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Foreword

The Working Party on Multi-scale Modelling of Fuels and Structural Materials for Nuclear
Systems (WPMM) was established under the auspices of the Nuclear Energy Agency
(NEA) Nuclear Science Committee (NSC) to review multi-scale models and simulations
as validated tools to predict the behaviour and performances of fuels and structural
materials, in support of nuclear systems design and fuel fabrication. The WPMM’s
objective is to promote the exchange of information on theoretical and computational
methods, experimental validation, and other topics related to modelling and simulation of
nuclear materials. The WPMM established the Expert Group on Structural Materials
Modelling in 2009 to provide targeted critical reference reviews of the state of the art in
relation to the use of multi-scale modelling so as to describe the changes induced by
irradiation in structural nuclear materials. The aim of this expert group is to reliably
reproduce experimental data, while providing the keys to understand and interpret existing
experimental results, with a view to predicting the behaviour of structural nuclear materials
under unexplored conditions and supporting the choice and the development of new
materials. The present volume presents a state-of-the-art review of physical multi-scale
models rooted in computational physics, to describe the properties and behaviour of
materials of interest for the nuclear community.
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Executive summary

1 2
Ram Devanathan and Veena Tikare
L ) .
Pacific Northwest National Laboratory, United States
2 . . . .
Sandia National Laboratories, United States

This report was commissioned by the Nuclear Energy Agency Expert Group on Multi-scale
Modelling Methods (EGM3) under the Working Party on Multi-scale Modelling of Fuels
and Structural Materials for Nuclear Systems (WPMM) of the Nuclear Science Committee
(NSC). The goal is to provide to the nuclear energy community an overview of models and
computer simulation methods of interest at different length and time scales for the materials
process. Given the large scope of such an endeavour, it has taken the dedicated efforts of
an international team of experts to do justice to this subject. The integration of these models
provides a logical path to develop predictive understandings of the performance of
materials used in the current fleet of nuclear reactors and to design new materials for
advanced fission and fusion reactors.

The report starts at the electronic structure level with a chapter on density functional theory
(DFT) written by Uldry and Krack. The authors introduce the framework of DFT, the
independent electrons approximation, Hohenberg and Kohn theorems and the Kohn-Sham
equations. The discussion also delves into the choice of exchange correlation functionals
and the differences between various implementations of DFT. In the area of nuclear
materials, DFT can be used to interpret experimental observations and to provide
parameters for the empirical potentials used in larger scale molecular dynamics (MD)
simulations. DFT calculations can be used to fill knowledge gaps, such as thermodynamic
data for multicomponent systems where reliable experimental data is missing for materials
systems of interest.

In the second chapter, Kiihne introduces ab-initio molecular dynamics (AIMD), evaluating
the interaction potential between atoms using parameter-free electronic structure
calculations. By treating the ions classically, this method makes it possible to accurately
determine both the static and dynamic properties of the system. The chapter presents Born-
Oppenheimer MD and Car-Parrinello MD. By way of illustration, the author discusses
results from liquid silicon and silica. Given that one can simulate systems with hundreds
of atoms over a time scale of the order of nanoseconds, it is possible now to tackle nuclear
materials problems using ab-initio methods that were previously considered impossible due
to computational resource limitations.

It is possible to increase the length and time scales of the simulation, although with some
compromise in terms of accuracy by performing classical MD simulations. Interatomic
potentials, presented in Chapter 3, written by Zeitler and Criscenti, are at the heart of MD
simulations. These potentials are analytical expressions of potential energy as functions of
the interatomic distance, bond angles and related measures. These expressions use
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parameters that are optimised by fitting them to known experimental properties, such as
lattice constants and elastic constants, as well as data from DFT, such as defect formation
energies. Such potentials can also be used in kinetic Monte Carlo (KMC) simulations. The
authors begin with a discussion of the different functional forms of potentials in use and
then focus on the state of the art in potentials for nuclear materials. Potentials for nuclear
fuel, cladding, glassy materials and waste forms are analysed in detail. The chapter also
explores the challenges in parameterising potentials with limited experimental data.

The fourth chapter on classical MD simulation, written by Duffy, continues the discussion
of dynamical simulation of interacting atoms or ions by numerically integrating Newton’s
equations of motion. As an example of the close ties between chapters and the logical
progression of scales, this chapter briefly touches upon the interatomic potentials covered
in the previous chapter. The early stages of radiation damage can be modelled using MD
simulations of displacement cascades. These simulations only account for nuclear stopping.
For materials that are sensitive to the effects of electronic excitations, the authors point out
the need to go beyond cascade simulations. With recent developments in reactive potentials
and the incorporation of electronic effects in MD simulations, there is reason to be
optimistic about the predictive modelling of the performance of irradiated materials.

Uberuaga, Perez and Voter take atomistic simulations a step further in the fifth chapter by
presenting accelerated dynamics methods that enable the study of the long-time evolution
of systems driven far from equilibrium. These methods fall under the categories of
accelerated MD or adaptive KMC, and include parallel replica dynamics, hyperdynamics,
temperature accelerated dynamics and x-dynamics. The authors provide illustrative
examples, such as non-equilibrium transport of Xe in irradiated UQO, nuclear fuel,
aggregation of defects in MgO and enhanced vacancy-interstitial recombination near grain
boundaries. The chapter concludes with a discussion of the limitations of accelerated
dynamics methods, and the potential to reach millisecond time scales and beyond with
emerging computer architectures.

Chapter 6 also discusses the potential of KMC methods to reach much longer time scales
than classical MD. In Chapter 6, Caturla and Stoller describe four KMC methods relevant
to this report, namely atomistic KMC, object KMC, event KMC, and first passage KMC.
The goal is to reach time scales of the order of seconds or even hours to enable direct
comparison with experimental observations. The authors also present advanced methods,
such as on-the-fly KMC that is especially relevant when the number of events possible is
too large to be tabulated a priori or when the reactions strongly depend on the changing
local environment. It is also possible to use machine learning to predict energy barriers on
the fly in complex systems, where it is challenging to catalogue transition rates. There is
considerable potential to enhance understanding of microstructural evolution under
irradiation by combining KMC with other methods, including cluster dynamics and
dislocation dynamics (DD).

In Chapter 7, Topuz, Luzginova and van der Giessen describe the DD method that lies
between atomistic dynamics and crystal plasticity. DD uses atomistic input from DFT
calculations, MD and KMC simulations and microscopy experiments, such as
microstructural information, defect properties, defect density and defect distribution. In
turn, DD provides the critical resolved shear stress and hardening rate as parameters to be
used in crystal plasticity calculations. The focus of this chapter is on dislocation interactions
with irradiation-induced defects. The authors provide keen insights into the limitations of
DD and the need for further improvements, especially in describing fracture of nuclear
materials.
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The discussion moves further along the scale towards the continuum level in the next
chapter. The phase-field model, presented in Chapter 8 by Welland, uses order parameters
to model the evolution of the microstructure. Here the atomic scale is bypassed, and the
focus is on microstructure and interface evolution at the mesoscale. This chapter presents
the Allen-Cahn and Cahn-Hilliard models. Data from thermodynamic databases and
parameters from DFT and MD in the form of interfacial energies and diffusion coefficients
serve as much-needed input for the phase-field model. There is growing potential for
expanding the reach of this method using novel techniques, for example adaptive mesh
refinement that reduce the computational cost.

Chapter 9 reviews the rate theory of defect clustering in irradiated materials, with Seif and
Ghoniem discussing the clustering of defects when materials are driven far from
equilibrium due to bombardment by energetic particles. This theory is valuable for
understanding microstructure evolution under irradiation at experimentally-relevant length
and time scales. The authors review the physics of defect production under irradiation to
provide an understanding of the processes that contribute to the generation and annihilation
of defects. As in the case of the methods discussed earlier, DFT and MD play a valuable
role in providing key parameters. There is also potential to couple rate theory to DD so as
to understand embrittlement and failure of irradiated materials.

Finally, in Chapter 10, Rashid discusses the modelling of nuclear fuel using the finite
element method. This macroscale model is used to understand the thermos-mechanical
behaviour of irradiated nuclear fuel by solving coupled displacement and temperature
equations. The chapter introduces the pellet-clad mechanical interaction problem and the
constitutive formulation used to model fuel pellet fracture. Common codes that are used to
implement the model and limitations of the method, such as the lack of microstructural
representation, are also presented.

Overall, the modelling methods presented in the present report represent a progression of
scales from the atomic to the macro scale. There is considerable potential to link scales by
passing relevant parameters from the lower scale or by providing microstructural
information from a higher scale to lower scale models. Such multi-scale modelling can
overcome the limitations imposed by the current use of empirical models in computer
codes, and enable predictive understanding of materials used in nuclear reactors.
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1. Density functional theory

A. Uldry and M. Krack
Paul Scherrer Institute, Switzerland

1.1. Introduction

Density functional theory (DFT) forms the basis of the multi-scale ladder. It deals with the
fundamental interactions in materials at the level of the electrons, and provides the means
of solving the resulting quantum many-body problem. DFT is a first-principles method in
the sense that, in its raw formulation, no empirical laws or adjustable parameters are
needed. Going from the DFT formulation to an actual ground state requires, however, a
series of approximations. The use of pseudopotentials may introduce certain types of errors,
and the accuracy and applicability of the method rest with the choice of exchange-
correlation functionals. The decision on the choice of functionals is usually made by
comparison with experimental results or based on past experience with similar materials.
Most functionals, including those popular within the nuclear materials community, benefit
to some degree from cancellations of errors. Despite such shortcomings, DFT has been an
extremely successful approach to understanding properties of matter and also as a
predictive tool. Both the theoretical aspects of functionals and the computational
implementations of DFT are active fields of research and subject to future developments.

1.2. The first-principles approach and the density functional theorems

This section sketches the essential facts behind DFT. Proofs and in-depth analysis can be
found in the two text books upon which this introduction is loosely drawn, Richard Martin's
(2004), and Parr and Young's book (1989). We first introduce the fundamental interactions
that are taken into account. The central theorem of DFT, that all properties of an interacting
system are unique functionals of the ground state density, is briefly stated. Finally, the
formulation of the DFT as an independent particles problem in an effective potential is
presented.

The starting point for a closed system of electrons and nuclei is to consider the kinetic
energy and the electrostatic Coulomb interactions of all particles present. The Hamiltonian
would therefore include the kinetic energy operator of the electrons T, and of the nuclei T,
the interactions between electrons V.., and between nuclei V,,,, and the interactions
between the electrons and the nuclei V,,o. The wave functions of such a system depend
simultaneously on the co-ordinates of all the electrons as well as that of the nuclei.

The very first step taken in the framework of DFT is to apply the Born-Oppenheimer
approximation (1927), also called the adiabatic approximation. It consists in neglecting the
kinetic energy of the nuclei

N VZ
=~ I
Ta=—) 5 !
n 12M, M)

This is reasonable in view of the large mass of the nuclei and their relative inertia compared
to the electrons. As a consequence, the movements of the electrons are decoupled from that
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of the nuclei. In classical molecular dynamics (MD) the nuclei are treated as point particles
within Newton's formalism. In DFT, the positions of the nuclei are viewed as parameters,
with the electrons moving instantaneously with the nuclei. One thereby reduces the
problem to one of electrons interacting with one another via the Coulomb interaction, and
with an external potential generated by the nuclei. The DFT Hamiltonian for a system

=1)is

consisting of N nuclei and n electrons in atomic units ([a.uw.]: A =m, = e =
therefore given by

o~

A= + T + Vee + Ve

Vin
N N VZ (2)
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The labels i,j and I,] run over all electrons, respectively all nuclei; 1; and R; denote the
position of an electron, respectively of a nucleus of charge Z; and mass M;. The
electrostatic interactions between nuclei V,,,, cause merely an energy shift, which can be
ignored for the present discussion. At this stage the problem we are set to solve

HY({r;0}) = E¥Y({r; o} 3)

is still beyond reach. Although the wave function W({r;, o;}) now only depends on the co-
ordinates r; and spins o; of the electrons, this dependence is non-trivial, as all the co-
ordinates of all the electrons are still simultaneously involved.

A standard way to address a many-body problem such as the one above can be invoked at
this stage. The independent electrons approximation is obtained by considering the
electrons as moving independently in an effective potential, as yet unspecified. The wave
function W({r;, 0;}) for N particles decouples into N one-particle wave functions, and
consequently, equation (3) with the Hamiltonian (2) is replaced by N equations of the type

. . V2
Here W7 () = €] W7 (r) with Hegr = -5t Vege (1) 4)

Finding an effective potential that maps as accurately as possible the N independent
particles problem (4) into the N many-body problem (2) is a real challenge. A way to tackle
the many-body problem via the electron density n(r) =3,;8(r —r;), and its exact
reformulation as an independent particles problem, were provided respectively by
Hohenberg and Kohnin 1964, and Kohn and Sham in 1965.

The Hohenberg and Kohn theorems (1964) apply to any interacting particles in an external
potential. This includes the system of electrons with Coulomb interactions Ve, in the
electrostatic field of the nuclei V. of the full many-body problem (2). The first theorem
states that all properties of the interacting system are completely determined by the
electronic ground state density n(r), and that the total energy of the system E is a unique
functional of the density: E[n(r)]. The second theorem concludes that the density which
minimises the total energy E[n(r)] is the exact ground state density, and similarly, that the
exact ground state is the minimum of the functional.

The Hohenberg-Kohn theorems are wonderfully general but limited to establishing the
existence of a universal functional E [n(r)], which, minimised, gives the exact ground state.
The theorems provide no pointers as to the form of E[n(r)]. The only straightforward case
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is that of the external potential, the electrons-nuclei interaction. The functional Egy[n(7)]
is directly given by

N

©)

Eext[n(r)] = f Vege n(r) dr with Vyy = — TR
1
i

A particular difficulty is raised on the other hand by the kinetic energy T,.No explicit
relationship between the kinetic energy and the density is known. The next progress will
be made by using an independent particles formulation, which allows for a formulation of
the kinetic energy.

The essential step towards a practical DFT formalism was realised by Kohn and Sham
(1965). They write the density in terms of non-interacting particles n(r) = Y; ,|¥¢ |2
Although this density does represent the electron density, the individual single-particle
wave functions W7 are not the wave functions of individual electrons, but that of
mathematical objects. A quantity

1
T, = —EE(WﬂVZlLP{’) (6)
i,o

can be defined as the independent particles kinetic energy, which in general differs from
the many-body energy of the operator T,. The Coulomb interaction can be turned into an
expression of the density by defining

dridr, (7)

1 (n(ry) n(ry)
JRe

Ey[n] ==
ulnl |1y — 74|

the so-called Hartree energy. It too differs in principle from the full many-body version of
the Coulomb interaction Ege[n]. An exact formulation of the functional E[n] for the
electrons-nuclei problem can however be given as

E[n] = Ts[n] + En[n] + Eexc[n] + Exc[n] (®)
with Ey.[n], called the exchange-correlation functional, defined as
Eyc [n] = (T[n] - T [n]) + (Eee [n] — Ey [Tl]) )

So the problem of mapping the non-interacting problem to that of a full many-body problem
is delegated to the exchange-correlation functional. Assuming Ey.[n] is known, the
transformation (2) to (4) is now exact, with the effective Hamiltonian replaced by the Kohn-
Sham Hamiltonian

2

2

OEy[n(1)]
on(r)

dr’ + Ve (r) with V. (r) = (10)

- n(r')
His =~ lr—r

+ vext (r) + f ,|
These are the Kohn-Sham equations, which can be solved by iteration. A starting density
is calculated from a set of given wave functions. The density is then used to solve the Kohn-
Sham equations, which in turn deliver a new set of wave functions. The procedure is
repeated until self-consistency is achieved.
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1.3. Choice of functionals

The Kohn-Sham equations (10) allowed DFT to become a practical approach for finding
the ground state of interacting particles. Provided the functional Ey.[n] is known, the Kohn-
Sham equations are an exact formulation of the many-body problem (2). In practice, the
exchange-correlation functional is not known and must be approximated. Over the years,
substantial developments have added different levels of sophistication to the exchange-
correlation energy functional, usually at an added computational cost; the different levels
are often quoted as the rungs of the Jacob's ladder (Perdew, Schmidt, 2001).

The notion of exchange and correlation is born from applying the condition of
antisymmetry of the many-body wave function, in particular on the Coulomb term V.. The
alternative to DFT for electronic structure calculations, the Hartree-Fock method, builds in
the antisymmetry of the wave function by constructing the many-body wave function with
Slater determinants of single-particle wave functions obeying a Hamiltonian of the type
(4). The exchange contribution appears in that case as a term lowering the energy,

1 1
Exy = — z Ef v (Tl)‘PjJ*(TZ)m‘}’f’(rl)l{lf(rz) dr,dr, (11)
1,],0
the rest of the Coulomb term being the Hartree energy (7). The exchange term involves
electrons of same spins. The concept of “exchange hole” is often introduced at this stage
as describing the region around an electron that other electrons of the same spin avoid
(Jones, Gunnarsson, 1989). Therefore, in Hartree-Fock the exchange is exact, but the many-
body correlations are neglected. In DFT both correlations and exchange have to be taken
into account in the exchange-correlation functional.

Local density approximation

Because the Hartree term already explicitly included in the Kohn-Sham equations (10) is a
long-range interaction, it seems reasonable to assume that the missing contributions that
must come into Ey are of local nature. The local-density approximation (LDA) (Perdew,
Zunger, 1981; Vosko, Wilk, Nusair, 1980) constructs ELPA[n(r)] from that of the
homogeneous electron gas having the same density. In the latter case the correlation and
exchange are local and calculable typically by quantum Monte Carlo simulations
(Ceperley, Alder, 1980). This seemingly too simple approach has proven surprisingly
successful for a wide range of systems. The success of the LDA has been explained (Jones,
Gunnarsson, 1989) by three factors: the sum rules related to the “exchange hole” are
conserved in the LDA formulation; V.. depends only on the spherical average of the
“exchange hole”; and the errors introduced in the separate exchange and correlation energy
tend to cancel out. LDA is still widely used, although it is known to overbind and
underestimate lattice parameters; cohesive energies and bulk modulus are found too large.
Applied to pure iron, LDA's extension to spin polarised systems predicts a non-magnetic
or anti-ferromagnetic ground state, instead of the ferromagnetic body centred cubic (bcc)
structure (Wang, Klein, Krakauer, 1985).

Generalised gradient approximation

A step further is realised by the inclusion of the gradient of the density (or spin density) in
the expression for the exchange-correlation functional ESSA[n(r)],Vn(r)]. The
generalised gradient approximation (GGA), unlike LDA, must be parametrised and
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sometimes deviates from strict first principles; a popular parametrisation used for
d-electron materials like Fe and Fe-alloys as well as nuclear fuel materials like uranium
dioxide (UQy) is that of Perdew, Burke and Ernzerhof (PBE) (1996). An alternative is that
of Perdew and Wang (PW91) (1992). Newer parametrisations (Hammer, Hansen, Norskov,
1999; Wu, Cohen, 2006) have been proposed recently but, to our knowledge, have not been
widely used for nuclear materials. GGA is usually more accurate than LDA, although it has
been found to soften bonds too much in some highly co-ordinate atoms. Both LDA and
GGA are failing, however, to make correct predictions for strongly-correlated materials,
like UOs. In particular, for the latter compound, a Mott insulator, LDA and GGA wrongly
predict a metallic ground state.

DFT+U

Strongly-correlated systems, like Mott insulators, are manifestations of a many-body
physics that is not captured by local or semi-local exchange-correlation functionals. The 5/
actinide oxides used as nuclear fuels can be tackled within DFT by the inclusion of an on-
site Coulomb repulsion in the formalism. Different formulations exist (Dudarev et al.,
1998; Lichtenstein, Anisimov, Zaanen, 1995). In essence, the DFT+U functionals
(Lichtenstein, Anisimov, Zaanen, 1995) belong to the class of orbital-dependent
functionals, whereby the localised orbitals (typically d or f) are shifted relative to other
orbitals. The selective corrective term, called effective Hubbard U parameter, i.e. Uggs =
U —], is usually entirely empirical and is often adjusted in order to reproduce an
experimentally known property, for instance the band gap of the studied material, although
methods exist to calculate U as well (Anisimov, Aryasetiaman, Lichtenstein, 1997;
Coconnioni, de Gironcoli, 2005). The DFT+U term introduces basically a penalty function
that “discourages” a delocalisation of the d or f electrons, since it favours energetically
either empty or fully occupied orbitals. Unfortunately, this creates a manifold of possible
localisation patterns for the f electrons, which causes the occurrence of metastable states
(Jollet et al., 2009; Dorado et al., 2009, 2013). This introduces technical problems with the
convergence to the ground state, since the self-consistently converged solution for actinide
materials using DFT+U depends on the initial 5f orbital occupations. Several recipes have
been devised in the literature to tackle this problem, e.g. the occupation matrix control
(OMC) (Dorado et al., 2009), the U ramping method (Meredig, 2010), the quasi-annealing
method (Geng et al., 2010), the controlled symmetry reduction method (Gryaznov, Heifets,
Kotomin, 2012) and combined methods using 5f occupation smearing with U ramping
(FOUR) (Rabone, Krack, 2013).

