ENVIRONMENT DIRECTORATE
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY

RESOURCE COMPENDIUM OF PRTR RELEASE ESTIMATION TECHNIQUES
PART 1: SUMMARY OF POINT SOURCE TECHNIQUES

JT00130099

Document complet disponible sur OLIS dans son format d’origine
Complete document available on OLIS in its original format
OECD Environment, Health and Safety Publications
Series on Pollutant Release and Transfer Registers

No. 5

RESOURCE COMPENDIUM OF
PRTR RELEASE ESTIMATION TECHNIQUES

Part 1 : Summary of Point Source Techniques

Environment Directorate
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT
Paris 2002
Environment, Health and Safety Publications on Pollutant Release and Transfer Registers

© OECD 2002

Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France.
ABOUT THE OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 30 industrialised countries in North America, Europe and the Pacific, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised Committees and subsidiary groups made up of Member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s Workshops and other meetings. Committees and subsidiary groups are served by the OECD Secretariat, located in Paris, France, which is organised into Directorates and Divisions.

The OECD began work on Pollutant Release and Transfer Registers (PRTRs) in 1993 as a follow-up to the United Nations Conference on Environment and Development. In co-operation with UN organisations and representatives of OECD Member governments, industry and the public, it prepared a Guidance Manual for governments considering the establishment of PRTRs. The Guidance Manual was published in 1996; the OECD Council adopted a Recommendation on Implementing Pollutant Release and Transfer Registers in the same year.

Environment, Health and Safety Publications appear in several series, including: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Pollutant Release and Transfer Registers; and Chemical Accidents. More information about the Environment, Health and Safety Programme (EHS) and EHS publications is available on the OECD’s web site http://www.oecd.org/ehs.

This publication was produced within the framework of the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC).
The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, FAO, WHO, UNIDO, UNITAR and the OECD (the Participating Organisations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
FOREWORD

OECD began work on the PRTR Release Estimation Techniques project in 1999. That same year, an expert workshop was held in Australia to (1) identify what information is readily available on release estimation techniques for point and diffuse sources, and (2) recommend what can be done to improve the use and availability of such techniques. One of the recommendations from the workshop was to establish a Task Force to manage OECD work in this area. The Task Force on PRTR Release Estimation Techniques was established in February 2000 under the auspices of the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology.

The work programme of the Task Force calls for the development of several technical documents to provide governments and industry - as well as others who are interested in this issue - with information and practical guidance for identifying, selecting and applying different techniques for estimating pollutant releases from point and diffuse sources and from transfers. The *Resource Compendium of PRTR Release Estimation Techniques* is the first in a series of documents created to help accomplish this goal. The intent of the *Resource Compendium* is to provide OECD countries with a basic information resource on estimation techniques typically used to quantify releases from point and diffuse sources and from transfers for a PRTR. It consists of three separate volumes: Part 1 summarises techniques used for point sources; Part 2 provides information about techniques used to quantify releases from diffuse sources; and Part 3 summarises information about techniques used to calculate the amounts of chemicals found in transfers. *This document is Part 1 of the Compendium.*

The *Compendium* was prepared under the auspices of the Task Force on PRTR Release Estimation Techniques. Mark Saegar of Pacific Engineering Services carried out research for Part 1 of the Compendium. It is published on the responsibility of the Secretary-General of the OECD.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 10

CHAPTER 1: BACKGROUND AND CONTEXT ... 12
 1.1 Introduction ... 12
 1.2 Context ... 12
 1.3 Project scope ... 13
 1.4 Structure of the document ... 13
 1.5 Planning phase ... 13

