ENVIRONMENT DIRECTORATE
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY

REPORT OF THE OECD SEMINAR ON PESTICIDE RISK REDUCTION STRATEGIES NEAR/IN RESIDENTIAL AREAS

Series on Pesticides
No. 58

17 November 2009, Tokyo, Japan
Report of the OECD Seminar on Pesticide Risk Reduction
Strategies Near/in Residential Areas
Also published in the Series on Pesticides

No. 1 Data Requirements for Pesticide Registration in OECD Member Countries: Survey Results (1993)

No. 3 Data Requirements for Biological Pesticides (1996)

No. 5 Activities to Reduce Pesticide Risks in OECD and Selected FAO Countries. Part II: Survey Responses (1996)

No. 6 OECD Governments’ Approaches to the Protection of Proprietary Rights and Confidential Business Information in Pesticide Registration (1998)

No. 7 OECD Survey on the Collection and Use of Agricultural Pesticide Sales Data: Survey Results (1999) [see also No.47]

No. 9 Report of the Survey of OECD Member Countries’ Approaches to the Regulation of Biocides (1999)

No. 10 Guidance Notes for Analysis and Evaluation of Repeat-Dose Toxicity Studies (2000)

No. 11 Survey of Best Practices in the Regulation of Pesticides in Twelve OECD Countries (2001)

No. 12 Guidance for Registration Requirements for Pheromones and Other Semiochemicals Used for Arthropod Pest Control (2001)

No. 15 Persistent, Bioaccumulative and Toxic Pesticides in OECD Member Countries (2002)

No. 16 OECD Guidance for Industry Data Submissions for Pheromones and Other Semiochemicals and their Active Substances (Dossier Guidance for Pheromones and other Semiochemicals) (2003)

No. 18 Guidance for Registration Requirements for Microbial Pesticides (2003)

No. 20 OECD Workshop on Electronic Tools for data submission, evaluation and exchange for the Regulation of new and existing industrial chemicals, agricultural pesticides and biocides (2003)

No. 21 Guidance for Regulation of Invertebrates as Biological Control Agents (IBCAs) (2004)

No. 25 The Assessment of Persistency and Bioaccumulation in the Pesticide Registration Frameworks within the OECD Region (2005)

No. 32 Guidance Document on Overview of Residue Chemistry Studies [also published in the series on Testing and Assessment, No. 64] (2006, revised 2009)

No. 34 Frequently Asked Questions about Work Sharing on Pesticide Registration Reviews (2007)

No. 41 The Business Case for the Joint Evaluation of Dossiers (Data Submissions) using Work-sharing Arrangements (2008)

No. 47 OECD Survey on Countries’ Approaches to the Collection and Use of Agricultural Pesticide Sales and Usage Data: Survey Results (2009)

No. 48 OECD Strategic Approach in Pesticide Risk Reduction (2009)

No. 52 OECD Survey of Pollinator Testing, Research, Mitigation and Information Management: Survey Results (2010)

No. 54 OECD Survey on Education, Training and Certification of Agricultural Pesticide Users, Trainers and Advisors, and Other Pesticide Communicators: Survey Results (2010)

No. 55 OECD Survey on How Pesticide Ingredients Other than the Stated Pesticide Active Ingredient(s) are Reviewed and Regulated: Survey Results (2010)

No. 57 OECD MRL Calculator MRL Statistical White Paper (2011)
Published separately

Guidelines for the Collection of Pesticide Usage Statistics Within Agriculture and Horticulture (1999)

© OECD 2011
Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, RIGHTS@oecd.org, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France
About the OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 34 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in ten different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; and Safety of Manufactured Nanomaterials. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (www.oecd.org/ehs/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. UNDP is an observer. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This publication is available electronically, at no charge.

For this and many other Environment, Health and Safety publications, consult the OECD’s World Wide Web site (www.oecd.org/ehs/)

or contact:

OECD Environment Directorate, Environment, Health and Safety Division
2 rue André-Pascal
75775 Paris Cedex 16
France

Fax: (33-1) 44 30 61 80

E-mail: ehscont@oecd.org
FOREWORD

This document is the report of the OECD Seminar Pesticide Risk Reduction Strategies near/in Residential Areas that was held on 17 November, 2009 in Tokyo, Japan. It was hosted by the Japanese Ministry of Agriculture, Forestry and Fisheries (MAFF) and was chaired by Dr. Wolfgang Zornbach of the German Federal Ministry of Food, Agriculture and Consumer Protection.

This was the eleventh in a series of Seminars organised by the OECD Pesticide Risk Reduction Steering Group, a sub-group of the OECD Working Group on Pesticides. These Seminars focus on key issues in pesticide risk reduction of concern to OECD governments. The Seminars are intended to provide an opportunity for OECD governments to discuss the issues together with non-governmental stakeholders and to develop recommendations for further OECD activities.

After a series of presentations on governments’ and other stakeholders’ approaches and initiatives (copies of all presentations are in Annex 3), the Seminar discussed the various issues associated with pesticide professional use near residential areas (e.g. agricultural fields) and in residential areas (e.g. horticulture, public/urban areas, sport grounds): legislative context; bystander and resident exposure; risk assessment and management approaches; training of operators; communication aspects, etc. The Seminar developed four main recommendations on developing guidance and further exploring technical, information exchange and economic areas.

The Seminar report was approved out-of-session by the Working Group on Pesticides by written procedure that was finished on 15 January 2011.

This document is being published under the responsibility of the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, which has agreed that it be unclassified and made available to the public.
TABLE OF CONTENTS

INTRODUCTION .. 13

PARTICIPANTS .. 15

PURPOSE OF THE SEMINAR .. 15

SCOPE OF THE SEMINAR ... 16

STRUCTURE OF THE SEMINAR .. 16

GOVERNMENT AND STAKEHOLDER EXPERIENCE & PERSPECTIVES ... 17

SEMINAR RECOMMENDATIONS AND FINDINGS ... 18

ANNEX 1: SEMINAR PROGRAMME .. 20

ANNEX 2: LIST OF PARTICIPANTS .. 22

ANNEX 3: LIST PRESENTATIONS ... 229
INTRODUCTION

1. This report presents the results and recommendations of an OECD Seminar on strategies to achieve risk reduction regarding professional pesticide use near and in residential areas. This one-day Seminar, held on 17 November, 2009 was chaired by Wolfgang Zornbach (Germany), Chairman of the OECD Risk Reduction Steering Group (RRSG), and took place in Tokyo, Japan.

2. The Japanese Ministry of Agriculture, Forestry and Fisheries, hosted this Seminar and organized the field trip that took place the day before in the Ibaraki Prefecture area. The field-trip day comprised several visits, including a stop at a bell pepper and paprika production site (greenhouses), a tour of a horticulture research institute including the demonstration of a sensor sprayer in an apple orchard, which was protected against spray drift with a net, and finally a visit to a large, tomato and strawberry production cooperative (greenhouses) including the demonstration of a high-tech tomato sorter. The field trip proved very helpful in the context of the RRSG Seminar that took place immediately the day after. During the field trip, participants could see Japanese agricultural and residential landscapes and understand the context of pesticide use on small farm lands that could be close to houses and densely populated areas.

3. This Seminar was the eleventh in a series of Seminars organised by the OECD Pesticide RRSG, a sub-group of the OECD Working Group on Pesticides (a group composed primarily of representatives of the 34 OECD governments but that also includes representatives of the European Commission and other international organisations, the pesticide industry, and the environmental community). RRSG Seminars focus on key issues in pesticide risk reduction of concern to OECD countries. The Seminars are intended to provide an opportunity for OECD governments to discuss these issues together with non-governmental stakeholders and to develop recommendations for further follow-up OECD activities. The OECD Pesticides Programme has made great accomplishments toward helping national governments coordinate the efficiency and effectiveness of pesticide risk reduction work, in part because of Seminars such as the one held in Tokyo.
4. Past OECD Risk Reduction Seminars are listed below:

<table>
<thead>
<tr>
<th>Title of Seminar</th>
<th>[references of publication]</th>
<th>Date</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance and Risk Reduction</td>
<td>ENV/JM/MONO(2004)6 (Series on Pesticides No. 24)</td>
<td>10 March 2003</td>
<td>Paris, France</td>
</tr>
<tr>
<td>Pesticide Risk Reduction through Good Container Management</td>
<td>ENV/JM/MONO(2005)12 (Series on Pesticides No. 28)</td>
<td>22 June 2004</td>
<td>Bonn, Germany</td>
</tr>
<tr>
<td>Risk Reduction through Good Pesticide Labelling</td>
<td>ENV/JM/MONO(2006)13 (Series on Pesticides No. 29)</td>
<td>1 March 2005</td>
<td>Paris, France</td>
</tr>
<tr>
<td>Joint OECD/EC Seminar on Harmonised Environmental Indicators For Pesticide Risk (HAIR)</td>
<td>ENV/JM/MONO(2007)27 (Series on Pesticides No. 40)</td>
<td>13 Nov. 2006</td>
<td>Bonn, Germany</td>
</tr>
<tr>
<td>Risk Reduction through Better Worker Safety and Training</td>
<td>ENV/JM/MONO(2008)9 (Series on Pesticides No. 42)</td>
<td>21 March 2007</td>
<td>Brno, Czech Republic</td>
</tr>
<tr>
<td>Risk Reduction through Education / Training the Trainers</td>
<td>ENV/JM/MONO(2009)35 (Series on Pesticides No. 45)</td>
<td>15 Nov. 2007</td>
<td>Mexico City, Mexico</td>
</tr>
</tbody>
</table>

The reports from these Seminars are available on the OECD public web site at: http://www.oecd.org/env/pesticides, under the section “Risk Reduction.”

5. Members of the RRSG selected “pesticide risk reduction strategies near/in residential areas” as the topic of this Seminar considering its significance for pesticide risk reduction in the fields of human health and the environment. Previous OECD Seminars already considered some aspects of issues related to the uses of pesticides near or in residential areas. The first Seminar on Compliance stressed the importance of raising public awareness about pesticide risks, e.g. by using media to disseminate information to the public. The Seminars on Good Pesticide Labelling and on Good Container Management recommended that labels be in clear language and mindful of different users. More recently, the interface between agricultural and residential/urban settings has been a background and recurrent topic, such as during the 2008 Seminar on Spray Drift Reduction Strategies and during the last Seminar on Aerial Application. For example, issues associated with by-stander exposure or communication between farmers and their neighbouring communities have received a lot of attention.
PARTICIPANTS

6. People attending the OECD Seminar included:

- Representatives of the pesticide regulatory authorities of OECD countries (Australia, Austria, Canada, Germany, Japan, Korea, the Netherlands, New Zealand, United Kingdom and United States), the European Commission and Brazil (an OECD enhanced engagement country)

- Representatives from industry, including CropLife International (the international association of pesticide manufacturers), BIAC (Business and Industry Advisory Committee to the OECD) and IBMA (International Biocontrol Manufacturers Association)

- International experts dealing with issues associated with pesticide use near/in residential areas from other key stakeholder groups such as Pesticide Action Network Asia-Pacific and Japanese NGOs.

