REPORT OF THE EXPERT CONSULTATION ON SCIENTIFIC AND REGULATORY EVALUATION OF ORGANIC CHEMISTRY MECHANISM-BASED STRUCTURAL ALERTS FOR THE IDENTIFICATION OF PROTEIN-BINDING CHEMICALS

Series on Testing and Assessment
No. 139

20 October 2010, Oxford, United Kingdom

This document is only available in pdf format.

JT03304098

Document complet disponible sur OLIS dans son format d'origine
Complete document available on OLIS in its original format
REPORT OF THE EXPERT CONSULTATION ON SCIENTIFIC AND REGULATORY EVALUATION OF ORGANIC CHEMISTRY MECHANISM-BASED STRUCTURAL ALERTS FOR THE IDENTIFICATION OF PROTEIN BINDING CHEMICALS

INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS

A cooperative agreement among FAO, ILO, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD

Environment Directorate
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT
Paris 2011
Also published in the Series on Testing and Assessment:

No. 9, Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides during Agricultural Application (1997)

No. 12, Detailed Review Document on Classification Systems for Germ Cell Mutagenicity in OECD Member Countries (1998)

No. 15, Detailed Review Document on Classification Systems for Reproductive Toxicity in OECD Member Countries (1998)

No. 16, Detailed Review Document on Classification Systems for Skin Irritation/Corrosion in OECD Member Countries (1998)

No. 17, Environmental Exposure Assessment Strategies for Existing Industrial Chemicals in OECD Member Countries (1999)

No. 19, Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals used in Safety Evaluation (1999)

No. 25, Detailed Review Document on Hazard Classification Systems for Specifics Target Organ Systemic Toxicity Repeated Exposure in OECD Member Countries (2001)

No. 26, Revised Analysis of Responses Received from Member Countries to the Questionnaire on Regulatory Acute Toxicity Data Needs (2001)

No 27, Guidance Document on the Use of the Harmonised System for the Classification of Chemicals which are Hazardous for the Aquatic Environment (2001)

No 29, Guidance Document on Transformation/Dissolution of Metals and Metal Compounds in Aqueous Media (2001)

No 30, Detailed Review Document on Hazard Classification Systems for Mixtures (2001)

No. 32, Guidance Notes for Analysis and Evaluation of Repeat-Dose Toxicity Studies (2000)
No. 33, Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures (2001)

No. 35, Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies (2002)

No. 38, Detailed Background Review of the Uterotrophic Assay Summary of the Available Literature in Support of the Project of the OECD Task Force on Endocrine Disrupters Testing and Assessment (EDTA) to Standardise and Validate the Uterotrophic Assay (2003)

No. 39, Guidance Document on Acute Inhalation Toxicity Testing (in preparation)

No. 41, Detailed Review Document on Classification in OECD Member Countries of Substances and Mixtures which in Contact with Water Release Toxic Gases (2003)

No. 43, Guidance Document on Mammalian Reproductive Toxicity Testing and Assessment (2008)

No. 44, Description of Selected Key Generic Terms Used in Chemical Hazard/Risk Assessment (2003)

No. 48, New Chemical Assessment Comparisons and Implications for Work Sharing (2004)

No. 50, Report of the OECD/IPCSC Workshop on Toxicogenomics (2005)

No. 51, Approaches to Exposure Assessment in OECD Member Countries: Report from the Policy Dialogue on Exposure Assessment in June 2005 (2006)

No. 52, Comparison of emission estimation methods used in Pollutant Release and Transfer Registers (PRTRs) and Emission Scenario Documents (ESDs): Case study of pulp and paper and textile sectors (2006)

No. 57, Detailed Review Paper on Thyroid Hormone Disruption Assays (2006)

No. 60, Report of the Initial Work Towards the Validation of the 21-Day Fish Screening Assay for the Detection of Endocrine Active Substances (Phase 1A) (2006)
No. 61, Report of the Validation of the 21-Day Fish Screening Assay for the Detection of Endocrine Active Substances (Phase 1B) (2006)

No. 64, Guidance Document on Overview of Residue Chemistry Studies (2006)

No. 67, Additional data supporting the Test Guideline on the Uterotrophic Bioassay in rodents (2007)

No. 68, Summary Report of the Uterotrophic Bioassay Peer Review Panel, including Agreement of the Working Group of the National Coordinators of the Test Guidelines Programme on the follow up of this report (2006)

No. 70, Report on the Preparation of GHS Implementation by the OECD Countries (2007)

No. 71, Guidance Document on the Uterotrophic Bioassay - Procedure to Test for Antioestrogenicity (2007)

No. 79, Validation Report of the Full Life-cycle Test with the Harpacticoid Copepods Nitocra Spinipes and Amphiascus Tenuiremis and the Calanoid Copepod Acartia Tonsa - Phase 1 (2007)

No. 80, Guidance on Grouping of Chemicals (2007)

No. 82, Guidance Document on Amphibian Thyroid Histology (2007)

No. 84, Report on the Workshop on the Application of the GHS Classification Criteria to HPV Chemicals, 5-6 July Bern Switzerland (2007)

No.88, Workshop on Integrated Approaches to Testing and Assessment (2008)

No.89, Retrospective Performance Assessment of the Test Guideline 426 on Developmental Neurotoxicity (2008)

No.95, Detailed Review Paper on Fish Life-Cycle Tests (2008)

No.102, Guidance Document for using the OECD (Q)SAR Application Toolbox to Develop Chemical Categories According to the OECD Guidance on Grouping of Chemicals (2009)

No. 107, *Preservative treated wood to the environment for wood held in storage after treatment and for wooden commodities that are not cover and are not in contact with ground.* (2009)

No. 109, *Literature review on the 21-Day Fish Assay and the Fish Short-Term Reproduction Assay* (2009)

No. 110, *Report of the validation peer review for the weanling Hershberger Bioassay and agreement of the working of national coordinators of the test guidelines programme on the follow-up of this report* (2009)

No. 119, *Classification and Labelling of chemicals according to the UN Globally Harmonized System: Outcome of the Analysis of Classification of Selected Chemicals listed in Annex III of the Rotterdam Convention (2010)*

No. 120, *Explanatory Background Document to the OECD Draft Test Guideline on in vitro Skin Irritation Testing (2010)*

No. 121, *Detailed review paper (DRP) on Molluscs life-cycle Toxicity Testing (2010)*

No. 122, *Guidance Document on the determination of the Toxicity of a Test Chemical to the Dung Beetle Aphodius Constans (2010)*

No. 123, *Guidance Document on the Diagnosis of Endocrinerelated Histopathology in Fish Gonads (2010)*

No. 124, *Guidance for the Derivation of an Acute Reference Dose (2010)*

No. 125, *Guidance Document on Histopathology for Inhalation Toxicity Studies, Supporting TG 412 (Subacute Inhalation Toxicity: 28-Day) and TG 413 (Subchronic Inhalation Toxicity: 90-Day) (2010)*

No. 126, *Short Guidance on the Threshold approach for Acute Fish Toxicity (2010)*

No. 127, *Peer review report of the validation of the 21-day androgenised female stickleback screening assay (2010)*

No. 128, *Validation Report of the 21-day Androgenised Female Stickleback Screening Assay (2010)*

No.133, *Peer Review Report for the H295R Cell-Based Assay for Steroidogenesis (2010)*

No. 137, Explanatory Background Document to the OECD Test Guideline On In Vitro Skin Irritation Testing (2010)

© OECD 2011
Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, RIGHTS@oecd.org, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France
ABOUT THE OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 34 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in ten different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; and Safety of Manufactured Nanomaterials. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (www.oecd.org/ehs/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. UNDP is an observer. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This publication is available electronically, at no charge.

For this and many other Environment, Health and Safety publications, consult the OECD’s World Wide Web site (www.oecd.org/ehs/)

or contact:

OECD Environment Directorate, Environment, Health and Safety Division
2 rue André-Pascal
75775 Paris Cedex 16
France

Fax: (33-1) 44 30 61 80

E-mail: ehscont@oecd.org
FOREWORD

This document is a report of the expert consultation held on 20 October 2010 with the aim to evaluate a set of structural alerts for estimating covalent binding of chemicals with proteins. This consultation was held based on a key recommendation from the OECD Workshop on Structural Alerts for the OECD (Q)SAR Application Toolbox held in May 2008 [see ENV/JM/MONO(2009)4]. The resulting set of alerts will be implemented in version 2.0 of the OECD (Q)SAR Toolbox.

This document is published under the responsibility of the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology of the OECD.
Mechanistic Domain: Acylation
Mechanistic Alert: Direct Acylation Involving a Leaving Group

A number of structural alerts have been suggested to be capable of directly acylating proteins resulting in adduct formation. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Acyl halides (including benzyl and carbamoyl derivatives)

\[
\begin{array}{c}
Y \\
\hline \\
R \\
\hline \\
X
\end{array}
\]

R = any carbon, nitrogen

X (leaving group) = halogen, azide

Y = oxygen, sulphur

Mechanism

An acylation mechanism involving nucleophilic attack at the carbonyl (or sulfinyl) has been suggested as being responsible for the activity of these chemicals (Enoch et al 2009, Gerner et al 2004, Hulzebos et al 2005, Roberts et al 2007).

\[
\begin{array}{c}
\text{Nu} \\
\hline \\
\text{Cl} \\
\hline \\
\text{Nu} \\
\hline \\
\text{O} \\
\hline \\
\text{Nu} \\
\hline \\
\text{HCl}
\end{array}
\]

Figure 1: Acylation mechanism for acyl halides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Acetates

\[
\begin{array}{c}
Y \\
\hline \\
R_1 \\
\hline \\
X \\
\hline \\
R_2
\end{array}
\]

R1 = any carbon or hydrogen

R2 = aromatic, heteroaromatic, heterocyclic, alkene, alkyne
R1 and R2 can be part of a ring e.g. dihydro-courmarin.