CHAPTER 2: APPLICATION OF ESTIMATION TECHNIQUES FOR RELEASES 16
 2.1 Identifying the types of releases to be estimated .. 16
 2.1.1 Pollutant type .. 16
 2.1.2 Release medium ... 17
 2.1.3 Source type ... 17
 2.1.4 Spatial scale for reporting ... 17
 2.1.5 Temporal scale for reporting ... 17
 2.2 Common sources of releases covered by PRTRs .. 17
 2.2.1 Origin of pollutant releases to air .. 17
 2.2.2 Origins of pollutant releases to water ... 18
 2.2.3 Origins of pollutant releases to land ... 18
 2.3 Fundamental approaches for estimating releases .. 18
 2.3.1 Techniques based on direct monitoring .. 19
 2.3.2 Mass balance .. 21
 2.3.3 Chemical-specific emission factors .. 23
 2.3.4 Engineering calculations ... 25
 2.3.5 Engineering judgement .. 27
 2.3.6 The role of surveys ... 28
 2.3.7 Estimating accidental releases ... 29
 2.4 PRTR data objectives and the application of estimation techniques 30
 2.4.1 General applicability across media ... 30
 2.5 Estimating releases from small and medium-sized industrial facilities 30

CHAPTER 3: RELEASE ESTIMATION TECHNIQUES FOR POINT SOURCES 33
 3.1 Estimation methods for point sources ... 33
 3.2 Overview of survey responses ... 33
 3.3 Summary of Information Sources and Contact Points in Member Countries 36

ANNEX 1: PRTR ESTIMATION METHODS SURVEY: DESIGN AND FORMAT 43

ANNEX 2: SURVEY RESPONSE- AUSTRALIA .. 47
ANNEX 3: SURVEY RESPONSE- CANADA ... 53
ANNEX 4: SURVEY RESPONSE- DENMARK .. 54
ANNEX 5: SURVEY RESPONSE- FRANCE ... 56
ANNEX 6: SURVEY RESPONSE- JAPAN ... 58
ANNEX 7: SURVEY RESPONSE- NETHERLANDS ... 60
ANNEX 8: SURVEY RESPONSE- NORWAY ... 62
ANNEX 9: SURVEY RESPONSE- SWITZERLAND ... 64
ANNEX 10: SURVEY RESPONSE- UNITED KINGDOM 65
ANNEX 11: SURVEY RESPONSE- UNITED STATES ... 67
ANNEX 12: SUMMARY OF INFORMATION FROM REPORTING INDUSTRIES THAT RESPONDED TO THE OECD SURVEY ... 70
ANNEX 13: INTERNATIONAL RESOURCES .. 74
EXECUTIVE SUMMARY

A key aspect of any Pollutant Release and Transfer Register (PRTR) programme is the estimation techniques used to generate data on facility-specific releases and transfers. Companies that report data to a national PRTR generally estimate releases with, for example, emission factors or mass balance calculations, rather than submitting specific continuous monitoring data. As different industrial processes and activities involve different throughputs, equipment and operating conditions, different methods for estimating pollutant releases and transfers are required.

The development of new release estimation techniques can be extremely resource intensive, as can the identification and collection of techniques from other countries. To help reduce costs for Member countries, the OECD was asked to identify and review techniques used in Member countries to quantify releases and transfers, collate information on techniques used, and to make the information widely available. To this end, work on developing a Resource Compendium of PRTR Release Estimation Techniques was initiated.

The preparation of the Resource Compendium is considered a first step in OECD’s PRTR release estimation techniques work. The Compendium consists of three separate documents, corresponding to the three main source categories – point sources, diffuse sources and transfers. This document is Part 1 of the Compendium, summarising techniques used for estimating point source releases from Member countries. (Part 2 describes techniques used for diffuse sources and Part 3 summarises techniques used to estimate the concentration of chemicals in transfers.)

Estimating releases

Several approaches exist for estimating pollutant releases to the environment from point (industrial) sources. These range from simple intuitive assessments to sophisticated empirical models. There are a number of estimation techniques available. The five most widely recognised categories of release estimation techniques are:

(i) direct monitoring;
(ii) mass balance;
(iii) chemical specific emission factors;
(iv) engineering calculations
 − indirect monitoring
 − models
 − other calculations
 − non-chemical specific emission factors; and
(v) engineering judgement (best guess with available data), techniques based on physical-chemical properties, combinations of techniques (engineering judgement and monitoring), the application of other techniques like default emission factors, etc.