7. A participant list is provided in Annex 2.

PURPOSE OF THE SEMINAR

8. The main objectives of the Seminar included:

- to identify key issues, specific risks and challenges of pesticide use and risk reduction near/in residential areas

- to provide updates of national and international legislative, non-legislative and technical activities and initiatives for requiring or promoting the adoption of risk reduction practices and technologies by farmers (and other professional agricultural pesticide users) near residential areas, and for promoting information towards the public

- to exchange information on OECD countries’ current risk reduction activities near/in residential areas

- to suggest risk reduction policy options for protecting human health and the environment in residential areas and to promote a better understanding of issues among all stakeholders involved

- to suggest and discuss options of further steps for OECD countries and key stakeholders in OECD and non-OECD countries to address the identified issues

- to recommend possible further steps for OECD.
SCOPE OF THE SEMINAR

9. The scope of the Seminar was on issues and risk reduction strategies regarding professional pesticide uses:

- in agricultural fields near/along residential areas, and
- in residential areas and other settings (e.g. horticulture settings, golf courses, public/urban areas such as sport/leisure yards, streets, public gardens, schools, railways).

10. The topic of private/amateur uses of pesticides in private homes and gardens was not covered during this Seminar. It may be the topic of a future OECD Seminar.

11. In particular, the following issues were presented during the Seminar:

- Requirements/regulations/restrictions for pesticide uses near/in residential areas
- Specific training/certification programs for applications near/in residential areas
- By-stander (including children/infant) exposure models and risk assessment/management approaches
- New/specific application technologies and approaches for managing risks (spray drift, run-off, volatilization) near/in residential areas
- Protection of by-standers and neighbouring communities as well as the environment, including home gardens, streets, public parks.
- Communication/advice/education towards by-standers and neighbouring communities (i.e. information about pesticides and related risks, alert/reporting systems, hot lines, use of media, etc.)
- Conflict between residential development and agricultural lands
- Recommendations for improving risk reduction strategies for pesticide use near/in residential areas.

STRUCTURE OF THE SEMINAR

12. The first part of the Seminar in the morning and early afternoon was devoted to informative presentations from governments and other stakeholders. The second part of the afternoon consisted of roundtable discussions that built on issues that arose from the presentations, and recommendations for the OECD. The Seminar Programme is provided in Annex 1.
GOVERNMENT AND STAKEHOLDER EXPERIENCE & PERSPECTIVES

13. First, government representatives of Australia, Japan, New Zealand, UK, and US, and the European Food Safety Authority presented their experiences and recent initiatives with issues associated with pesticide use in/near residential areas in their own countries/regions. Then representatives of the industry (pesticide manufacturers) and NGOs presented their perspectives, actions and concerns.

14. Below are listed the main topics covered in the presentations. More detailed information can be found in the slides of presentations that are grouped in Annex 3.

- Recent developments in pesticide and environmental legislative contexts to consider and protect by-standers and residents (preparation of European guidance for exposure assessment, revision of country regulations to include by-stander exposure to spray drift)
- Specifics of by-standers and residents (indirect exposure during and after application; by-standers and residents are not like operators nor like workers; examples of definitions for by-standers and residents were provided)
- By-stander and resident exposure (routes of exposure: dermal/oral/inhalation, specific models/scenarios, studies and risk assessment)
- Spray drift considerations and modelling
- Development/promotion of effective technologies (equipment/formulation) to reduce drift and thus to reduce pesticide risks
- Promotion of best practices that reflect use context
- Urban and rural interface (issues associated with the urbanisation of the rural landscape, land planning initiatives to protect neighbours while keeping sufficient good quality agricultural lands)
- Use of (vegetative) buffer zones (however not always practicable depending on the size of the country and the type of agriculture)
- Importance of education and appropriate training of pesticide users (development of specific educational/training programmes, seminars and manuals focusing on environmental and health safety aspects in residential areas; promotion of activities involving local governments)
- Management of risks through pesticide re-assessment and risk/benefit analysis
- Communication and information aspects (notification to residents and by-standers, other communication programmes to limit complaints and media coverage associated with spraying near homes and public sites)
• **Promotion of mutual understanding between farmers and neighbours** (in order to improve relationships and increase public awareness)

• **Divergence of views and perceptions of pesticide “risks”** by farmers/users or by concerned rural residents

• **Information on websites** (many presentations included links to information on pesticide use and risk assessment in/near residential areas)

SEMINAR RECOMMENDATIONS AND FINDINGS

15. Following the presentations reviewing the existing initiatives in OECD countries and among various stakeholders, the floor was opened to all Seminar participants for a roundtable discussion. The following points guided the discussion:

- Specific aspects of uses near residential areas (e.g. agricultural fields) and in residential areas (e.g. horticulture, public/urban areas, sport grounds)

- Key issues and challenges of pesticide use in or near residential areas

- Good practices and innovative approaches for managing risks near/in residential areas

- Regulatory requirements that exist in different countries, and existing guidance and other voluntary measures concerning pesticide use near/in residential areas

- Risk assessment/management approaches

- Communication aspects (towards by standers and neighbouring communities), i.e. alert/reporting systems, hot lines, media

- Opportunities for further development for all stakeholders, governments, industry, NGOs and OECD.

16. All participants made knowledgeable interventions which contributed to a better understanding of the issues associated with professional pesticide use in or near residential areas and helped the group reach recommendations on follow-up steps for OECD on this topic.

17. Summarising the discussions among participants and taking into account the suggestions made around the table, the Chair developed the following recommendations that fell into four work areas:

1. **Guidance development**

 → developing guidance on pesticide spray drift risk assessment

2. **Technical activity**

 → exploring the feasibility of developing standards for the testing of nozzles
3. Exchange of information
 learning about other countries’ risk management and risk mitigation approaches as professional pesticide use in/near residential areas is concerned

4. Economic study
 reviewing external costs of urbanization of agricultural lands

18. Regarding the first recommendation to develop a guidance on pesticide spray drift risk assessment, many participants were interested in reviewing the parameters used in existing spray drift deposition models, as well as reviewing existing data sets, identifying data gaps and listing deposition studies (and spraying conditions under which they are conducted). By collecting this data and using a science-based approach, it was felt possible to identify parameters that lead to variability and differences in outcomes among countries. Thus, it would be possible to explain why, with similar data, individual countries end up using different approaches. The Seminar suggested preparing a short-term and long-term workplan for international work on spray drift risk assessment, including harmonization where feasible and practical. It was also suggested liaising with EFSA to see if the timing of EU guidance development could be aligned with that of OECD.

19. Regarding the second recommendation that is of more technical nature, some participants suggested new work on standards for the testing of nozzles. Before undertaking any new work, it was recommended to look at what other organizations, such as ISO, were doing.

20. Regarding the third recommendation that relates to communication / exchange of information in the area of pesticide risk management, many delegates were eager to learn about other countries’ risk management and risk mitigation approaches as far as professional pesticide use in/near residential areas is concerned. A first step could be e.g. a survey to collect, hence better understand, risk management and risk mitigation approaches/options used and developed by governments. This recommendation deals with various risk management issues such as notification and alert systems, buffer zones, risk reduction technologies, training, communication aspects (e.g. behaviours/perceptions of farmers and residents), etc.

21. Regarding the fourth recommendation of more economic nature, some participants were interested in reviewing the external costs of urbanization of agricultural land and identifying those who pay these costs (farmers? society?). An initial study could review the costs of buffer zones. To start with, the Seminar recommended that the OECD Secretariat investigate in-house whether a study on external costs of urbanisation of agricultural land had already been conducted by OECD groups, either in the environment or agriculture directorates.

Note:
The recommendations developed by the Seminar participants will be forwarded to the relevant subsidiary bodies of the OECD Pesticides Programme, the members of which will consider these recommendations and agree on which one(s) to initiate, if any.
ANNEX 1

PESTICIDE RISK REDUCTION STEERING GROUP

SEMINAR ON PESTICIDE RISK REDUCTION STRATEGIES

NEAR/IN RESIDENTIAL AREAS¹

Tuesday 17 November 2009
Tokyo, Japan
United Nations University, Elizabeth Rose Conference Hall

Final Programme

Chair: Wolfgang Zornbach, Germany

<table>
<thead>
<tr>
<th>9.30 a.m.</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Opening and welcoming remarks – Japan (Dr. Yukiko YAMADA, vice-Chair of the OECD Working Group on Pesticides and Deputy Director-General, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries)</td>
<td></td>
</tr>
<tr>
<td>• Purpose and structure of the Seminar - Chair</td>
<td></td>
</tr>
<tr>
<td>• Tour de table to introduce participants</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Government Regulatory Initiatives, Experience and Perspectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Japan: Policy on the Pesticide Uses near/in the Residential Area - Current Situation (Ms. Atsuko HORIBE, Deputy Director, Agricultural Chemicals Office, Plant Products Safety Division, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries)</td>
</tr>
<tr>
<td>• United Kingdom: Agricultural pesticides and bystander/resident exposures in the UK (Mr. Paul HAMEY, Principal Scientist Human Exposure (Plant Protection Products), Chemicals Regulation Directorate, Health and Safety Executive)</td>
</tr>
<tr>
<td>• United States of America: Concepts of US EPA’s Exposure Assessments for Residential Use Pesticides (Mr. Jay ELLENBERGER, Deputy Director, Field and External Affairs Division, Office of Pesticide Programme, US EPA)</td>
</tr>
<tr>
<td>• Australia: Public health considerations of bystander exposure to spray drift (Dr Don Ward, Acting Director, Chemical Policy Section, Office of Chemical Safety and Environmental Health, Australian Government Department of Health and Ageing)</td>
</tr>
<tr>
<td>• European Union: Preparation of a Guidance Document on Pesticide Exposure Assessment for Workers, Operators, Bystanders and Residents (Mr. Paul HAMEY, UK, on behalf of Ms. Muriel DUNIER-THOMANN, European Food Safety Authority)</td>
</tr>
</tbody>
</table>

¹ Note: The topic of private/amateur uses of pesticides in private homes and gardens is not covered during this Seminar. Only professional pesticide uses are addressed.
• **New Zealand: Managing Pesticide Risk near/in Residential Areas – A New Zealand perspective** (Warren HUGHES, Programme Manager, New Zealand Food Safety Authority)
• **Other countries are invited to make presentations on their experiences**

Industry activities

• **Crop Life International: Use of Pesticides near and in Residential Areas: A Special Case?** (Bernhard JOHNEN / Keith JONES)

Perspectives from the Public

• **Green and Safety Promoters Association, Japan: Education/Training for Reducing Risk Arising from Spraying Pesticides** (Mr. Yoshihiko CHINO, Chief, Pesticide Safety Counselling Division)
• **University of Queensland, Australia: Harmonising Agricultural and Residential Land Practices within Regional Queensland** (Mr Mark PACE, Director, G-VEC)
• **Pesticide Action Network: Request for Reconsideration over Japanese ODA Policy on Promoting Pesticide Impregnated Mosquito Net and Domestic Policy on Aerial Spraying of Pesticide from the View Point of Risk Reduction Strategy** (Dr. Koa TASAKA, Steering Council Member of PAN Asia & Pacific)
• **Other NGOs and associations are invited to make presentations on their experiences**

Round-table Discussion (non–exhaustive list)