Y = oxygen or sulphur
X = oxygen (acetates), sulphur (thioacetates), nitrogen (acetanilides)

Mechanism

An acylation mechanism has been suggested for chemicals of this type (Payne et al 1994, Roberts et al 2007).

![Acylation mechanism](image)

Figure 1: Acylation mechanism for acetate and related chemicals (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Anhydrides

![Anhydrides](image)

X = oxygen, sulphur
Y = oxygen (carbonyl), sulphur (sulfinyl)
R = any carbon or hydrogen

Mechanism

An acylation mechanism has been suggested as being responsible for the protein binding ability of these chemicals (Enoch et al 2009, Gerner et al 2004, Roberts et al 2007).
Figure 1: Acylation mechanism for anhydrides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Azlactones

\[\text{Y} = \text{oxygen (carbonyl), sulphur (sulfinyl)} \]
\[\text{X} = \text{oxygen, sulphur, nitrogen} \]

Mechanism

An acylation mechanism involving ring opening has been suggested to be responsible for protein binding (Roberts et al 2007). Importantly, these chemicals are only active due to the ability of the unsaturated moiety to stabilise the leaving group anion (the equivalent γ-lactone-type structures are not protein reactive).

Figure 1: Ring opening acylation reaction for azlactones-type chemicals (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Sulphonyl halides

\[
\begin{align*}
\text{O} & \quad \text{R} \quad \text{S} \quad \text{X} \\
\text{O} & \quad \text{O}
\end{align*}
\]

R = any carbon or hydrogen
X = halogen, azide

Mechanism
An acylation mechanism involving attack at the sulphur has been suggested for the protein binding potential of this class of chemicals (Ashby et al 1995, Payne et al 1994).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{S} \quad \text{Cl} \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O} & \quad \text{Nu} & \quad \text{Cl}^- & \quad \text{Nu}
\end{align*}
\]

Figure 1: Acylation mechanism for sulphonyl halides and related chemicals (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Phosphonic acid halides

\[
\begin{align*}
\text{O} & \quad \text{R} \\
\text{O} & \quad \text{P} \quad \text{X} \\
\text{O} & \quad \text{O}
\end{align*}
\]

R = any carbon or hydrogen

Mechanism
An acylation mechanism has been suggested a being responsible for the protein binding ability of this class of chemicals (Ashby et al 1995, Payne et al 1994)
Structural alert: Dialkyl carbamoylhalides

\[
\begin{align*}
\text{R}_1\text{N} & \quad \text{O} \\
\text{R}_2 & \quad \text{X} \\
\end{align*}
\]

\(X = \text{halogen}\)

\(R = \text{any carbon or hydrogen}\)

Mechanism

An acylation mechanism has been suggested to be responsible for the protein binding ability of this class of chemicals (Hermens 1990).

\[
\begin{align*}
\text{R}_1\text{N} & \quad \text{O} \\
\text{R}_2 & \quad \text{Cl} \\
\end{align*}
\]

\[
\begin{align*}
\text{R}_1\text{N} & \quad \text{O} \\
\text{R}_2 & \quad \text{Cl} \\
\end{align*}
\]

Figure 1: Acylation mechanism for dialkyl carbamoylchloride chemicals (\(\text{Nu} = \text{biological nucleophile e.g. cysteine or lysine}\))

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes covered by this category

References

Hermens JLM (1990) Environmental Health Perspectives, 87, p219
Mechanistic Alert: Ring Opening Acylation

Several structural alerts have been suggested to be capable of binding covalently to proteins via a ring opening acylation reaction. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: β-Lactones

\[
\begin{array}{c}
\text{X} \\
\text{Y}
\end{array}
\]

X = oxygen (carbonyl), sulphur (sulfinyl)
Y = oxygen, sulphur, nitrogen

Mechanism

An acylation mechanism involving a ring opening reaction has been suggested to be responsible for the protein binding ability of these chemicals (Gerner et al 2004, Roberts et al 2007). Note: Only the four membered ring system is sufficiently reactive to be capable of protein binding. This is due to the additional energy gained upon release of the strain in the four membered ring. The equivalent five and six membered ring systems are not strained and are thus not capable of protein binding.

\[
\begin{array}{c}
\text{Nu} \\
\text{H}^+ \\
\text{Nu}
\end{array}
\]

Figure 1: Ring opening acylation mechanism for β-lactone derivatives (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Cyclopropenones

\[
\begin{array}{c}
\text{R} \\
\text{R}
\end{array}
\]

R = any carbon or hydrogen

Mechanism

An acylation-type ring opening reaction has been suggested to be responsible for the protein binding ability of this class of chemicals (Turro et al 1966).

\[
\begin{align*}
\text{Nu} & \rightarrow \text{Nu} \\
\text{Nu} & \rightarrow \text{Nu}
\end{align*}
\]

Figure 1: Ring opening acylation reaction (Nu = biological nucleophile e.g. cysteine or lysine)

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes covered by this category

References

Mechanistic Alert: Isocyanates and Related Chemicals

Isocyanates and related chemicals have been shown to bind covalently to proteins via an acylation mechanism resulting in adduct formation. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Thiocyanates

\[R\text{--}S\text{--}C\text{=}\text{NH} \]

R = any carbon or hydrogen

Mechanism

An acylation mechanism has been suggested to be responsible for the protein reactivity of these chemicals (Enoch et al 2009, Gerner et al 2004, Roberts et al 2007, Zinke et al 2002).

![Figure 1: Acylation mechanism for thiocyanate chemicals (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Structural alert: Isocyanates

\[R\text{--N\text{--}}C\text{=}O \]

R = any carbon or hydrogen

Mechanism

An acylation mechanism has been suggested to be responsible for the protein reactivity of these chemicals (Enoch et al 2009, Gerner et al 2004, Roberts et al 2007, Zinke et al 2002).
Figure 1: Acylation mechanism for isocyanate chemicals (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Isothiocyanates
\[R\text{\textDash}N\equiv C\equiv S \]
R = any carbon or hydrogen

Mechanism
An acylation mechanism has been suggested to be responsible for the protein reactivity of these chemicals (Enoch et al 2009, Gerner et al 2004, Roberts et al 2007, Zinke et al 2002).

Figure 1: Acylation mechanism for isothiocyanate chemicals (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Dithiocarbonimidic acid esters
\[R\text{\textDash}N\equiv C\backslash S\backslash S\text{\textDash}R \]
R = any carbon or hydrogen

Mechanism

An acylation mechanism has been suggested to be responsible for the protein reactivity of these chemicals (Enoch et al 2009, Gerner et al 2004, Roberts et al 2007, Zinke et al 2002).

![Acylation mechanism](image)

Figure 1: Acylation mechanism for dithiocarbonamidic acid ester chemicals (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Carbodiimides

![Carbodiimides](image)

R = any carbon

Mechanism

An acylation type mechanism has been proposed for this class of chemicals (Ashby et al 1995).
Figure 1: Acylation mechanism for carbodiimides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Ketenes

\[
R \quad \overset{\text{C=C=O}}{\rightarrow} \quad \overset{\text{R}}{\text{R}}
\]

R = any carbon or hydrogen

Mechanism

An acylation mechanism has been suggested for this class of chemicals (Hermens 1990).

Figure 1: Acylation mechanism for ketenes (Nu = biological nucleophile e.g. cysteine or lysine)

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes covered by this category

References

Hermens JLM (1990) Environmental Health Perspectives, 87, p219
Mechanistic Domain: Michael Addition
Mechanistic Alert: Polarised Alkenes and Related Chemicals

A wide range of alkenes polarised by an electronegative group (or groups) have been shown to be capable of covalently binding to proteins via Michael addition. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Polarised alkene - aldehydes

\[
\begin{align*}
\text{R} & \quad \text{H} & \quad \text{H} \\
\text{H} & \quad \text{R} & \quad \text{H}
\end{align*}
\]

\(R = \text{any carbon or hydrogen} \)

Mechanism

![Figure 1: Michael addition for polarised alkene - aldehydes (Nu = biological nucleophile e.g. cysteine or lysine)](image)

covered by this category are as follows:

Structural alert: Polarised alkene - ketones

\[
\begin{align*}
\text{R1} & \quad \text{R1} & \quad \text{O} & \quad \text{H} & \quad \text{R2} \\
\text{H} & \quad \text{R1} & \quad \text{R2}
\end{align*}
\]

\(R1 = \text{any carbon or hydrogen} \)
R2 = any carbon

Mechanism

\[
\text{Nu} \quad \begin{array}{c}
\text{CH}_3 \\
\text{O}
\end{array} \quad \text{H}^+ \\
\begin{array}{c}
\text{Nu} \\
\text{C}^-
\end{array} \quad \text{CH}_3 \\
\begin{array}{c}
\text{O}
\end{array} \\
\begin{array}{c}
\text{Nu} \\
\text{CH}_3
\end{array}
\]

Figure 1: Michael addition for polarised alkene - ketones (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - esters

\[
\begin{array}{c}
\text{R1} \\
\text{H}
\end{array} \begin{array}{c}
\text{O} \\
\text{R2}
\end{array} \quad \begin{array}{c}
\text{R1}
\end{array} \begin{array}{c}
\text{H}
\end{array} \\
\begin{array}{c}
\text{R1}
\end{array} \begin{array}{c}
\text{O} \\
\text{R2}
\end{array} \quad \begin{array}{c}
\text{R1}
\end{array} \begin{array}{c}
\text{O} \\
\text{R2}
\end{array}
\]