Self-interaction correction

Another type of orbital-dependent functionals is covered by the label Self-Interaction
Corrected (SIC). In Hartree-Fock the spurious i = term entering into the Hartree
expression (7) is automatically exactly compensated by the exchange term (11). In DFT
such a cancellation will have to occur via the exchange-correlation functionals. Formalisms
whereby the self-interaction is subtracted orbital by orbital for all occupied orbitals have
been developed (Svane, Gunnarsson, 1990; Svane et al., 1998). In effect, the self-
interaction correction allows the localisation of states, particularly in rare-earth materials,
and therefore it leads to an improved treatment of the magnetic ground state.

Dynamical mean field theory

Dynamical mean field theory (DMFT) (Georges, 1996) is often cited as the most successful
treatment to date of strongly-correlated systems. Although it does include elements from
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band structure, DMFT is not as such a DFT approach. The self-energy is determined self-
consistently within the Green's function formalism via the so-called Anderson single-
impurity problem, the latter requiring a sophisticated computational apparatus in order to
be solved. DMFT is therefore a powerful, but computationally very expensive approach.
First applications of DMFT variants like DFT+DMFT to nuclear fuel materials like
uranium and plutonium oxides as well as their mixed oxides (MOX) are being performed,
but the model system sizes are still limited to a few tenth atoms (Amadon, Condens, 2012).

Hybrid functionals

Hybrid functionals have been proposed as a mean to combine the exact exchange property
of Hartree-Fock and the correlations from GGA. This type of approach is useful when the
interest lies in defect energies located in the band gap of a semi-conductor. Hybrid
functionals are not entirely first-principles, as a mixing parameter has to be defined, and
are not easily evaluated for solids, since an explicit (orbital based) calculation of the
Hartree-Fock exchange is required which is computationally expensive. The electronic
properties of nuclear fuel materials like UO, (Kudin, Sciseria, Martin, 2002) as well as of
other actinide oxides (Prodan, Scuseria, Matin, 2007) are better described with respect to
plain DFT methods, but hybrid functionals share the convergence problems with DFT+U
methods due to metastable states while being computational much more demanding,
making the exploration of many occupation pattern computationally very expensive.

Meta-generalised gradient approximation functionals

Various other exchange-correlation functionals are available, although not popular within
the nuclear materials community. Meta-GGA (Tao et al., 2003) comes in the third position
after LDA and GGA in the Jacob's ladder as it includes a non-empirical dependence on the
orbital kinetic energy density, i.e. terms of order V2n(r). It has been successfully tested on
molecules, hydrogen-bonded complexes, and ionic solids (Tao et al., 2003). Despite the
further order and the extra cost, this approximation remains semi-local in nature.

Van der Waals interactions are not included in any of the local or semi-local treatments,
but can be considered in an empirical manner using the DFT-D method (Grimme et al.,
2010), which provides a dispersion correction for the elements H to Pu for popular
exchange and correlations functionals.

Incorporation of a random phase approximation (RPA) approach (Amadon, Applencourt,
Bruneval, 2014) could account for such long-range interactions straightforwardly, even
though at very high computational cost. Van der Waals forces are usually not relevant in
the nuclear context.

As a conclusion, we would like to emphasise that physical properties may depend strongly
on the choice of functionals: comparison with experiments for the property under
consideration should dictate the choice of functionals.

1.4. Density functional theory implementations
Many different implementations of the resolution of the Kohn-Sham equations (10) have
been made available to users. They differ most predominantly in the choice of basis sets

for the single-particle wave functions, their different use or not of pseudopotentials, and
whether the system is periodic or a cluster of atom.

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS



22 | NEA/NSC/R(2019)2

The one-particle wave functions must be expanded in a basis set in order to proceed with
the solution of the Kohn-Sham equation. The prototype choice is between localised sets of
orbitals, or a plane waves basis set. In theory, the dimension of the function space is infinite.
In practice, however, the number of basis functions must be limited, of course. A localised
basis set will have basis functions that already look like the objects they will eventually
construct, i.e. have large weights around the atomic positions. These basis sets are biased
but computationally cheap, since very few basis functions will be needed to represent the
electronic density, if the functions are well chosen. Plane waves, on the other hand, are free
of any bias and fully flexible. The convergence with an increasing number of plane waves
is also straightforward. However, many plane waves are needed to reconstruct the density
around the atom. The situation is worse near to the nuclei, where strong variations occur.
It is also not unusual to combine atomic-like functions in some regions of space with a
plane waves basis set.

It is a general practice to treat core electrons, semi-core electrons and valence electrons
separately. When a plane waves basis is chosen, the potentials of the core electrons are
smoothed out, thereby reducing the oscillations and allowing the number of plane waves to
remain manageable. These so-called pseudopotentials therefore introduce another level of
approximation and inaccuracy. They come in different types (norm-conserving, ultra-soft,
etc.) and must be tested for transferability in all possible situations.

A powerful approach combining the use of pseudopotentials and all-electron accuracy is
the Projector augmented-wave (PAW) technique (Blochl, 1944). By means of projectors,
the all-electron (i.e. not pseudised) wave functions of the valence electrons are
reconstructed. This is the method of choice nowadays in many cases. It has been applied
for Fe and alloys as well as actinide materials, where the computationally cheaper ultra-
soft pseudopotentials are not accurate enough (Kresse, Furthmiiller, 1996).

DFT codes also differ in their use of periodic boundary conditions or cluster approach. In
the latter case, a cluster of atoms, possibly surrounded by compensating charges, is usually
treated in a localised basis set. In the former case a unit cell is given, which makes the
approach naturally suited for the study of crystal structures. The periodic wave functions
in a crystal can be expanded in plane waves whose wave vectors are the reciprocal lattice
vectors of the crystal. Plane waves are therefore a natural choice of basis for periodic
structures, although many codes very successfully use also local orbital approaches in this
case.

Periodic systems have a real space (infinite number of electrons) and a reciprocal space
representation (infinite number of k-points), and codes rely on both representations.
Numerical scheme exists that limit the number of k-points that are necessary; metals in
particularly require a dense k-points coverage.

Some of the most popular codes used by the nuclear materials community are briefly
described in the following without any claim for completeness:

WIEN2k (Blaha et al., 1990; Schwarz, Blaha, 2003) uses a combination of atomic-like
functions in the regions around the atoms and plane waves for the interstitial regions. The
full description of the basis set is “(L)APW+lo”, for (Linearised) Augmented Plane Wave
plus Localised Orbitals (Cottenier, 2013). This approach is a “full potential”,
computationally demanding all-electron approach that does not call on pseudopotentials,
and is thereby one of the most accurate ones available. This can be crucial, if properties
sensitive to the wave functions near the core are required, like spin-orbit coupling
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(Laskowski et al., 2004). It is often used for benchmarking other DFT codes using
pseudopotentials or PAWs (Lejaeghere et al, 2016).

VASP (Kresse, Furthmiiller, 1996) is a plane waves code with a choice of ultra-soft
pseudopotentials, and also a PAW implementation (Kresse, Joubert, 1999). The latter has
been a popular choice for Fe-alloys. VASP is probably the most popular DFT code for the
modelling of nuclear materials.

ABINIT (Gonze et al., 2005) is, by contrast to VASP, a freely available code which offers
comparable capabilities.

Castep (Clark et al., 2005) is a pseudopotential plane waves code which includes a module
for the ab-initio determination of Nuclear Magnetic Resonance parameters (Pickard, Mauri,
2001).

SIESTA (Soler et al., 2005) is a pseudopotential method using atom-centred basis sets in
periodic systems. Some caution is needed when using the code's ultra-soft pseudopotentials
in iron magnetic systems. The efficient basis sets, however, allow for calculations of
relatively large systems compared to other approaches.

Dmol® (Delley, 1990) uses numerical atomic orbitals as basis sets. The code has both all-
electron and pseudopotential capabilities, and an implementation of the scalar relativistic
all-electron approach.

CP2K is a freely available code employing a hybrid basis set of Gaussian functions and
plane waves basis (GPW) (Lippert, Hutter, Parrinello, 1997). It provides also a Gaussian
Augmented Plane Waves (GAPW) implementation (Lippert, Hutter, Parrinello, 1999)
which allows for all-electron calculations (Krack, Parrinello, 2000). The hybrid basis set
approach enables a Kohn-Sham calculation that scales linearly with the system size (Van
de Vondele et al., 2005), like for the SIESTA code. CP2K has been applied for nuclear fuel
materials like UO, (Krack, 2015), but it provides also, besides the DFT module
CP2K/QUICKSTEP, (Van de Vondele et al., 2005) the force field implementation
CP2K/FIST (Bertolus et al., 2015).

The accuracy of the results in general will depend on the choice of functionals, and the
suitability of the PAW or pseudopotentials used. Moreover, the number of plane waves, or
the choice of localised basis functions, must be tested thoroughly, as well as the density of
k-points, and supercell size when relevant. Unconverged results are totally meaningless,
irrespective of the accuracy of the method. One should carefully differentiate between
deficiencies of the selected DFT approach and shortcomings of the employed code and the
corresponding input parameter settings.

1.5. Scope of density functional theory

DFT determines the ground state of a collection of atoms. As such, it is therefore a zero
Kelvin formalism. To this day, the number of atoms considered is of the order of 1 000,
with 200-300 typical for supercell alloys system. We describe in the following section only
the properties most routinely determined in the contest of multi-scale modelling in nuclear
materials.

The self-consistent result of the Kohn-Sham equations gives the density as a function of
position and the total energy of the system. So the most direct application of DFT is the
total energy comparison between different atomic arrangements. Energy differences
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converge faster with respect to the basis set quality than absolute energies and in some
cases benefit from cancellations of systematic errors.

The determination of forces on the atoms, formally the variation of the energy with respect
to the nuclei positions, is implemented in most codes. Most will also have an algorithm
whereby positions of the nuclei are modified at constant volume until the forces on the
atoms are as small as desired. This ionic relaxation will usually drive the system into a
local minimum, with no guarantee of having reached a global minimum. When starting
from a reasonable geometry and using an appropriate functional, bond lengths comparisons
with experiments are nonetheless accurate to the order of the percent.

Full structure optimisations, including volume relaxation, are also routinely implemented.
These algorithms are based on the expression of the macroscopic stress tensor in the DFT
formalism. Volume relaxation, however, has to be tackled carefully. The k-points
integration accuracy varies with volume changes, so that the density of k-points has to be
sufficient across the volume range. Incomplete basis sets introduce an error in the stress
tensor, called “Pulay stress”. In the case of plane waves, varying the volume will effectively
change discontinuously the quality of the basis set. These problems can be reduced by using
a sufficiently large basis set. It is often recommended to perform first a constant volume
cell shape relaxation, then to fit an equation of state through the total energies at different
volumes. That fit also gives the bulk modulus. Comparisons with experiments show that
the lattice parameters can agree with the experimental values to the order of the percent.

Elastic constants can also be deduced from DFT. They are calculated from the stress tensors
of several structure optimisations performed under well-chosen strains, which will depend
on the symmetry of the crystal. Linear elastic constants can be determined within 10% of
the experimental values.

The interatomic force constants, formally the derivatives of the force with respect to nuclei
positions, are not directly measured quantities. They are often determined in the so-called
“frozen phonon” method, whereby the total energy versus displacements is calculated.

Relativistic effects are not explicitly taken into account in Hamiltonian (2), nor are the spin-
orbit interactions related to such effects. The relativistic effects are limited to regions near
the core, and can be taken into account at the level of the pseudopotentials. In all-electron
codes the core electrons are usually treated fully relativistic using scalar-relativistic wave
functions, and the spin-orbit coupling is calculated for valence electrons in a second-
variational procedure.

1.6. The use of density functional theory in nuclear materials research

The role of DFT in the multi-scale approach is two-fold: to generate data for MD empirical
potential parametrisation, and to investigate structures and provide measurable quantities
for model validation.

MD empirical potentials are parametrised and adjusted on equilibrium properties obtained
by DFT. These are typically equilibrium bond lengths, elastic constants and cohesive
energy per atom. For the particular purpose of nuclear materials, point defect formation
energies should also be calculated. This is done usually by the {\it supercell} technique.
The defects are placed at the centre of a large supercell built from repeated blocks of the
original unit cell. The size of the supercell must be large enough that the defects are
effectively isolated from their images across the periodic boundaries.
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DFT is also the indicated method for the investigations of electronic, structural and
magnetic properties. Partial density of states is used to analyse the effect of impurities
(Klaver, Drautz, Finnis, 2006). Spin-dependent calculations are also used to identify phase
stability in magnetic materials and structural aspects like clustering of impurities (Olsson,
Klaver, Domain, 2010).

As hinted in the previous paragraph, some of the information delivered by DFT can be
directly compared with experiments, like the lattice parameters. Others, like the interaction
energies, can only, if at all, be compared to experiments via related measurable quantities.
Structural information, for instance, can be obtained through spectroscopic measurement
(Idhil et al., 2012). The migration energy along particular paths can be calculated by DFT
(Domain, Becquart, Foct, 2004) and these values can be used as parameters for methods at
larger length scales. Resistivity recovery measurements can give access to that information,
but there are difficulties in assigning defects to particular binding energies. In many cases
DFT and experiments are therefore part of the same model validation loop.

1.7. Conclusions and outlook

DFT allows the calculations of ground state properties from first principles. The
applicability of this powerful approach is, however, limited to a relatively small number of
atoms. The accuracy of DFT, within its own scope, is determined by that of the exchange-
correlation functional. No functional captures correctly all the properties usually required.
In particular, the strongly-correlated effects have to be included as an extension to the DFT.
Convergence of the results with respect to the controllable parameters of the calculations
(size or type of the basis set, k-points sampling, and supercell size) should be done
carefully. It is also essential to remember that ionic and volume relaxation may not express
a global minimum. Moreover, the convergence to the ground state of magnetic systems is
often extremely slow depending on the algorithm implemented. Nevertheless, it may still
lead to the wrong magnetic state.

Therefore, the accuracy of the DFT-determined values should always be evaluated
critically, and should always be related to experimental measurements if possible. It may
be worthwhile investigating the benefit versus computational cost of the newer exchange-
correlation functionals for some compounds, although the problem of strongly-correlated
systems will likely remain restricted to empirical treatments in the near future.

It is likely that the accuracy of molecular dynamics simulations depends more on the form
of the potentials than on the absolute convergence and accuracy of the DFT parameters.
However, in evaluating the quality of empirical potentials one should remember the
limitations of the DFT on which they are based.
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2. Ab-Initio molecular dynamics

Thomas D. Kiihne
Department of Chemistry and Paderborn Center for Parallel Computing, University of Paderborn,
Germany

2.1. Introduction

Computer simulations and molecular dynamics in particular, is a very powerful method to
provide detailed and essentially exact information of classical many-body problems. With
the advent of ab-initio molecular dynamics (AIMD), where the forces are computed on-
the-fly by accurate electronic structure calculations, the scope of either method has been
greatly extended. This new approach, which unifies Newton’s and Schrodinger’s equations,
allows for complex simulations without relying on any adjustable parameter. This review
is intended to outline the basic principles as well as a survey of the field. Beginning with
the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as
well as novel hybrid scheme that unifies best of either approach are discussed. The
predictive power is demonstrated by a series of applications ranging from insulators to
semiconductors and even metals in condensed phases.

The geometric increase in performance of computers over last few decades, together with
advances in applied physics and mathematics, has led to the birth of a new way of doing
science that is in the intersection of theory and experiment. As a result, they are referred to
as computational sciences and allow for computer experiments under perfectly controllable
and reproducible conditions. In this way, computer simulations have been very successful
in explaining a large variety of physical phenomena and guiding experimental work. In
addition, it is even possible to predict new phenomena by conducting experiments in silico
that would otherwise be too difficult, too expensive, or simply impossible to perform.
However, by far the most rewarding outcome of computer simulations is the invaluable
insight they provide into the behaviour and the dynamics of a system. The two most
common algorithms for such studies are the Monte Carlo (MC) (Metropolis et al., 1953)
and molecular dynamics (MD) (Alder, Wainwright, 1957; Rahman, 1964; Verlet, 1967]
algorithm. The latter is simply the numerical solution of Newton’s equation of motion,
which allows both equilibrium thermodynamic and dynamical properties of a system at
finite temperature to be computed. Since it also provides a window’ onto the atomic real-
time evolution of the atoms, another role of MD is that of a computational microscope.

One of the most challenging, but very important aspect of MD simulations is the calculation
of the interatomic forces. In classical simulations, they are computed from empirical
potential functions, which have been parametrised to reproduce experimental or accurate
ab-initio data on small model systems. Even though great strides in elaborating these
empirical potentials have been made, often the transferability to systems or regions of the
phase diagram different from the ones to which they have been fitted is restricted.
Furthermore, they are not able to simulate with sufficient predictive power chemical
bonding processes that take place in many relevant systems. Eventually, some of the most
important and interesting phenomena of modern physics and chemistry are intrinsically
non-classical. Therefore, a first principle based approach, such as AIMD (Marx, Hutter,
2009), where the forces are calculated on-the-fly from accurate electronic structure
calculations, is very attractive since many of these limitations can in principle be removed.
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However, the increased accuracy and predictive power of AIMD simulations comes at
significant computational cost. For this reason, density functional theory (DFT)
(Hohenberg, Kohn, 1964) is to date by far the most commonly employed electronic
structure theory, but it is important to note that AIMD is a general concept that in principle
can be used in conjunction with any electronic structure method. Nevertheless, the ab-initio
approach is not without problems — the relevant energy scale is tiny, well below kgT, and
in particular the attainable length and time scales are still one of its major limitations.

2.2. Molecular dynamics

The mathematical task of MD is to evaluate the expectation value (O) of an arbitrary
operator O(R, P) with respect to the configurational Boltzmann distribution

_ JdRdP O(R,P) e FERP)

1
O =T iR ap crcp M
where 8 = 1/kg T is the inverse temperature. The total energy function
Nion
P}
E(R,P) = Z —+ ®(R)) 2
= 2M;

where the first term denotes the nuclear kinetic energy, ®(R;) the potential energy
function, Nj,, the number of ions and M; the corresponding masses, depends itself on
nuclear positions R and momenta P.

One way to evaluate equation (1), at least in principle, is to directly solve such a high-
dimensional integral, whose integrand is very sharply peaked in many dimensions, by a
uniform sampling using the MC algorithm. However, such an MC algorithm is very
inefficient, if it would not be for importance sampling (Metropolis et al., 1953), which
satisfies the sufficient detailed balance condition by rejections.

On the other hand, assuming the ergodicity hypothesis, the thermal average (O) can not
only be determined as the ensemble average of a MC simulation, but using MD equally as
a temporal average

©) = 1im - [ @t 0(R (), P(©) G

However, by propagating the classical many-body system in time according to Newton’s
equation of motion, the ions are treated only classically; this approximation is usually
negligible, except for very light atoms or low temperature, where nuclear quantum effects
may be important and adopting a quantum formalism such as imaginary-time path integrals
(Feynman, Hibbs, 1965; Ceperley, 1995) is required.

Similar to MC, within MD some kind of importance sampling is naturally performed by
preferentially visiting phase space of low potential energy. Furthermore, as denoted by the
additional time dependence in equation (3), MD allows for additional insights from the
ionic real-time evolution, at least in a statistical average sense. It is neither the intention,
nor possible, to obtain “exact” trajectories by MD due to the infamous Lyapunov
instability, which states that slightly perturbed trajectories are intrinsically exponentially
diverging with time.
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The equipartition theorem

1 . 3
(g Mik?) = ko @

where M; is the atomic mass, kg the Boltzmann constant and T the instantaneous
temperature, offers an elegant way to bridge the gap between molecular mechanics and
thermodynamics. This opens the door to extract a vast variety of relevant static and
dynamic, as well as transport properties from a MD simulation.

Nevertheless, any computational resource is finite, which limits the time and length scales
accessible by computer simulations. One way to partially bridge the gap between the
microscopic size of the simulated system and the macroscopic reality is to introduce
periodic boundary conditions. In this way surface effects are eliminated by effectively
simulating an infinite system, albeit with a finite periodicity that is identical with the length
L of the simulation cell. As a consequence, only phenomena whose characteristic
correlation length is much smaller than L can be simulated. By similar means only
processes whose typical relaxation time is significantly smaller than the simulation time
can be studied. Even though great strides have been made to extend the time and length
scales, it is apparent that techniques such as those reviewed here are clearly needed.

2.3. An ab-initio potential

In AIMD the forces F; = —Vg, ®(R;) are determined on-the-fly using first-principles
electronic structure methods. That means that AIMD is not relying on any adjustable
parameter, but only on R;, which constitutes its predictive power. However, finding the
antisymmetric ground state eigenfunctions P, of the corresponding many-body
Hamiltonian at each MD step comes at a significant computational cost, which has to be
carefully balanced against the size and sampling requirements of MD.