• Regulatory requirements that exist in different countries, and existing guidance and other voluntary measures concerning pesticide use near/in residential areas
• Specific risks and challenges
• Specific aspects of uses near residential areas (e.g. agricultural fields) vs. in residential areas (e.g. horticulture, public/urban areas, sport grounds)
• Good practices & innovative approaches for managing risks near/in residential areas
• Risk assessment/management approaches
• Relative effectiveness of different risk reduction methods
• Training/certification for application near/in residential areas
• Communication aspects (towards by standers and neighbouring communities), i.e. alert/reporting systems, hot lines, use of media

Summary of the Discussion, Ideas for Follow-up, Recommendations for possible further OECD work

6.00 p.m. End of the Seminar
ANNEX 2

OECD SEMINAR ON RISK REDUCTION STRATEGIES
IN/NEAR RESIDENTIAL AREAS

17 November 2009, Tokyo, Japan

LIST OF PARTICIPANTS

Australia/Australie

Mr. Gary FAN
Senior Policy Advisor
Agricultural and Veterinary Chemicals Section
Australian Government Department of Agriculture, Fisheries and Forestry

Dr. David LOSCHKE
Principal Scientist
Australian Pesticides & Veterinary Medicines Authority (APVMA)

Mr. Mark PACE
Director, G-VEC
Faculty of NRAVS
University of Queensland

Dr. Don WARD
Acting Director
Chemical Policy Section
Department of Health and Ageing
Office of Chemical Safety & Environmental Health

Austria/Autriche

Ms. Angelika BUCHSBAUM
AGES Austrian Federal Agency for Health & Food Safety
Institute for Plant Protection Products Evaluation & Authorization

Ms. Britta MOEBES-HANSEN
AGES - Austrian Federal Agency for Health & Food Safety
Institute for Plant Protection Products Evaluation & Authorization
Canada/Canada

Ms. Marion LAW
Chief Registrar
Pest Management Regulatory Agency
Health Canada
Registration Directorate

Germany/Allemagne

Dr. Wolfgang ZORBACH (CHAIR)
Plant Protection Unit
Federal Ministry of Food, Agriculture and Consumer Protection (BMELV)

Japan/Japon

Dr. Yukiko YAMADA
Deputy Director-General
Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries

Ms. Atsuko HORIBE
Deputy Director
Agricultural Chemicals Office, Plant Products Safety Division
Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries

Mr. Kenji ASAKURA
Director
Plant Products Safety Division
Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries

Mr. Junichi HIOKI
Assistant Director
Agricultural Chemicals Control Office
Ministry of the Environment
Environmental Management Bureau
Mr. Makoto IRIE
Section Chief
Agricultural Chemicals Office, Plant Products Safety Division
Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries

Mr. Tetsuya OTOMO
Director
Agricultural Chemicals Control Office
Ministry of Environment
Environmental Management Bureau

Mr. Hiromiki TERADA
Director
Agricultural Chemicals Office, Plant Products Safety Division
Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries

Mrs. Yukiko YAMADA
Official
Agricultural Chemicals Control Office
Ministry of Environment
Environmental Management Bureau

Korea/Corée

Dr. Jin-Bae KIM
Senior Researcher
Pesticide Safety Evaluation Division
Crop Life Safety Department
National Academy of Agricultural Science

Netherlands/Pays-Bas

Mr. Jouke KNOL
Policy advisor on plant protection
Agriculture
Ministry of Agriculture, Nature and Food Quality

Dr. Robert LUTTIK
RIVM/SEC
Dr. Susanne SÜTTERLIN
Senior Officer
Directorate Agriculture
Ministry of Agriculture, Nature & Food Quality
Plant Protection

New Zealand/Nouvelle-Zélande

Mr. Warren HUGHES
Programme Manager (Standards)
Approvals and ACVM Group

United Kingdom/Royaume-Uni

Mr. Richard DAVIS
Director of Regulatory Operations
Chemicals Regulation Directorate
Health and Safety Executive

Mr. Paul HAMEY
Principal Scientist
Health and Safety Executive
Chemicals Regulation Directorate

United States/États-Unis

Mr. Jay ELLENBERGER
Deputy Director, Field and External Affairs Division
Office of Pesticide Programs
US Environmental Protection Agency

Ms. Kathy MONK
Senior Regulatory Specialist
Office of Pesticide Programs
US EPA

Ms. Lois ROSSI
Director
Registration Division
US Environmental Protection Agency
Office of Pesticide Programs
European Commission

Mr. Wolfgang REINERT
Administrator
Health & Consumers Directorate-General
European Commission

Brazil/Brésil

Ms. Debora CRUZ
Pesticide Registry Manager / Agricultural Federal Inspector
Agricultural Supplies Inspection Department
Ministry of Agriculture, Livestock and Food Supply

Ms. Marina DOURADO
Agricultural Federal Inspector
Agricultural Supplies Inspection Department
Ministry of Agriculture, Livestock and Food Supply

Ms. Ana Maria VEKIC
Toxicological Analysis Manager
National Agency of Health Surveillance (ANVISA)
Ministry of Health

Mr. José Uires Garcia
Regulation and Health Surveillance Specialist - General Office of Toxicology

Business and Industry Advisory Committee (BIAC)/Comité consultatif économique et industriel (BIAC)

Mr. Mitsuo HATTORI
Chairman of Technical Committee
Japan Crop Protection Association
Mr. Peter HORNE
Global Regulatory Affairs Manager
DuPont Crop Protection Products

Mr. Bernhard JOHNEN
Director International Regulatory Policy
CropLife International

Dr. Felix MEIER-MANZ
Head Regulatory Support
Syngenta Crop Protection AG

IBMA

Mr. Bernard BLUM
Head International Affairs
International Biocontrol Manufacturers Association (IBMA)
Agrometrix Integrated Crop Management

Mr. Shigeru MARUYAMA
Manager
Registration & Regulatory Affairs Dept., Crop Protection Division - International
Sumitomo Chemical Co., Ltd.

Mr. Yoshihiro NISHIMOTO
Manager
Registration & Regulatory Affairs Dept., Crop Protection Division - International
Sumitomo Chemical Co., Ltd.

PAN Asia Pacific

Mr. Koa TASAKA
PAN Asia Pacific
Steering Council Member
SUPA

Shinji NOZAWA
SUPA
Association Support for People in West Africa

Citizens Against Chemical Pollutions

Takeshi YASUMA
Citizens Against Chemical Pollutions

Green and Safety Promoters Association

Mr. Yoshihiko CHINO
Chief
Pesticide Safety Counseling Division

OECD

Ms. Beatrice GRENIER
ENV/EHS
OECD

Mr. Richard SIGMAN
Principal Administrator
ENV/EHS
OECD
ANNEX 3

LIST OF PRESENTATIONS

Presentation 1
Policy on the Pesticide Uses near/in the Residential Areas – Current Situation
Japan, Atsuko HORIBE

Presentation 2
Agricultural Pesticides and Bystander/Resident Exposures in the UK
UK, Paul Y. HAMEY

Presentation 3
Concepts of US EPA's Exposure Assessments for Residential Use Pesticides
USEPA, Jay ELLENBERGER

Presentation 4
Public Health Considerations of Bystander Exposure to Spray Drift
Australia, Donald Alan WARD

Presentation 5
Preparation of a Guidance Document on Pesticide Exposure Assessment for Workers, Operators Bystanders and Residents
European Food Safety Authority, Paul HAMEY

Presentation 6
Managing Pesticides Risk Near/in Residential Areas- A New Zealand Perspective
New Zealand, Warren Hughes

Presentation 7
Use of Pesticides Near and in Residential Areas: A Special Case?
CropLife International, Bernhard JOHEN and Keith JONES

Presentation 8
Education/Training for Reducing Risk Arising from Spraying Pesticides
Green and Safety Promoters Association, Japan, Yushihiko CHINO
Presentation 9
Harmonising Agricultural and residential land practices within regional Queensland
University of Queensland, Australia, Mark PACE and Gary DORR

Presentation 10
Request for Reconsideration over Japanese ODA Policy on Promoting Pesticide Impregnated Mosquito Met and Domestic Policy on Aerial Spraying of Pesticide from the View Point of Risk Reduction Strategy
Pesticide Action Network Asia & Pacific, Koa TASAKA
Policy on the Pesticide Uses near/in the Residential Area
- Current Situation -

Atsuko HORIBE
Agricultural Chemicals Office
Plant Products Safety Division
Food Safety and Consumer Affairs Bureau

UNIQUE FEATURES OF THE JAPANESE AGRICULTURE
Agricultural Area and Residential Area in Close Proximity

Temperature and precipitation

- Paris
- Arlington
- Canberra
- Tokyo
Spray Methods

<table>
<thead>
<tr>
<th></th>
<th>Western Countries</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Generally Low (10 – 50 L / 10 a)</td>
<td>High (100 – 300 L / 10 a)</td>
</tr>
<tr>
<td>Pressure</td>
<td>Low (0.1 – 0.5 Mpa)</td>
<td>High (1.0 – 2.0 Mpa)</td>
</tr>
<tr>
<td>Diameter</td>
<td>Big (Av. 120 – over 200 μm)</td>
<td>Small (Av. 70 – 90 μm)</td>
</tr>
<tr>
<td>Boom Length</td>
<td>Mostly over 20 m</td>
<td>About 6 – 20 m</td>
</tr>
<tr>
<td>Spray Speed</td>
<td>Mostly high speed (around 6 km / h)</td>
<td>Mostly low speed (1 – 3 km / h)</td>
</tr>
<tr>
<td>Nozzle Interval</td>
<td>Mostly over 50 cm</td>
<td>30 cm</td>
</tr>
</tbody>
</table>

PESTICIDE USES NEAR/IN THE RESIDENTIAL AREA
Regulations on Use of Pesticides
(Outline)

Agricultural Chemicals Regulation Law
Article 12 (Restriction on the use of agricultural chemicals)
➢ The Minister for Agriculture, Forestry and Fisheries and
the Minister for the Environment shall lay down criteria
for the users of agricultural chemicals should comply;
➢ Users of agricultural chemicals shall not use agricultural
chemicals in violation of the criteria.

Ordinance for Standards to be Complied with by the Use of
Pesticides
Article 6 (Pesticide use near/in the residential areas)
When using the pesticides near/in the residential area
and its neighboring lands, the pesticide user should take
necessary measures to prevent the dispersal of pesticides.