R1 = any carbon or hydrogen

R2 = any carbon

Mechanism

\[
\text{Nu} \quad \begin{array}{c}
\text{OMe}
\end{array} \quad \text{H}^+ \\
\begin{array}{c}
\text{Nu} \\
\text{C}^-
\end{array} \quad \text{OMe} \\
\begin{array}{c}
\text{Nu}
\end{array} \quad \text{OMe}
\]
Figure 1: Michael addition for polarised alkene - esters (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - amides

\[
\begin{align*}
R & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
R & \quad \text{N} \\
\end{align*}
\]

\[
\begin{align*}
R & \quad \text{O} \\
\end{align*}
\]

R = any carbon or hydrogen

Mechanism

\[
\begin{align*}
\text{Nu} & \quad \text{H}^+ \\
\end{align*}
\]

Figure 1: Michael addition for polarised alkene - amides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - nitros

\[
\begin{align*}
R & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
R & \quad \text{N} \\
\end{align*}
\]

\[
\begin{align*}
R & \quad \text{O} \\
\end{align*}
\]

R = any carbon or hydrogen

Mechanism

![Figure 1: Michael addition for polarised alkene - nitros (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Structural alert: Polarised alkene - cyano

![R](image)

R = any carbon or hydrogen

Mechanism

![Figure 1: Michael addition for polarised alkene - cyano (Nu = biological nucleophile e.g. cysteine or lysine)](image)
Structural alert: Polarised alkene - sulfonate

\[
\begin{align*}
R1 &= \text{any carbon or hydrogen} \\
R2 &= \text{any carbon}
\end{align*}
\]

Mechanism

\[
\begin{align*}
\text{Nu} &\rightarrow \text{Nu}^+ \\
\text{Nu} &\rightarrow \text{Nu}^+ \\
\text{Nu} &\rightarrow \text{Nu}^+
\end{align*}
\]

Figure 1: Michael addition for polarised alkene - sulfonate (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - sulfone

\[
\begin{align*}
R1 &= \text{any carbon or hydrogen} \\
R2 &= \text{any carbon}
\end{align*}
\]

Mechanism

![Mechanism Diagram](image1)

Figure 1: Michael addition for polarised alkene - sulfone (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - sulfinyl

R1 = any carbon or hydrogen

R2 = any carbon

Mechanism

![Mechanism Diagram](image2)

Figure 1: Michael addition for polarised alkene - sulfinyl (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Polarised alkene - pyridines

R = any carbon or hydrogen

Mechanism

![Diagram of Michael addition for polarised alkene - pyridines](image)

Figure 1: Michael addition for polarised alkene - pyridines (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - pyrazines

R = any carbon or hydrogen

Mechanism

Figure 1: Michael addition for polarised alkene - pyrazines (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkene - pyrimidines

\[
\text{R = any carbon or hydrogen}
\]

Mechanism

Figure 1: Michael addition for polarised alkene - pyrimidines (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Polarised alkene - triazines

R = any carbon or hydrogen

Mechanism

Figure 1: Michael addition for polarised alkene - triazines (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Azocarbonamides

\[
\begin{array}{c}
\text{O} \\
\text{R}_2\text{N} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{NR}_2
\end{array}
\]

R = any carbon or hydrogen

Mechanism

A Michael addition mechanism has been reported as being responsible for the protein reactivity of this class of chemicals (Hill et al 1999).

![Michael addition mechanism for azocarbonamides](image)

Figure 1: Michael addition mechanism for azocarbonamides (Nu = biological nucleophile e.g. lysine or cysteine).

Category mitigating factors

- Polarised alkenes: Di-substitution at the β-carbon removes Michael addition activity resulting in Schiff base formation dominating (Patlewicz et al 2003, Roberts et al 2006). However, if R is a further alkene that itself is not di-substituted at the γ-carbon then activity is restored due to the Michael reaction occurring at the γ-carbon rather than the β-carbon.

References

Hermens JLM (1990) Environment Health Perspectives, 87, p219

Schultz TW et al (2005) SAR and QSAR in Environmental Research, 16, p313
Schultz TW et al (2004) SAR and QSAR in Environmental Research, 15, p139
van der Ohe et al (2005) Chemical Research in Toxicology, 18, p536
Mechanistic Alert: Polarised Alkynes

A wide range of alkynes polarised by an electronegative group have been shown to be capable of covalently binding to proteins via Michael addition. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Polarised alkyne - aldehydes

\[
\begin{array}{c}
\text{R} \equiv \equiv \text{O} \\
\text{H}
\end{array}
\]

R = any carbon or hydrogen

Mechanism

Structural alert: Polarised alkyne - ketones

\[
\begin{array}{c}
\text{R1} \equiv \equiv \text{O} \\
\text{R2}
\end{array}
\]

R1 = any carbon or hydrogen

R2 = any carbon

Mechanism

\[
\begin{align*}
\text{Nu} &\text{O} \\
\text{CH}_3 &\text{O} \\
\text{Me} &\text{O} \\
\text{Me} &\text{C} \\
\text{O} &\text{N}\text{u} \\
\text{Me} &\text{H} \\
\text{+} &\text{Nu}
\end{align*}
\]

Figure 1: Michael addition for polarised alkyne – ketones (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - esters

\[
\begin{align*}
\text{R}_1 &\text{O} \\
\text{O} &\text{R}_2 \\
\text{R}_1 &\text{= any carbon or hydrogen} \\
\text{R}_2 &\text{= any carbon}
\end{align*}
\]

Mechanism

\[
\begin{align*}
\text{Nu} &\text{O} \\
\text{Me} &\text{O} \\
\text{Me} &\text{C} \\
\text{O} &\text{N}\text{u} \\
\text{Me} &\text{H} \\
\text{+} &\text{Nu}
\end{align*}
\]

Figure 1: Michael addition for polarised alkyne – esters (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Polarised alkyne - amides

\[
R\text{-}\equiv\text{N}\text{-}R
\]

R = any carbon or hydrogen

Mechanism

\[
\text{Nu} \quad \rightarrow \quad \text{Nu-}C^{-}\text{O} \quad \rightarrow \quad \text{Nu-}C=\text{O}
\]

Figure 1: Michael addition for polarised alkyne – amides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - nitros

\[
R\text{-}\equiv\text{NO}_2
\]

R = any carbon or hydrogen

Mechanism

\[
\text{Nu} \quad \rightarrow \quad \text{Nu-}C^{-}\text{NO}_2 \quad \rightarrow \quad \text{Nu-}C=\text{NO}_2
\]
Figure 1: Michael addition for polarised alkyne – nitros (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - cyano

\[
\begin{align*}
& \text{R} - \equiv - \text{CN} \\
& \text{R} = \text{any carbon or hydrogen}
\end{align*}
\]

Mechanism

\[
\begin{align*}
\text{Nu} & \rightarrow \text{Nu} - \equiv - \text{CN} \\
& \rightarrow \text{Nu} - \equiv - \text{CN}
\end{align*}
\]

Figure 1: Michael addition for polarised alkyne – cyano (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - sulfonate

\[
\begin{align*}
& \text{R}_1 - \equiv - \text{SO}_2 - \text{O} \\
& \text{R}_1 = \text{any carbon or hydrogen} \\
& \text{R}_2 = \text{any carbon}
\end{align*}
\]

Mechanism

Structural alert: Polarised alkyne - sulfone

R1 = any carbon or hydrogen
R2 = any carbon

Mechanism

Structural alert: Polarised alkyne - sulfinyl

\[
\begin{array}{c}
R_1 \equiv \text{S}^+ \\
\text{S} \\
R_2
\end{array}
\]

R1 = any carbon or hydrogen

R2 = any carbon

Mechanism

\[
\text{Nu} \rightarrow \text{Nu} \rightarrow \text{Nu}
\]

Figure 1: Michael addition for polarised alkyne – sulfinyl (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - pyridine

\[
\begin{array}{c}
R_1 \equiv \text{N} \\
\text{N}
\end{array}
\]

R = any carbon or hydrogen

Mechanism

Figure 1: Michael addition for polarised alkyne – pyridine (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - pyrazine

R = any carbon or hydrogen

Mechanism

Figure 1: Michael addition for polarised alkyne – pyrazine (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - pyrimidine

R = any carbon or hydrogen

19
Mechanism

Figure 1: Michael addition for polarised alkyne – pyrimidine (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Polarised alkyne - triazine

R1–≡–N=N=N

1,3,5-triazines

R1–≡–N=N

1,2,4-triazines

R1–≡–N=N

1,2,3-triazines

R = any carbon or hydrogen

Mechanism

Figure 1: Michael addition for polarised alkyne – triazine (Nu = biological nucleophile e.g. cysteine or lysine)

Category mitigating factors

- No mitigating factors have been reported

References

Mechanistic Alert: Quinones and Quinone-type Chemicals

Quinones and a number of closely chemical classes have been shown to be capable of reacting covalent with proteins via Michael addition. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: benzoquinones

\[
\begin{align*}
\text{X} & \quad \text{X} \\
\text{H} & \quad \text{H} \\
\text{X} & \quad \text{X} \\
\end{align*}
\]

\(X = \text{O, NH}_2, \text{NH}\)

Mechanism

![Figure 1: Michael addition for 1,4-quinone (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Figure 1: Michael addition for 1,4-quinone (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Quinone-methides

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

Mechanism

A Michael addition mechanism has been suggested for these chemicals (Aptula et al 2006, Enoch et al 2008, Roberts et al 2007).

\[
\begin{align*}
\text{H}^+ & \\
\text{Nu} & \quad \text{Nu}
\end{align*}
\]

Figure 1: Michael addition mechanism for quinone-methides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Pyranones (and related nitrogen chemicals)

\[
\begin{align*}
\text{X} & \quad \text{X} \\
\text{Y} & \quad \text{Y} \\
\text{H} & \quad \text{H}
\end{align*}
\]

X = O, NH
Y = O, N

Mechanism
A Michael addition mechanism has been suggested as being responsible for the protein binding ability of this class of chemicals (Mekenyan et al 2007).