2.3.1. The many-body Schrodinger equation

Applying the so-called Born-Oppenheimer (BO) approximation (1927), which we have
implicitly assumed in the preceding subsection, ®(R;) can written as

®(R)) = (Yol H({r:}; RDIYo) + Ef(R)) Q)

where H,({r;}; R;) is the electronic many-body Hamiltonian, that depend on the electronic
co-ordinates {r;} and parametrically on R;. Essentially, the BO approximation allows for
a product ansatz of the total wavefunction consisting of the nuclear and electronic
wavefunctions. Due to the large separation of the nuclear and electronic masses, the
electrons can be expected to be in its instantaneous equilibrium with the much heavier
nuclei, so that the electronic subsystem can be treated independently at constant R;.
Nevertheless, we are left with a formidable task to solve the electronic, non-relativistic,
time-independent, many-body Schrédinger equation

He({ri} R) Yo({ri}) = eo(R)) Yo({r:}) (6)

which is a high-dimensional, non-linear eigenvalue problem, with eigenfunctions ¥, ({r;})
and eigenvalues £,(R;), respectively. To visualise the complexity of equation (6) let us
consider the following Gedankenmodell to represent the solution ¥, ({r;}) on a real-space
grid, where each co-ordinate is discretised by 100 mesh points. Ignoring spin and taking
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Yo ({r;}) to be real, for N, electrons 10%Ne grid points are required, so that the solution of
a single Si atom would require more grid points than the number of electrons in the whole
universe, not to mention solving such a large non-linear eigenvalue problem.

2.3.2. Density functional theory

Fortunately, this curse of dimensionality can be ingeniously bypassed by the use of DFT,
which is based on two celebrated papers of Hohenberg, Kohn and Sham (1964; 1965). The
former, the so-called Hohenberg-Kohn (HK) theorem, proves the existence of a one-to-one
mapping between the ground state density py(7) and an external potential v(r). In this
vain, po (1), which depends on just three electronic degrees of freedom, is designated as
the principal quantity rather than the 3N,-dimensional many-body wavefunction. As a
consequence, the nondegenerate ground state wavefunction Yy({r;}) = Y[po(r)] and
likewise H,[po ()] are both unique functionals of p,y(r), just as the ground state energy

Eq = EP™[po(1)] = @l (M He[po MY [po (1) (7
The latter obeys the variational property
EP™T[po] = (ol Heltho) < (W'|H, ') = EPFT[p'] (®)

for which equality holds if and only if py = p’. As a consequence equation (6) can be solved
not only by iteratively diagonalising H,[p] within a self-consistent field (SCF) procedure,
but equally by minimising the quantum expectation value of H,[p]:

EPF[py] = min (|3 [) = min (PplIF[Iplp) = minE2T o] (9)

In principle the minimisation has to be performed under the constraint that p(r) is N-
representable, i.e. that it is arising from an antisymmetric N-body wavefunction i ({r;}).
Luckily, this had been solved, and it can be demonstrated that any single-particle density
can be written in terms of an antisymmetric many-body wavefunction (Gilbert, 1975;
Harriman, 1981). On the contrary, for the v-representability problem, which states that
p(r) is the ground state density of a local potential v(r), no such general solution is known.
The HK theorem just guarantees that there cannot be more than one potential for each
density, but does not exclude the possibility that there is no potential realising that density.
It is only known for discretised systems that every density in interacting ensemble is v-
representable. Interestingly, the constructive proof of Levy and Lieb (Levy, 1982; Leib,
1983) shows that for an interacting system v-representability is not required for the proof
of the HK theorem.

For the sake of simplicity in the following I will throughout assume atomic units and
confine myself to the physical relevant Coulomb system, for which

2v2+z +Z —P+0+D (10)
|r; — 7] IR, —rl|

i<j

Where T is the kinetic energy operator of the electrons, while U is the electron-electron
interaction and V = ¥; v(r;) the electron-ion operator. The former two operators are
universal and independent of the system, while the latter is system dependent, or non-
universal. DFT explicitly recognises that it is indeed the potential v(r), which distinguishes
non-relativistic Coulomb systems and offers a prescription how to deal with T and U once
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and for all (Capelle, 2006). Hence, even at this stage based on nothing but the HK theorem,
DFT is already of some practical use without having to solve the many-body Schrédinger
equation and without having to make a single-particle approximation. In principle it should
be even possible to calculate all observables, since the HK theorem guarantees that they
are all functionals of p(7). Presuming the availability of physical sound and accurate
approximations one can write

EPET[p(m)] = Tlp(M] + Ulp(M)] + VIp(r)] (11)

In the so-called Thomas-Fermi (TF) approximation (Thomas, 1927; Fermi, 1927) the full
electron-electron interaction energy is approximated by the Hartree energy

, p( )p(")
Ulp()] ~ Unlp@)) = [ ar [ar ED2T (12)
that is the electrostatic interaction energy of p(r). In addition, the kinetic energy is
approximated as

Tlp@)] ~ j dr thom[p(r)] = TYPA[p(r)] (13)

where t"°™[p(r)] is the kinetic energy density of a homogeneous interacting system,
which is also known as the local-density approximation (LDA). Due to the fact that the
explicit form of t"°™[p(7)] is only known for a non-interacting system, t"°™[p(1)] is
further estimated by the single-particle approximation t2°™[p(1)], i.e.

TLPA[ ()] ~ f dr £1om [p(1)] = TEPA[p(r)] (14)
where

()] = o5 (31 ()2 15)

In the end the TF energy functional
E™ [p(m)] = TEPAlpm)] + Uylp ()] + VIp()] (16)

implies not only the single-particle approximation to the full electron-electron interaction,
but also the single-particle mean-field approximation T-PA[p(r)] to the exact kinetic
energy of the inhomogeneous interacting system. As a consequence, all many-body
correlation effects are neglected.

However, the HK theorem predicates that they are again a functional of p (7). The addition
of an approximation to the exact exchange and correlation (XC) energy results in a formally
exact theory, which is referred to as orbital-free DFT (Smargiassi, Madden, 1994). It is
therefore important to recognise, that the HK theorem is nothing but the formal
exactification of the TF approximation. Similarly, the Kohn-Sham (KS) (1965) scheme can
be considered as the exactification of the self-consistent Hartree equations (HE) (1928),
which differs only in the kinetic energy from the TF approximation. In fact, for the fictitious
non-interacting system the kinetic energy is known exactly, even though only in terms of
an explicit single-particle orbital functional, i.e. as an implicit density functional

Ne
1
Tlo@)] = =5 . [ dr i@ = Titwile) a7
i=1
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Here the fictitious single-particle orbitals, or simply KS orbitals, are denoted as y;(r). As
we will see immediately they are eigenfunctions of a fictitious system, known as the KS
system. It therefore should be noted that they differ from the single-particle orbitals used
in wavefunction based methods and have no strict physical meaning, with two notable
exceptions: at the presence of the exact XC functional for the special case of an isolated
system with v(c0) = 0, (i) the highest occupied eigenvalue ey can be shown to be the
negative of the exact, many-body, first ionisation potential including relaxation effects, and
(i1) that the lowest unoccupied eigenvalue €y, is the negative of the electron affinity.
Beside these two exceptions, only the density has a real physical meaning and can be
written in terms of ¥;(r) as

NOCC

p) = ) fibi(i @) (18)
i=1

where N, is the number of occupied orbitals and f; the occupation number of state i, so
that

NOCC

> fi=N, (19)
i=1

Therewith, the KS energy functional is simply given by

EXS[p(m)] = EXS[{y;[p(m1}]
= Ts[{ilp(MB] + Uylp(M] + VIp()] + Exclp()]

=_%§mfmwmﬂww@>
i=1

p(@)p(r)
lr — 7’|

(20)
+1fdd’
E rar

4J¢Wm®ﬂﬂ+hﬂﬁﬂ

where Exc[p(1)] = (T[p()] = Ts[{Y:[p(M 3D — Wlp()] — Un[p(r)] is the already
mentioned and apparently unknown XC energy functional, whereas vxc(r) is the
corresponding XC potential. This definition also shows that a significant of part Exc[p(r)]
is due to correlation effects of the kinetic energy that is known explicitly only in terms of
the reduced two-particle density matrix (Dreizler, Gross, 1990).

Since up to the exactifying term Exc[p(r)] equation (20) is identical to the HE, it is not
surprising that the corresponding Euler-Lagrangian equation

<—%V2 + v}‘s(r))z/}i(r) = gi(r) 2D

also results in a similar fictitious single-particle equation. Since vXS(r) = vy(r) +
vxc(r) + v(r) is the effective potential of an artificial system, such that the ground state
density and therewith the energy equals those of the true interacting many-body system.
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This particular system is therefore called KS system, its effective potential KS potential
and the resulting set of self-consistent equations are referred to as KS equations:

1
<_§V2 + vp(r) + vxc(r) + v(T)) Yi(r) = eah;(r)

NOCC
> fpiwi ) = p) (22)
i=1
SExclp()] _
5p(r) - 1JXC(r)

At self-consistency it is possible to express EXS[p(1)] in terms of the single-particle KS
eigenvalues ¢;. Due to the fact that they are not the eigenvalues of the interacting many-
body system, but of fictitious non-interacting KS system, EXS[p(1)] is merely the sum
of g;, but

NOCC

1 !
Bl = Y fieg — [ arar Z2250 |

dr vgc()p(r) + Exc[p(] (23)

That is to say that in order to make genuine calculations the KS scheme systematically
maps the full interacting many-body problem, with U, onto an equivalent fictitious single-
body problem, with an effective potential operator Vg = U + Vi + Vxc, but without U
(Capelle, 2006):

TF Exclp(™)] HK
T [{yilp(M1}] L L T[{yilp(M13] (24)
E — KS
Exclp(™)]

2.3.3. The exchange and correlation functional

In the previous subsection DFT has been outlined as an exact theory, presuming that the
exact XC functional is known. Unfortunately, except for the uniform electron gas
(Ceperley, Alder, 1980), this is not the case and one has to resort to more or less accurate
approximations. For the sake of brevity, only the main physical principles rather than the
various rungs of “Jacob’s ladder to heaven” (Tao et al., 2003) will be discussed here.

On this account the following break-up is particularly convenient:

pM)pxc(r, 1)

1
Buclp@)] = 5 [ ar [ ar ZEPCTI — Blpl +Ece] s)

where Ex[p(r)] is the exchange energy due to Pauli repulsion, Ec[p(r)] the electron
correlation energy and pxc(r,r") = px(r,r") + pc(r,r") the XC hole. The former is
therefore the energy lowering due to the antisymmetry requirement on the wavefunction of
a fermionic system and can be exactly calculated in terms of an explicit orbital or implicit
density functional

o] =~ [ ar [ ar PP} ;)

|r — 1|

= Ex[{¥:[p(")1}] (26)
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Equation (26) is the so-called Hartree-Fock exchange energy, but with KS orbitals.
However, the nonlocal form of the exact exchange energy comes at a considerable
computational burden to solve four-centre integrals, which is about two orders of
magnitude more expensive than is the case for local or semi-local approximations to the
exact XC functional. The correlation energy accounts for the additional energy lowering,
since electrons with opposite spins also avoid each other. However, contrary to the
exchange part, no exact expression for Ec[p(r)] is known, neither in terms of orbitals nor
densities.

Obviously, DFT would be of little use if one had to know Exc[p(1)] exactly, but luckily it
is usually energetically substantially smaller than each of the remaining terms, which are
known. One can thus hope that reasonable simple approximations to Exc[p(r)], will still
allows for qualitatively correct estimates of Ey[p(r)], without relying on additional
adjustable parameters.

2.4. Ab-initio molecular dynamics

In the following let us assume that the potential energy function is calculated on-the-fly
using DFT, so that ®(R)) = E[{1;}; R;] = EX°[{;[p(")]}] + E;;(R)). In any case,
AIMD (Marx, Hutter, 2009; Car, Parrinello, 1985; Payne et al., 1992; Parinello, 1997; Car,
2002; Tuckerman, 2002) comes in two fundamental flavours, which are outlined in this
section.

2.4.1. Born-Oppenheimer molecular dynamics

In Born-Oppenheimer MD (BOMD) the potential energy E [{i;}; R;] is minimised at every
MD step with respect to{y;(r)} under the holonomic orthonormality
constraint (ll)l-(r) |1/) i (r)) = §;;. This leads to the following Lagrangian

N
. 1 .
Loo(i R R) =5 ) MR} - min E[pJ; Ryl + > ag(wilw) - 85) @)
i=1 Lj

where A;; is a Hermitian Lagrangian multiplier matrix. By solving the according Euler-
Lagrangian equations

d oL or
dtR;0R, OR,

(28)
d oL oL

dtR AW, Ol
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one obtains the associated equations of motion (EOM)

MR} = —Vp, [r{?piglE [{¥:}; R]

{<l/’i|’v”j>‘5if}]

_OE ) o;|| OF
__a_R,+ A Aija—Rl(l/’in)—ZZ 3R, W—ZAUM) o)

OE

= —H,(;| + EAijllpj)
Jj

The first term on the right hand side (RHS) of equation (29) is the so-called Hellmann-
Feynman force. The second term, which is denoted as Pulay (1969), or wavefunction
force Fy, is a constraint force due to the holonomic orthonormality constraint, and is non-
vanishing if and only if the basis functions ¢; explicitly depend on R;. The final term stems
from the fact that, independent of the particular basis set, there is always an implicit
dependence on the atomic positions through the expansion coefficient ¢;;(R;) within the
common linear combination of atomic orbitals ¢;:

ViR = ) ¢ (R, (30)

]

The second factor stems from the assumption that the KS orbitals are real, which is an
inessential simplification. Nevertheless, the whole term vanishes whenever ;(R;) is an
eigenfunction of the Hamiltonian within the subspace spanned by the not necessarily
complete basis set (Almlof, Helgaker, 1981; Scheffler, Vigneron, Bachelet, 1985). Note,
that this is a much weaker condition than the original Hellmann-Feynman theorem
(Hellman, 1937; Feynman, 1939), which we hence have not availed throughout the
derivation, except as an eponym for the first RHS term of equation (29). However, as the
KS functional is non-linear, eigenfunctions of its Hamiltonian H, are only obtained at exact
self-consistency, which is why the last term of equation (29) is also referred to as non-self-
consistent force Fygc. Unfortunately, in any numerical calculation this cannot be assumed,
which results in immanent inconsistent forces and to the inequality of equation (29).
Neglecting either Fyyp or Fygc, i.e. applying the Hellmann-Feynman theorem to a non-
eigenfunction leads merely to a perturbative estimate of the generalised forces (Bendt,
Zunger, 1983)

F = Fyr + Fwr + Fysc (31

which, contrary to the energies, depends just linearly on the error in the electronic charge
density. As a consequence, it is much more exacting to calculate accurate forces than total
energies. However, as a corollary of the BO approximation, the electronic, as well as the
ionic subsystems are adiabatically strictly separated from each other, and therefore does
not entail any restrictions on the maximum possible integration time step, so that time steps
up to the ionic resonance limit are feasible. This actually holds irrespective of the band gap,
so, at least in principle, even metals can be straightforwardly treated.
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2.4.2. Car-Parrinello molecular dynamics

In Car-Parrinello MD (CPMD) (1985), a coupled electron-ion dynamics is performed, in
which the electronic degrees of freedom are added to the Lagrangian as classical ones:

ch({w}Rl.R,)—zuz il + ZM,R, El(pi)i R]
+ZAU(¢I% )

Once again, applying the Euler-Lagrangian equations equation (28) entails an EOM, where
the electronic degrees of freedom inhere an artificial inertia u and are propagated within a
fictitious Newtonian dynamics, such that the electrons follows the ions adiabatically:

(32)

MR} = —Vp, [E[{lpi}: R/]

{{¢i|¢j)—5i,-}]
= ZAU aR l/) |¢J)

.wﬁz(r' t) = 5(1,[) | + ZAullp}

(33)

= —H,(Y;| + 2 Agjl;)
Jj

As a consequence of the BO approximation, the high frequency oscillations of equation
(33) vanishes on ionic time scales, so that ), ~ 0. Hence, similar to Ehrenfest dynamics
(1927), the total derivative of the instantaneous, rather than the fully minimised,
expectation value (‘PO |17 e |‘Po) of the Hamiltonian yields the forces that are consistent with
the corresponding energies. This means, that owing to the absence of necessity to fully
minimise the energy functional but rather to simply evaluate it at the instantaneous time
step, Fysc is identical to zero by its very definition. Given a sufficiently small fictitious
mass, the constant of motion is strictly conserved and errors in the forces are negligible, in
particular if the ionic masses are renormalised by a constant mass tensor (Blochl, Parrinello,
1992; Blochl, 1994; Tangney, Scandolo, 2002). In this respect, CPMD combines most of
the advantages of BO and Ehrenfest MD in the sense that the KS functional are only
evaluated. There is no need to repeatedly solve it either by diagonalisation or, equivalently,
iterative minimisation. However, due to the finite accuracy of any integrator, the holonomic
orthonormality constraint of the orbitals has to be explicitly enforced. In order to ensure an
adiabatic energy-scale separation of the nuclear and the electronic degrees of freedom and
to prevent energy transfer between them, the ionic phonon frequency w; has to be much
smaller than the electronic analogue w,. As had been suggested in an eminent
phenomenological study of Pastore and Buda (1991)

w, o |—22 (34)
u
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As a consequence, the maximum integration time step At,,,x depends on the inertia
like \/u. The same also holds for the deviation from the BO surface (Borbemann, Schiitte,
1998)

[Yu(r ) = o (r, )| < Cfu (35)

Therefore, the fictitious mass, although physically completely meaningless, acts as a
continuous slider which allows to adjust any desired degree of accuracy, in terms of
deviation from the BO surface, reciprocal to the computational efficiency in a well
controlled manner. But if a metallic system is treated, due to the fact that Car-Parrinello
(CP) states are strictly not KS eigenstates, equation (34) is identical to zero and either a
thermostat for the electronic degrees of freedom (Blochl, Parrinello, 1992; Sprik, 1991;
Blochl, 2002) to counterbalance the exchange of energy, or an extended functional with
fractional occupation numbers (Mermin, 1965; Gillan, 1989; Alavi et al., 1994; Marzari,
Vanderbilt, Payne, 1997) is necessary. In the end drawing a proper conclusion, if either
BOMD or CPMD is to be favoured, turns out to be very subtle (Tangney, 2006) and
depends largely on the definition of accuracy and on the particular application.

2.5. An efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer
molecular dynamics

Even though DFT-based AIMD has been very successful in describing a large variety of
physical phenomena, its computational cost has limited the attainable length and time
scales in spite of substantial progress. For a while it was believed that linear scaling
methods (Yang, 1991; Galli, Parrinello; 1992; Goedecker, 1999) could have offered a
solution. Unfortunately, the crossover point at which linear scaling methods become
advantageous has remained fairly large, especially if high accuracy is needed (Ceriotti,
Kiihne, Parrinello, 2008, 2009). Therefore, it would be very desirable to accelerate ab-initio
simulations with up to thousands of atoms, such that simulations as long as a few
nanoseconds can be routinely performed, thus making completely new phenomena
accessible to AIMD simulations. BOMD, in which the DFT functional is fully minimised
at each MD time step, does not seem to offer much room for further improvement. For this
reason, recently another direction has been followed to improve the efficiency at current
system sizes. In the spirit of CPMD (Car, Parrinello, 1985), some form of dynamics for the
electronic degrees of freedom is implemented, which automatically keeps the system close
to the instantaneous BO surface, but at variance to the original proposal in a localised
orbital representation (Iyengar et al., 2001; Sharma, Wu, Car, 2003; Herbert, Head-Gordon,
2004). The acceleration stems on the one hand from this more compact description of the
electronic wavefunctions, but is mainly due to the ability to reduce or even fully bypass the
aforementioned SCF cycle. Nevertheless, just like in CPMD, these methods suffer from
rather short integration time steps. However, rather recently a novel Car-Parrinello-like
approach to BOMD has been proposed, which overcomes this limitation and combines the
accuracy and long-time steps of BOMD with the efficiency of CPMD (Kiihne et al., 2007).

From now on the general case will be considered, where the DFT KS orbitals are expanded
in a non-orthogonal basis set. Let M be the dimension of the Hilbert space, i.e. the number
of basis functions, and § the M X M overlap matrix. As usual the expansion coefficients of
the N lowest occupied orbitals are arranged in a rectangular M X N matrix C. The density
matrix can then be written as P = CCT and must obey the idempotency condition P = PSP
that is due to the fermionic nature of electrons, which compels the wavefunction to be
antisymmetric in order to meet the Pauli Exclusion Principle. The potential energy surface
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on which the ions move is defined by the minimum of an appropriately chosen energy
functional Epgpr[C, R;], which is expressed as a functional of € and a function of the ionic
co-ordinates R;. In this notation the BO EOM reads as follows:

MR} = -V, mcin Eppr [CRy] (36)

where the search for the minimum is restricted to the C’s that satisfy the orthonormality
condition CTSC = I, which is equivalent to imposing the idempotency condition on P. As
before, the forces of equation (36) can be divided into three contributions, (i) the Hellmann-
Feynman forces (Hellmann, 1937; Feynman, 1939), (ii) the Pulay forces (1969), which are
present whenever the basis set depends on the ionic positions, and (iii) a residual term
(Bendt, Zunger, 1983), which is non-zero except when full self-consistency is reached. The
last term leads inevitably to poor energy conservation in BOMD unless a very tight
convergence criterion is imposed. In Car-Parrinello-like approaches this is circumvented
by the design of a coupled electron-ion dynamics, which maintains the system very close
to the BO surface, but at the cost of small integration time steps.

