classification proposal: Classification not possible
Key Data: OECD TG 428 (Babu et al., 2004), OECD TG 404 for similar substances (Cepsa Química 2000a; Petrochem Carless Limited 1997)
Rationale: Two OECD TG 404 studies were conducted for Hydrocarbons, C11-C14, n-alkanes, < 2% aromatics, and one resulted mildly irritating and the other was not irritating. OECD TG 428 (in vitro study) indicated that the erythema scores increased with increase in the molecular weight of the hydrocarbon. It is difficult to read across from these available data.
Level of detail: SIAP/SIAR/Dossier