Figure 1: Michael addition mechanism for pyranones

Category mitigating factors

- No mitigating factors have been reported for the Mechanistic classes within this category

References

Enoch SJ et al (2008) SAR and QSAR in Environmental Research, 19, p555
Mechanistic Alert: Acid Imides

Acid imides have been suggested to form covalent protein adducts via Michael addition.

Structural alert: Acid imides

![Structural alert](image)

R = any carbon or hydrogen

Mechanism

A Michael addition mechanism has been suggested for this class of chemicals (Gerner et al 2004).

![Mechanism](image)

Figure 1: Michael addition mechanism for acid imides (Nu = biological nucleophile e.g. cysteine or lysine)

Category mitigating factors

- None have been reported for this category

References

Gerner I et al (2004), ATLA, 32, p487
Available Categories

1. **Extremly reactive-Category A**
2. **Highly reactive-Category B**
3. **Moderately Reactive - Category C**
4. **Slightly Reactive - Category D**
5. **Suspect - Category F**

Categories Explanations

1. **Extremly reactive-Category A**

Query index: 1 of category: Extremly reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C1(=O)c2c(C(=O)C[H]=C1)cccc2 in its structure.

fragment

Query index: 2 of category: Extremly reactive-Category A

type: Structural boundary:
The target chemical should have the fragment $\text{C}(=\text{O})\text{c}2\text{c}(\text{=O})\text{C}=\text{C}{(\text{H})}\text{ccc}2$ in its structure.

Query index: 3 of category: Extremly reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}(\text{sp}3\{\text{H}\})(=\text{O})\text{C}=\text{C}\{\text{H}\}$ in its structure.

Query index: 4 of category: Extremly reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}(\text{H}2)=\text{C}\{\text{H}\}\text{C}\{\text{H}\}(\text{=O})\text{OC}(\text{H})[\text{V1}]\text{Hal}$ in its structure.
The target chemical should have the fragment $\text{C}(=\text{O})(\text{C}\#\text{CC}(=\text{O})\text{OC}\{\text{sp}3\}\{\text{H}\})\text{OC}\{\text{sp}3\}\{\text{H}\}$ in its structure.

Query index: 5 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}(=\text{O})(\text{C}\#\text{CC}(=\text{O})\text{OC}\{\text{sp}3\}\{\text{H}\})\text{OC}\{\text{sp}3\}\{\text{H}\}$ in its structure.

Query index: 6 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}\{\text{H}\}(=\text{C}\{\text{H}\}\text{sp}\{3\}\{\text{H}\})\text{N}\{\text{V}5\}(=\text{O})=\text{O}$ in its structure.

Query index: 7 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{c1}(\text{C}\#\text{CC}\{\text{H}\}=\text{O})\text{cccc1}$ in its structure.
The target chemical should have the fragment c1(S{V6}(=O)(=O)C#C{H})cccc1 in its structure.

Query index: 8 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C{H}(=C{H})S{V6}(=O)(=O)OC{sp3}{H} in its structure.

Query index: 9 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C{H}(=C{H})S{V6}(=O)(=O)OC{sp3}{H} in its structure.

Query index: 10 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C{H}(=O)C{H}(C{H}=C{H})[V1]Hal in its structure.
The target chemical should have the fragment \(\text{C}(=\text{O})(\text{C}(\text{H})=\text{C}(\text{H}_2))\text{Oc1ccccc1} \) in its structure.

Query index: 11 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment \(\text{C}(=\text{O})(\text{C}(\text{H})=\text{C}(\text{H}_2))\text{Oc1ccccc1} \) in its structure.

Query index: 12 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment \(\text{C}([\text{H}])=\text{C}(\text{H}_2))\text{S}(=\text{O})(=\text{O})\text{C}(\text{H})=\text{C}(\text{H}_2) \) in its structure.
The target chemical should have the fragment $\text{C}_1=\text{C}(\text{H})\text{C}(=\text{O})\text{C}=\text{CC}_1=\text{O}$ in its structure.

Query index: 13 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}_1=\text{C}(\text{H})\text{C}(=\text{O})\text{C}=\text{CC}_1=\text{O}$ in its structure.

The target chemical should have the fragment $\text{C}(\text{H})\text{1}=\text{C}(=\text{O})\text{C}=\text{CC}_1=\text{O}$ in its structure.

Query index: 14 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}(\text{H})\text{1}=\text{C}(=\text{O})\text{C}=\text{CC}_1=\text{O}$ in its structure.

The target chemical should have the fragment $\text{C}(\text{H})\text{1}=\text{C}(=\text{O})\text{C}(=\text{O})\text{C}=\text{CC}=\text{1}$ in its structure.

Query index: 15 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment $\text{C}(\text{H})\text{1}=\text{C}(=\text{O})\text{C}(=\text{O})\text{C}=\text{CC}=\text{1}$ in its structure.
The target chemical should have the fragment C1C(=O)C(=O)C=CC(H)=1 in its structure.

Query index: 16 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C(H)(=O)C(H)=C(H2) in its structure.

Query index: 17 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C(C(sp3){H})(=O)C(H)=C(H2) in its structure.
The target chemical should have the fragment C(=O)(C{H}=C{H}C(=O)OC{sp3}{H})OC{sp3}{H} in its structure.

Query index: 19 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C(=O)(C{H}=C{H}C(=O)OC{sp3}{H})OC{sp3}{H} in its structure.

Query index: 20 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C(=O)(C(=C{H})C(=O)OC{sp3}{H})OC{sp3}{H} in its structure.

Query index: 21 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment C1(=O)C{H}=C{H}C(=O)N{V3}1 in its structure.
Query index: 22 of category: Extremely reactive-Category A

type: Structural boundary:

The target chemical should have the fragment c1(C{H}=C{H}N{V5}(=O)=O)cccc1 in its structure.

Query index: 23 of category: Extremely reactive-Category A

Type: Structural boundary:

The target chemical should have the fragment C(=O)(C{H}=C{H}C#N{V3})OC in its structure.
2. Highly reactive-Category B

Query index: 1 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment $C(=O)(C#C\{H\})OC\{sp3\}{H}$ in its structure. fragment

Query index: 2 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment $C(\{H\})(=O)C\{H\}=C(\{H\})C\{sp3\}{H}$ in its structure. fragment

Query index: 3 of category: Highly reactive-Category B

type: Structural boundary:
The target chemical should have the fragment \(c1(C\{H\}=C(H)C(H)=O)cccc1 \) in its structure.

Query index: 4 of category: Highly reactive-Category B

Type: *Structural boundary:*

The target chemical should have the fragment \(C(C\{sp3\}{H})(=O)C\#CC\{sp3\}{H} \) in its structure.

Query index: 5 of category: Highly reactive-Category B

Type: *Structural boundary:*

The target chemical should have the fragment \(C(=O)(O)C\{H\}={t}C\{H\}C(=O)O \) in its structure.

Query index: 6 of category: Highly reactive-Category B

Type: *Structural boundary:*

The target chemical should have the fragment \(C(=O)(C\{H\}=C(H2))OC\{H\}O\{H\} \) in its structure.
structure.

fragment

Query index: 7 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment C{H}(=C{H2})S(C(sp3))(=O)=O in its structure.

fragment

Query index: 8 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment c1(C(=O)C{H}=C{H}c2c{H}c{H}c{H}c{H}c{H}2)cccc1 in its structure.

fragment

Query index: 9 of category: Highly reactive-Category B

type: Structural boundary:
The target chemical should have the fragment \(\text{c1}(\text{S}=(\text{O})(\text{O})\text{C}\{\text{H}\}=\text{C}\{\text{H2}\})\text{cccc}1 \) in its structure.

Query index: 10 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment \(\text{C}=(\text{O})(\text{C}\{\text{H}\}=\text{C}\{\text{H2}\})\text{OC}\{\text{H}\}=\text{C}\{\text{H2}\} \) in its structure.

Query index: 11 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment \(\text{C}=(\text{O})(\text{C}\{\text{H}\}=\text{C}\{\text{H2}\})\text{OC}\{\text{H2}\}\text{C}\#\text{C}\{\text{H}\} \) in its structure.

Query index: 12 of category: Highly reactive-Category B

type: Structural boundary:
The target chemical should have the fragment $C_1(=O)C(=C(H_2))C(H_2)C(H_2)O_1$ in its structure.

Query index: 13 of category: Highly reactive-Category B
type: Structural boundary:

The target chemical should have the fragment $C_1(=O)C(=C(C#N(V_3))C#N(V_3))C(=O)c_2c_1cccc_2$ in its structure.

Query index: 14 of category: Highly reactive-Category B
type: Structural boundary:

The target chemical should have the fragment $C(=O)(C(H)=C(H_2))OC(sp^3){H}$ in its structure.

Query index: 15 of category: Highly reactive-Category B
type: Structural boundary:
The target chemical should have the fragment $\text{C}(\text{sp}^3\text{H})\text{C}(=\text{O})\text{C}(\text{H})\text{C}(=\text{H})\text{C}(\text{sp}^3\text{H})$ in its structure.