2.5.1. Density matrix propagation

Based on ideas of the original CP approach it is possible to design an improved dynamics
for the coupled system of electrons and ions (Kiihne et al., 2007). However, contrary to the
original scheme, this novel method is not expressed as an explicit EOM for the C’s, but
rather as an integration scheme for the electronic degrees of freedom. The knowledge of
the previous K values of C(t,_;), wherel € [1, K], determines the value of C(t,), such
that at any instant of time the C’s are as close as possible to the instantaneous ground state.
As for the short-term integration of the electronic degrees of freedom, accuracy is crucial
so a highly accurate and efficient algorithm is required. Therefore, here the always stable
predictor-corrector (ASPC) method of Kolafa (2004, 2005) has been selected. This scheme
was originally devised to deal with classical polarisation, so that care must be taken that
during the evolution the idempotency condition is always satisfied. The modified predictor

K 2K
Pt = ) (~D™m bom) O ) St m)Cer) O
m=1 K-1 P(tn-m)

uses the extrapolated contra-covariant density matrix PS as an approximate projector on to
the occupied subspace C(t,_1). In this way, the fact that the physically relevant contra-
covariant density matrix PS evolves much more smoothly and is therefore substantially
easier to predict than C is ideally utilised. The modified predictor is followed by a corrector
step to minimise the error and to further reduce the deviation from the instantaneous ground
state. The corrector

(38)

C(ty) = wmin[CP(t,)] + (1 — w)CP(t,) withw = K —1
consists only of a single preconditioned minimisation step min[CP(t,)] of a properly
selected minimisation procedure. Apparently, the predictor can also be repeatedly applied,
in which case the ground state is even more closely approached, but at the cost of additional
electronic gradient calculations. However, as will be shown immediately in general this is
not necessary. The numerical coefficients of equation (37) were selected in order to ensure
time-reversibility up to O(hX*?) while w was chosen to guarantee a stable relaxation
towards the minimum. Due to the fact that the energy is invariant under unitary
transformations within the subspace of occupied orbitals C, it must be ensured that this
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time-dependent gauge transformation is not strongly changed by min[C? (t,,)], as in this
case continuity between the C’s may be lost.

2.5.2. Electronic forces by orbital transformations

Moreover, the minimisation scheme must be very efficient in bringing the system as close
as possible to the instantancous ground state and at the same time preserves the
idempotency condition of the density matrix. For these reasons, the orbital transformation
(OT) method of VandeVondele and Hutter (2003) has been chosen. Inspired by the form
of the exponential transformation (Hutter, Parrinello, Vogel, 1994) an auxiliary variable X
is introduced, to parameterise the occupied orbitals

C(X) = CP(t,) cos(U) + XU sin(U) (39)

where U = (XTS$X)'/? and the variable X has to obey the linear constraint X7 SCP (t,,) =
0. Under this condition €(X) leads to an idempotent density matrix for any choice of X,
provided that the reference orbitals CP (t,,) are orthonormal. Thus, any finite step along the
preconditioned gradient direction will exactly fulfil the idempotency constraint by
construction. Due to the linear constraint the minimisation with respect to X is performed
in an auxiliary tangent space. Since this space is linear, no curved geodesics must be
followed, as is the case for variables such as C that are nonlinearly constrained. In this way,
large minimisation steps can be taken, especially if a good preconditioner is used (Gan,
Haynes, Payne, 2000). In fact, using an efficient, idempotency conserving direct minimiser
such as OT is decisive for the success of this approach. Since the ASPC integrator only
approximately preserves the idempotency constraint, it sporadically has to be explicitly
enforced, either by Cholesky decomposition or by single purification iterations (McWeeny,
1960).

2.5.3. Total energies and forces

Having obtained the new wavefunction it is now possible to evaluate the energy and the
nuclear forces, which are derived from the following approximate energy functional:

pP(r)p? (')

1
Epc[pP] = Tr [CTH[pP]C] _EJ d’”J dr’ lr—7'|
(40)

- f dr Ve [pP1pP + ExcloP] + Ei

where pP is the density associated with CP(t,). Epc[p] can be thought of as an
approximation to the Harris-Foulkes functional (Harris, 1985; Foulkes, Haydock, 1989)
and maintains the predictor-corrector flavour of this method. The validity of Epc[p]
depends only on the efficiency of the minimiser and on the quality of the propagation
scheme. The ionic forces are calculated by evaluating the analytic gradient of Epc[p] with
respect to the nuclear co-ordinates. However, as Ap = p — p? # 0, besides the usual
Hellmann-Feynman and Pulay forces an extra term appears:

aV. p
- [ar {[(%) Ap + Vi [Ap]] (v,pp)} @1

where p is the corrected density evaluated using C(t,) and p? is the predicted density
calculated from CP(t,). Using variational density functional perturbation theory (Putrino,
Sebastiani, Parrinello, 2000; Benoit, Sebastiani, Parrinello, 2001), equation (41) can be
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efficiently computed very similar to employing the coupled-perturbed KS scheme.
However, due to the fact that usually only a single preconditioned minimisation step is
performed, C(t,)is just an approximate eigenfunction of H[pP] within the subspace
spanned by the finite basis set used. This leads to an insignificant error in the forces,
provided that C(t,,) is very close to the ground state.

2.5.4. Modified Langevin equation

The ability of this dynamics to maintain the system on the BO surface may vary
considerably. It is essentially ideal in systems like water, but potentially somewhat less
perfect in liquid Si at high temperature, where swift bonding and rebonding processes
continuously take place. However, in all cases the dynamics is dissipative, most likely
because the employed propagation scheme is not symplectic. Nevertheless, it is possible to
rigorously remedy this downward drift if we assume that the forces arising from our
dynamics Fpc can be modelled as Fpc = Fgo — ypR;, which, as we shall see immediately,
is an excellent assumption. The value of the intrinsic friction coefficient y;, does not need
to be known but it can be bootstrapped by taking a cue from the work of Krajewski and
Parrinello (2001). The canonical distribution is sampled by using the following Langevin-
type equation

MR, = Fpc — v, R, + E; (42)

where M; is the ionic mass, y, is a Langevin friction coefficient and E; = EP + £} an
additive white noise. Using the above assumption equation (42) is identically to:

M;R; = Fgo — (yp + V)R, + & (43)

In order to guarantee an accurate sampling of the Boltzmann distribution, the noise has to
obey the fluctuation dissipation theorem:

(E/(0)E,(t)) = 6(yp + vL)MkgTé(t) (44)

The choice of y; is arbitrary, while the unknown yj, has to be determined by requiring that
the aggregate noise term generate the correct average temperature, i.e. fulfils the

L 1. - 3 . .
equipartition theorem <E M,R?) = ngT- As we see in a moment, this leads to correct a

sampling of the Boltzmann distribution. In addition, since the initial dynamics is quite
accurate, yp is rather small and even dynamical properties can be very well reproduced.

2.5.5. Hllustrative examples: liquid silicon, silica and water

For the purpose of demonstrating this new approach, it has been implemented in the mixed
Gaussian Plane Wave (GPW) (Lippert, Hutter, Parrinello, 1997) code QUICKSTEP (Krack,
Parrinello, 2004; VandeVondele et al., 2005), which is part of the publicly available suite
of programmes CP2K.? In order to illustrate that this method works well irrespective of
band gap, system size and type, calculations on metallic liquid silicon and liquid silica are
presented. Both systems are known to be very difficult, and are examples of liquid metals
(Si) as well as of complex, highly polarisable, ionic liquids (SiO). Furthermore, the
simulations have been performed at 3 000 K and 3 500 K respectively, which leads to
rapidly varying density matrix elements, thus making the propagation of the electronic

2. www.cp2k.org
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degrees of freedom particularly challenging. Hence, the selected test cases can be
considered as worst-case scenarios for any method.

All simulations have been performed at their experimental liquid densities using double-
zeta valence polarisation (DZVP) basis sets, adequate density cutoffs, Goedecker-Teter-
Hutter pseudopotentials (Goedecker, Teter, Hutter, 1996; Hartwigsen, Goedecker, Hutter,
1998; Krack, 2003) and the local density approximation to the exact exchange and
correlation functional. For simplicity the Brillouin zone is sampled at the I'-point only,
while equation (43) is integrated using the algorithm of Ricci and Ciccotti (2003), with a
time step of h = 1 fs. The friction coefficient y; was set equal to zero, while the values for
¥p turned out to be in the range of 10™* fs~1. The new C’s are predicted using K = 4 in
equation (37), which ensures time-reversibility up to O (h®).

First, the accuracy in terms of the energetic deviation from the BO surface is considered.
As can be seen in Figure 2.1. the energies are an upper bound to the ground state and are
displaced by a very small and approximately constant amount. It is also shown that, as
already mentioned, the deviation from the BO surface can be even further reduced by
increasing the number of corrector steps. In fact, it is actually possible to control the
deviation from the BO surface by varying the number of corrector steps in order to achieve
a preassigned accuracy level. However, in the following only simulations based on a single
corrector step will be reported.

Figure 2.1. Deviations from the BO surface of liquid SiO: with respect to total energies
(upper panel) and mean force deviations (lower panel)
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Note: The deviation in the energies corresponds to a constant shift of 4.16 - 10—4 Hartree per atom for one
corrector step and 3.5 - 10—5 Hartree per atom for two corrector steps. The average mean force deviation is
unbiased.

Source: Kiihne, 2019.
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Figure 2.2. Partial pair-correlation functions g(r) of liquid Si (upper left panel) and liquid
SiO2 at 3 000 K and 3 500 K respectively, using a DZVP Gaussian basis set
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Nevertheless, let us now to turn to more realistic problems such as those shown in Figure
2.2. Although these simulations have been performed with only a single corrector step, they
are still amazingly close to the BOMD reference results. It should be emphasised that even
in liquid Si, which is metallic and poses problems when using an ordinary CP scheme, a
single corrector step is sufficient. This establishes the efficiency of this method, since only
a single preconditioned gradient calculation with no additional minimisation step has to be
performed. The possible acceleration, in comparison with regular BOMD calculations,
depends crucially on the system studied. In the undoubtedly difficult cases just presented a
speedup of two orders of magnitude compared to using a pure extrapolation scheme has
been observed. For simpler problems still an increase in efficiency of at least one order of
magnitude can be expected.

In Figure 2.3. displays results, which prove that also dynamical properties can be evaluated
with accuracy. To that extent the velocity autocorrelation function and its Fourier transform
at 325 K is presented. The results are in good agreement with accurate reference
calculations and are consistent with experiment, as well as ab-initio all-electron
calculations (Krack, Parrinello, 2000), showing that in spite of the stochastic nature of
equation (43) dynamical properties can also be simulated. This implies that also chemical
reactions and even non-equilibrium processes can be treated. In the same picture it is
explicitly verified that the previous assumptions are justified, and indeed a canonical
sampling is performed, by showing that the kinetic energy distribution is Maxwellian
distributed. To this end, a 64 atom liquid Si simulation is carried out for as long as 1 ns, to
reduce the noise and to ensure a proper sampling of the relevant kinetic energy distribution
tails.
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Figure 2.3. (a) The kinetic energy distribution of metallic liquid Sies (b) Velocity
autocorrelation function. (c¢) Fourier transform of the velocity autocorrelation function of

32 water at 325 K.
0.2 . . . — l ) T 11
(a) - (b) — BOMD reference 0.8
! [ Density matrix propagation [ 1 g
» Jo4 =
- o2 s
0.15 4 Fi hAa . ] o
f/\\‘ :1||‘g (W VWWwWhw oarnass e 10
— | | HIy H-02
% \ - [ L 1 1, 04
= % 0 200 400 600 800 1000
~ O1F | | 1 Time [fs)
U;ij II|' ( j 1 T T T T T 0.005
o L - (C — BOMD reference )
/ \ Density matrix propagation i 0.004
0.05 / ﬁ’ - -10.003 -
LS l ~0.002%
¥ AV ATEC
otz | I | e . s i ..} Jug ] 0
15 20 25 30 350 1000 2000 3000 4000
Eyn [eV] viem']

Note: Calculation details: (a) 1 ns trajectory, time step: 3.25 fs, basis set: DZVP Gaussian basis set, density
cutoft: 100 Ry (c) basis set: TZV2P Gaussian basis set, density cutoff: 280 Ry, exchange-correlation functional:
BLYP,. Langevin friction coefficients: y, = 0 and yp~10~8 7L,

Source: Kiihne, 2019.

Due to space considerations only a fraction of the systems studied is reported here.
Nevertheless, in all cases this method has proven to be accurate and the gain in speed has
always been remarkable (Kiihne, Krack, Parrinello, 2009; Camellone, Kiihne, Passerone,
2009; Cuinotta et al., 2009; Kiihne et al., 2011; Luduena, Kiihne, Sebastiani, 2011a,2011b).
Structure relaxations via dynamic annealing and geometry optimisation have also been
successfully performed (Carvati et al, 2007, 2009a, 2009b, 2009¢, 2010, 2011). Contrary
to CPMD and related methods integration time steps up to the ionic resonance can be used.
Thanks to this development it is now possible to perform AIMD simulations on medium-
sized systems up to a few nanoseconds, thus making a new class of problems accessible to
ab-initio simulations.

2.6. Conclusion

To conclude it should be noted, that with increasing length and time scales CPMD-based
approaches are expected to become more advantageous than BOMD, since otherwise
meeting the more and more stringent accuracy requirements of longer simulations and
larger system sizes would entail an ever tighter wavefunction convergence. The Car-
Parrinello-like approach to BOMD (Kiihne et al, 2007) just described extends the scope of
ab-initio simulations by combining the best of either method and allows for AIMD
simulations previously thought not feasible.
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3. Classical interatomic potentials

T. R. Zeitler and L. J. Criscenti
Sandia National Laboratories, United States

3.1. Introduction

The behaviour of nuclear materials under operating conditions is difficult, expensive,
unsafe and in some cases impossible to observe experimentally. Computer simulation
provides an attractive alternative to direct experimental observation and has the distinct
advantage of allowing for systematic study of individual effects on materials properties.
Classical simulations have a rich history of providing atomic-scale information based on
simple energy minimisation (e.g. predicting stable defect configurations), molecular
dynamics (MD) (i.e. the time evolution of a system of atoms), and Monte Carlo (MC) (i.e.
stochastic) simulations that can then be used to drive the design of future experiments.
These techniques require a description of the potential energy of a system, which is usually
described via a set of classical potentials (or force field).

A set of interatomic potentials consists of parameterised equations and parameter values
developed for specific interactions that allow for calculation of potential energy as a
function of a geometric variable (usually interatomic separation, but angles are sometimes
used) (Cygan, 2001). For example, a simple harmonic potential has the form E(r;)=k(rj-
1,)%, where the parameters k and 7, are defined for the interaction of two types of atoms i
and j — e.g. O and H in an O-H bond—and the interatomic separation is given by r;. A
harmonic potential for the interaction of Si and O in a Si-O bond will have the same form,
but different parameter values. The potential energy of a system is therefore defined by the
potentials and the geometry of the system. In this way, the potential energy of a complex
system can be calculated by summing the contributions of each interaction according to the
prescribed analytical expressions defined by the potentials (Cygan, 2001).

Interatomic potentials are parameterised and verified using experimental results and
electronic-scale ab-initio calculations. These potentials are then used as input for atomic-
scale simulations. The materials properties calculated from atomic-scale simulations (e.g.
thermal conductivity or defect populations) can then be used for higher-level (e.g. kinetic
Monte Carlo (KMC)) calculations. Of course, the reliability of the properties calculated by
higher-level methods depend heavily on the quality of the underlying potentials used for
the atomic-scale simulations. Clearly, developing reliable potentials is of great necessity to
multi-scale modelling endeavours and the ability of a higher-level method to accurately
describe physical processes. For example, a classical potential should be able to properly
reproduce point defect populations before a higher-level method could be expected to
accurately calculate the effects of defects on microstructure for a material undergoing
neutron irradiation (Becquart, Domain, 2011).

If the ultimate goals of simulation are to predict material lifetimes or the long-term
microstructure evolution due to exposure to severe conditions experienced in nuclear
reactors (e.g. elevated temperatures, corrosive environments, cyclic loading [Devananthan
et al., 2001]), then an accurate description of atomic-scale interactions for nuclear materials
is necessary. Increased reliability and confidence in potential models will lead to improved
multi-scale modelling results. When an accurate multi-scale modelling approach is
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implemented, a feedback loop will then be available which will allow for increasing
efficiency in exploiting the properties of current materials (e.g. enhancing enrichment and
fuel burnup in nuclear fuels) and a true engineering of novel nuclear materials. One of the
indispensable keys to a proper multi-scale model is the development of quality interatomic
potentials.

3.2. Key issues in developing classical potentials

3.2.1. Fitting/verification

After assuming a form of the classical potential (e.g. harmonic, Buckingham), parameters
are fit in order to replicate experimental data (typically static elastic and dielectric constants
and lattice parameters, but also defect properties) or theoretical calculations. Parameters
are changed systematically, manually or using a computer program such as GULP (Gale,
Gulp, 1997), to minimise the difference between given data and those calculated with the
new potential. The number of parameters needed for a complete potential depends on the
form of the potential. Potential parameters can be improved by including a greater number
of experimental comparisons.

A key test to ensure an accurate potential is model verification. This can be done by
comparison with experimental data that has not been used to initially fit the parameters,
though calculated properties (e.g. from ab-initio MD simulations) also provide additional
points of comparison. In most cases, some experimental data is used as fitting parameters
for development of the model, so it is not surprising when there is strong agreement with
these same calculated properties. However, more complicated properties (i.e. second-order
properties) are increasingly used as both fitting parameters and points of verification. One
example is parameterising to vibrational power spectra.

3.2.2. Applicability/transferability

One of the key issues in potential development has been determining the extent to which a
set of interatomic potentials can reliably be applied to situations far removed from the
fitting domain. This is true in terms of interatomic separations, temperature/energy range,
and composition (e.g. the transferability from pure to mixed systems). For example,
potential parameters that are fit to zero K lattice properties may not be able to fully
reproduce dynamical properties at high temperatures (e.g. predicting melting point). And
fitting parameters to a distinct range of temperature data does not guarantee a proper fit for
temperatures outside of that range. In this way, a lack of quality experimental data can limit
the development of a quality potential.

A lack of initial fitting parameters can lead to limitations in its range of applicability. A
single model that is applicable over a large range of temperature and composition is rare
(Tiwary van de Walle, Gronbech-Jensen., 2009). By fitting to a large number of initial
structures, transferability of a potential set to a new system (which can be fundamentally
different, but consist of the same components) is helped (Cygan, Liang, Kalinichev, 2004).
General force fields (such as the universal force field (UFF) (Rappe et al., 1992) or Dreiding
(Mayo et al., 1990) force field) have been used for materials (Duren, Bae, Snurr, 2009;
Nalaparaju et al., 2009) that did not exist when the force fields were created.
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3.3. Classification of classical potentials

A set of classical potentials can be classified in a number of ways, including its description
of individual ions, what types of interactions are included, and the specific forms of those
interactions.

3.3.1. Description of ion

Two basic models of interatomic potentials have been used with nuclear materials, the core-
shell model and the rigid ion model. The core-shell model accounts for polarisation effects
by describing ions as massive cores connected to massless charged shells by a spring (Dick,
Overhauser, 1958). In this case, the shells interact with one another via short-range
potentials, while long-range Coulomb interactions take place among all cores and shells.
Some examples of core-shell models are those of Jackson (1986) and Gotte (2007). In the
rigid ion model, all ions are described as massive point charges. MD simulations with rigid
ion models are faster because there are fewer interactions to calculate. Rigid ion models
include those of Morelon (2003), Sindzingre and Gillan (1988), and Karakasidis (1994).

Defect energy calculation benefits from a description of electronic polarisation of the lattice
ions. This is usually accounted for by use of core-shell models in which an ionic dipole can
be represented by the core-shell separation. However, due to the extremely high energy
considered in displacement cascade simulations (discussed below), core-shell models are
not suitable for this type of simulation (Morelon et al., 2003).

3.3.2. Interatomic potential types

Besides a model type, each set of potentials has general forms of energy description. The
electrostatic contribution to energy is long-range in nature and given by the well-known
form of the Coulomb energy:

1 qq;
4mey 1y

(D

ij

where ¢; is the charge assigned to atom 7, and 7; is the interatomic distance between atoms
i and j and ¢ is the permittivity of free space. The total contribution of electrostatics can
be obtained by summing over all atoms and their periodic images. The Ewald summation
(1921) or Wolf’s direct method (1999) are typically used to efficiently calculate this sum.
In some cases, partial charges are used instead of formal charges.

Other potentials are restricted to apply only for a smaller range of interatomic separations
(i.e. a cutoff separation is enforced) and are thus termed “short-range” contributions. The
simplest short-range description of forces is that of a two-body (“pair”) potential that is
defined only between two atoms. A number of pair potential forms exist, including
Buckingham (1938), Born-Mayer-Huggins (BMH) (Fumi, Tosi, 1964a, 1964b), Lennard-
Jones (L-J) (Frenekl, Smit, 2002), and Morse (1929).