“Pesticide Use near/in the Residential Area”
(Notification dated 31st Jan. 2007 by MOE & MAFF)

[Background]
Survey for the controlling pest in the avenue or the
park by the local government (MOE, 2005)
Some local governments use pesticides not
appropriately.
(Example)
• Periodical use of pesticides without prevalence of
pests
• Spraying in a large area
• On-site blending of pesticides
[Purpose]
- To facilitate appropriate use of pesticides
- To avoid adverse effects for human health, animal welfare and environment

[Focus]
- Prefectural governments’ advice to pesticide users on appropriate use on pesticides

[Contents]
- Prohibition of periodic use of pesticides without appearance of pests
- Consideration of the condition for spraying e.g. direction of the wind, wind velocity, weather condition, time of the day etc.
- Selection the suitable equipment and type of formulation
- Information-sharing between residents and pesticide users, especially near school, hospital and any other public space
- Importance of appropriate use of pesticides
Activities of Various Sectors

[Central Government]
(MOE & MAFF)
- Organizing seminar for prefectural governments
- Distribution of leaflets
- Promoting appropriate use for pesticides

(MHLW & MAFF)
- Campaign for prevention of injury by pesticides

[Private Sector]
- Organizing seminar
- Advising farmers about appropriate use of pesticides

Seminar in the Hokuriku area
- Hosted by MOE & MAFF (Regional Offices)
- About 80 participants

[Topics]
- Lecture on the Notification (by MAFF)
- Manual for the control of pest and weed trees in/on park and lining the streets (by MOE)
- Case study on pest control (by Kanazawa City)
ISSUES TO BE SOLVED AND VISION FOR THE FUTURE

Issues to be Solved

• Approach to inform relevant authorities of this Notification and methodology
• Resolving troubles and getting mutual understanding between farmers and newer residents
• Development for more effective equipment or formulation causing less drift
Vision for the Future
= Establishing “Japanese Style”

?Difficult Idea?
• Create the Buffer Zone
 → Farm area is too small!!

!Possible Ideas!
• Establish effective information sharing methods
• Development of the strategies for pesticide use near/in the residential area

Detailed information is available at these websites (in Japanese only).

MAFF Homepage
http://www.maff.go.jp/j/nouyaku/index.html

MOE Homepage

Check anytime when you use Pesticides.

Thank you for your attention!
Agricultural pesticides and bystander/resident exposures in the UK

Paul Y Hamey
Chemicals Regulation Directorate

Overview

• National approach
• Interpretation of EU requirements
 – Authorisation criteria
• Controls on use
• Outcomes
 – Health incidents
 – Stakeholder issues
• Current/future developments
National Approach

- Prior to harmonised EU legislation
- Considered in 1980s by former Ministry of Agriculture Fisheries and Food
 - Highest exposure potential considered to be direct contact with spray drift
 - Simulated spray studies using food dye and volunteers 8 metres downwind
 - Independent scientific advisors
 - Exposure of public not a concern
 - Not routinely assessed

MAFF “Bystander” Studies
EU Directive 91/414/EEC

- Requires exposure assessments for operators, workers and bystanders
 - All compared against systemic reference dose (Acceptable Operator Exposure Level – set to be protective of all groups)
- Directive does not define these groups and no EU guidance on exposure assessment available

UK 91/414/EEC Approach (i)

- Consider bystanders not connected with application, potentially exposed during and after application
- Use data from 1980s volunteer drift studies to identify potential direct exposures to spray drift and produce exposure estimate
 - No authorisation if exposure > AOEL
UK 91/414/EEC Approach (ii)

- Potential indirect exposure to spray drift
 - Assess potential spray drift fallout on lawn adjacent to treated area
 - German drift database
 - Assess potential exposures of child playing on grass
 - US EPA residential SOPs
 - No authorisation if exposure > AOEL

UK 91/414/EEC Approach (iii)

- Potential exposure to pesticide vapour
 - Few relevant UK data on air residues adjacent to application after application
 - Californian EPA Toxic Air Contaminant Program: monitoring of application + 72 hours
 - Highest 24 hour TWA concentration
 - Assess adult and child 24 h exposure
 - No authorisation if exposure > AOEL
Controls on use (i)

• Legal requirements
 – Pesticide specific and general health & safety
• Users have to:
 – Be trained
 – Be certificated if
 • Not applying to own land
 • Born after 31 December 1964
 • (Growing under a crop assurance scheme)
 – Confine application to treatment area

Controls on use (ii)

• Where substances hazardous to health are used employers or self-employed must:
 – Consider possible effects on health
 – Assess who might be harmed
 – Identify how to prevent or control exposure
 – Record this assessment
Controls on use (iii)

Code of Practice

- Advice on legal requirements: training, certification, and health risk assessment
- Drift
 - Affects, causes, and control
 - Acceptable wind speeds
- Neighbours – homes, schools, hospitals etc
 - Extra measures – treat when unoccupied, leave untreated strip? Inform before use?

Outcomes (i)

- Unprotected bystander exposures less than protected operator exposures
- Official pesticide incident investigations, and data reported by industry: very few confirmed bystander/resident health incidents (2 of local effects in 10 years)
Outcomes (ii)

- Divergent stakeholder views
 - Users
 - Concerned rural residents
 - Genuine illnesses
 - Involuntary exposure
 - No benefit
 - No access to information
 - Past and future spray events

National Farmers Union

THE GOOD NEIGHBOUR INITIATIVE
Spraying Responsibly - best practice when spraying near residential areas

Good Neighbour Initiative
Spray Operator Guide

Good Neighbour Initiative
Spray Operator Guide

Good Neighbour Initiative
Spray Operator Guide
Current developments

- Government funded development of new Bystander & Resident Exposure Assessment Model (BREAM) reports January 2010
 - Exposure to spray drift and vapour
 - Modern spraying practices
 - UK meteorology and air dispersion
 - Exposure of children
 - Includes uncertainty

BREAM & Recent Drift Trials
Future developments

• Revision of EU Directive to specifically include “residents” and notification
• UK advisory committees
 – Acute risk assessment?
 – Irritation/sensitization risk from diluted product?
• European Food Safety Authority harmonising exposure guidance

Thank you for your attention
Presentation 3, USEPA, Jay ELLENBERGER

Concepts of US EPA’s Exposure Assessments for Residential Use Pesticides

OECD WGP Risk Reduction Steering Group Seminar
Jay Ellenberger, US EPA
17 November 2009

Presentation Topics

- Overview of Residential Pesticide Use in the US
- Residential Standard Operating Procedures
- General Aspects of Exposure Assessments
- Examples - Indoor and Outdoor Scenarios
Residential Pesticide Use and Exposures

Lawns

Indoors

Turf

Pets

US Residential Pesticide Use Statistics

- 18,525 pest control companies
- 100,000 service personnel
- $6.6 billion in sales
- 75% households use pesticides

USEPA, 2001
Occupational vs Homeowner Application?

Issues/Considerations:

- In US no legal distinction of occupational vs homeowner application for residential use pesticides
 - Impracticality of requiring PPE for homeowners and enforcement of use requirements
 - "professional use" is not defined
- Interplay of the product's risks and risk mitigation measures, marketability & use of the product
 - Somewhat unlike agricultural pesticides; training of farmers, their access to restricted-use pesticides and use of PPE

EPA’s Risk Assessment & Management Approach

- Determine risks based on proposed use conditions on the product label
 - Margin of Exposure = Tox endpoint / Exposure
 - Application and post-application
- If risks are acceptable without PPE, the product can be registered and marketed for homeowner (non-occupational) use.
- If risks require PPE, engineering controls, or other use requirements, may keep product from homeowner market.
Use of Standard Operating Procedures for Risk Assessments of Residential Use Pesticides

- Created in 1997
- Reviewed by FIFRA Science Advisory Panel (SAP) in 1997 and 1999
- Updated in 2001, New Update in Progress
 - Has been number of years since last update; looking for new data
 - Historically SOPs have taken deterministic approach; moving towards probabilistic assessments

Another Review of EPA’s Updated SOPs

- SAP Review October 2009
 - Adequacy of exposure assessment methods and algorithms
 - Applicability, analysis, and use of available information on pesticide use, activity pattern, and exposure data
 - Process for selecting inputs for assessments
 - Clarity, transparency, and usefulness of the SOPs
- Documents available in EPA-HQ-OPP-2009-0516 at www.regulations.gov
- Expect SAP’s opinion December 2009
Scenarios Covered by the EPA Risk Assessments

Indoor Treatments
Residential Lawns/Turf
Outdoor Fogging/Misting
Gardens and Trees
Swimming Pools

Impregnated Materials
Pet Treatment
Treated Paints and Wood Preservatives
Others

Residential Exposure Information Sources

- Product Labels
- Industry Task Forces (e.g., ORETF, NDETF)
- Data
 - Databases - Pesticide Handlers Exposure Database (PHED)
 - Chemical-specific studies
- Exposure Factors Handbook
- Residential SOPs
Residential Pesticide Applications
- General Assumptions:

Occupational Use
- Long sleeves and pants
- Apply 8 hrs/day -- more pesticides, larger areas treated
- PPE may be required/used
- Application equipment and methods may be more specialized

Homeowner Use
- Short sleeves and short pants
- Single application -- less pesticide used, smaller areas treated
- Applications with hand-held equipment

Residential Handler Exposure

- Handler’s exposure from mixing, loading, applying the pesticide
- Routes of exposure - Dermal and Inhalation (adults only)
- Unit Exposures taken from various sources (e.g., PHED, ORET, etc.)
- Amount applied per day or the area treated will differ depending on the exposure scenario and the formulation.
Handler Exposure

An individual who mixes, load, applies pesticide; comes in direct contact with pesticide.

\[
ADD = \frac{(UE \times AR \times A \times DA)}{BW}
\]

- **ADD** = Average daily dose (mg/kg/day)
- **UE** = Unit exposure (mg/lb ai)
- **AR** = Maximum application rate
- **A** = Maximum amount applied or area treated
- **DA** = Dermal absorption factor (chemical-specific or assume 100%)
- **BW** = Body weight (kg)

Post-Application Exposures

- Exposure to pesticide residues that occurs after the pesticide application.
- Same for occupational or non-occupational application.
- **Routes of Exposure:**
 - Dermal exposure - Adults and children
 - Inhalation exposure - Adults and children
 - Negligible?
 - Oral exposure - children
 - Hand-to-mouth
 - Object-to-mouth
 - Incidental soil ingestion
 - Episodic granular ingestion
Dermal Post-Application Exposure

\[
ADD = \frac{(TR \times TC \times ET \times CF \times DA)}{BW}
\]

- **ADD**: Average Daily Dose (mg/kg/day)
- **TR**: Transferable Residue (ug/cm²)
 - residue concentration available for transfer
- **TC**: Transfer Coefficient (cm²/hr)
 - ratio of exposure to residue (ug/hr - ug/cm²)
- **ET**: Exposure Time (hr)
- **DA**: Dermal absorption factor (chemical-specific; if no data available, assume 100%)
- **CF**: Conversion Factor (ug to mg)
- **BW**: Body weight (kg)

Incidental Oral Scenarios for Children

- Hand-to-Mouth*
- Object-to-Mouth (toys, grass, etc.)
- Soil Ingestion
- Episodic Product Ingestion (granulars)

* common to most residential post-application scenarios
Hand-to-Mouth Exposure Equation

\[\text{ADD} = \frac{(\text{TR} \times \text{FQ} \times \text{SA} \times \text{SE} \times \text{ET} \times \text{CF})}{\text{BW}} \]

ADD = Average Daily Dose (mg/kg/day)
TR = Transferable Residue (ug/cm²)
FQ = Frequency of activity (events/hr)
SA = Surface area (cm²/event)
SE = Saliva Extraction factor (%)
ET = Exposure Time (hr/day)
CF = Conversion factor (ug to mg)
BW = Body Weight (kg)

Residential Indoor Scenarios
Indoor Handler Exposure

\[\text{ADD} = \frac{(\text{UE} \times \text{AR} \times A \times \text{DA})}{\text{BW}} \]

Handler dermal and inhalation exposure is based on:

- Method of application (broadcast, crack and crevice or other method of treatment)
- Relevant unit exposures from PHED (UE)
- Application rate (AR)
- Area treated or amount of product handled (A)
- Dermal absorption (DA)

Indoor Post-Application Exposure

- Dermal
- Hand-to-mouth
- Inhalation

 - Not always assessed -- thought to be negligible because of the low vapor pressure of most pesticides used by homeowners.