Query index: 16 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment $\text{C}(=\text{O})(\text{C}(\text{H})=\text{C}(\text{H}_2))\text{C}(\text{H}_2)\text{C}(\text{sp}^3\text{H})$ in its structure.

Query index: 17 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment $\text{C}(=\text{O})(\text{C}\#\text{C}(\text{H}_3))\text{O}\text{C}(\text{sp}^3\text{H})$ in its structure.

Query index: 18 of category: Highly reactive-Category B

type: Structural boundary:
The target chemical should have the fragment $\text{C}(=\text{O})(\text{C}\#\text{C}1\text{ccc}1)\text{OC}\{\text{sp}3}\{\text{H}\}$ in its structure.

Query index: 19 of category: Highly reactive-Category B

type: Structural boundary:

The target chemical should have the fragment $\text{c}1(\text{C}\{\text{H}\}=\text{C}\{\text{H}2\})\text{c}\{\text{H}\}\text{c}\{\text{H}\}\text{nc}\{\text{H}\}\text{c}\{\text{H}\}1$ in its structure.
3. Moderately Reactive - Category C

Query index: 1 of category: Moderately Reactive - Category C

type: Structural boundary:

The target chemical should have the fragment \(\text{C(=O)(C(H)=C(H)C(H3)})\text{OC(sp3){H}} \) in its structure.

fragment

Query index: 2 of category: Moderately Reactive - Category C

type: Structural boundary:

The target chemical should have the fragment \(\text{c1(C(H)=C(H2))c(H)c(H)c(H)c(H)n1} \) in its structure.

fragment

Query index: 3 of category: Moderately Reactive - Category C
The target chemical should have the fragment $\text{C(\{H\}('\text{Exh}_1;\text{C}\{\text{sp3}\}([1-10]),\text{H}\})=\text{C(\{H\})C(=\text{O})N\{H2\}}$ in its structure.
Query index: 1 of category: Slightly Reactive - Category D

type: Structural boundary:

The target chemical should have the fragment $\text{C(C)(=O)C(=C\{H2\})C\{H3\}}$ in its structure.

![Fragment 1]

Query index: 2 of category: Slightly Reactive - Category D

type: Structural boundary:

The target chemical should have the fragment $\text{C(#N)C(=C\{H2\})C\{H2\}C\{H2\}C\#N}$ in its structure.

![Fragment 2]

Query index: 3 of category: Slightly Reactive - Category D

type: Structural boundary:

The target chemical should have the fragment $\text{C(\#N)C(=C\{H2\})C\{H2\}C\{H2\}C\#N}$ in its structure.

![Fragment 3]
The target chemical should have the fragment \(\text{C} (=\text{O}) (\text{C}(\text{H}3)) = \text{C}(\text{H}) \text{OC} \) in its structure.

Query index: 4 of category: Slightly Reactive - Category D

The target chemical should have the fragment \(\text{C} (=\text{O}) (\text{C}(\text{H})) = \text{C}(\text{H}) \text{c1ccc1} \text{OC(sp3}{\text{H}} \) in its structure.
5. Suspect - Category F

Query index: 1 of category: Suspect - Category F

type: Structural boundary:

The target chemical should have the fragment $\text{C\{H\}^{\text{"Exh1};\text{C\{sp3\}{in[1-10]}},\text{H}\}^{=}\text{C\{H\}C\#N\{v3\}}$ in its structure.

fragment
Mechanistic Domain: Schiff Base Formers
Mechanistic Alert: Direct Acting Schiff Base Formers

Several classes of chemical have been shown to be capable of covalently binding to proteins via Schiff base formation. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Mono-carbonyls

\[
\begin{array}{c}
\text{R} \\
\text{O} \\
\text{H}
\end{array}
\]

R = hydrogen, any carbon (R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di- ortho-substituted)

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Gerner et al 2004, Roberts et al 2007, Verhaar et al 1992)

![Schiff base formation mechanism for mono-carbonyls](image)

Figure 1: Schiff base formation mechanism for mono-carbonyls
Structural alert: 1-2-Dicarbonyls

\[
\begin{align*}
\text{R} & \text{O} \\
\text{C} & \text{C} \\
\text{O} & \text{R}
\end{align*}
\]

\(R = \text{hydrogen, any carbon (both R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di- ortho-substituted)}\)

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Enoch et al 2009, Roberts et al 2007, Verhaar et al 1992). 1,2-Dicarbonyl chemicals have been shown to be able to undergo a second Schiff base reaction and thus cross-link protein chains (Marqui 2001).

![Schiff base formation mechanism for 1,2-dicarboxyls](image)

Figure 1: Schiff base formation mechanism for 1,2-dicarboxyls
Structural alert: 1,3-Dicarbonyls

\[
\begin{align*}
&\text{O} & \text{O} & \text{R} \\
&\text{R} & \text{R} & \\
\end{align*}
\]

R = hydrogen, any carbon (both R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di- ortho-substituted)

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Aptula et al 2006, Roberts et al 2006, Verhaar et al 1992). The potential for a second Schiff base reaction, resulting in possible protein cross linking also exists (depending on the substitution at the second carbonyl centre).

![Schiff base formation mechanism](image)

Figure 1: Schiff base formation mechanism for 1,3-dicarboxyls

Category mitigating factors

- Mono-carbonyls: R cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre (unless they are ortho-substituted)
- Mono-carbonyls: R cannot be a second directly attached carbonyl moiety (such chemicals are a Mechanistic class)
- Mono-carbonyls: R cannot be a group such that the alerting group becomes a 1,3-dicarbonyl (such chemicals are a Mechanistic class)
- 1,2-Dicarbonyls: Both R groups cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre
- 1-3-Dicarbonyls: Both R groups cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre.
- 1,2 and 1-3-Dicarbonyls: The exception to this is if one of the aromatic groups is ortho-substituted. This substitution causes the delocalised \(\pi \)-system between the carbonyl group and aromatic ring system to be broken. This result in activity at the carbonyl group (see examples of active Schiff base reactive chemicals in Gerberick et al 2005).

References

Mechanistic Domain: Schiff Base Formers
Mechanistic Alert: Direct Acting Schiff Base Formers

Several classes of chemical have been shown to be capable of covalently binding to proteins via Schiff base formation. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Mono-carbonyls

\[
\begin{align*}
R & = \text{hydrogen, any carbon (R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di-ortho-substituted)}
\end{align*}
\]

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Gerner et al. 2004, Roberts et al. 2007, Verhaar et al. 1992)

Figure 1: Schiff base formation mechanism for mono-carbonyls
Structural alert: 1-2-Dicarbonyls

\[
\begin{array}{c}
\text{R} \\
\text{O} \\
\text{O} \\
\text{R} \\
\end{array}
\]

R = hydrogen, any carbon (both R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di- ortho-substituted)

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Enoch et al 2009, Roberts et al 2007, Verhaar et al 1992). 1,2-Dicarbonyl chemicals have been shown to be able to undergo a second Schiff base reaction and thus cross-link protein chains (Marqui 2001).

![Schiff base formation mechanism for 1,2-dicarbons](image)

Figure 1: Schiff base formation mechanism for 1,2-dicarbons
Structural alert: 1-3-Dicarbonyls

\[
\begin{array}{c}
\text{R} \\
\text{O} \\
\text{O} \\
\text{R}
\end{array}
\]

R = hydrogen, any carbon (both R groups cannot be aromatic, heteroaromatic or heterocyclic, unless they are either mono- or di- ortho-substituted)

Mechanism

A Schiff base formation mechanism has been suggested to be responsible for the protein binding ability of these types of chemicals (Aptula et al 2006, Roberts et al 2006, Verhaar et al 1992). The potential for a second Schiff base reaction, resulting in possible protein cross linking also exists (depending on the substitution at the second carbonyl centre).

![Schiff base formation mechanism](image)

Figure 1: Schiff base formation mechanism for 1,3-dicarboxyls

Category mitigating factors

- Mono-carbonyls: R cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre (unless they are ortho-substituted)
- Mono-carbonyls: R cannot be a second directly attached carbonyl moiety (such chemicals are a Mechanistic class)
• Mono-carbonyls: R cannot be a group such that the alerting group becomes a 1,3-dicarbonyl (such chemicals are a Mechanistic class)
• 1,2-Dicarbonyls: Both R groups cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre
• 1-3-Dicarbonyls: Both R groups cannot be aromatic, heteroaromatic or heterocyclic directly attached to the reactive carbonyl centre.
• 1,2 and 1-3-Dicarbonyls: The exception to this is if one of the aromatic groups is ortho-substituted. This substitution causes the delocalised π-system between the carbonyl group and aromatic ring system to be broken. This result in activity at the carbonyl group (see examples of active Schiff base reactive chemicals in Gerberick et al 2005).