Many-body potentials are used in cases where a simple two-body treatment is insufficient
to properly replicate fitting data. In a simple case, the potential energy of a three-body term
is based on the positions of two neighbours. This formulation is able to represent some
directionality in bonding. Some examples of three-body potential forms are Stillinger-
Weber (1985) and the embedded-atom method (EAM) (Daw, Baskes, 1983).

Finally, complex reactive force fields, where explicit charge transfer and even the breaking
of bonds are permitted, are becoming more popular as computational power continues to
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explode. Some examples of reactive force fields include REAXFF (van Duin et al. 2008)
and that of Garofalini (2001).

3.3.3. Specific forms of classical potentials

Buckingham

The Buckingham form of pair potentials is common for oxide materials and has the form:

1;© ©)

where 4, pij, and Cj are parameters for the interactions of atoms of type i and j. The first
term represents Pauli electron repulsion due to overlapping electron densities while the
second describes van der Waals attraction. At the very short interatomic separations
experienced in high-energy displacement cascade simulations, the net Buckingham
potential is unphysically attractive, which has led to the development of splined potentials
that result in repulsion even at very small interatomic distances (Ziegler, Biersack, Littmark
et al., 1985; Govers et al., 2007).

The BMH potential energy description is similar to the Buckingham potential (Lewis,
Catlow, 1985). The Bushing-Ida (Yoshiaki, 1976) form of potential energy has been used
in a number of models (Basak, Sengupta, Kamath, 2003; Yamada et al., 2000a) for UO>
and can be written as the summation of Buckingham and Morse potentials (Watanabe et
al., 2008).

Morse

Covalent bonding between anions and cations is sometimes accounted for via use of a
Morse potential of the generic form:

Eyj = Dohs—e‘““‘“ﬂz (3)

Lennard-Jones

A simple and commonly used potential form is that of L-J:

12 6
) ()
rij rij

where Dy is the depth of the potential energy well and Ry is the equilibrium atomic
separation. The first term describes electron repulsion and the second reflects London
dispersion (Cygan, 2001).

Ei; = Dy (4)

Vashishta-Rahman
A Vashishta-Rahman (VR) potential has the form:

.q;  (A;i(o; + )" P Cij
Eij= QLq]+< l}( i ]) )_(_4)_ i (5)
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T
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where the first term is the Coulomb term, the second term represents electron repulsion, the
third term represents a monopole-induced dipole interaction, and the final term describes
van der Waals attraction (Gunay et al., 2011).

Ziegler-Biersack-Littmark

The Ziegler-Biersack-Littmark (ZBL) universal pair potential (1985) is widely used for
small interatomic separations where a traditional Buckingham or BMH potential is
unphysically attractive (Tiwary et al. 2009, 2001; Ackland, 1997). The ZBL potential is
then smoothly connected to the other form using some sort of (arbitrary) spline, such that
the overall potential, as well as its derivative is always continuous. The morphology of a
displacement cascade is heavily influenced by this repulsion at small separations (Becquart
et al., 2000). An alternative to the ZBL potential is a Buckingham (4-range) potential,
sometimes used to avoid the attraction at unphysically small O-O separations (Jackson et
al., 1986; Read, Jackson, 2010; Bjorkas, Nordlund, 2007).

Embedded-atom method

The EAM (Daw, Baskes, 1983, 1984) and Finnis-Sinclair (FS) (1984) are potential forms
for describing metallic bonding and represent significant advances in metallic potentials.
EAM consists of pair potentials plus an embedding energy to represent many-body
interactions due to the local environment. This embedding energy is analogous to the
bonding term in FS. In addition to being a function of interatomic separation, the interaction
between two atoms is also a function of local environment. These potentials are density-
dependent, which makes validation more challenging, especially when the potentials are
extended to alloys.

The form of the EAM potential is:

1
E,=F, Zpﬁ(ﬁj) +EZ¢B(TU) (6)

JET! JE!

where F is the embedding energy and is a function of atom i’s environment via the density
p of surrounding atoms. The potential is defined for atom types i and j and applies to all
neighbours j of atom i within a prescribed cutoff distance. A pair potential ¢ is also defined
for the i-j interaction. The EAM formulism has been shown to be versatile for a number of
different Fe-alloys (Jang, Lee, Hong, 2008).

3.4. State of the art in classical potentials for nuclear fuel cycle materials
3.4.1. Nuclear fuels

UO;

The most common nuclear fuel in use is UO,; likewise, the greatest number of
computational studies of nuclear fuels is for UO,. A number of different potentials have
been used over the past 50 years to model UO; structure, defect behaviour, and diffusion,
as well as the effect of neutron irradiation on those properties. In many cases, incremental
advances in the UO; potentials have led to a greater agreement between simulation results
and experimental data (or theoretical calculations).
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The first UO, potential was introduced in 1962 (Benson, Freeman, Dempsey, 1963).
Catlow et al. later developed a series of improved UO; potentials (1978, 1977) in the 1970s
— these were core-shell models fit to elastic and dielectric constants and lattice parameter
and were designed to calculate defect formation energies. A set of rigid ion potentials
(Walker, Catlow, 1981) of the BMH form was also developed by Catlow et al to be able to
run MD at high temperatures in order to investigate superionic properties. In addition,
Grimes and Catlow also developed an extensive set of self-consistent core-shell potentials
to examine migration and solution energies of Xe, I, Ba, Kr, Rb, Br, He, Sr, Y, Te, Cs, Ba,
La, Ce, Zr, Ru in UO,. (See references 26-34 in Govers et al., 2007.)

Jackson later modified (Jackson et al., 1986, 1985) Catlow’s potentials to eliminate the
unphysical attraction of Buckingham energy at small separations by adding a new
functional form of the potential and combining it with the Buckingham form using
polynomial interpolations (splines). Sindzingre and Gillan (1988) later modified O-U
interactions for the same potential and added a splined (4-range) Buckingham for O-O
interactions. Karakasidis and Lindan (1994) revised these parameters after discovering that
the O-O spline potential was not stable.

Another core-shell model was developed for MD simulations of UO; by Lindan and Gillan
(1994) to look at oxygen diffusion at high temperature and the superionic phase. Yamada
et al. (2000a) developed an independent potential with non-integer charges (qu=12.4) and
a covalent U-O (Morse) term.

Morelon et al. (2003) used point defect energies (static and migration) for fitting to a BMH-
type potential, eliminating U-U short-range interactions, zeroing the attractive term for U-
O interactions, and revising the partial charges of U and O species (Morelon et al., 2003).
These defect properties are important in displacement cascade simulations, though the
migration energies are more difficult to calculate (than defect energy formation) because
they require a determination of the transition structure of the migration process (Morelon
et al., 2003). The Morelon potential showed improved agreement with thermal expansion
data, especially above 2000 K (whereas the Yamada potential (2000a) is only good up to
about 1 500 K) where anharmonicity effects have been taken into account by the use of
defects and transition states were included in the parameterisation of potential parameters.
It also shows improved defect energies, but mediocre agreement with elastic properties.

An extensive two-part investigation of interatomic potentials by Govers et al. (2007, 2008)
for UO; includes a thorough review of the history of UO; potentials from 1962 to 2007. In
addition to detailing significant modifications of a number of independently-developed
potentials, the first part of the investigation compared 19 separate versions of potential
models on their ability to reproduce experimental and ab-initio properties including lattice
parameters; elastic constants; phonon dispersion modes; and the formation, migration and
binding energies for various defects using static calculations. The potentials reproduced the
lattice parameters and elastic constants, though this is not surprising because most
parameters were originally fit to these properties. A wide range of values was calculated
for the other properties, leading the authors to conclude that no best potential existed in the
group. However, they could conclude that neither the class (i.e. core-shell or rigid ion) nor
type (e.g. Buckingham, Morse) of model had a great impact on the accuracy of the
potentials; rather, it was the parameterisation of the model that was critical.

In the second part of the investigation, Govers et al. (2008) used MD simulations to test the
same potentials for their abilities to reproduce the temperature dependence of various
properties including lattice parameters, specific heat and bulk modulus, as well as melting
temperature. This was a test of the anharmonicity of the potentials, i.e. their abilities to
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provide information on non-equilibrium properties even though they were fit to static lattice
properties. While Govers et al. again conclude that no single best potential was found, they
make the generalisation that rigid ion models with partial-charge assignments and some
core-shell potentials were best able to reproduce experimental data (likely because thermal
expansion curves were part of the fitting processes in many of these cases). Core-shell
potentials are generally developed to be able to reproduce static polarisation effects and
thus do not accurately reproduce anharmonicity effects (Govers et al., 2008). However,
they did note that they expect challenges with partial-charge rigid ion models when dealing
with charged defects (e.g. how to properly determine the ionicity of the defect)}—and
suggest that a potential developed with formal charges would be more appropriate in that
case.

Since Govers’ extensive reviews, additional UO, models have been published, as well as a
comparison of various potentials for their ability to produce defects via energetic recoils
(Devananthan, Yu, Weber, 2009). This study showed a dramatic effect of a chosen potential
on the calculated defect population. Because the size of defect clusters and distribution of
defects play a significant role in the later evolution of the defect site, a proper description
of the potential energy is crucial to be able to have confidence in higher-level calculations.
Also, for an electronic insulator such as UO,, defects play a major role in determining
thermal transport properties. This study also found that the potential of Yakub (2007) best
replicated equilibrium properties.

Tiwary et al. (2009) developed a UO; potential that is applicable across all interatomic
distances by fitting to the results of ab-initio calculations of defect energies. They also
underlined the importance of a proper splining procedure to join multiple potentials that
are individually valid over separate spatial regions.

Using a novel methodology for potential development, Read and Jackson (2010) introduced
a new potential to more accurately represent the UO, lattice following Frenkel defect
creation due to neutron irradiation and to correct the overestimated contribution of the
attractive term in the cation-anion Buckingham potentials previously published. This model
was developed to enhance applicability over a wide range of structural data and a wide
range of other physical properties. In this core-shell model, the anion-anion Buckingham
potential was derived and the cation-anion short-range interactions were given a BMH
form. Though not included in the original parameterisation, calculated phonon dispersion
curves and defect energies compare well with literature values. This model has not yet been
applied to MD simulations.

A new potential by Gunay (2001) has been shown to be excellent at describing the transition
to the superionic state and melting in UO». The potential has a VR form and is a rigid ion
model with partial-charge assignments.

Other UO; models of note include those of Arima (rigid ion) (2005), Meis (core-shell)
(1998), and Busker (core-shell) (Abramowski, Grimes, Bradford, 2000; Busker, Grimes,
Bradford, 2000, 2003). The Busker model is notable because it has good transferability
among a number of elements and has ability to study nonstoichiometry since it is
parameterised for U*" and U3,

Because it is radioactive, UO; is experimentally difficult to use for studying the effects of
radiation damage. However, CeO is similar to UO; in terms of fundamental properties
(e.g. lattice parameter, density, thermal diffusivity), so it has been proposed as a surrogate
material for investigations of radiation damage in UO; (Aidhy, Wolf, El-Azab, 2001). A
number of pair potentials have been developed for CeO,, including rigid ion BMH and
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core-shell Buckingham forms (Xu et al., 2010). Particularly of interest is that some have
been parameterised for nonstoichiometry (Gotte et al., 2007).

PuO>/MOX fuel

Yamada et al. (2000b) have developed rigid ion potentials for mixed oxide (MOX) and
nitride nuclear fuels, adding a Morse potential to the Buckingham potential. The potentials
were developed to be transferable among solid solutions of UO; and PuO, for MOX fuels.
The form of the rigid ion potential is Buckingham with an additional Morse term for cation-
anion pairs. Thermal and mechanical properties of MOX fuel were calculated via MD
simulations. This potential was later modified by Basak (2003) to better reproduce thermal
expansion data. The partial-charge potentials developed by Arima (2005) are also of the
BMH-type and have been used to examine thermal properties of (U, Pu)O, MOX fuels via
MD simulation.

Tiwary et al. (2011) developed an approach for creating a consistent form of the potential
over all distances and applied it to UO; (Tiwary et al., 2009) and then extended its use to
PuO; and NpO; (Tiwary et al., 2011) in a self-consistent manner such that MOX fuels (U,
Pu, Np)O: can be simulated over a wide range of experimental conditions. They fit the
potentials to an extensive database of experimental and ab-initio results and thoroughly
showed the potentials reliably reproduce properties outside of the fitting parameters. This
represents a major step forward in the production of transferable potentials.

Nitride fuel

A mixed nitride (U, Pu)N fuel potential was developed by fitting to thermal expansion and
pressure expansion data to a BMH + Morse form (Kurosaki et al., 2000); and, calculating
thermal and mechanical properties with MD simulations. Radiation defect generation in
UN was studied via ab - initio calculations, the results of which can be used to develop
better quality classical potentials (Kotomin et al., 2008).

3.4.2. Cladding/structural elements

Fe and Fe-alloys

Ferritic and austentitic steels in nuclear reactors (e.g. pressure vessel ferritic steel and
internal structure austentitic steel) are subject to neutron irradiation that can lead to stress
corrosion cracking and eventually failure. Metal cladding encapsulates nuclear fuel and is
exposed to neutron irradiation, which can lead to swelling (due to void formation) and
affect diffusion properties in the material. The effects of irradiation on a number of
steel/iron alloys are now routinely studied using MD displacement cascade simulations
where primary knock-on atoms (PKA) are given a high initial kinetic energy and based on
the time evolution of the system of interest, defects are introduced in a perfect crystal as
momentum is transferred to a PKA’s neighbour atoms.

The quality of the potentials describing interatomic interactions influences the ability of the
simulation to predict neighbour atom trajectories, diminished mechanical properties, and
defect generation and clustering (Devananthan, Yu, Weber, 2009; Malerba et al., 2010;
Malerba, 2006). Primary damage defects in iron include self-interstitial atoms (SIAs),
vacancies, and Frenkel pairs, and their clustering can give an indication of diffusion
mechanisms and nucleation sites for larger defects (Bjorkas, Nordlund, 2007). The results
from MD cascade simulations can be used as input into higher-level (e.g. KMC or
continuum) models, so accuracy in calculated properties is of great importance (Becquart,
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Domain, 2011). With this consideration, many recent studies rely on electronic-scale
ab - initio DFT calculations for development and verification of the interatomic potentials
used in MD simulations. This is particularly important because experimental observation
of irradiation effects is nearly impossible due to the time and length scales at work (Bequart,
Domain, 2011).

Primarily, Fe has been studied as a model system for steel, though development of new
potentials now allows for study of a number of Fe-alloys. Bequat and Domain (2011) give
an excellent review of the over 45-year history of damage formation investigations for Fe
and Fe-alloys (e.g. Fe-Cr and Fe-Cu). The effects of P (Ackland et al., 2004), Cu (Pasianot,
Malerba, 2007), and He (Seletskaia et al., 2007; Gao et al., 2011), which are known to
embrittle Fe, have also been considered. Little research has been done on the Fe-C system
(Becquart et al, 2007) due to difficulty of simulating ab - initio supercell sizes that are large
enough to depict the low C concentration present in ferritic steels. The effects of interatomic
potentials on irradiation damage in Fe are reviewed by Becquart et al. (2000).

Despite the seemingly simplistic structure of Fe, a number of potentials have been
developed, none of which are able to reproduce experimental data entirely. Of particular
concern are the well-known deficiencies in many Fe models for predicting defect energies
(Malerba, 2006). Understanding the accumulation of damage due to neutron irradiation is
crucial to the understanding of the effects on Fe, but there are still discrepancies in predicted
defect cluster populations at the atomic scale (Bjorkas, Nordlund, 2007; Malerba, 2006)
that make predicting longer time scale damage problematic. Although ab-initio calculations
of defect structures and energies continue to be increasingly important for interatomic
potential development and verification (Becquart, Domain, 2009), there is still a lack of
fundamental understanding of how and why defect clustering occurs and how that
clustering affects defect mobility (Samaras, Victoria, Hoffelner, 2009).

A number of studies exist which compare radiation damage effects among multiple Fe
potentials (Becquart et al., 2000; Malerba et al., 2010). One of these studies (Becquart et
al, 2000) found significant differences in primary damage creation due to subtle differences
in the potentials. While many Fe potentials have been derived for equilibrium-type
calculations, they are later “hardened” (to eliminate the possibility of close contacts of
atoms) to be suitable for cascade simulations. Although all potentials in the study had
reasonable threshold displacement energies, they each have had different hardening
procedures, which leads to differences in repulsive potential for small separations. These
differences result in significant differences in cascade shape, as well as defect energies and
populations. Even thermal properties are affected. It was concluded that the different
hardening methods play a role in these properties, underlining the importance of proper
potential development and the applicability of different potentials over different
interatomic separation ranges (Becquart et al, 2000).

The Mendelev set of interatomic potentials for body centred cubic-Fe (bcc-Fe) (Mendelev
et al, 2003) is of the EAM type and was derived based on a careful fitting procedure that
took into account a large set of experimental data and DFT-derived point defect energies.
A more recent analysis of the state of the art in Fe potentials indicates that Mendelev-type
potentials are the best choice for developing Fe-alloy potentials, as well as applying the
calculated properties to larger scale models (Malerba et al., 2020). This study also
concludes that the ability of classical interatomic potentials to capture SIA clusters and
dislocations is still elusive. The study provides an extensive database of static and dynamic
properties (including defect formation and migration) for Fe based on the results of
simulations for five published potential models.
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Some more recent models of note include those of Muller (2007) and Dudarev and Derlet
(2005,2011). Muller’s potential for Fe is able to reproduce the temperature-dependent body
centred cubic to face centred cubic (bce-to-fce) transition of Fe. The “magnetic” potential
of Dudarev and Derlet contains an explicit magnetic contribution to the interaction energy.

3.4.3. Waste forms

The containment of high-level waste (HLW) has been an active area of research and
development for over 50 years (Weber et al., 2009). Borosilicate glasses and complex
ceramic composites have been developed to meet HLW containment issues. Research to
date has focused on immobilising existing HLW that consists of all the liquid effluents
from the reprocessing of commercial and defence spent nuclear fuel. New research is
focused on creating new separation waste streams, recycling spent nuclear fuel, and
minimising the volume and heat load of waste forms. New waste forms tailored to specific
waste streams and high waste loadings may be needed. Two useful review papers on
nuclear waste glasses and ceramic waste forms for actinides are from Grambow (2006) and
Lumpkin (2006), respectively.

Waste streams include: (1) the long-lived fission product *Tc¢, (2) the principal heat-
generating isotopes '*’Cs and °°Sr, (3) lanthanides, (4) minor actinides, (5) remaining
fission products, (6) volatile radionuclides, (7) the undissolved solids from fuel dissolution
(Weber et al., 2009). Waste-form types include (1) glass, (2) ceramic, and (3) glass-
ceramic. Classical MD has been used to look at the chemical durability of glass and various
single-phase ceramic waste forms. The main vulnerabilities of polyphase ceramic or glass-
ceramic waste forms for radionuclide immobilisation are along grain boundaries and can
be better investigated using mesoscale models.

Glass waste forms

Glass waste forms are the most commonly used HLW form today. The amorphous and
relatively disordered structures of glasses can incorporate a wide range of chemical
clements. Borosilicate glass compositions may include up to 30-40 different elements.
Although borosilicate glass is used by most countries, Russia has chosen to use
aluminophosphate glass for HLW. One of the advantages of glass waste forms is that the
particles emitted in radioactive decay can be readily accommodated in their amorphous
structure, and the effects of a-decay are small at the ambient temperatures expected over
the decay times for actinides. Volume changes and changes in chemical durability due to
a-decay are minimal. Potential problems with glass waste forms relative to crystalline
waste forms include (1) more rapid dissolution in groundwater, and (2) radioisotope
diffusion rates in the waste form could increase the local surface concentration of
radioisotopes exposed to water.

Classical MD simulations have been used to study glass structure and the interaction of
glass surfaces with water for many years. The choice of interatomic potentials to use in
classical MD simulations is of fundamental importance for the accuracy of simulated
physical and chemical properties such as structure, elastic constants, heat capacities and
other thermodynamic properties (Pedone et al., 2006). Numerous interatomic potentials are
available in the literature for silica glass and silica polymorphs (van Beest, Kramer, van
Santen, 1990; Duffrene, Kieffer, 1998; Demiralp, Cagin, Goddard, 1999; Vashista et al.,
1990; Takada et al., 2004). These force fields incorporate a variety of functions and terms
to describe different silica glass properties.
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However, fewer potentials are available for multicomponent glasses like those proposed
for HLW immobilisation, and there have not been many efforts to provide generalised
self-consistent force fields that are capable of modelling the structures,
mechanical, and chemical properties of silica-based glasses with different
compositions (Pedone et al., 2006). Table 3.1. lists classical potentials found in the
literature that have been developed and used to simulate multicomponent silica-based
glasses. Table 3.2. lists classical and reactive potentials that have been used to study
the interaction of multicomponent glass with water.