 - Considering modeling approaches to this route/pathway
Indoor Dermal Post-Application

\[
ADD = \frac{(ISR \times TC \times ET \times CF \times DA)}{BW}
\]

- **ADD** = Average daily dose (mg/kg/day)
- **ISR** = Indoor Surface Residue (ug/cm²)
- **TC** = Transfer Coefficient (cm²/hr)
- **ET** = Exposure Time (hr)
- **DA** = Dermal absorption factor (chemical-specific; if no data available, assume 100%)
- **CF** = Conversion Factor (ug to mg)
- **BW** = Body Weight (kg)

Indoor Dermal Post-Application Assumptions (1)

- **Transferable residue**
 - 5% of deposition rate is available for exposure from carpets
 - 10% of deposition rate is available for exposure from hard surfaces (vinyl, wood)
- **Dermal transfer coefficients derived from "Jazzercise"**
 - 16,700 cm²/hr for adults
 - 6,000 cm²/hr for toddlers
- **Duration of exposure**
 - 8 hrs for carpets
 - 4 hrs for hard surfaces
Indoor Dermal Post-Application Assumptions (2)

- Application rate/Deposition
 - Amount of ai per area (e.g., 0.1 mg ai/100 m²)
 - As a percent spray (e.g., 0.25 or 0.5 % ai spray)
 - Broadcast 0.5 % spray = 15 ug/cm²
 - Crack/Crevise 0.5 % spray = 12 ug/cm²
- Body Weight
 - 70 kg for adults
 - 15 kg for toddlers
- Dissipation not incorporated into algorithm

Indoor Hand-to-Mouth Post-Application Assumptions

- Indoor Surface Residue: same as for dermal (5% from carpets and 10% from hard surfaces)
- Frequency of activity: 20 events/hr for short-term
- Surface area: 20 cm²
- Saliva extraction factor: 50%
- Exposure time: 8 hrs for carpets, 4 hrs for hard surfaces
- Body weight: 15 kg for toddlers
Indoor Scenario Uncertainties/Data Needs
(Post-Application Exposure)

Transfer coefficient: is the Jazzercise study accurate representation of exposure during typical residential post-application activities?

Percent transfer: are current default values a good estimate of pesticide available for transfer to clothing or skin?

Deposition: how much pesticide is actually available for exposure after a broadcast versus a crack and crevice application?

Hand-to-Mouth algorithm: is assumption of replenishment valid - is the transferred surface residue on skin is replenished for each hand-to-mouth event in the exposure duration?

Indoor Scenarios - Future Directions

Handler Exposure Scenario:
- Refine current SOP to distinguish between various application methods and equipment

Postapplication Exposure Scenarios:
- Review open literature and Registrant submitted studies to update/confirm assumptions for transfer coefficient, percent transfer and deposition
- Examine alternative hand-to-mouth algorithms that may better represent actual exposure, with respect to hand residue replenishment assumptions and removal from repeated mouthings

Overall goal: Move from deterministic to probabilistic assessments
Residential Outdoor Scenarios

Scenario Description

- Assess exposure for:
 - Handler activities
 - Post-application activities
 - Dermal (playing on turf, mowing, and golfing scenarios)
 - Adults and children
 - Hand-to-Mouth, Object-to-Mouth, Soil Ingestion, Episodic Product Ingestion (Granulars)
 - Children only
 - Inhalation not typically assessed
Outdoor (Lawns) Handler Exposure

\[
\text{Exposure (mg/kg/day)} = \left[\text{Unit Exposure (mg/AaiH)} \times \text{(AaiH/day)} \right] \div \text{Body Weight (kg)}
\]

- **Unit Exposure (mg/AaiH):** data-derived
- **AaiH/day:** Amount active ingredient handled per day
 - Based on application rate and area treated

Outdoor Post-Application Dermal Exposure

\[
\text{Exposure (mg/kg/day)} = \left[\text{TC (cm}^2\text{/hr)} \times \text{TTR (mg/cm}^2\text{)} \times \text{ED (hrs/day)} \times \text{CF} \right] \div \text{Body Weight (kg)}
\]

- **TC:** Transfer Coefficient (cm\(^2\)/hr): data-derived
 - Ratio exposure to residue: \(\text{ug/hr} + \text{ug/cm}^2 = \text{cm}^2/\text{hr}\)
 - Adults - 14,500 cm\(^2\)/hour and Children - 5,200 cm\(^2\)/hour
- **TTR:** Turf Transferable Residue (mg/cm\(^2\)): data-derived or default of 5% of application rate
- **ED:** Exposure duration
 - 2 hours for playing on turf and 4 hours for golfing
- **CF:** Conversion factor: ug to mg
Outdoor Post-Application Hand-to-Mouth Exposure

Exposure (mg/kg/day) = [TTR (ug/cm²) x FQ (events/hr) x SE (%) x ET (hr/day) x CF] / Body Weight (kg)

- TTR = Turf Transferable Residue (ug/cm²): default of 5% of application rate
- SA = Surface area of fingers (cm²/event): 20 cm²
- FQ = Frequency of activity (events/hr): 20 events/hr for short-term
- SE = Saliva Extraction factor (%): 50%
- ET = Exposure Time (hr/day): 2 hrs per day
- CF = Conversion factor (ug to mg)

Outdoor Post-Application Object-to-Mouth Exposure

Exposure (mg/kg/day) = [GR (cm²/hr) x MR (mg/cm²) x CF] / Body Weight (kg)

- GR = Grass Residue (ug/cm²)
 - default of 20% of application rate
- MR = Mouthing rate
 - 25 cm²/day
- CF = Conversion factor: ug to mg
Outdoor Post-Application Soil Ingestion Exposure

Exposure (mg/kg/day) = \[\text{SR (ug/cm}^2\text{)} \times \text{IgR (mg/day)} \times \text{CF} \]
\hspace{1cm} \text{Body Weight (kg)}

- **SR** = Soil Residue (mg/cm\(^2\))
 - Calculated assuming 100% of application rate is present in top 1 cm\(^3\) of soil
- **IgR** = Ingestion rate (mg/day)
 - 100 mg soil ingested per day
- **CF** = Conversion factor: ug to mg

Outdoor Post-Application Episodic Ingestion Exposure

Exposure (mg/kg/day) = \[\text{IgR (g/day)} \times F \times \text{CF} \]
\hspace{1cm} \text{Body Weight (kg)}

- **IgR** = Ingestion rate (mg/day)
 - 0.3 gram/day dry pesticide (pellets and granules) ingested.
- **F** = Fraction of active ingredient in the granule
- **CF** = Conversion factor: g to mg
Outdoor Scenarios - Future Directions

- Select new dermal transfer coefficient from MOSES Lake study
 - Possibly separate for liquids and granulars
- Select new default turf transferable residue percent
- Assess the current hand-to-mouth algorithm
 - Is assumption of replenishment valid (i.e., is transferred surface residue on skin replenished for each hand-to-mouth event)
 - Examine alternative hand-to-mouth algorithms that may better represent actual exposure
- Revise transfer coefficient for mowers
- Revise transfer coefficient for golfers
- Consider guidance from Science Advisory Panel (December)
- Goal: deterministic to probabilistic

Thank you!

Questions?
Public health considerations of bystander exposure to spray drift

Dr Donald Alan Ward
Office of Chemical Safety and Environmental Health
Office of Health Protection
Department of Health and Ageing
Australian Government

Overview

- Regulatory framework
- Developing a risk assessment approach
- Risk assessment factors
- Determining a Health Standard
- Evaluating buffer zones
- Dealing with uncertainty
- Questions
Regulatory framework

- The Australian Pesticides and Veterinary Medicines Authority (APVMA) must protect human health in relation to pesticide use and labelling.
- The Office of Chemical Safety and Environmental Health performs toxicology assessments for the registration of new active ingredients and new products.
- These assessments currently do not include risk assessments for bystander exposure to spray drift in relation to the establishment of buffer zones.

Reasons for considering bystander exposure to spray drift

- To assist the APVMA in providing buffer zone advice on product labels to protect public health
- To provide tools for rapidly evaluating adverse experiences related to spray drift
 - Establish health standards for actives comparable to our Acceptable Daily Intake (ADI) list or a drinking water compliance health value for a pesticide
 - Aid in determining the health implications of exposure to an adverse experience (a drift event)
Developing a risk assessment approach

The APVMA spray drift deposition model

- Provides data for assessing exposure and determining a buffer zone
- This model does not consider volatilisation drift
- Covers a number of application methods
Bystander/exposure scenario definition

- A **bystander** is understood to be defined as a third party to a spraying activity who may come into contact with the chemical through no intent of their own.
- For the purposes of assessing a buffer zone, a worst case scenario could be a toddler playing next to an area being sprayed.

Routes of exposure

- **Dermal exposure:**
 - Transfer from turf
 - Direct dermal exposure
 - Soft toy/bedding exposure?
- **Oral, non-dietary exposure:**
 - Hand to mouth transfer
 - Soil ingestion
 - Saliva extraction?
- **Inhalational exposure?**
 - Is there a common dermal/inhalation factor that can be derived from occupation exposure databases?
Time and pattern of exposure period

- What time period is most appropriate for calculating exposure?
- What pattern of exposure throughout the year is appropriate?
- Should we consider the environmental half-life for the active ingredient for multiple exposures?