References
Mechanistic Domain: S_{N2}
Mechanistic Alert: S_N2 Reaction at a sp^3 Carbon Atom

A number of chemical classes have been suggested to be capable of reacting covalently with proteins via an S_N2 reaction at a sp^3 hybridised carbon atom. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Alkyl halides

\[
\begin{array}{c}
R \\
R - C - X \\
H
\end{array}
\]

R = hydrogen, any carbon except the following:

R ≠ carbonyl (these chemicals fall under the α-halocarbonyl alert), -CS, -CN (these chemicals fall under the mustards alert)

X = halogen

Mechanism

An S_N2 mechanism has been suggested to be responsible for the protein reactivity of this class of chemicals (Aptula et al 2006, Gerner I et al 2004, Roberts et al 2007, 2010, Schultz et al 2007).

\[
\begin{array}{c}
H_2C - X \\
\text{Nu}
\end{array} \xrightarrow{H^+} \begin{array}{c}
H_2C - R \\
\text{HX}
\end{array}
\]

Figure 1: S_N2 mechanism for primary and secondary alkyl halides (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Sulfates

\[
\begin{array}{c}
R_1 \\
R_1 - CH \\
\text{O}
\end{array}
\begin{array}{c}
\text{O} \\
S \\
\text{O}
\end{array}
\begin{array}{c}
\text{O} \\
\text{R}_2
\end{array}
\]
R1 = any carbon, hydrogen
R2 = any carbon

Note: R1 and R2 can be part of an aliphatic ring system

Mechanism

An \(S_N^2 \) mechanism has been suggested to be responsible for protein reactivity (Aptula et al 2006, Roberts et al 2007).

![SN2 mechanism for sulfates](image)

Figure 1: \(S_N^2 \) mechanism for sulfates (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Sulfonates

![Structural alert](image)

R1 = any carbon, hydrogen
R2 = any carbon (R1 cannot be alkene or alkyne as these chemicals are Michael acceptors)

Note: R1 and R2 can be part of an aliphatic ring system e.g. sultones

Mechanism

An \(S_N^2 \) mechanism has been suggested to be responsible for protein reactivity (Aptula et al 2006, Roberts et al 2007).
Figure 1: S_N2 mechanism for sulfonates (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Allyl acetates and related chemicals

$$R_1\text{C} = \text{O}_\bigl(\text{CH}_2\text{CH} = \text{O}\bigr)_\text{Y} R_2$$

- $X = \text{Oxygen, sulphur}$
- $Y = \text{CH}_2, \text{CH}$
- $R_1 = \text{any carbon atom}$
- $R_2 = \text{carbon atom part of an alkene, alkyne, aromatic ring, heteroaromatic ring or heterocyclic ring}$

Mechanism

An S_N2 mechanism occurring at the activated carbon (atom Y in the alert) has been suggested to be responsible for the protein reactivity of these chemicals (Roberts et al 2007a, b).

Figure 1: S_N2 mechanism for allyl acetate and derivatives (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Nitrosoureas (carbon)

\[
\begin{array}{c}
\text{R1} \\
\text{X} \\
\text{R1} \\
\text{HC} \\
\text{R2} \\
\text{R2}
\end{array}
\]

X = oxygen (nitrosourea derivatives), nitrogen (nitrosoguanidine derivatives)

R1 = any carbon, hydrogen

R2 = any carbon, hydrogen

Mechanism

An S\textsubscript{N}2 mechanism involving direct alkylation (Figure 1) has been proposed (Roberts et al 2007).

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{N} \\
\text{H} \\
\text{2} \\
\text{O} \\
\text{C} \\
\text{H} \\
\text{3} \\
\text{N} \\
\text{O} \\
\text{H} \\
+ \\
\text{N} \\
\text{N} \\
\text{H} \\
\text{2} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{H} \\
\text{Nu} \\
\text{C} \\
\text{H} \\
\text{3} \\
\text{Nu} \\
+ \\
\text{N} \\
\text{H} \\
\text{2} \\
\text{O} \\
\text{H} \\
\end{array}
\]

Figure 1: S\textsubscript{N}2 alkylation mechanism (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: α-Halocarbonyls

\[
\begin{array}{c}
\text{R} \\
\text{Y} \\
\text{R} \\
\text{X} \\
\end{array}
\]

Y = oxygen, sulphur

X = halogen

R = any carbon, hydrogen
Mechanism

An S_N2 mechanism has been suggested to be responsible for the protein reactivity of this class of chemical (Gerner et al 2004, Hulzebos et al 2005, Schultz et al 2007).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{Cl} \\
\text{Nu} & \quad \rightarrow \\
\text{O} & \quad \text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{O} \\
\end{align*}
\]

Figure 1: S_N2 reaction for α-halocarbonyls (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Phosphonates

\[
\begin{align*}
\text{R} & \quad \text{X} \\
\text{O} & \quad \text{P} \quad \text{X} \\
\text{R} & \quad \text{HC} \quad \text{R} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]

R = any carbon, hydrogen
X = oxygen, sulphur

Mechanism

An S_N2 mechanism has been suggested as being responsible for the protein binding ability of these chemicals (Gerner et al 2004, von der Ohe et al 2005).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O} \\
\text{O} & \quad \text{P} \quad \text{O} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Nu} & \quad \text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{O} \\
\text{O} & \quad \text{P} \quad \text{O} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Nu} & \quad \\
\end{align*}
\]

Figure 1: S_N2 mechanisms for phosphonates (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Phosphates

\[R \text{ X} \]
\[\text{O} \quad \text{P} \quad \text{O} \]
\[\text{O} \quad \text{C} \quad \text{H} \quad \text{R} \]
\[\text{R} \quad \text{R} \quad \text{R} \]

R = any carbon, hydrogen

X = oxygen, sulphur

Mechanism

An S\textsubscript{N}2 mechanism has been suggested as being responsible for the protein binding ability of these chemicals (Gerner et al 2004, von der Ohe et al 2005).

Figure 1: S\textsubscript{N}2 mechanisms for phosphates (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Thiophosphates

\[R \text{ X} \]
\[\text{O} \quad \text{P} \quad \text{O} \]
\[\text{S} \quad \text{C} \quad \text{H} \quad \text{R} \]
\[\text{R} \quad \text{R} \quad \text{R} \]

R = any carbon, hydrogen

X = oxygen, sulphur

Mechanism

An S\textsubscript{N}2 mechanism has been suggested as being responsible for the protein binding ability of these chemicals (Gerner et al 2004, von der Ohe et al 2005).
Figure 1: S_N2 mechanisms for thiophosphates (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: α-Halo ethers

\[
\begin{array}{c}
R \\
C-O-C-X \\
H
\end{array}
\]

$X = \text{halogen}$

$R = \text{any carbon atom, hydrogen}$

Mechanism

An S_N2 mechanism has been suggested to be responsible for the protein reactivity of this class of chemicals (Hermens 1990)

\[
\begin{array}{c}
C-O-C-\text{Cl} \\
\text{Nu}
\end{array} \quad \rightarrow \quad \begin{array}{c}
C-O-C-\text{Nu} \\
\text{Cl}^{-}
\end{array}
\]

Figure 1: S_N2 mechanism for α-halo ethers (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: β-Halo ethers

\[
\begin{array}{c}
R \\
C-O-CR_2-C-X \\
H
\end{array}
\]

$X = \text{halogen}$

$R = \text{any carbon atom, hydrogen}$
Mechanism

An S_N2 mechanism has been suggested to be responsible for the protein reactivity of this class of chemicals (Hermens 1990).

$$\text{C} = \text{O} - \text{C} - \text{C} - \text{Cl} \quad \xrightarrow{\text{Nu}} \quad \text{C} - \text{O} - \text{C} - \text{C} - \text{Nu} + \text{Cl}^-$$

Figure 1: S_N2 mechanism for β-halo ethers (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Alkyl diazo

$$\begin{align*}
\text{R} \\
\text{H} & \text{C} - \text{N}=\text{N} - \text{R} \\
\text{R} &
\end{align*}$$

R = any carbon, hydrogen

Mechanism

An S_N2 mechanism is the most plausible route to protein binding for this class of chemicals (Hermens 1990).

$$\begin{align*}
\text{H}_3\text{C} & - \text{N}=\text{N} - \text{R} \quad \xrightarrow{\text{Nu}} \quad \text{H}_3\text{C} - \text{Nu} + \text{N}_2 + \text{RH}
\end{align*}$$

Figure 1: S_N2 mechanism for alkyl diazo chemicals (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: \(\alpha\)-Haloalkenes (and related cyano, sulfate and sulphonate substituted chemicals)

\[
\begin{array}{c}
\text{R} \\
\text{X} \\
\text{R} \\
\text{R}
\end{array}
\]

\(X = \text{halogen, cyano, sulfate, sulphonate}\)

\(R = \text{any carbon, hydrogen}\)

Mechanism

An S\(_{N}2\) mechanism is the most likely route to protein binding for this class of chemicals (Hulzebos et al 2005, Verhaar et al 1992).

\[
\begin{array}{c}
\text{Cl} \\
\text{Nu} \\
\text{Nu} \\
\text{CH}_3
\end{array}
\]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{Nu} \\
\text{Cl} \\
\text{Cl}^{-}
\end{array}
\]

Figure 1: S\(_{N}2\) mechanism for alpha-haloalkenes (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: \(\alpha\)-Haloalkynes (and related cyano, sulfate and sulphonate substituted chemicals)

\[
\begin{array}{c}
\text{R} \\
\text{X} \\
\text{R}
\end{array}
\]

\(X = \text{halogen, cyano, sulfate, sulphonate}\)

\(R = \text{any carbon, hydrogen}\)

Mechanism
An \(S_N2 \) mechanism is the most likely route to protein binding for this class of chemicals (Verhaar et al 1992).

![Chemical Structure](image)

Figure 1: \(S_N2 \) mechanism for alpha-haloalkynes (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: \(\alpha \)-Halobenzyls (and related cyano, sulfate and sulphonate substituted chemicals)

\[
\begin{align*}
R1 & \quad X \\
R2 & \\
\end{align*}
\]

\(X = \) halogen, cyano, sulfate, sulphonate

\(R1 = \) aromatic carbon

\(R2 = \) any carbon, hydrogen

Mechanism

An \(S_N2 \) mechanism is the most likely route to protein binding for this class of chemicals (Verhaar et al 1992).