Table 3.1. Force field models for glass

Composition Form of potential Authors
Na, K, Ca, Si, B, 0 Modified BMH used by Busing w/o dispersion  Soules (1979)
terms
SiO2, AIPO4 Buckingham form known as BKS Van Beest, Kramer, and van Santen
(1990)
A, O Modified BMH Blonski and Garofalini (1993)
Li,Cs,B, O BMH Verhoef and den Hartog (1995)
Mg, Ca, Al, Si, O Modified BMH used by Busing w/o dispersion  Okuno and Kawamura (1995)
terms
Na, Ca, Al, Si,B,Zr,0 BMH Delaye and Ghaleb (1996)
Na, Ca, Al, Si, B, O BMH — improvement on D&G (1996) Abbas et al. (2003)
Cormier et al. (2003)
Na, Si, 0 Buckingham Du and Cormack (2004)
A, O Buckingham Adiga et al. (2006)

Na, Ca, Si, Al, O, Zr Morse function with partial ionic charge model Pedone et al. (2006)

Table 3.2. Force field model for glass-water interaction

Composition FF for glass FF for -OH and H20 Authors

Si, Na, H20 BMH Shell model for H20 Leed and Pantano
-OH: Morse potential (2003)

Si, O, Si-OH, Buckingham (Teter's) 3-body term for Si-O-H; Coulomb subtracted Du and Cormack

H20 Morse potential for -OH group (2005)

Si, O, Si-OH, BMH + 3 bond angle Rahman, Stillinger & Lemberg form for Si-H, O-  Feuston and

H20 terms H, and H-H Garofalini (1990)

Si, O, Si-OH, Modified BMH + 3-body  Modified BMH + 3-body potential Litton and Garofalini

H20 potential (2001)

Si, O, Si-OH, Modified BMH + 3-body  Modified BMH + 3-body potential Garofalini (2001)

H20 potential

From our review of available force fields, three stand out as potential candidates for future
research on the design of new HLW glass waste forms and their dissolution properties. The
first force field was specifically developed by Delaye and Ghaleb (1996) to simulate a
nuclear waste glass matrix. As in previous simulation studies of the structure of simple
glasses (e.g. Soules, 1979; Soules, Varshneya, 1981), potentials of the BMH form were
used to represent a glass comprising the major components of a nuclear waste glass (SiO;
+ B203 + ZrO; + ALO; + Na,O (+ Ca0O)). Three-body potentials were applied to O-Si-O,
0O-B-0 and Si-O-Si triplets. The local environmental structures showed overall agreement
with experimental results and the simulated densities, thermal expansion coefficients and
viscosities of the simulated glasses were on the same order of magnitude as experimental
data. This force field has been used to examine a suite of nuclear waste glass compositions
(Delaye, Louis-Achille, Ghaleb, 1997). Experimentally determined changes in glass
structure with increasing boron concentration were reproduced by the calculations.
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Additional work by this French group includes combined multiple-quantum magic angle
spinning nuclear magnetic resonance (MQ-NMR) spectroscopic and MD studies to
examine the Na environment in several two- and three-component glasses (Angeli, Delaye,
Charpentier, Petit, Ghaleb and Faucon, 2000a) and changes in Al-O-Si angle with
increasing Ca content (Angeli, Delaye, Charpentier, Petit, Ghaleb and Faucon, 2000b).
Abbas et al. (2003) used this same force field model to compare the structural properties of
bulk glass with a glass surface. The simulations predict the migration of alkali cations
towards the surface, lower coordination numbers for trivalent elements in the subsurface
layer, oxygen enrichment in the outer layer, and larger tetrahedral ring structures on the
surface.

The second force field model is that of Pedone et al. (2006) who developed a generalised
self-consistent force field that is able to model both the structures and mechanical
properties of silica-based glasses with different compositions. To produce a coherent set of
potential functions, these researchers performed empirical fitting to structural and
mechanical properties of a large set of crystalline oxides. The potentials developed in this
work consist of three terms: a long-range Coulomb potential, a short-range Morse function,
and a repulsive contribution (C/r'?). The resulting potential is given by:

2
_ZL'Zje —a;i(r— 2 CU
U(T')— - +Dij[{1_e aij(r=7o) }—1]+E (7)

A rigid ionic model with partial charges is used to handle the partial covalency of silicate
systems in order to model the quenching of melts and structures and mechanical properties
of glasses. A core-shell model might provide more accurate results for surfaces, but would
require a shorter-time step and lead to computationally more expensive quench simulations.

This force field has been parameterised to include numerous glass components including
many of importance in nuclear waste glasses (Na;O, CaO, Al,0Os3, SiO; and ZrO,).
However, to our knowledge, this force field has neither been used to study glass surface
structures nor combined with a water model to examine glass surface hydroxylation or
other interactions between glass surfaces and water. In earlier papers by the same group
(Du, Cormack, 2005; Zeitler, Cormack, 2006), surface hydroxyl-silicon and hydroxyl-
phosphorous potentials were developed to study the hydroxylation of silica and
phosphosilicate glasses. These potentials include a short-range interaction described by a
Buckingham equation, a potential function for the hydroxyl group that has the Coulomb-
subtracted Morse form, and a three-body term introduced to reproduce the Si(P)-O-H bond
angles on glass surfaces. The surface structures were used successfully to investigate the
energy of chemisorption of water on different surface sites and to determine the OH
coverage of glasses.

The third force field that shows promise for studying multicomponent nuclear waste glass
dissolution is the reactive force field of Garofalini (2001). From the beginning, this
force field was developed to investigate glass surface structures and the interaction of water
with glass surfaces. It now includes parameters for Si, Al, and B, and allows for breaking
glass network bonds between Si-O, Al-O and B-O by reaction with water molecules
(Garofalini, 2011). This force field has been demonstrated to successfully reproduce bulk
glass and hydroxylated surface structures, but is not the best for calculating the mechanics
or energetics of these systems. Mahadevan and Garofalini (2007, 2008) have developed a
new dissociative water potential to improve upon the previous force field model. However,
this new potential is still being developed for multicomponent systems.
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Ceramic waste forms

In crystalline ceramic phases, radionuclides occupy specific atomic positions in the
periodic structures of constituent crystalline phases allowing high loadings of specific
radionuclides (Weber et al., 2009). Waste-form phases tend to have complex structures,
with a number of different coordination polyhedra of various sizes and shapes and with
multiple schemes to allow for charge balance with radionuclide substitutions. Ceramic
waste forms are designed to incorporate either actinide or Cs/Sr waste streams. These waste
forms are usually polyphase, however, in some cases single-phase ceramics such as
zirconolite, monazite, apatite, or NaZr-phosphate can incorporate nearly all the
radionuclides (i.e. actinide or Cs/Sr) into a single structure. Unlike glass, crystalline phases
can be shown to survive several hundred million years or more in wet, thermal geologic
environments.

A major concern with the use of ceramic waste forms is the modification of crystalline
structures by irradiation (Weber et al., 2009; Grambow, 2006; Lumpkin, 2006). At high
ionisation doses and T, many materials undergo decomposition, phase separation and
bubble formation under electron-beam irradiation on laboratory time scales. Single-phase
ceramics generally exhibit a crystalline-to-amorphous transformation with volume changes
ranging from 5-18%. Because this is a critical concern for the use of ceramic waste forms,
classical MD studies have focused on the impact of irradiation on candidate crystalline
materials.

Classical potentials used to study the effects of the a-decay process, the collision of a-recoil
nuclei with surrounding atoms, and localised displacement cascades (DCs) typically are
BMH potentials or potentials that include Buckingham parameters to describe short-range
interactions. An example of the latter type of potential was developed for zirconolite
(CaZrTi,0O7), a matrix being considered for the long-term confinement of actinides, by
Veiller et al. (2001):

—ry\_ Gy, 1 ZiZe? (rii )
(1) = Ay exp < pij ) g  Ame 1y e (8)

In this equation, rj is the interionic distance, Ze and Ze are the formal charges of the ions,
n=6.7 A and A4, py, and Cj are adjustable parameters to be determined. The first two terms
correspond to the short-range Buckingham potentials and represent both the repulsive
interactions due to ion overlap and the attractive van der Waals interaction between them.
The last term is a screened Coulombic term where the complementary error function
reduces the ionic charges Zie and Z;e as a function of rj;.

The best mineral structure potentials include ion polarisation effects. For example, a shell
model includes the electronic cloud linked to the core ion by a spring of constant stiffness.
However, DCs can only be modelled using rigid ion model potentials (Veiller,
Crocombette, Ghaleb, 2002). An important parameter that affects radiation damage is the
threshold displacement energy (Eq4) which is the minimum kinetic energy necessary to
displace an atom from its equilibrium crystallographic site. It is possible to calculate Eq
through classical simulations; however, there are not very many experimental values for Eq
except for zircon (ZrSiQ,). Different atoms in each crystal phase will have different Eq
values based on ionic mass, charge and nearest neighbours. To initiate the DC, one cation
in the crystal structure is replaced by U*" or U*",

Veiller et al. (2002) compared simulation results for zirconolite with those for zircon
(Crocombette, Ghaleb, 2001) and UO, (Jackson, Huntington, Ball, 1995). A trend that is
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consistent with experimental observation is observed by this suite of studies. For zircon, an
amorphous core is created around the DC track with no surrounding defects. For UO,,
vacancies and interstitials are created throughout the crystal with no specific defects along
the DC trajectory. The behaviour of zirconolite lies between that of zircon and UO,. The
simulated irradiation of zirconolite does not result in as much amorphisation as observed
in experiment; nor is the phase transition from monoclinic to fluorite structure reproduced
by the simulations. These differences could be due to weaknesses in the empirical
potentials, but there are other possible explanations for them as well (Veiller, Crocombette,
Ghaleb, 2002).

One disadvantage of using a rigid ion potential, is that the energy or heat generated by the
(PKA, cannot be transferred to the electrons in the crystal structure. To compensate for this
Phillips and Crozier (2009) developed a two-temperature model to represent the interaction
between atoms and free electrons during thermal transients such as radiation damage and
cascade simulations. This model communicates energy between electronic and atomic
subsystems using a Langevin thermostat, and does not impact the form of the classical
potentials. This approach was used to study the effects of cascade damage in a gadolinium
pyrochlore (Gd,Zr,O7). The simulations showed that the electronic subsystem can act as a
heat sink for the PKA and the inclusion of this system reduces the predicted cascade
damage in the crystal structure (Ismail et al., 2010). More research is required to more
accurately depict the electron-ion interactions during a cascade event.

3.5. Challenges and future direction for development of classical potentials for
nuclear materials

Range of application

A well-known limitation of classical potentials is that they are generally only applicable
over a small range of temperatures and/or interatomic separations. Even when potentials
that are good over different ranges are combined, the way that they are combined also
affects the resulting properties (Tiwary et al., 2009). Recent work by Tiwary et al. (2009)
has taken advantage of DFT calculations in order to develop a systematic method for
producing UO; potentials that are good over a large range of interatomic separations. By
applying this procedure to MOX fuels and Fe-alloy claddings will lead to better potentials
for radiation damage studies.

While ever-increasing computer power has led to routine electronic-scale DFT
calculations, these ab-initio calculations are usually limited to predicting structures at 0 K.
For the case of defects, these configurations may be expected to be different at the high
local temperatures due to irradiation. The use of ab-initio MD (AIMD) to address this
problem, while computationally costly, may uncover some new information about defect
structure and therefore allow for better fitting of classical potential parameters.

Great strides have been made to make potentials that are applicable from room temperature
to above the melting point of a material, but based on recent reviews, clearly there are
different potentials that are best over different temperature ranges (Govers et al., 2007,
2008).

Charge transfer/reactive models

While reactive models are a relatively new invention (even in the relatively short history
of classical simulation), their development for nuclear materials will represent a major step
forward in the ability to consider defect migration and charge transfer between ions. This

STATE-OF-THE-ART REPORT ON MULTI-SCALE MODELLING METHODS



NEA/NSC/R(2019)2 | 65

may be particularly useful for the case of UO,, where U exists in different oxidation states.
It will also allow for more accurate surface reaction simulations. Some initial work has
been done for a charge transfer model for Fe (Samaras, Victoria, Hoffelner, 2009), which
could be used to predict oxygen mobility and oxidation mechanisms. However, additional
work is needed to develop new functional forms for interatomic potentials in mixed ionic-
covalent systems of interest.

Density functional theory calculations

To an increasing extent, the results of DFT calculations are being used for developing and
verifying interatomic potentials. This is especially true for defect configurations and
migration energies, where experimental data is lacking or impossible to obtain. However,
there are still some limitations to DFT calculations. Because DFT-calculated properties
represent the lowest-level in multi-scale simulation schemes, it is extremely important that
these limitations be addressed.

The choice of functional has been shown to influence the resulting structure — e.g. local
density approximation (LDA) predicts incorrect structure of low temperature Fe and does
not predict its magnetism; the use of generalised gradient approximation (GGA) resolves
this problem, though it is not immediately clear why this should be so (Becquart, Domain,
2001). The choice of basis set or pseudo potential can also have an effect on some energetic
properties of Fe-alloys since core atoms may overlap in cases where SIAs are predicted to
be close to each other — in these cases, a more expensive “all electron” method may be
required (Becquart, Domain, 2009). Actinides are especially difficult in this case because
they contain f electrons (Devanathan et al., 2010).

DFT calculations also may suffer from the problem of applicable range. The stability of
defect configurations is still difficult to predict—some configurations not included in the
original parameterisation cannot be reproduced by a set of potentials (Geysermans, 2008).
The applicability of these potentials for cases where DFT results do not exist is still not
clear (Malerba et al., 2010), though a recent study of polymer structures far from
equilibrium is promising (Mattsson et al., 2010).

Also, inclusion of the magnetic contribution to structure (e.g. in Fe-alloys) could play a
role in calculated defect energies since spin-orbital coupling plays a major role in the
structure of some nuclear materials. This needs to be taken into account at the quantum
mechanical level (Samaras, Victoria, Hoffelner, 2009). Some initial work has already been
done (Dudarev, Derlet, 2005; Chiesa et al., 2001).

Lack of appropriate experimental data

Because of the lack of experimental results for primary damage due to displacement
cascades, it is difficult to test the reliability of new potentials for Fe and Fe-alloys. A review
of some popular Fe potentials shows that the defect population and distribution can be
sensitive to the potential (Becquart et al., 2000). Additional ab-initio calculations can help
to resolve these issues, which have initially been addressed by Tiwary et al. (2009)

Indeed, standard interatomic potentials have been called into question since increases in
computing power have allowed for routine ab-initio calculations that can better predict
defect configurations. Increased use of ab-initio calculation results as fitting parameters
has led to greater versatility and applicability in EAM potentials (Mendelev, Ackland,
2007).
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In many cases, experimental data does not exist and atomic-scale results must be fed into
higher-level models in order to be able to make a reasonable comparison. However, this
introduction of an additional model makes any discrepancy difficult to reconcile (Becquart,
Domain, 2009).

An additional consideration is that experimental data, even when available, may not be
directly comparable to simulated results. Simulations are almost always done for systems
without impurities, whereas real materials invariably have impurities that can lead to
discrepancies in properties even among experimental data (Becquart, Domain, 2009).

3.6. Conclusions

Computer simulation provides an attractive alternative to direct experimental observation
for nuclear materials that are difficult to observe experimentally under operating
conditions. Classical simulations are used to predict material lifetimes or the long-term
microstructure evolution due to exposure to severe conditions experienced in nuclear
reactors. In addition, they are used to shed light on the use of glass and ceramic waste forms
to contain radioactive waste over extended periods of time. Classical potentials are
expressions that describe interatomic interactions. These potentials are fit to experimental
data and quantum-based DFT calculations. The capability of each potential to predict
material behaviour is often limited by the parameterisation of the potential; i.e. the range
of interatomic distances and conditions (T, P) used to fit the potential. Although there is
more work to be done to improve these potentials, their use has already served to illuminate
the properties and behaviours of nuclear materials, and will continue to contribute to our
development of new approaches to enhance enrichment and fuel burnup in nuclear fuels,
predict waste-form lifetimes and engineer novel nuclear materials.
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4. Molecular dynamics

Dorothy M. Duffy
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4.1. Introduction to molecular dynamics

Molecular dynamics (MD) employs the numerical integration of Newton’s equations of
motion to calculate the time evolution of a system of interacting atoms. The time and length
scales that can be studied using molecular dynamics make it particularly suitable for the
calculation of the primary damage produced by an irradiation event. In this paper we
describe the MD simulations, known as cascade simulations, used to model radiation
damage and the extent to which these simulations have contributed to our understanding of
radiation processes and the resulting defect structures. We discuss the limitations of the
current models, in particular the accuracy of the interatomic potentials, the limits to the
radiation energy association with simulation cell size and the inadequate description of the
role of electrons. We discuss how further development in these areas will improve the
predictive nature of the models.

4.1.1. Methodology

MD is an atomistic simulation methodology that is based on the numerical integration of
Newton’s equations of motion. A simulation is initiated by assigning co-ordinates and
velocities to a set of interacting atoms. The force on each atom is calculated from the known
positions of all other atoms therefore, in principle at least, the positions and velocities of
the atoms at a future time can be determined by numerical integration of the equations of
motion. A balance between accuracy and simulation time is achieved by choosing an
appropriate time step for integration, which is generally a few (1-3) femtoseconds. Efficient
integration algorithms, such as the Verlet velocity algorithm, ensure that numerical errors
are minimised. The Verlet algoritm for the calculation of the co-ordinate r at time ¢ is
derived by summing the Taylor expansions of the cordinate r at times 7 + Az and #-At, that
is:

~ f(r) , At O’r
r(t + Af) = r(f) + V(I)Af +EAl‘ +T!a?+ ........ (1)
B f(t), , A’ O’r )
r(t—At) =r(t)— v(t)At + . At* — T Foven (2)
r(t+At) = 2r(t) —r(t — At) +@At2 3)
m
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Therefore, the co-ordinates of all the atoms at a time ¢ + Af can be calculated from the co-
ordinates at times ¢ and ¢ - At and the forces at time ¢ (f(¢)). The force on each atom (labelled
i) is calculated from the derivatives of the potential energy (U) of the system of atoms with
respect to the co-ordinate of atom i:

P @
or,

Therefore, if the potential energy of the system of atoms, as a function of the co-ordinates,
and the initial co-ordinates are known, then the co-ordinates at a future time can be
evaluated using equation (3).

4.1.2. Interatomic potentials

The most important parameters that limit the accuracy of MD simulations are the
interatomic potentials that describe the interactions between the atoms. In general, the
potential energy of a set of interacting atoms can be written:

U=2 V42 Vy+ 2V 4o 5)

i,j#i i,j#i,k#i,j

Therefore, in theory at least, the forces on all atoms can be determined if the positions are
known. In practice, however, determining the various interactions in equation (5) is
challenging. An alternative approach is to calculate U directly using ab-intio techniques,
such as density functional theory, and to employ the Born-Oppenheimer approximation to
calculate forces. Such ab-intio MD methods are under continuous development and it is
now possible to model a few thousand atoms for a few picoseconds. These system sizes are
well below those required for radiation damage therefore we focus here on classical MD in
which an approximate potential energy function must be determined a priori.

In classical MD the challenge is to find approximation for the potential energy (U in
equation (5)) that will retain the important physics but will not be prohibitively time
consuming to calculate. Two body interactions, such as the Lennard Jones potential,
truncate equation (5) after the first term. This allows for very large systems to be modelled
but it only gives a reasonable description for very simple systems, such as the noble gases.
The Coulomb interactions between charged atoms are calculated using efficient
summations techniques, such as the Ewald summation, to take account of the long-range
nature of this interaction. Covalent bonds in polymers and biomolecules are described well
by the first three terms in the equation (bond stretching, bond bending and torsion).
Interatomic potentials for materials that have wide ranging technological applications have
attracted particular attention, with over 30 different potentials being published for silicon
(Bazant et al., 1997). Carbon has presented particular challenges and a number of potentials
have been developed that attempt to describe the change in the bond hybridisation with
environment (e.g. REBO (Brenner, 1990) and the REAXFF (van Duin et al., 2001)
potentials). The effective charge on atoms in ionic crystals may also depend on the
environment and variable charge potentials have been developed in order account for this
effect to some extent (Rappel, Goddard, 1991). The many-body interactions necessary to
capture the elastic properties of metallic materials are included by embedded-atom type
potentials (Daw, Baskes, 1992) such as the successful Finnis-Sinclair model (Finnis,
Sinclair, 1984) which includes a term related to the local density of the atoms.
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In spite of dramatic improvements in potentials over the years, it is not generally possible
to ensure that any potential will describe all properties of a material equally well. Potentials
are derived by fitting to experimental data or ab-initio results and the ability of a potential
to predict a property that was not used in the fitting procedure (known as the transferability)
is the signal of a good potential. The potential chosen for a particular simulation will depend
on which properties make the dominant contribution to the features to be studied.