Assessing irritation factors

- Products applied without dilution could cause irritation to skin, eyes and/or lungs
- Irritation factors are considered when assessing a product for use in the home and garden
- Are irritation factors being considered as part of bystander exposure assessments elsewhere?
Determining a Health Standard

- A Health Standard for spray drift exposure will have to consider toxicological effects of long-term and acute exposure studies
- Possible health standards include:
 - Acceptable Daily Intake (ADI)
 - Acute Reference Dose (ARfD)
 - No Observable Effect Levels (NOEL) from a suitable short-term, repeat dose toxicology studies

Evaluating a Buffer Zone
Dealing with uncertainty

- Uncertainty is pervasive in the concepts and models under consideration:
 - Parameter estimates
 - The physiology of individuals
 - The behaviour of individuals
 - Natural variation in the physical world
 - The way we combine evidence to make a decision

One tool for dealing with uncertainty - Bayesian networks

- Deal comprehensively with uncertainty
- Capture the full range of uncertainty from all sources
- Carry the uncertainties through chains of reasoning
- Present a result that communicates our “best estimate” and the range of plausible uncertainty around it
Thank you

Department of Health and Ageing contact for Spray Drift:
Dr Donald Alan Ward
Office of Chemical Safety and Environmental Health
Office of Health Protection
Department of Health and Ageing
MDP 88 GPO Box 9848
CANBERRA ACT 2601
Australia
Presentation 5, European Food Safety Authority, Paul HAMEY

Preparation of a Guidance Document on Pesticide Exposure Assessment for Workers, Operators, Bystanders and Residents

Mr. Paul HAMEY, expert of EFSA WG on Toxicology of Pesticides on behalf of Mrs. Muriel DUNIER-THOMANN of EFSA

Background

- In 2006 EFSA run an investigation among MSs to ask the priorities of Guidance Documents
- One of the claims was the operator exposure assessment
- Prioritised by EFSA
Background

- Call to outsource the information gathering and evaluation of the existing models/activities (Art. 36. of Regulation 178/2002)
- Contractor selected
- Questionnaire, Expert Consultative Meeting with stakeholders, Steering group created
- Preparation of a report
- Report to the Panel
- The report is used as starting document of the opinion

Main contents

- Guidance Document for immediate use. If necessary, this could be revised, as and when new data emerged
- Methods of risk assessment that are currently used, their adequacy
- Level of precaution: up to risk managers to change
- It proposes a revised approach to exposure and risk assessment for operators, workers, residents and bystanders, and gives the underlying rationale
Main contents

- Risk assessment for those plant protection products where toxicity could arise from acute exposure over one day
- PPR Panel proposed a series of changes to current practices in evaluating exposure to pesticides.
- More harmonised evaluations and more precise estimates of the risk of non-dietary exposure to pesticides.
- A presentable draft opinion was published for a stakeholder consultation in August (6 weeks)

Public Consultation

Table 1: Comments received on the draft opinion and GD per chapter.

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Number of comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. General comments</td>
<td>22</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Scope</td>
<td>5</td>
</tr>
<tr>
<td>3. Legal requirements</td>
<td>2</td>
</tr>
<tr>
<td>4. Current approach</td>
<td>6</td>
</tr>
<tr>
<td>5. Adequacy of current methods of risk assessment</td>
<td>2</td>
</tr>
<tr>
<td>6. Problems with the current approach to risk assessment</td>
<td>---</td>
</tr>
<tr>
<td>6.3. Limited data on exposure</td>
<td>3</td>
</tr>
<tr>
<td>6.2. Inconsistency of methods</td>
<td>1</td>
</tr>
<tr>
<td>6.3. Variability within and between subjects</td>
<td>3</td>
</tr>
<tr>
<td>6.4. Deterministic versus probabilistic risk assessment</td>
<td>1</td>
</tr>
<tr>
<td>7. Development of new guidance</td>
<td>2</td>
</tr>
<tr>
<td>7.1. Acute risk assessment for operators, workers and bystanders</td>
<td>31</td>
</tr>
<tr>
<td>7.2. Methods of exposure assessment</td>
<td>14</td>
</tr>
</tbody>
</table>
Table 1: Comments received on the draft opinion and ODI per chapter (cont.)

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Number of comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Proposed methods and standard data sets</td>
<td></td>
</tr>
<tr>
<td>8.1 Operators</td>
<td>4</td>
</tr>
<tr>
<td>8.2 Workers</td>
<td>12</td>
</tr>
<tr>
<td>8.3 Residences</td>
<td>7</td>
</tr>
<tr>
<td>8.4 Bystanders</td>
<td>17</td>
</tr>
<tr>
<td>8.5 Date of use</td>
<td>4</td>
</tr>
<tr>
<td>8.6 Allowance for engineering/technical controls and personal protective equipment</td>
<td>7</td>
</tr>
<tr>
<td>8.7 Dermal absorption factors</td>
<td>2</td>
</tr>
<tr>
<td>8.8 Standard body weights</td>
<td>3</td>
</tr>
<tr>
<td>8.9 Breathing rate</td>
<td>6</td>
</tr>
<tr>
<td>9. Proposed guidance document</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>1</td>
</tr>
<tr>
<td>Appendix A proposed text of guidance document</td>
<td>34</td>
</tr>
<tr>
<td>Comments for additional chapters</td>
<td>1</td>
</tr>
<tr>
<td>Total number of comments</td>
<td>186</td>
</tr>
</tbody>
</table>

Table 2: Comments received on the draft opinion and ODI per organizations and countries

<table>
<thead>
<tr>
<th>Organization</th>
<th>Country</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFSA</td>
<td>EUR</td>
<td>10</td>
</tr>
<tr>
<td>JRC</td>
<td>EUR</td>
<td>8</td>
</tr>
<tr>
<td>Health Canada - Pest Management Regulatory Agency</td>
<td>CAN</td>
<td>14</td>
</tr>
<tr>
<td>National Institute of Public Health</td>
<td>GBR</td>
<td>1</td>
</tr>
<tr>
<td>Federal Environmental Agency</td>
<td>DEU</td>
<td>1</td>
</tr>
<tr>
<td>Federal Institute of Risk Assessment Berlin</td>
<td>DEU</td>
<td>17</td>
</tr>
<tr>
<td>Danish EPA</td>
<td>DKK</td>
<td>1</td>
</tr>
<tr>
<td>NIGHTFNM FR</td>
<td>ESP</td>
<td>2</td>
</tr>
<tr>
<td>Finnish Institute for Occupational Health</td>
<td>FIN</td>
<td>45</td>
</tr>
<tr>
<td>AFSAA (Agenzie Francese di Sicurezza Sanitaria degli Alimenti)</td>
<td>FRA</td>
<td>22</td>
</tr>
<tr>
<td>CRC</td>
<td>AUS</td>
<td>1</td>
</tr>
<tr>
<td>Nufarm UK Ltd</td>
<td>AUS</td>
<td>11</td>
</tr>
<tr>
<td>Health and Safety Executive</td>
<td>AUS</td>
<td>1</td>
</tr>
<tr>
<td>Biopestc Applicat. Unit, The Arable Group</td>
<td>AUS</td>
<td>18</td>
</tr>
<tr>
<td>JRC International Limited</td>
<td>AUS</td>
<td>6</td>
</tr>
<tr>
<td>Toxicology Unit, PCG, Department of Agriculture, Fisheries & Food</td>
<td>AUS</td>
<td>9</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>NLD</td>
<td>37</td>
</tr>
<tr>
<td>Swedish Chemical Agency (Kemi)</td>
<td>SWE</td>
<td>9</td>
</tr>
<tr>
<td>US Environmental Protection Agency, Office of Pesticide Programs</td>
<td>USA</td>
<td>2</td>
</tr>
<tr>
<td>Total number of comments</td>
<td></td>
<td>186</td>
</tr>
</tbody>
</table>
Definitions of bystander & residents

- Bystanders are: persons who are located within or directly adjacent to the area where plant protection product (PPP) application or treatment is in process or has recently been completed; whose presence is quite incidental and unrelated to work involving PPPs, but whose position might lead them to be exposed; who take no action to avoid or control exposure.

Definitions of bystander & residents

- Residents are: persons who live, work or attend school or any another institution adjacent to an area that is or has been treated with a PPP; whose presence is quite incidental and unrelated to work involving PPPs but whose position might lead them to be exposed; who take no action to avoid or control exposure; and who might be in the location for 24 hours per day.
Overall approach

- Identify potentially exposed groups
- Consider if significant potential for systemic toxicity from exposure in a single day
- Possible assessments
 - Residents adults and children acute and longer-term
 - Bystander adults and children acute
- Acute exposure – recommend use 95th centiles
- Longer term exposure – recommend use 75th centiles

Data used for proposed first tier

- Bystander exposure to drift
 - UK MAFF studies
- Resident exposure to drift
 - German drift studies
 - EPA Residential SOPs
 - California Toxic Air Contaminant Program
- Entry into treated crops
 - Worker exposure model (adapted)
 - EPA Residential SOPs
Expected timelines

- The comments received during public consultation will be considered for the final text.
- The opinion expected to be adopted at the Plenary Meeting in December 2009.
- The Guidance Document (Annex to the opinion) will be discussed with risk managers. The adopted version will not necessarily be the final, as the post-consultation discussion might still be ongoing.

Thank you for your attention
Managing Pesticide Risk near/in Residential Areas
A New Zealand Perspective

Approaches to Risk Reduction

- In order to manage risks of approved substances we are managing exposure, particularly exposure to people within residential areas.

- Because of the risks it can create, exposure is managed through a number of approaches:
 - Understanding exposure due to application methods.
 - Placing controls on pesticide application and supply.

- We also manage risk reduction through the reassessment of pesticides identified as needing reconsideration.
Understanding exposure

- Modelling-
 - BBA operator exposure model.
 - UK Chemical Safety Directorate models for re-entry, bystander exposures.
 - GENEEC2 (aquatic exposure assessment model).

- Work on improved controls-
 - ERMA NZ aims to improve modelling capability so that, if appropriate, scientifically robust buffer zones and re-entry intervals can be applied to more effectively manage exposure.

Managing Pesticide Application

- Along with labelling controls, a number of pesticides are required to be under the control of an Approved Handler with required expertise.

- Approved Handlers (AH) must demonstrate a knowledge of-
 - Hazard classifications
 - Adverse effects of hazardous pesticides
 - Emergency measures
 - Controls imposed by government legislation
 - Operating equipment and protective clothing

- NZS8409:2004 & ‘Growsafe’ - Management of Agrichemicals
Managing Pesticide Application and Supply

- AH needed at point of use when:
 - Pesticide is ecotoxic and widely dispersed.
 - Pesticide has mod- high human toxicity.
 - Commercial contractor is applicator.

- AH at point of sale AND point of use needed when pesticide is highly toxic.
- Highly toxic pesticides also need to be ‘Tracked’ - ‘No certificate, no sale’ policy.

Reassessments

- Where the risks, costs and benefits associated with an approved substance are reconsidered.

- As a result conditions placed on the approval may change, or the approval may be withdrawn.

- Options for time limited approvals.

- Examples of reassessments to date:
 - Endosulfan
 - Methylarsonic Acid
 - Azinphos Methyl
 - Hydrogen Cyanamide
A New Zealand Experience

- The Kiwifruit industry interfaces with residential areas, hence there is high potential for residential exposure.
- Spraying occurs over a small timeframe (6 weeks), is used by a limited population (2700 growers), with 80% of application occurring in one region (Bay of Plenty).
- Spraying generates a number of public complaints and media coverage each year regarding spray drift and non-notification.

Hydrogen Cyanamide Reassessment

- The reassessment concluded that the benefits of use outweigh the risks (adverse effects).
- Significant focus was placed upon potential technological change, notification requirements, and increased public awareness of the substance’s use.
- Trials of new ‘air inclusion nozzles’ have shown spray drift reductions of up to 80%, and have been adopted by at least 70% of spray contractors.
- Number of complaints have almost halved in 3 years since reassessment and change in controls.
Challenges with Managing Pesticide Application and Supply

- Variability within private training programs for certification.
- Variability regarding enforcement, and difficulties in substantiating spray drift complaints.
- Difficulties in obtaining exposure information - locations of, and quantities sprayed.
- Achieving 'buy-in' from users - compliance costs and practicalities need to be considered.
- How to create value and simplicity in adhering to regulations and best practices.
Use of Pesticides near and in Residential Areas: A Special Case?