![Chemical Structure](image)

Figure 1: \(S_N2 \) mechanism for alpha-halobenzyls (Nu = biological nucleophile e.g. cysteine or lysine)
Category mitigating factors

- All Mechanistic classes within this category: Tertiary alkyl carbons do not undergo the S_N2 reaction due to steric hindrance
- Alkyl halides: Tertiary alkyl halides are considered to sterically hindered at the site of nucleophilic attack to be protein reactive
- Sulfonic esters: Site of nucleophilic attack (the carbon directly attached to the oxygen atom in the R1 group) cannot be tertiary due to increased steric hindrance.
- Sulfonic esters: R2 cannot be an alkene or alkyne if the chemical is a sulfonate (left hand alert) as these chemicals are Michael acceptors.
- Allyl acetates: R1 cannot be an alkene or alkyne directly attached to the carbonyl (or sulfinyl) as these chemicals would be Michael acceptors
- Allyl acetates: Y cannot be tertiary as steric hindrance prevents the S_N2 reaction
- α-Halocarbonyls: Tertiary halides are not reactive due to increased steric hindrance at the site of electrophilic attack

References

Hermens JLM (1990) Environmental Health Perspectives, 87, p219
Hulzebos E et al (2005) QSAR and Combinatorial Science, 24, p332
Roberts DW et al (2007a) Chemical Research in Toxicology, 20, p1019
Roberts DW et al (2007b) Chemical Research in Toxicology, 20, p1321
Schultz TW et al (2007) SAR and QSAR in Environmental Research, 18, p21
Mechanistic Alert: Epoxides and Related Chemicals

Several chemical classes have been suggested to reaction with proteins via a three membered ring opening S_N2 reaction. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Epoxides

\[
\begin{array}{c}
\text{O} \\
\text{R} \quad \text{R} \quad \text{R}
\end{array}
\]

- $R = \text{any carbon, hydrogen}$

Mechanism

A ring opening S_N2 mechanism has been suggested to be responsible for protein reactivity (Aptula et al 2006, Roberts et al 2007, Verhaar et al 1992).

\[
\begin{align*}
& \text{Nu} \\
& \text{O} \\
& \text{H}^+ \\
& \text{Nu} \text{-OH}
\end{align*}
\]

Figure 1: Ring opening S_N2 reaction (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Aziridines

\[
\begin{array}{c}
\text{N} \\
\text{R} \quad \text{R} \quad \text{R}
\end{array}
\]

- $R = \text{any carbon, hydrogen}$

Mechanism
A ring opening S_N2 mechanism has been suggested to be responsible for protein reactivity (Aptula et al 2006, Roberts et al 2007, Verhaar et al 1992).

![Figure 1: Ring opening S_N2 reaction (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Structural alert: Sulfuranes

![Sulfuranes](image)

$R = \text{any carbon, hydrogen}$

Mechanism

A ring opening S_N2 mechanism has been suggested to be responsible for protein reactivity (Aptula et al 2006, Roberts et al 2007, Verhaar et al 1992).

![Figure 1: Ring opening S_N2 reaction (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes covered by this category

References
Mechanistic Alert: Ring Opening S_N2 Reaction

Several chemical classes have been suggested to reaction with proteins via four membered ring opening S_N2 reaction. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: β-Lactones

\[
\begin{array}{c}
\text{X} \\
\text{Y}
\end{array}
\]

X = oxygen (carbonyl), sulphur (sulfinyl)

Y = oxygen, sulphur, nitrogen

Mechanism

An S_N2 mechanism involving a ring opening reaction has been suggested as being responsible for the protein binding ability of these chemicals (Enoch et al 2008, Roberts et al 2007). Note: Only the four membered ring system is sufficiently reactive to be capable of protein binding. This is due to the additional energy gained upon release of the strain in the four membered ring. The equivalent five and six membered ring systems are not strained and are thus not capable of protein binding.

\[
\begin{array}{c}
\text{Nu} \\
\text{Nu}
\end{array}
\]

Figure 1: Ring opening S_N2 mechanism for β-lactone derivatives (Nu = biological nucleophile e.g. cysteine or lysine)

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes covered by this category
References

Enoch SJ et al (2008) SAR and QSAR in Environmental Research, 19, p555

Mechanistic Alert: S_N2 Reaction at a Nitrogen Atom

A number of chemical classes have been suggested to be capable of reacting covalently with proteins via an S_N2 reaction at a nitrogen atom. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Nitrosoureas (nitrogen)

$$\begin{array}{c}
N \\
\text{X} \\
\text{R}
\end{array}$$

$X = \text{oxygen (nitrosourea derivatives), nitrogen (nitrosoguanidine derivatives)}$

$R = \text{any carbon, hydrogen}$

Mechanism

An S_N2 nitrosation mechanism has been suggested to lead to the formation of protein adducts (Roberts et al 2007).

$$\begin{array}{c}
\text{Nu} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{O} \\
\text{N} \\
\text{N} \\
\text{NH}_2
\end{array}$$

$\xrightarrow{H^+}$$

$$\begin{array}{c}
\text{H} \\
\text{N} \\
\text{N} \\
\text{CH}_3
\end{array}$$

$+ \text{Nu—NO}$$

Figure 1: S_N2 nitrosation mechanism (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: N-Acetoxy-N-acetyl-phenyl

$$\begin{array}{c}
\text{O} \\
\text{R}_2 \\
\text{O}
\end{array}$$

$$\begin{array}{c}
\text{R}_1 \\
\text{N} \\
\text{R}_2
\end{array}$$

$R_1 = \text{aromatic, heteroaromatic, heterocyclic ring system}$

$R_2 = \text{any carbon, hydrogen}$
Mechanism

A nitrogen centred S$_{N}$2 mechanism has been suggested to be responsible for the protein reactivity of this class of chemicals (Roberts et al 2007).

\[\text{Figure 1: Nitrogen centred S}_2\text{ mechanism (Nu = biological nucleophile e.g. cysteine or lysine)} \]

Structural alert: N-Acyloxy-N-alkoxyamides

\[\text{R1 = aromatic, heteroaromatic, heterocyclic ring system} \]
\[\text{R2 = any carbon, hydrogen} \]

Mechanism

An S$_{N}$2 mechanism has been suggested to be responsible for the alkylation of biological macromolecules including proteins (Banks et al 2003).
Figure 1: S_N2 mechanism for N-acyloxy-N-alkoxyamides ($Nu = \text{biological nucleophile e.g. cysteine or lysine}$)

Category mitigating factors

- No mitigating factors have been reported for any of the Mechanistic classes within this category

References

Mechanistic Alert: S_N2 Reaction at a Sulphur Atom

A number of chemical classes have been suggested to be capable of reacting covalently with proteins via an S_N2 reaction at a sulphur atom. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Isothiazol-3-ones (sulphur)

\[
\begin{align*}
\text{R} \quad & \quad \text{R} \\
\text{R} \quad & \quad \text{R}
\end{align*}
\]

R = any carbon, hydrogen

Mechanism

A sulphur centred S_N2 mechanism has been suggested to be responsible for the reactivity of this class of chemicals (Figure 1). This mechanism has been shown to exist for sulphur nucleophiles (e.g. cysteine) (Roberts et al 1997, Alvarez-Sanchez et al 2003).

![Figure 1: Sulphur centred S_N2 mechanism involving thiol based nucleophile (e.g. cysteine)](image)

Structural alert: Aromatic sulphonic acids

\[
\begin{align*}
\text{R} & \quad \text{OH} \\
\end{align*}
\]

R = aromatic, heteroaromatic, heterocyclic ring system

Mechanism
An S\textsubscript{N}2 reaction involving disulphide exchange has been suggested to responsible for the protein binding ability of these chemicals (Gerner et al 2004).

![Figure 1: S\textsubscript{N}2 disulphide exchange mechanism for aromatic sulphonlic acids](image)

Structural alert: Thiocyanates

\[
\text{R} = \text{any carbon}
\]

Mechanism

An S\textsubscript{N}2 mechanism involving the cyano group acting as a leaving group has been suggested to responsible for the protein reactivity of this class of chemicals (Hermens 1990).

![Figure 1: S\textsubscript{N}2 mechanism for thiocyanates](image)

Structural alert: Thiols

\[
\text{R—SH} \\
\text{R} = \text{any carbon}
\]

Mechanism

An S\textsubscript{x}2 type mechanism with thiol groups in biological macromolecules resulting in the formation of disulfide bridges has been suggested (Chipinda et al 2007, Hermens 1990).
Figure 1: Disulfide bridge formation

Structural alert: Disulfides

R—S—S—R

R = any carbon

Mechanism

An S_N^2 type mechanism with thiol groups in biological macromolecules resulting in the formation of disulfide bridges has been suggested (Chipinda et al 2007, Hermens 1990).

Figure 1: Disulfide bridge formation

Structural alert: Thiosulfonates

R—S—$\overset{O}{\text{S}}$—R

R = any carbon

Mechanism
An S_N2 type mechanism with thiol groups in biological macromolecules resulting in the formation of disulfide bridges has been suggested (Chipinda et al 2007, Hermens 1990).

Figure 1: Disulfide bridge formation

Structural alert: Sulfoxides of disulfides

$$\begin{align*}
R - S - S &= O \\
R &
\end{align*}$$

$R = \text{any carbon}$

Mechanism

An S_N2 type mechanism with thiol groups in biological macromolecules resulting in the formation of disulfide bridges has been suggested (Chipinda et al 2007, Hermens 1990).