4.1.3. Time/length scales

The time and length scales that can be modelled using MD are strongly dependent on the
complexity of the interatomic potentials. A record breaking one trillion atom simulation
has been performed on the Livermore’s Bluegene/L computer but this was to demonstrate
a capability rather than to extract results from the simulation (Germann, Kadau, 2008).
Typical large-scale simulations range from a few hundred thousand atoms to a few million
and typical time scales range from a few tens of picoseconds to a few nanoseconds. Many-
body potentials for metals are efficient to calculate but the long-range Coulomb interactions
in ionic materials are more time consuming. Potentials that attempt to model the effects of
chemical environment (such as REAXFF and REBO potentials) result in relatively slow
simulation times therefore, as always, a balance needs to be found between accuracy and
efficiency.

4.2. Modelling radiation damage using molecular dynamics

4.2.1. Advantages

Early models of radiation damage used the binary collision approximation (BCA), in
various forms to estimate the number of Frenkel pairs (Nkp) created by a radiation event
with a particular energy (E). The first of these, the Kinchin Pease (KP) model, was able to
derive a simple formula (equation (2)) by making a number of assumptions (Kinchin,
Pease, 1955).

Ngp = (6)

Here E; is the displacement energy, which is the minimum energy required to displace an
atom from its lattice site to a neighbouring interstitial site to produce a stable Frenkel pair.
It is clear that the KP model overestimates the number of defects because it neglects the
recombination events that inevitably occur. An improved form (the
Norgett—Robinson—Torrens model) was suggested by Norgett (1975) which considers only
the fraction of the energy not lost to inelastic collisions with electrons and takes some
account of recombination. More sophisticated BCA models, based on numerical
simulations, have been developed that include accurate scattering potentials and electronic
energy loss (Robinson, Torrens 1974; Ziegler 2004). However, binary collision models are
only accurate for situations in which the collisions between the moving atoms and the atoms
of the host crystal are spatially separated, which is only the case for light energetic atoms.
In the general case, the moving atoms interact with many host atoms simultaneously and it
is difficult to predict the number of defect pairs created by the resulting correlated atomic
motion.

The correlated atomic motion resulting from radiation damage events can be successfully
modelled using MD. MD is significantly more demanding, from a computational point of
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view, than BCA models, nevertheless, the length and time scales of the primary damage
events of radiation damage can readily be modelled. Primary damage refers to the defects
remaining after the excess energy imparted by the radiation event has dissipated and the
local temperature has returned to the ambient value, which typically occurs around a few
tens of picoseconds after the radiation event. The spatial extent of the primary damage is
strongly dependent on the mass and energy of the moving atom. Heavy atoms rapidly lose
energy to the host crystal and produce localised damage whereas light atoms, such as
helium, have a low cross section for nuclear collisions and travel long distances before

stopping.

4.2.2. Methodology

A cascade simulation is a particular type of MD simulation that is used to model radiation
damage in materials. The initial configuration is an arrangement of atoms with the
equilibrium crystal structure and random velocities, corresponding to the simulation
temperature, assigned to the atoms. One atom (the primary knock-on atom (PKA)) in the
simulation cell is assigned a velocity corresponding to the kinetic energy (the PKA energy)
of radiation event to be modelled (Figure 4.1.). The MD simulation is then evolved using a
standard integration algorithm until the PKA energy has dissipated and the simulation
temperature converges to a constant value.

Figure 4.1. A schematic representation of a cascade simulation.
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Note: The PKA (green) is assigned a velocity (white arrow) corresponding to the required PKA energy at the
start of the simulation.
Source: Dufty, 2019.

Atoms are displaced from their lattice positions during the simulation but many will return
to an alternative lattice site as the energy dissipates. Not all atoms return to lattice sites
however. Some remain in interstitial positions, leaving a corresponding number of vacant
lattice sites. The identification of defects can be carried out by counting the number of
atoms in each Wigner Seitz cell of the lattice. An empty cell signals a vacancy and a cell
with two atoms signals an interstitial. Alternatively, a lattice site can be labelled as vacant
if there are no atoms within a predefined radius (#,) and an atom is labelled as an interstitial
if it is further than 7, from any lattice site. The former (Wigner Seitz) method provides a
unique method for defect counting whereas the second method is sensitive to the value of
7o chosen as the cutoff. The second method does, however, capture details about the defect
structure that are missed by the Wigner Seitz method. Split interstitials (dumb-bells),
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crowdion clusters and stacking fault tetrahedra are examples of common defect clusters
that are created by cascade simulations of radiation damage in metals. A crowdion is an
extended interstitial, in which an additional atom is inserted in a close packed direction in
a metal. This has the effect of displacing several atoms, located along the close packed
direction, from their lattice sites. An example of a 30 crowdion cluster is shown in Figure
4.2.

Cascade simulations require a number of features which are not always available in
standard MD programmes. One useful feature is a variable time step. The highly non-
equilibrium nature of a cascade means that in a typical MD time step of 1 fs a 10 keV Fe
atom would move a distance of 0.35 A, which will result in a large change in the force and
possibly a failed simulation. To avoid these effects it is necessary to use a very short
simulation time step (possibly as low as 0.001 fs) in the initial stages of a high-energy
cascade simulation. As the simulation progresses the velocity of the PKA atoms falls
rapidly therefore progressively longer time steps can be employed. A variable time step
algorithm imposes to limit the distance moved during one-time step by identifying the
maximum velocity of the ensemble of atoms and choosing an appropriate time step.

Figure 4.2. Top view (a) and side view (b) of a crowdion cluster oriented in the <011>
direction in a body centred cubic metal.
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Note: The cluster has 170 interstitials (large orange spheres) and 140 vacancies (small blue spheres). Each
crowdion has one excess interstitial.
Source: Dufty, 2019.

A further consideration for cascade simulations is how the excess energy of the PKA atom
is dissipated during the simulation. Standard thermostats are inappropriate because they
calculate the temperature from the average velocity of the atoms. The average velocity can
be extremely high in the early stages of a simulation therefore the excess energy will be
rapidly removed by the thermostat and the cascade will be quenched. There are two
alternatives: either the total energy is conserved (using a constant energy NVE simulation),
which will result in a temperature rise as the PKA energy dissipates through the cell, or the
excess energy is removed via a boundary thermostat, which rescales the velocities of the
atoms that reside within a few A of the cell boundary. Both methods are commonly used.

As with all MD simulations, the ability of the interatomic potentials to reproduce the effect
of atomic interactions in real materials is crucial to the accuracy of the results. The
challenges associated with interatomic potentials will be discussed in the next section but
here we discuss an issue that concerns cascade simulations in particular — that of close
encounters between atoms due to the high velocity of some atoms. Conventional
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interatomic potentials are highly inaccurate at close interatomic separations as they use near
equilibrium conditions for fitting procedures. For cascade simulations it is necessary to
modify the short-range interaction potential to give a more realistic description of forces at
close separations and this is achieved by replacing the chosen potential with a screened
Coulomb potential, known as the Ziegler-Biersack-Littmark (ZBL) potential (V(r);
equations (7)-(9), at close separations (Biersack and Ziegler 1982).
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Here r is the interatomic separation, ao is the Bohr radius and Z; and Z, are the atomic
numbers of the interacting atoms. The ZBL potential is joined to the standard potential by
a spline function to ensure that the potential, and its derivatives, are continuous.

4.2.3. Results

Metals

MD has been an invaluable tool for studying radiation damage in metals since the
publication of the classic paper by Gibson et al. (1960). Early simulations were restricted
to small simulation cells and, consequently, low PKA energies. Nevertheless, interesting
and important processes such as channelling, where atoms travel long distances between
lattice planes, and replacement collision sequences (RCS) were identified. In an RCS, a
moving atom makes a direct collision with a neighbouring atom along a close packed
crystallographic direction. The initial atom occupies the neighbouring site and sets the
neighbour in motion along the same direction so the sequence is repeated until the energy
is dissipated. Such sequences are effective mechanisms for generating well separated
vacancy-interstitial pairs with relatively low energy radiation events.

As computer power increased and the accuracy of interatomic potentials improved, the
power of cascade simulations increased dramatically. The relationship between the number
of Frenkel pairs and the PKA energy was established for several metals and compared to
the NRT model (see, for example, de la Rubia, 1996; Stoller et al., 1996, 1997; Stoller,
2012). The structures of defect clusters created by high-energy radiation damage were
identified. Dislocation loops, formed by the collapse of interstitial clusters, were observed
and stacking fault tetrahedra were observed in face centred cubic (fcc) metals. The
formation of defect clusters by radiation damage makes a significant contribution to the
change in mechanical properties as these clusters may be more or less mobile than isolated
defects. Vacancy clusters may also be nucleation sites for bubbles, as they act as trapping
sites for gases created by transmutation reactions. Defect clusters may contribute to
radiation embrittlement because they act as obstacles to dislocation motion. Indeed, the
barrier strength of different types of defect cluster, a parameter that is required for
dislocation dynamics simulations, can be calculated using molecular dynamics. Swelling,
which occurs due to the differential volume relaxation between vacancies, can also be
calculated using MD simulations.
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Ceramics

Ceramic materials are employed for a wide range of nuclear applications, including nuclear
fuel and encapsulation materials for nuclear waste disposal. MD has made significant
contributions to the understanding of the fundamental processes in these materials and the
radiation effects and issues are generally quite different than those in metals. Embrittlement
is not a concern, as ceramics are intrinsically brittle, but swelling can be problem as the
resulting internal stresses may cause cracking. Amorphisation occurs readily in some
ceramic materials and this has been investigated using cascade simulations. The degree of
covalency has been identified as having a strong influence on the susceptibility of ceramic
materials to amorphisation (Trachenko, 2006). An example of an amorphised region of
zircon, formed by a 30 keV U PKA cascade simulation is shown in Figure 4.3.
(Devanathan, 2009). The complex crystal structures of many nuclear ceramics means that
a rich variety of possible defects structures are possible and MD simulations can help to
characterise these defects (Zinkle et al., 2002).

Figure 4.3. An amorphised region of zircon, formed by a 30 keV U PKA cascade simulation
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4.3. Limitations/challenges

4.3.1. Simulation size

The PKA energy that can be modelled by MD depends on the number of atoms in the
simulation cell as a sufficiently large cell must be employed to avoid self-interaction
effects. The PKA, and any subcascades it creates, must be confined within the simulation
cell. The energy deposited in the cell by the cascade event thermalises by atomic collisions
and diffuses to the boundaries of the simulation cell, where it can re-enter the cell through
the periodic boundary and affect the results. A boundary thermostat, which dissipates
energy in the outer layers of the simulation cell, inhibits energy diffusion across the
periodic boundary and permits smaller simulation cells to be used. As a rough guide, around
5 -10 x10* atoms are required per keV of PKA energy but this number depends, to some
extent, on the material being modelled. Recent simulations of 0.5 MeV cascades in Fe used
5x10% atoms in the simulation cell and were performed on 6x10* parallel processors
(Zarkadoula et al., 2013). These simulations are particularly relevant to fusion technology
as 0.5 MeV is close to the average recoil energy from a 14.1 MeV neutron, produced by
deuterium-tritium fusion, in Fe.
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4.3.2. Interatomic potentials

As discussed in the introduction, the results obtained from any MD simulation are only as
reliable as the interatomic potential employed. For cascade simulations it is important that
the potentials reproduce the melting temperature and thermal expansion coefficient in order
to obtain a realistic response of the material to the large energy density associated with the
radiation event. The displacement energies and defect properties (energies and mobilities)
are also very important as these will influence the number of defects produced and the
degree of defect clustering and annihilation. The importance of steel, both ferritic and
austenitic, as a structural material for both fission and fusion reactors has led to the
development of many interatomic potentials for iron and detailed comparisons between the
results obtained from cascades using different potentials (Becquart et al., 2000; Malerba
2006; Terentev et al., 2006; Malerba 2010). The conclusions from these studies were that
the number of residual defects produced was largely potential independent, at least for the
most recent potentials that focused on fitting parameters that are relevant to radiation
damage. However, details of the damage formation and, in particular, the fraction of defects
that formed part of clusters did depend on the choice of potentials. Even the method by
which the equilibrium potential was joined to the high-energy ZBL potential seemed to
affect the details of the cascade evolution.

4.3.3. Electronic effects

Another concern about cascade simulations is that the electrons, and the effects they have
on damage production, are largely neglected. In effect, the electronic degrees of freedom
are integrated out of the problem and included only at the level of the interatomic potentials.
However, an atom moving through a material loses energy via both nuclear collisions,
which are described well by MD, and inelastic collisions with electrons. A particular
example of the relative stopping power (the energy loss per unit distance) for an Fe atom
moving in an Fe lattice, calculated using the SRIM code, is shown in Figure 4.4. It is clear
from the figure that nuclear loss dominates at low energies but inelastic (electronic) losses
increase as the energy of the moving atom increases.
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Figure 4.4. Plots of the variation of electronic and nuclear stopping powers for an Fe ion
moving in Fe
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Source: Dufty, 2019.

The energy loss resulting from inelastic collisions in metals is often included as a friction
term that operates above some cutoff velocity (Nordlund et al., 1998). This, however, does
not take account of what happens to the energy that is deposited in the electrons. For weak
coupling between the lattice and the electrons, and a high electronic thermal conductivity,
the energy is transported rapidly from the cascade region and it should not affect the
residual damage (Flynn, Averbach, 1988, Finnis et al., 1991). However, if the coupling
between the lattice and the electrons is strong and the electronic thermal conductivity is
low, the electronic energy can be confined close to the cascade for sufficient time to be
redistributed back to the lattice. In this case, the residual defect number can either be
enhanced or reduced depending on whether the electronic effects quench the cascade or
contribute to defect annealing. This effect has been demonstrated (Rutherford, Duffy, 2007)
using a methodology that couples the effective electronic temperature to an MD simulation
of the lattice (Dufty, Rutherford, 2007). A comprehensive review of the electronic effects
in radiation damage has been produced by Race et al., (2010) and the introduction of these
effects in radiation damage simulations is reviewed by Darkins and Duffy (2018).

The effects of excited electrons are even more significant in band gap materials than they
are in metals. Cations in some metal oxides, including UQO,, exist in a number of different
charge states. Electrons excited to the conduction band by radiation, and the corresponding
holes, become mobile and thus they may get trapped at lattice defects, possibly created by
other damage events. Trapped electrons will substantially modify the defect’s conformation
and mobility. Figure 4.5. shows the calculated relaxed conformation of an O interstitial in
MgO with a net charge of -2e, -1e and 0. The O interstitial was found to have a very low
(~0.06 eV) migration barrier, which suggests that the interstitial with one trapped hole will
be extremely mobile (Mulroue, Duffy 2011). As the defect mobility dominates the
microstructure evolution, the electronic defects will have a strong influence on the evolving
material properties. Electrons, holes and excitons can also distort the lattice to such an
extent that they become trapped by their own distortion field (self-trapped) and the decay
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of these self-trapped carriers can result in energy redeposition to the lattice, or even defect
formation (Shluger, Stoneham 1993). Thus, it is clear that modelling radiation damage in
band gap materials using cascade simulations and classical potentials neglects several
effects that could strongly influence the results (Klaumiinzer, 2006; Duffy et al., 2012).

Figure 4.5. The relaxed defect configuration for oxygen interstitials in MgQO.
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Note: The interstitials have a net charge of a) -2e (cell centre configuration) b) -1e (<011> oriented dumb-bell)
and ¢) 0 (<111> oriented dumb-bell).
Source: Dufty, 2019.

4.4. Future developments

The future requirements for MD simulations of radiation damage follow from the
limitations discussed in the previous section. Advances in computer power and the
development of more efficient algorithms, particularly for reading/writing large datasets,
will extend the range of PKA energies that can be modelled, although simulations with
PKA energies higher than 500 keV are unlikely to become routine in the near future.
Interatomic potential development and evaluation is an area where much effort is required.
The KIM (Knowledge base of Interatomic Models) project (Tadmor et al., 2011) should
make an important contribution to interatomic potential development and evaluation in the
next few years. Much more needs to be done on developing potentials for real engineering
alloys although past experience in the development of potentials for Fe/Cr alloys (Olsson
et al., 2005; Caro et al., 2005), that aim to describe the observed phase behaviour, reveals
just how challenging this can be. It is important that the phase behaviour is correctly
described as radiation enhanced diffusion can accelerate the precipitation of stable
intermetallic particles. Radiation enhanced segregation and depletion at grain boundaries
are important effects that rely on accurate mixed potentials. Oxide dispersion strengthened
(ODS) steel offer a potential solution to the low high temperature strength of conventional
ferritic steel but modelling radiation effects in ODS steel will require potentials for the
oxide (YTiO;3) nanoparticles and, even more challenging, the interaction between the oxide
and the host metal. It is clear there is much yet to be done in the field of potential
development before the full potential of modelling radiation effects using MD can be
realised.

A further area where MD could make significant contributions is in the examination of the
effect of microstructure on radiation damage. There is evidence from cascade simulations
in nanocrystalline metals (Samaras et al., 2002) and from temperature accelerated dynamics
(Bai et al.,, 2010) that grain boundaries enhance defect recombination and there is
speculation that the trapping of defects at oxide metal interfaces in ODS steel will also
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enhance defect recombination and reduce radiation damage. However, there has been only
a limited number of simulations to date and a more comprehensive study of the effect of
grain boundaries and other interfaces would help towards the extrapolation to engineering
materials.

A related, but just as significant, issue is the effect of radiation damage on the
microstructure of materials. This goes beyond the production of defect clusters and bubbles
that contribute to embrittlement by interacting with dislocations. It includes effects such as
precipitation of stable phase particles from supersaturated solution and the dissolution of
metastable phase particles. Alloy steels contain a wide range of elements to enhance
properties and aid processing but these additives can form a number of intermetallic phases
that may precipitate with the help of radiation enhanced diffusion. The microstructure
evolution in nuclear fuel is an extreme example of how radiation, fission gas production
and high thermal gradients can transform the microstructure of a ceramic material.

As discussed above, the electronic effects associated with radiation damage are not
included in classical MD simulations. The topic attracted attention around 20 years ago but
it has largely been neglected since, although there has recently been revived interest in the
topic. The development of ab-initio techniques, such as time-dependent density functional
theory and time-dependent tight binding (Mason et al., 2007) , has helped in the
understanding of excited states, but how such excitations affect the radiation damge on the
timescales associated with MD has largely been unexplored. This field is now ripe for
development.

Validation of a computational model by comparison with experimental measurements is
essential for maximum confidence in the results but this is generally challenging due to the
widely different length and time scales involved. The situation is improving due to the
development of in situ transmission electron microscopy where samples can be observed
by TEM during ion bombardment and this enables the development of the microstructure
to be directly observed. The JANNUS multibeam experimental facility (Serruys et al.,
2009) is one example of a facility that is devoted to promoting interaction between
modelling and experiment.

In summary, the time and length scales that can be studied using classical MD simulations
make it suitable for the calculation of the primary damage produced by an irradiation event.
However, more research and development are required, particularly in areas of interatomic
potentials and the description of electronic effects, to improve the predictive nature of the
models.
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5. Atomistic simulation methods for long-time dynamics in materials for
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5.1. Introduction

Many important processes in materials systems are intrinsically atomistic in nature but
involve time scales that span many orders of magnitude, thus exceeding what can be
directly simulated using molecular dynamics (MD). This is especially true for materials in
nuclear energy applications, in which defects created by collision cascades on the
femtosecond-picosecond time scale cause microstructural changes that continue to evolve
for years, in many cases leading to failure of the material. In this chapter, we review
atomistic methods for reaching long-time scales in systems like these. These accelerated
MD and adaptive kinetic Monte Carlo (aKMC) methods exploit the infrequent-event nature
of the diffusive events that comprise this long-time evolution. In favourable cases, these
methods can predict state-to-state evolution that approximates what would result from an
extremely long molecular dynamics simulation, and the most accurate of the methods can
do this to arbitrary accuracy. We present some examples of applications of these methods
to problems relevant to nuclear energy materials, the subject of this volume. We then
discuss situations that are difficult for the methods, causing them to be less efficient, and
we conclude with a short list of the most pressing issues in the further development of these
approaches to make them as powerful and predictive as possible for realistic problems.

The evolution of radiation damage in materials spans many time and length scales. While
the initial damage production occurs on the atomic scale over picoseconds via collision
cascades, the damage ultimately manifests itself macroscopically, often in the form of
swelling or cracking, which can take years to develop. There is a wide range of phenomena
that bridge these two extremes, including defect diffusion, annihilation and aggregation,
the formation of interstitial loops and voids, and the development of a more complex
microstructure. As a result, no one simulation method can be employed to study the
problem of radiation damage on all relevant time and length scales. Rather, a combination
of many techniques must be used to address this problem. MD simulation, in which atom
positions are evolved by integrating the classical equations of motion in time, can probe
timescales of ps to ns, making it ideal for studying collision cascades. The initial, post-
thermal-spike damage produced in the collision cascade can be directly simulated using
MD. However, once that damage has been formed, diffusion and subsequent annihilation
or aggregation of those defects can occur on much longer time scales, perhaps even seconds
or beyond, depending on the conditions (temperature, pressure, etc.) and the material. Such
phenomena must be accounted for to accurately predict the formation and evolution of
larger scale features such as interstitial dislocation loops and vacancy voids. These are
important in the evolving microstructure, leading to the macroscopic response to radiation
damage such as swelling and cracking. While at some larger time and length scale, the
material evolution can be described by higher-level models, for much longer times than the
sub-microsecond time scale that direct MD can reach, full atomistic simulation is necessary
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to understand the complex and often competing phenomena that must be accounted for and
quantified to parameterise these higher-level models.