Bernhard Johnen
Keith Jones

Invasive/pest species in urban areas

- Japanese Knotweed - UK
- Imported in 19th century
- Roots spread up to 7m
- Spreading plant is a criminal offence
- Biological and mechanical control ineffective; Herbicide sprays
Integrated Vector Management

- Integrated Vector Management – Malaria & Dengue Control, Avian virus
- Direct control
- Residual spraying
- Mosquitoes rest in long grass etc. - cut grass or treat with herbicide

Production areas amongst housing

- Salisbury, UK
- Almeria, Spain
Maintenance of recreational areas (golf, parks, playing fields)

Pesticide Users: Who are they?

- Farmers
- Private contractors
- Local Government Employees

- All should receive appropriate training in accordance with ‘use context’
Pesticide Use Context (PUC)

There are many elements influencing the outcome of pesticide use:

- International Conventions e.g. Stockholm
- Registration systems
- Production standards e.g. GLOBALGAP
- Equipment design
- specifics of the environment in the use area
- Attitudes and awareness of users
- Availability of personal protective equipment (PPE)
- User knowledge and skills

Policy/regulatory framework

Safe & Effective use

Equipment

User practise
Addressing the key elements in the PUC

Regulatory/Policy domain

- Appropriate products made available
- Access to illegal/counterfeit products prevented
- Container management systems in place
- Policies to promote IPM/ICM
- Policies to support users thru info, access to appropriate products etc
- Markets encouraged through infrastructure, financial systems, information access

Addressing the key elements in the PUC

Equipment domain

- Safe and appropriate application equipment available
- Spare parts available
- Practical PPE available that is appropriate for conditions of use
Addressing the key elements in the PUC

User practise – building capacity

- Knowledge - newspapers, books, posters, leaflets, radio, television as well as formal teaching
- Skills – participatory/practical training, possible certification
- Positive attitudes - best tackled by longer term information and communication campaigns via multiple media and, as a result, is often omitted

Proper analysis of management options

- Which provides the appropriate level of control?
- Which has a greater risk, e.g. targetted spraying vs. high dose point sources; herbicide vs burning in high risk areas (wildfires)?
 - Benefit vs True Risk needs to be understood by policy makers and users (i.e. a comprehensive ‘use assessment’ is required)
Training

- Guidelines available (Pesticide handling and use, IPM, transport, storage)
Conclusion

- Pesticides are required to control pests near and in residential areas
- Should only be used when necessary – alternatives considered, but chemicals often can be the least risky tool
- Users should be trained and, as appropriate, require certification (refresher training, re-enforcement)
- Practices should reflect the ‘use context’
- No different from the general strategy for stewardship

Thank You
Presentation 8, Green and Safety Promoters Association, Japan, Yoshihiko CHINO

Education/Training for Reducing Risk Arising from Spraying Pesticides

Yoshihiko CHINO
Chief, Pesticide Safety Counseling Division
Green and Safety Promoters Association

Pesticide Spraying near the Residential Area

Risk arising from drift to residents, pedestrians and automobiles is of concern.
Relationship between Pesticide use and Complaints

Pesticide Use
- Yes: 85%
- No: 15%

Complaint
- Yes: 48%
- No: 52%

Answers from Cities with >100,000 populations
Ministry of Environment (2005)

Types of Complaints
(Summary of 3 most frequent answers)

<table>
<thead>
<tr>
<th>Contents</th>
<th>Answers</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stain on hanged laundry or cars</td>
<td>118</td>
<td>①</td>
</tr>
<tr>
<td>Health Concern</td>
<td>107</td>
<td>②</td>
</tr>
<tr>
<td>Bad odors</td>
<td>28</td>
<td>③</td>
</tr>
<tr>
<td>Harm to the pets etc.</td>
<td>19</td>
<td>④</td>
</tr>
<tr>
<td>Damage to human health (Hospitalization)</td>
<td>18</td>
<td>⑤</td>
</tr>
<tr>
<td>Others</td>
<td>30</td>
<td>⑥</td>
</tr>
</tbody>
</table>

37% 33% 9% 9% 6% 6%
Education for Appropriate Use of Pesticides near the Residential Area

1. Preparing the manual for instructors
2. Taking the initiative by the facilities of a local government
3. Education of the users and instructors

Manual for Instructors
- for Risk Reduction from Pesticide Spraying -

Manual for the Drift for ground pest control (2005)
Japan Plant Protection Association
http://www.jppa.or.jp/information/tecinfo/data/driftmanual%20s.pdf

Manual for the Pest and Weed Control on the Park or Trees lining a street (2008)
Ministry of Environment
Flowchart for Pest Controls at Park

Coordination with residents
- Facilitate decision making about pest control
- Obtain understanding about pest/disease

Means for planting, maintenance and management
- Create the less-occurrence for pest/disease

Observation and Confirmation for decision
- Methods for early finding
- Policy for pest control
- Smooth decision making for pest control

Selection of method

Check and record for extent of damage and effect of the prevention
- Main pests/diseases
- Policy for pest control
- Physical pest control etc.
- Pesticide Use
- General remarks
- Important notice for pesticide use
- Pesticide usage other than spraying

Feedback
(Consider the next step based on the result of the pest control)

Initiatives of Local Governments

Case: Saitama Prefecture
Principle for the Use of Pesticides in the Prefectural Facilities and Trees Therein
(Effective since 1st April, 2001)

When Saitama prefecture use pesticide in the prefectural facilities and trees therein, they avoid the periodical use and conduct as follow;

1. Recognition for occurrences
2. Physical Removal; e.g. capture the insects, trimming trees
3. Consideration of the use of inducing or painting pesticides
4. Spraying minim amount of pesticides
5. Notification to visitors and residents
6. Prevention for outbreak of pests or weeds (e.g. not leaving trashes, cleaning thoroughly)
Seminar for pesticide users

Guidance for Farmers Given by the Agricultural Extension Worker
Leaflet for education
(by MOE & MAFF)

Leaflets
(by local governments and related organization)

Saitama Prefecture
Instructions for Tree Protection

1. Early pest control (Timing etc.)
2. Giving priority to physical pest control
3. Basics for spraying pesticides (wind, spraying method etc.)
4. Equipment (incl. nozzle)
5. Drift-less pesticides
6. Communication with residents
7. Enclosure of working site
Early Discover and Early Control

Fall webworm (*Hyphantria cunea*)

Before dispersion of caterpillar (suitable season)

Progress for outbreak of Fall webworm (*Hyphantria cunea*)

Suitable season for elimination

Guidance for elimination (by Gunma pref.)
Early Discover and Early Control

Tea tussock moth (*Euproctis pseudoconspersa*)

Just before dispersion of caterpillar Dispersion → Increase damage

Easy to control Difficult to Control Rely on Pesticides

Basic Operation for Spraying

Putting the nozzle close

The closer the nozzle is to the tree, the less drift to near area.
Check Wind Direction & Velocity by Using Tape

Attach the tape (50 cm length) at the top of the pole

- Calm or light wind
- Stop spraying when the tape stays just beside

Demonstration for Drift-less Nozzle

- Drift-less nozzle
- Generally used nozzle
Demonstration for Drift-less Nozzle with SS

Comparison of Microgranule and Dust Formulation DL

Provided by KUMIAI CHEMICAL INDUSTRY Co., Ltd.
Pesticide Usage for Less Drifted

For the small shrub, use granule, soil treatment formulation

Prevention of Drift from Farmland to Residential Area

Net for prevention of drift at fruit farm (pear)

Use for barrier crops (e.g. sorghum)
Information for Residents

When you spray pesticide, you should be careful as well as and inform your neighbors to pay attention to...

- Keep the wind and wind's strength in mind.
- Close the windows.
- Keep in mind that the surroundings of the objects need to be informed in advance.

![Diagram of a building and surroundings with directions and warnings about pesticide spraying.]
In the place where infants play, you should...

Installation of the Sign after Spraying
Communication for Residents

Website on Katsushika City – “Occurrence of pests in trees”

Thank you for your attention.
Harmonising Agricultural and Residential Land Practices within Regional Queensland

For The
OECD RRSG

Prepared by Mr Mark Pace (MoIste: Envir Sys Mgt)
Director G-VEC
&
Dr Gary Dorr Senior Research Officer Centre for Pesticide Application and Safety (CPAS)
Faculty of Natural Resources Agriculture and Veterinary Sciences
University of Queensland

Overview

• South East Queensland (SEQ) is Australia’s fastest growing region. By 2031, its population is expected to grow from 2.8 million to 4.4 million people. The region covers 22,890 square kilometres, stretching 240 kilometres from Noosa in the north to the Queensland-New South Wales border in the south, and 160 kilometres west to Toowoomba.

• The SEQ region includes land covered by 11 city and regional local governments. Its regional landscape is a rich mix of bushland and beaches, ranges and paddocks, rivers and lakes.

• SEQ’s population is heavily urbanised and is generally concentrated along the coast between Noosa and Coolumatta.

Qld Government Policy

- “The Queensland Government considers that good quality agricultural land is a finite national and State resource that must be conserved and managed for the longer term. As a general aim, the exercise of planning powers should be used to protect such land from those developments that lead to its alienation or diminished productivity”.

- Good quality agricultural land is generally at least of regional significance, and its protection may require regional coordination.
Qld Government Policy

- Measures that can be applied to conserve these lands and facilitate agriculture on good quality agricultural land are outlined in the State Planning Policy (SPP) 1/92 Development and Conservation of Good Quality Agricultural Land.
- Australia has a limited supply of good quality agricultural land, with only 1-2% of land supporting highly productive agriculture.

Qld Government Policy

- The Workplace Health and Safety Act 1995 (the Act) places obligations on persons conducting a business or undertaking, to ensure other persons or ‘by Standers’ are not exposed to risks to their health and safety arising out of the conduct of the business or undertaking.
- Spray drift from an application of agricultural chemicals has the potential to adversely affect the health and safety of persons or a By Stander in non-targeted areas.
Qld Frameworks of Law

The Act does not apply to residential property owners, but they are still potentially entitled for compensation under Common Law if adverse impacts on the health of their neighbours or ‘By Standers’ is caused by spray drift of agricultural chemicals originating from applications to their gardens or yards.

To prove such a case, it must be shown that the defendant had a duty of care to the plaintiff, that they breached that duty, that the act in question was the cause of the damage suffered, and that the plaintiff suffered a loss as a result.

Conflict of Best Management Practices

Residential development may not be compatible with agricultural land uses. Conflict may arise due to:

- redirection of water flows,
- transport routes near dwellings,
- odour, noise, machinery,
- chemical problems i.e. drift from farming practices.

This conflict may extend to misgivings between rural residential landholders, hobby farmers and traditional farmers.
Buffer areas
Minimising conflict between agricultural and residential areas

Department of Natural Resources and Water (NRW) fact sheet L49

Planning Guidelines: Separating Agricultural and Residential Land Uses

Planning Guidelines: The Identification of Good Quality Agricultural Land

Department of Environment and Resource Management www.derm.qld.gov.au

Planning principles

1. When preparing planning schemes, local governments should avoid, as far as practicable, zoning land for housing in close proximity to agricultural land. Where this is not possible, mechanisms such as buffer areas should be used to minimise conflicts.