Figure 1: Disulfide bridge formation

Structural alert: Sulfenyl halides

$$\begin{align*}
R - S - X
\end{align*}$$

$X = \text{halide}$
R = any carbon, hydrogen

Mechanism

An S_N2 mechanism has been suggested as being responsible for the protein binding ability of this class of chemicals (Hermens 1990).

![SN2 mechanism for sulfenyl halides](image)

Figure 1: S_N2 mechanism for sulfenyl halides

Category mitigating factors

- The biological nucleophile must be sulphur based for of the mechanistic classes within this category

References

Hermens JLM (1990) Environment Health Perspectives, 87, p219

Mechanistic Alert: S_N2 Reaction at a Halo Atom

A number of chemical classes have been suggested to be capable of reacting covalently with proteins via an S_N2 reaction at a halo atom. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: N-Chloro-sulphonamides

![Chemical structure of N-Chloro-sulphonamides]

\[
\text{R} - \text{S} - \text{N} - \text{Cl}
\]

R = any carbon, hydrogen

Mechanism

An S_N2 mechanism involving the chlorination of an amine moiety within a biological macromolecule has been suggested to be responsible for the toxicity of these chemicals (Grisham et al 1984, Peskin et al 2001, Piga et al 2005).

![Mechanism diagram]

\[
\text{H}_3\text{C} - \text{S} - \text{N} \quad \rightarrow \quad \text{H}_3\text{C} - \text{S} - \text{NH}_2 + \text{protein} \quad \text{N} - \text{Cl}
\]

Figure 1: S_N2 mechanism involving the chlorination of an amine unit within a biological macromolecule

Structural alert: N-Haloimides

![Chemical structure of N-Haloimides]

\[
\text{R} - \text{N} - \text{O} - \text{X}
\]

R = any carbon, hydrogen

X = F, Cl, Br, I
Mechanism

This alert has been linked with protein binding in skin sensitisation (Zinke et al 2002). However, no clear mechanism has been established in the literature. One can hypothesises an SN2 mechanism in which a nitrogen protein nucleophile (e.g. lysine) extracts the chlorine. This mechanism is analogous to that shown to exist in N-chloro sulphonamide derivatives (see alert SN2-14 and associated references) (Figure 1).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{N} \quad \text{C} \quad \text{H}_3 \quad \text{O} \quad \text{O} \quad \text{Cl} \\
\text{NH}_2 & \quad \text{protein} \\
\end{align*}
\]

Figure 1: Possible SN2 mechanism responsible for protein binding for this class of chemicals

Category mitigating factors

- The biological nucleophile must be nitrogen based for of the mechanistic classes within this category

References

Peskin AV et al (2001) Free Radical Biology and Medicine, 30, p572
Mechanistic Alert: S_N2 Reaction at a sp^2 carbon Atom

A number of chemical classes have been suggested to be capable of reacting covalently with proteins via an S_N2 reaction at a sp^2 carbon atom. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Polarised alkenes with a halogen leaving group

\[
\begin{array}{c}
\text{X} \\
\hline \\
\text{H} \\
\end{array}
\]

$X = F, Cl, Br, I$

Mechanism

An S_N2 type mechanism (commonly referred to an S_NVinyl mechanism) has been suggested to be responsible for the ability of this class of chemicals to react with proteins (Lei et al 2009).

![Figure 1: S_N2 (S_NVinyl) mechanism](image)

Structural alert: Polarised alkenes with a sulfonate leaving group

\[
\begin{array}{c}
\text{O} \\
\hline \\
\text{O} \\
\text{S} \\
\text{R} \\
\hline \\
\text{O} \\
\hline \\
\text{H} \\
\end{array}
\]
Mechanism

An S_N^2 type mechanism (commonly referred to an S_NVinyl mechanism) has been suggested to be responsible for the ability of this class of chemicals to react with proteins (Lei et al 2009).

$$\text{protein} \xrightarrow{NH_2} \text{protein} - \text{N} = + \text{H}_3\text{C} - \text{SO} - \text{OH}$$

Figure 1: S_N^2 (S_NVinyl) mechanism

Structural alert: Polarised alkenes with a sulfate leaving group

Mechanism

An S_N^2 type mechanism (commonly referred to an S_NVinyl mechanism) has been suggested to be responsible for the ability of this class of chemicals to react with proteins (Lei et al 2009).

$$\text{protein} \xrightarrow{NH_2} \text{protein} - \text{N} = + \text{H}_3\text{C} - \text{SO} - \text{OH}$$
Figure 1: S_N2 (S_NVinyl) mechanism

Structural alert: Polarised alkenes with a phosphonate leaving group

\[
\text{X} = \text{O (phosphonate), S (thiophosphonate)}
\]

Mechanism

An S_N2 type mechanism (commonly referred to an S_NVinyl mechanism) has been suggested to be responsible for the ability of this class of chemicals to react with proteins (Lei et al 2009).

Figure 1: S_N2 (S_NVinyl) mechanism

Structural alert: Polarised alkenes with a phosphate leaving group

\[
\text{X} = \text{O (phosphate), S (thiophosphate)}
\]

Mechanism
An S_N2 type mechanism (commonly referred to an S_NVinyl mechanism) has been suggested to be responsible for the ability of this class of chemicals to react with proteins (Lei et al 2009).

![Chemical Reaction Diagram]

Figure 1: S_N2 (S_NVinyl) mechanism

Category mitigating factors

- No mitigating factors have been reported for any of the mechanistic classes covered by this category

References

Mechanistic Alert: Episulfonium Ion Formation

Several chemical classes have been shown to form reactive episulfonium ions resulting in reactive species capable of undergoing S_N2 reaction resulting in protein adduct formation. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Mustards

\[
\begin{array}{cccc}
R & R & Y & X \\
R & R & R & R
\end{array}
\]

Y = nitrogen, sulphur (any oxidation state of sulphur is allowed as long as a lone pair remains free for the cyclisation reaction)

X = Cl, Br, I

R = any carbon, hydrogen

Mechanism

Mustards have been suggested to undergo an intra-molecular cyclisation to form an electrophilic reactive episulfonium ion. The episulfonium ion is then susceptible to S_N2 attack by biological nucleophiles (Noll et al 2006, Smith et al 1995, Hermens 1990).

Figure 1: Cyclisation and subsequent S_N2 mechanism for mustards (Nu = biological nucleophile).

Structural alert: 1,2-Dihaloalkane

32
Mechanism

It has been suggested that 1,2-dihaloalkanes undergo an initial attack by glutathione followed by internal cyclisation resulting in the formation of a reactive episulfonium ion. This ion can then undergo an S_N2 type ring opening reaction (Granville et al 2005).

\[
\text{episulfonium ion}
\]

Category mitigating factors

- Fluorine is excluded for both mechanistic classes within this category due to the strength of the C-F bond

References

Hermens JLM et al (1990) Environmental Health Perspectives, 878, p219

Mechanistic Domain: S_{NAr}
Mechanistic Alert: $S_{N\text{Ar}}$

A number of activated aromatic chemicals have been shown to be capable of covalently binding to proteins via an $S_{N\text{Ar}}$ mechanism. The structural alerts covered by this mechanistic alert are as follows:

Structural alert: Activated halo-benzenes

![Activated halo-benzenes](image)

X (leaving group) = F, Cl, Br, I, CN

Y (activating group) = aldehyde, nitro, cyano, halogen, sulfinyl, sulfone, sulfonate, trifluoromethyl

Mechanism

A nucleophilic aromatic substitution mechanism ($S_{N\text{Ar}}$) has been proposed for chemicals of this type (Aptula et al 2006, Enoch et al 2008, Gerner et al 2004, Roberts et al 2007).

![SNAr mechanism for activated halo-benzenes](image)

Figure 1: $S_{N\text{Ar}}$ mechanism for activated halo-benzenes (Nu = biological nucleophile e.g. cysteine or lysine)
Structural alert: Activated halo-pyridines

![Structural alert: Activated halo-pyridines](image)

X (leaving group) = F, Cl, Br, I, CN
Y (activating group) = aldehyde, nitro, cyano, halogen, sulfinyl, sulfone, sulfonate, trifluoromethyl

Mechanism

A nucleophilic aromatic substitution mechanism (S_{N}Ar) has been proposed for chemicals of this type (Aptula et al 2006, Gerner et al 2004, Hulzebos et al 2005).

![Mechanism](image)

Figure 1: S_{N}Ar mechanism for activated halo-pyridine derivatives (Nu = biological nucleophile e.g. cysteine or lysine)

Structural alert: Halo-pyrimidines

![Structural alert: Halo-pyrimidines](image)

X (leaving group) = F, Cl, Br, I, CN

Mechanism

3
A nucleophilic aromatic substitution mechanism (S_{NAr}) has been proposed for chemicals of this type (Aptula et al 2006, Gerner et al 2004, Hulzebos et al 2005).

![Figure 1: S_{NAr} mechanism for halo-pyrimidine derivatives (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Structural alert: Halo-triazines

X (leaving group) = F, Cl, Br, I, CN

Mechanism

A nucleophilic aromatic substitution mechanism (S_{NAr}) has been proposed for chemicals of this type (Aptula et al 2006, Gerner et al 2004, Hulzebos et al 2005, Roberts et al 2007).

![Figure 1: S_{NAr} mechanism for halo-triazine derivatives (Nu = biological nucleophile e.g. cysteine or lysine)](image)

Category mitigating factors
• No mitigating factors have been identified for any of the mechanistic classes within this category

References
Hulzebos et al (2005) QSAR and Combinatorial Science, 24, p332