In this chapter we discuss some methods developed over the past 20 years for reaching
these longer time scales without sacrificing atomistic detail or dynamical accuracy. These
long-time methods work for infrequent-event systems, in which the system spends a long
period of time in a given state (typically corresponding to a particular basin of the potential
energy surface), occasionally making a transition to a neighbouring state (e.g. through the
motion of a defect). These transitions are usually activated processes, whose rate is limited
by a potential energy barrier. The characteristic that the state residence time is much longer
than the time duration of the transition event (typically 1 ps) is what defines these as
infrequent-event systems.

These long-time methods are most valuable for treating what we often term “complex
infrequent event systems," and many if not most radiation damage systems fall into this
class. These are characterised by an interplay of reaction pathways with different activation
energies (and hence different temperature dependences), so that one cannot simply raise
the temperature of the system to accelerate the dynamics in a meaningful way, and
transition pathways that are complicated enough that many important pathways might be
omitted if one resorts to a simple model (e.g. lattice-based kinetic Monte Carlo (KMC) with
a pre-calculated rate catalogue). The point of these long-time-dynamics methods is that
they do not make assumptions about transition pathways or the nature of the states,
assumptions that would limit their accuracy. Consequently, these methods give dynamical
evolution from state to state that is roughly the same as that of a very long direct-MD
simulation. For the most accurate of these methods, parallel replica dynamics, the state-to-
state evolution can be made arbitrarily accurate.

These methods generally fall into two classes: accelerated molecular dynamics (AMD)
methods and aKMC approaches. In the AMD approach, the key concept is to let the
trajectory find its own way out of the current state of the system — as a trajectory in a
standard MD simulation would — but to coax it into to finding this escape pathway more
quickly. The methods in this class are parallel replica dynamics (Section 5.3)
hyperdynamics (Section 5.4), and temperature accelerated dynamics (Section 5.5). The
aKMC approach, described in Section 5.6, is a generalisation of standard KMC. The goal
in aKMC is to find all possible, or all relevant, escape pathways from the current state of
the system, typically by performing a set of saddle-point searches. One of these pathways
is then selected to move the system to the next state. In Section 5.7. we briefly describe a
very recently developed method in this long-time simulation class, x-dynamics.

After presentation of the methods and a review of some recent advances in Sections 5.3.
through 5.7., in Section 5.8. we give some examples of applications of these methods to
problems relevant for nuclear materials. We note that some of the method presentation
draws from another review we wrote recently (Perez et al., 2009). We then conclude in
Sections 5.9. and 5.10. with a discussion of the current limitations of these methods and the
areas in which we believe further development is needed to make the methods maximally
useful for simulating atomistic evolution in nuclear energy materials.

Due to space constraints, the descriptions of the methods that follow omit many
foundational details. The interested reader is encouraged to consult the original references
(e.g. Voter, 1998, 1997a, 1997b; Serensen, Voter, 2000; Henkelman, Jonsson, 2001, Lu,
Makarov, Henkelman, 2010) or more in-depth review articles (e.g. Uberuaga et al., 2005a;
Voter, 2006) for a more thorough treatment. The reader can also find some more discussion
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of the relative merits of the methods and how to choose the best method for a particular
problem in Uberuaga and Voter (2006).

Finally, we note that the manuscript for this chapter was prepared in 2013, but not published
until 2020. We have left the main body of the chapter largely unchanged, as we believe it
still represents a valuable introduction to the methods and review of how they can be
applied to nuclear-energy materials. We have added a short section near the end of the
chapter that describes the important developments in the past five years.

5.2. Parallel replica dynamics

Parallel replica dynamics (ParRep) is the most general and accurate of the AMD methods.
It assumes only that the system will escape from the current state in a way that obeys first-
order kinetics; i.e. for any trajectory that has been in a state long enough to have lost its
memory of how it entered the state (longer than the correlation time .., the probability
distribution function for the time of the next escape from that state is given by

p(t) = ke ™, 1)

where £ is the rate constant for escape from the state. ParRep allows for the temporal
parallelisation of the state-to-state dynamics of such a system on M processors. This is to
be contrasted with standard parallelisations of MD simulations in which spatial
decomposition schemes are used.

We briefly sketch the derivation here. For a state in which the total rate of escape is £,
simultaneously explored on M processors, the effective escape rate for the first escape of
any replica is Mk. If the simulation time accumulated on one processor is ¢, the total time
on the M processors will then be £, = Mt. Thus, using a simple change of variable, p(7)
can be written as

p(t)dt = Mke Mkt (2a)
= ke *tsumdt, (2b)
= p(tsum)dtsym » (2¢)

implying that the probability to leave the state per unit MD time is the same whether that
time is accumulated on one or M processors. While this sketched derivation applies for
processors of equal speed, we emphasise that the same conclusion can be shown to be valid
even if the processors run at different speeds and/or with time-varying speeds (Voter,
1998).

Figure 5.1. shows a schematic of the algorithm. Starting with a system in a particular state,
it is replicated on each of the M processors. Each replica, after an independent random
momentum assignment, is evolved forward for a time Atzepn > 7o to eliminate correlations
between replicas, a stage referred to as dephasing. After dephasing, each processor carries
out an independent MD trajectory, typically performed at a constant temperature. Together,
the trajectories explore phase space within the particular basin M times faster than a single
trajectory would. Once a transition is detected on any processor, all processors are stopped.
The simulation clock is then advanced by #u.m, the accumulated trajectory time summed
over all replicas until the first transition occurred.
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Figure 5.1. Schematic illustration of the parallel replica dynamics method

Note: The four steps, described in the text, are (A) replication of the system into M copies, (B) dephasing of
the replicas, (C) propagation of independent trajectories until a transition is detected in any of the replicas, and
(D) brief continuation of the transitioning trajectory to allow for correlated events such as recrossings or follow-
on transitions to other states. The resulting configuration is then replicated, beginning the process again.
Source: Motalenti and German, 2002

ParRep also correctly accounts for correlated dynamical events (Chandler, 1978; Voter
Doll, 1985), i.e. there is no requirement that the system obeys transition state theory
(Marcelin, 1915; Wigner, 1932; Eyring, 1935; Pechukas, 1981), unlike the other AMD
methods (or aKMC). This is accomplished by allowing the trajectory that made the
transition to continue for a further amount of time Atsepn > 7eorr, during which recrossings
or follow-on events may occur. The simulation clock is then advanced by At the new
state is replicated on all processors, and the whole process is repeated.

The computational efficiency of the method is limited by both the dephasing stage, which
does not advance the system clock, and the correlated event stage, during which only one
processor accumulates time. (This is illustrated schematically in Figure 5.1., where dashed
line trajectories advance the simulation clock but dotted line trajectories do not.) Thus, the
overall efficiency will be high when

Trx n

M

5
> Atgepn + Acory , ®)

where 7., = 1/k.

An extension to ParRep allows the method to be applied to driven systems (Uberuaga,
Stuart, Voter, 2007). To result in valid dynamics, the processors must run at the same speed,
and the drive rate must be slow enough that at any given time the rates for the different
escape pathways in the system depend only on the instantaneous configuration of the
system.

While the derivation of the ParRep method does not impose a particular definition of a
“state” of the system, the operational definition often used in practice corresponds to a
single basin of the potential energy surface, i.e. a state is taken to be the ensemble of points
of configuration space that converge to the same fixed point under a local minimisation of
the energy of the system (e.g. using a steepest-descent algorithm). An exponential
distribution of escape times is then obtained if the typical timescale for a transition out of
the state is long compared to the characteristic vibrational period of the system around that
fixed point. While this definition has the virtue of being conceptually and computationally
simple, it limits the range of possible applications to systems where the basins are deep
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enough (relative to kzT) and well separated from each other and leaves many other, more
complex, systems out of reach. This limitation can sometimes be overcome by a more
general definition of a state. For example, in the case of pyrolysis of hexadecane, it was
shown that states could be defined as the ensemble of all configuration space points that
share the same network of covalent bonds (Kum et al., 2004). In that case, these
“superstates” contain a large number of simple energy basins of the potential energy
surface, each corresponding to a different conformation of the molecular backbone. There,
the method exploited the separation of timescale between the rapid changes of dihedral
angles of the backbone (intrasuperstate transitions) and the slow covalent bond breaking
process (intersuperstate transitions) rather than between the vibrational timescale and that
of sampling of the different dihedral angles. This enables one to ignore the “irrelevant” fast
transitions that would demand incessant dephasing and decorrelation and concentrate
directly on the real kinetic bottlenecks. This approach has been applied to other cases as
well, such as surface diffusion kinetics while the surface is in contact with a liquid phase
(with its huge number of shallow states) (Perez et al., 2009) and diffusion of heteroepitaxial
surface clusters in metallic systems (Uche et al., 2009). This approach was recently
mathematically formalised (Le Bris et al., 2012), showing that the ParRep procedure gives
correct results for arbitrary state definitions, provided the dephasing and decorrelation
times are made long enough.

We will give specific examples below of the application of ParRep in situations relevant to
nuclear energy materials, but we mention here that ParRep dynamics has been successfully
applied to a number of varied problems, including the diffusion of H» in crystalline
Ceo (Uberuanga et al., 2003a), the pyrolysis of hexadecane (Kum et al., 2004), the diffusion
of defects in plutonium (Uberuanga et al., 2003b), the transformation of voids into stacking
fault tetrahedra in face centred cubic (fcc) metals (Uberuaga et al., 2007a), the stretching
of carbon nanotubes (Uberuaga, Stuart, Voter, 2007), grain boundary sliding in Cu (Mishin
et al., 2007), friction-force microscopy (Martini et al., 2009; Dong et al., 2011), the
diffusion of Li through a polymer matrix (Duan et al., 2005), the fracture process in metals
(Warner, Curtin, Qu, 2007), and the folding dynamics of small proteins (Zagrovic, Sorin,
Pande, 2001). As parallel-computing environments become even more common, ParRep
will become an increasingly important tool for reaching long-time scales in complex
infrequent-event systems.

5.3. Hyperdynamics

Another way to accelerate the state-to-state evolution of an infrequent-event system is to
construct an auxiliary system in such a way that the escape dynamics of the latter are faster
than those of the former, while enforcing that one maps onto the other by a suitable
renormalisation of time. Hyperdynamics (Voter, 1997a) realises this objective by building
on the concept of importance sampling (Valleau, Whittington, 1977; Berne, Ciccotti,
Coker, 1998) and extending it into the time domain. In this approach, the auxiliary system
is obtained by adding a non-negative bias potential AVy(r) to the potential of the original
system V(r) so that, effectively, the height of the barriers between different states is
reduced, as schematically shown in Figure 5.2. The relationship between the dynamical
evolution of the original and biased systems is recovered using transition state theory
(TST). According to TST, the rate of escape of the original system out of a given state 4 is
given by

kiST =< |va]64(1) >4 (6)
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where d4(r) is a Dirac delta function centred on the dividing surface between state 4 and
the neighbouring state(s) (here the hypersurface is at » = 0), v,4 is the velocity normal to it
and (P), is the canonical ensemble average of a quantity P for a system confined to state
A. By standard importance sampling manipulations, the last equation can be recast in a
form where the averages are obtained on the biased potential instead. We find:

< |val8a(r)ePrVs™ >,

kTST —
< eBAVp(T) >4,

A->

: ()

where f = 1/ksT and kg is the Boltzmann constant. If we impose the condition that the bias
potential must vanish at the dividing surface, the last equation can be rewritten as

< |valba(r) >4,

kTST _ .
< eBAVH(T) >4,

A->

®)

This result is very appealing since the relative rates of escapes from A4 to other states is
invariant under the addition of the bias potential, i.e.

TST TST
kTST = ,TST *
Ap—C A-C

Thus, the state-to-state dynamics on the biased potential is equivalent to that on the original
potential as long as the time in each state is renormalised to account for the uniform relative
increase of all the rates introduced by the biased potential. This rescaling of time is obtained
by multiplying the MD timestep Atup by the inverse Boltzmann factor for the bias potential,
so that » MD timesteps on the biased potential are equivalent to an elapsed time of

n
thyper = Z Aty peBoVolr(t)] (10)
=

on the original potential. Even though the speedup is typically different for each state, this
definition of the hypertime gives an ongoing estimate of the accelerated time with statistical
error bars that are unbiased, and in the long-time limit (e.g. after many transitions) it
converges on the exact value with vanishing relative error. The speedup for escape from
state 4 is given by the average boost factor B,

thyper

Bhyper = =< e[j’AV(r) >Ab’ (1 1)

MD

and the overall computational boost is this boost divided by the relative extra cost of
calculating the bias potential and associated forces.

If both the original and biased systems obey TST and the bias potential is zero on all the
ridgetops, so that the above derivation holds, hyperdynamics can provide considerable,
accurate time acceleration compared to direct-MD simulations. It has been successfully
applied to a variety of systems, including desorption of organic molecules from graphitic
substrates (Beker, Mignogna, Fichthorn, 2009), surface diffusion of metallic clusters
(Voter, 1997b), heteroepitaxial growth (Miron, Fichthorn, 2005), microscopic studies of
sliding friction (Kim, Falk, 2010, 2011), plastic response of compressed nanopillars (Hara,
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Li, 2010) and the dynamics of biomolecules (Hamelberg, Mongag, McCammon, 2004;
Xin, Doshi, Hamelberg, 2010).

Figure 5.2. Schematic illustration of the hyperdynamics method

A bias potential (AV(r)), is added to the original potential (V(r), solid line). Provided that AV(r) meets certain

conditions, primarily that it be zero at the dividing surfaces between states, a trajectory on the biased potential

surface (V(r)+AV(r), dashed line) escapes more rapidly from each state without corrupting the relative escape
probabilities. The accelerated time is estimated as the simulation proceeds.

Source: Uberuaga et al., 2019

In practice, the applicability of hyperdynamics is limited by the availability of bias
potentials that meet the necessary requirements and have reasonable computational
overhead. The construction of bias potentials that are valid, efficient and transferable
remains a challenge and a subject of active research. A review of bias potential forms as of
2002, such as the Hessian-based bias (Vote, 1997b) and the flat bias (Steiner, Genilloud,
Wilkins, 1998), can be found in Voter, Montalenti and Germann (2002).

An important advance on this front was taken by Miron and Fichthorn, with the
introduction of their “bond-boost” bias potential (2003). As the name suggests, the bond-
boost bias potential is composed of pairwise terms that tend to soften the bonds between
atoms. The key assumption here is that transitions between states will involve the formation
or breaking of some bond so that the proximity to a transition state will be signalled by an
unusually large distortion of a bond. If the overall bias potential is then designed to vanish
when any bond in the system distorts by more than some critical amount (say by more than
20% of its equilibrium length), then it should be possible to safely turn off the bias before
a dividing surface is reached. While this approach relies on the assumption that bond
lengths alone are reliable indicators of the distance to a potential energy ridge, it provides
a very flexible and efficient way to carry out hyperdynamics.

The flexibility of this bond-boost approach can be further exploited to make hyperdynamics
more tolerant to low barriers. Indeed, the presence of low barriers is detrimental to the
performance of hyperdynamics because it will frequently cause the bias potential to vanish.
In cases where appropriate “superstates” can be defined, it is possible to leave the bias
potential turned on when the system crosses intrasuperstate barriers without affecting the
accuracy of the simulation. This power of this promising type of “bridging” approach,
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proposed by Miron and Fichthorn (2004), has been demonstrated for deposition of Co on
Cu(100) (Miron, Fitchorn, 2005).

Hamelberg et al (2004) have developed a variation on Steiner’s flat bias (Steiner,
Genilloud, Wilkins, 1998) that is effective for accelerating the dynamics in biomolecules.
The rugged landscape makes these very challenging systems for accelerated dynamics, and
this bias is typically applied aggressively enough that the bias potential is not zero at all the
key barriers. Hamelberg and co-workers (Xin, Doshi, Hamelberg, 2010) have recently
developed a way to extract the correct rate constant for a known pathway by appealing to
Kramers rate theory after performing multiple hyperdynamics simulations with bias
potentials that are non-zero at the dividing surface.

Hara and Li (2010) developed a bias potential to accelerate the nucleation of dislocations
in a system under stress, by constructing a form that is sensitive to the local shear distortion,
turning off when it reaches a critical value. Although this mechanism-specific approach
runs the risk of slowing the rates for processes that the tailored bias is insensitive to
(because the bias may be non-zero at the dividing surfaces for these other processes), this
can be a powerful approach. They achieved boost factors greater than 10'° in simulations
of compressed nanopillars. Kim and Falk (2010, 2011) have developed bias potentials
suitable for the study of microscopic sliding friction, and have shown how in a driven
system, hyperdynamics can be effectively combined with parallel computation by
speculatively simulating future system configurations. Fichthorn and co-workers (2009)
have demonstrated that hyperdynamics can be carried out with electronic-structure-based
forces, although the much greater expense of electronic structure calculations compared to
empirical potentials means that with present-day computers and electronic structure
methods, this is barely viable for most systems.

Chen and Horing (2007) have proposed a variation on the hyperdynamics approach, path
integral hyperdynamics (PIHD), which releases the requirements on the bias potential. The
bias is allowed to be non-zero at the dividing surfaces, and TST-violating correlated events
are allowed as well. These effects are properly accounted by appealing to a Langevin path
integral formalism to define a weight for each trajectory. As such, the calculation of the
rate constant for a given rare event requires multiple simulations, in contrast to the standard
hyperdynamics where a single trajectory is representative of the long-time evolution.
Recently, this PIHD approach has been shown to provide an effective strategy in a study
of diffusion in a periodic potential, including the case of a time-dependent forcing (Ikonen
etal., 2011), and in a study of barrier crossing by self-avoiding polymer chains (Shin et al.,
2010).

5.4. Temperature accelerated dynamics

One natural way of speeding up the dynamics of a system is to simply raise the temperature.
However, while the rates of processes will increase with higher temperatures, the relative
probabilities of different events occurring will be different than at the original temperature
of interest. Correcting for this reordering is the basic idea behind temperature accelerated
dynamics (TAD) (Serensen, Voter, 2000). In TAD, transitions are sped up by increasing
the temperature to some 7T};g, but transitions that should not have occurred at the original
temperature 7}, are filtered out. The TAD method assumes that the system obeys harmonic
TST (Vineyard, 1957), in which the transition pathway is associated with a saddle point on
the energy landscape, and the rate constant has a simple Arrhenius temperature dependence
with a fixed prefactor. As a result, TAD is more approximate than the other AMD methods.
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However, for many applications, especially in solids, this additional approximation is
acceptable.

In each basin, the system is evolved at Thi.,. When a transition is detected, the saddle point
for that transition is found. The trajectory is then reflected back into the basin and
continued. This procedure is referred to as “basin constrained molecular dynamics”
(BCMD). During the BCMD, a list of escape paths and escape times at 7} for each
pathway is generated. Assuming that harmonic TST holds, and knowing the saddle point
energy for the transition, we can then extrapolate each escape time observed at Tg to
obtain a corresponding escape time at 7j,. This extrapolation, which does not require
knowing the preexponential factor, can be illustrated graphically on an Arrhenius-style plot
(In(1/¢) vs. 1/T), as shown in Figure 5.3. The time for each event seen at Ty, extrapolated
to Tiow 18

thW o thigheEa(ﬁlow_Bhigh) , (12)

where f = 1/kgT and E, is the activation energy.

As the BCMD is continued, a new shorter-time event may be discovered. With the
additional assumption that there is a minimum preexponential factor, v,ui», which bounds
from below all the preexponential factors in the system, we can define a time at which the
BCMD trajectory can be stopped. This time has the property that the probability any
transition observed later would replace the first transition at 7j, is less than J, an
uncertainty set by the user. This “stop” time is given by

In(1/9) (Vmintlow,short)
In(1/6) ’

(13)

thi h,sto
g P Vmin
where tiow, shore 18 the shortest transition time at 7j,,. When this stop time is reached, the
system clock is advanced by #ow, shorr, and the corresponding transition is accepted. The TAD
procedure is then started again in the new basin. Thus, in TAD, two parameters govern the
accuracy of the simulation: ¢ and V.

The average boost in TAD can be dramatic when barriers are high and Thign/Tiow 1s large.
However, as TAD relies upon harmonic TST for validity, any anharmonicity error at Ty
will lead to inaccuracy in the predicted dynamics. This anharmonicity error can be
controlled by choosing a Tg that is not too high.

A number of advances have led to increased efficiency in particular systems. “Synthetic”
mode (Serensen, Voter, 2000), a KMC treatment of low-barrier transitions, can
significantly improve the efficiency in cases where low-barrier events are repeated often.
Furthermore, if we know something about the minimum barrier to leave a given state, either
because we have visited the state before and have a lower bound on this minimum barrier
or because the minimum barrier is supplied a priori, we can accept a transition and leave
the state earlier than the time given by equation (13). See Montalenti and Voter (2002) for
details.

The AMD methods in general do not scale particularly well with system size, but Shim et
al. (2007, 2008) have recently shown how the TAD method can be spatially parallelis