2. Buffer areas should be planned on the basis of the agricultural land use which is reasonably likely to be practised and has the potential to have most impact on adjacent land uses, regardless of current use.

3. To protect the prior rights of agricultural producers to practise agriculture on rural land, buffer areas should be located within the site being developed for residential purposes, and be provided funded by the proponent of that development.

4. Where conflicts already exist between agricultural and residential land uses, mechanisms including mediation, source controls and public education should be implemented.
Planning principles and Policy

- Local government planning schemes should aim to minimise the potential for locating incompatible uses adjacent to agricultural operations in a manner that inhibits or constrains normal farming practice.

The published guideline *Separating Agricultural and Residential Land Uses* outlines protective measures for farmland and conflicting land uses. The favoured mechanism is to set aside an area of land (a buffer) within the new development to minimise conflict such as odour, noise and chemical spray drift. A buffer should be the minimum width required to substantially ameliorate the impacts of the particular agricultural practices that are likely to apply.

Objectives of buffer areas

1. To protect the use of reasonable and practicable farming measures that are practiced in accordance with the Environmental Code of Practice for Agriculture and associated industry-specific guidelines.

2. To minimise scope for conflict by developing, where possible, a well-defined boundary between agricultural and residential areas as opposed to interspersing agricultural and residential areas.

3. To minimise the impacts of residential development on agricultural production activities and land resources.

4. To minimise the potential for complaints about agricultural activities from residential areas.

5. To provide residents with acceptable environmental conditions in residential areas that are located adjacent to agricultural production areas.
“Queensland Guidelines” separating agricultural and residential land uses

- Clear >10 m
- Trees >20 m
- Clear >10 m

Agricultural

Existing Boundary

Residential Boundary

Residential
Possible Arrangement of Buffer Zone Foliage
“Random Planting”

Agricultural Land
Open Area

Open Area
Suburban Development

10m
20m
10m

COLOUR CODE FOR BUFFER
Possible Cauacana spp.
Other supporting spp.
Vegetative Buffers Design Principles

- A wide band of porous vegetation minimises air disturbance while providing a large number of catching surfaces
- Thin rough foliage should extend from the base to the crown - mixed plantings to reduce gaps
- Small and or hairy leaves maximise droplet capture
- Permeable barriers should allow air to pass through the buffer (50% porosity?)
- Barrier height greater than 1.5 - 2 times release height

Vegetative Buffers

- Can be used to mitigate spray drift
- Create habitat and corridors for wildlife
- Assist in pest management by increasing diversity of biological systems
- Favourable influence on microclimate
- Contribute to the reduction of the impact of noise and dust
- Provide opportunities for recreational uses
- Aesthetically pleasing
Vegetative Buffers a Queensland Example

- Queensland Government guidelines (Dept of Natural Resources) has encouraged the establishment of vegetative barriers for spray drift mitigation
- Planners, developers, scientists and agricultural enterprises have been brought together to design mitigating structures and procedures for the rural/urban interface
- Can be used as a component part of spray drift management strategies
- Further research on multiple structures (natural and artificial) and downstream effects required

Approach used by APVMA to determine buffer distance

Buffer distance = 300m
Training Response

- The purpose of training is to ensure you or your workers have the appropriate skills and knowledge to handle agricultural chemicals in a manner that is safe and likely to reduce the risk of off-target spray drift. A training program should cover:
 - Legislative requirements for the use of agricultural chemicals at workplaces as they relate to:
 - The legal significance of the label.

Mission and Vision of the Proposed Model

- To respond to ‘changing’ environmental, climatic, social, legislative and economic influences in the Agrifoods sectors;
 - Implement more proficient chemical application methodologies and qualifications through educational programs and frameworks which in turn will implement ‘risk reduction strategies’;
 - Increase the financial, environmental and sustainable components of our rural regional communities and industries.
References

- Integrating good quality agricultural land management into regional NRM plans (Qld Government Publication. 2004.)
- *Spray Drift Management-Principles, Strategies and Supporting Information* (Primary Industries Standing Committee Report 82, CSIRO Publishing) and the code of practice *For The Storage and Use of Chemicals at Rural Workplaces*.
- APVMA operating principles in relation to spray drift risk (Commonwealth of Australia. 2008.)
- The Threat of Pesticide Spray Drift (National Toxics Network Inc. 2008)

Presentation at the OECD Seminar on Pesticide Risk Reduction Strategies near/in Residential Areas
17 November 2009, Tokyo, Japan
By Dr. Koa Tasaka
Steering Council Member of PAN Asia & Pacific

Two Issues related to the Risk of Pesticide Use near/in Residential Areas

1. Japanese ODA Policy on Pesticide

- From 1977 2KR was started as one of the Japanese ODA to promote food production in developing countries.
- The contents of 2KR was a set of three components, i.e., Chemical fertilizer, Pesticide and Farming Machine.
- Sending pesticides to developing countries by ODA has been criticized by NGOs and International Organization such as FAO.

Recent Japanese ODA Policy on Pesticides

- 1994; JICA and MoFA stopped sending pesticides to Cambodia.
- 2002; MoFA stopped sending pesticides to any countries by 2KR.
- 2003; MoFA started promoting the distribution of mosquito nets impregnated with permethrin under UNICEF and WHO scheme to roll back malaria.
Production of Olyset Net

1999 20,000 Sets has been produced in China
2001 WHO recommended Olyset net as the means for controlling Malaria, and asked Sumitomo Chemicals for the large scale production.
2005 5 Million sets produced in China
2006 Production Sites; 2 in China, 1 in Africa(Tanzania), and 1 in Vietnam
2009 29 Million sets/Year from Tanzania, and Total 51 Million sets/Year production is expected. New production site in Nigeria planned.
Financial Support by Japanese Government for the Promotion of Pesticide Impregnated mosquito Net (Olyset Net)

- In Africa, the production of Olyset net started in Tanzania in 2003 to 2004, and Japanese Government provided 4.5 Million US$ loan through JBIC to construct the second production site in Tanzania.
- The Olyset nets produced there has been distributed in 24 countries in Africa including Uganda, Ethiopia, Sudan, etc., through JICA and UNICEF, in some countries with free of charge and in the other countries sold at 7 US$. Japanese government spent 4.3 million US$ and 28.35 million US$ for the promotion of this type of mosquito net through JICA and UNICEF, respectively between 2003 and 2006.

Risks associated with the Use of Pesticide-impregnated mosquito net

Chemical Structure of Synthetic Permethrin vs. Natural pyrethruids

\[
\text{Chemical Structure of Synthetic Permethrin vs. Natural pyrethruids}
\]
Risk of Using Mosquito Net Impregnated with Permethrin

- Although permethrin has very low acute toxicity, there are reports on the adverse effects on the health of mammals such as damage on the brain development by oppressing the expression of genes (Ref. 1,2).
References on the Adverse Effects of Permethrin on Mammals

Development of Resistance Power to Permethrin among Mosquitoes in Africa

In addition to the report on Forum, “Safety Net for Malaria?” in Environmental Health Perspectives 115(5), May 2007, there are substantial number of reports on the development of resistance to permethrin among Anopheles gambiae in various countries in Africa, such as Uganda (Ref.1), Kenya (1,8), Gabon (1), Cameroon (1,2,3), Equatorial Guinea (1), Ghana (4), Nigeria (4), Burkina Faso (5), Beninn (6), Mozambique (7), Niger (9), and in African continent in general (10).
References on the finding of permethrin-resistant mosquitoes

Risk associated with the Use of Mosquito Net with Permethrin

- Although some of the authors of the articles such as Rowland claims that mosquito net with pesticide is still vital to the protection of people in Africa from Malaria, mosquitoes resistant to pyrethroids may come through the widened hole of the insecticide-impregnated net, and attack the people inside the net.
Proposal for the Production and Distribution of Regular Nets without Insecticide!

- We would like to appeal to the funding agencies and organization which are promoting Mosquito Net with Insecticide including Japanese Government, UNICEF and WHO to reconsider the present policy, and use the same amount of fund for the production and distribution of the regular, traditional mosquito net without insecticide which can be produced locally and sustainably at much cheaper cost to save more people in Africa and elsewhere from Malaria, and contribute for the risk reduction by direct contact with pesticide, as well!

2. Risk of Aerial Spraying of Pesticides near the Residential Areas

Aerial spraying of fenitrothion all over Japan became law to “Rescue the pine trees from dying” in 1977. Although Minister of Agriculture and Forestry acknowledged that the data presented to the Diet in support of the new law included fake facts (Ref. 1) and expressed sorry for it, the majority member of the Diet voted for the law, and the aerial spraying became compulsive! The law has been extended again and again, without thorough review whether it is really necessary and effective for saving pine trees and on the adverse effects on human health. The spraying has been continuing till today and various health damages especially on children are reported!

Adverse health effects reported in various places in Japan after the aerial spraying of pesticide

Over 1000 people, mainly school children, became sick after the aerial spraying in IZUMO City, Shimane Prefecture, in May, 2008!

In Hamamatsu City, 35 people showed pesticide poisoning symptoms after the aerial spray in May, 2005.

Saku Sougou Hospital Doctor who has seen many patients of pesticide poisoning warns that organic phosphate pesticides may disrupt the nerve system, and have possibility to give negative effects on children.

Ref.1 ; NIKKEI News Paper, August 14, 2009
 2 ; AERA, Asahi Shimbun Weekly, Sept. 15, 2008
Adverse Health Effects of the Aerial Spraying

* There are accumulation of reports on adverse health effects, such as

Adverse Effects of Organophosphate on the Development of Fetus and Children

Control of Aerial Spraying of Organophosphates and other Pesticides by Gunma Prefectural Government in Japan

- Although the Japanese Government has been approving the aerial spray of organophosphates, Gunma Prefectural Government requested to refrain from aerial spraying of organophosphate pesticides in May, 2006, considering the adverse effects by the pesticides on the nerve system of children in the sprayed area.
- Izumo City, Matsue City, Yamaguchi City stopped aerial spray of pesticides in 2008.

Introduction of House Bill to Ban the Aerial Spray of Pesticides in Philippines

- “Aerial Spraying Prohibition Act of 2009” was presented by Congressman Rafael V. Mariano to the Republic of Philippines House of Representatives, Fourteen Congress.
- The Bill also refers to the KMP/PAN Philippines study which focused on the community of Kamukhaan, small village located in Southern Mindanao http://www.panap.net/uploads/media/kamukhaan_report.pdf. The health effects of pesticides were also highlighted in a 2006 study presented by the Philippine Department of Health this year, in which the study blood and environmental sampling revealed that the majority of residents are exposed to pesticides.
Request for the thorough review of the Japanese domestic Policy on Aerial Spray of Pesticides from the View Point of Pesticide Risk Reduction

- While most of other OECD countries already has very strict policy on the aerial spraying near the residential areas including schools, parks, hospitals, etc., Japanese Government has been promoting aerial spray for the rescue of pine trees over 30 years.
- We strongly urge New Government of Japan to review;
 1. Whether it is effective to stop pine trees dying,
 2. Whether it is really necessary to continue it,
 3. How is the real situation of adverse effects on human health, especially on children and the aged people who are more vulnerable to the pesticide poisoning.

Thank you for listening!