Not all estimation methods are equally applicable to all pollutants, source types, or spatial and temporal scales of data collection. For some specific releases from particular source types, there may not be any
well-documented techniques. For common pollutants from different source types, several estimation methods are available. When selecting an appropriate method for estimating a release, the types of releases (or transfers) targeted in a PRTR programme must be well characterised in the following terms:

(i) pollutant type;
(ii) release medium;
(iii) source type;
(iv) spatial scale for reporting; and
(v) the temporal scale for reporting data.

Description of the Compendium

The principal objective in the development of the Resource Compendium was to collect information from OECD governments and selected industries on the techniques used (or are expected to be used) to estimate releases from point and diffuse sources and for transfers and to provide a summary of this information. Another objective of this project was to provide a listing of reports and other documentation describing the various methods being used in OECD countries to estimate releases to air, water, and land.

This document is Part 1 of the Resource Compendium. It describes the types of techniques used to estimate releases from point sources and how they can be applied. To the extent possible, the names and contact information for individuals who can provide reports and documents about specific techniques available in their country were included. Information for this document was obtained through a survey of OECD countries.
CHAPTER 1: BACKGROUND AND CONTEXT

1.1 Introduction

Release estimation techniques for point sources are a key aspect of any Pollutant Release and Transfer Register programme. Companies required to report under a PRTR usually estimate releases by, for example, calculating the mass balance of a process. Release estimation techniques (RETs) for PRTR reporting include methods used for calculating releases of specific chemicals to air, water and soil from different industrial processes and from transfers.

Different industrial processes (e.g. steel versus chemical manufacturing) involve different kinds of throughput, equipment and operating conditions, and therefore require different techniques for estimating releases. It would be time consuming for one country to search for techniques already established in other countries and resource intensive to develop new techniques for all pollutant sources. The development of estimation techniques can be considered a significant task for countries trying to establish a PRTR. To facilitate PRTR implementation and to help countries save resources, OECD initiated a project to identify and review techniques in use and make such information widely available.

The Resource Compendium provides information about release estimation techniques available in specific OECD countries. Development of the document entailed the collection and collation of information about release estimation techniques (RETs) currently accepted in OECD countries for use in a PRTR programme. This document is Part 1 of the Resource Compendium, focusing primarily on techniques used to quantify pollutants released from point sources. Information for this document was collected through a survey sent to OECD countries, selected industries and trade associations. (The survey can be found in Annex 1.) Additional information was obtained through literature and Internet searches.

1.2 Context

Historically, pollutant emission inventories were developed as tools to assist governments in tackling environmental problems, particularly air pollution, global warming, pollution of inland and marine waters and contaminated soils. The scope of many inventories covers primarily point sources; however, some information about diffuse sources is often included. Point sources are considered to be industrial facilities or stationary sources of pollutants.

A primary difference between traditional emission inventories and a PRTR is that PRTRs are intended to cover all environmental media (air, water and land as well as transfers), whereas the more traditional emissions inventories are media-specific (e.g. air or water). In addition, the scope of traditional emission inventories tends to cover a more limited set of chemicals than those covered by a PRTR programme. While PRTRs are national systems, emission inventories vary and can be national or limited in scope to a defined geographic region or to a specific catchment or airshed. However, an important point is that the
techniques used to quantify releases under a traditional inventory can also be used for estimating releases for a PRTR programme. Therefore, this document contains some release estimation techniques used under a particular PRTR and some that are used in other inventory programmes.

1.3 Project scope

The original scope of this project was to collect, collate and make available actual techniques to increase transparency and access of RETs across OECD. However, in the collection phase of the project, it was recognised that this would not be practical, as some techniques may have hundreds of pages of background documentation that are an integral part of the technique. In light of this finding, the project focus shifted to collating and summarising information on the techniques available in OECD countries, and indicating where particular types of RETs could be found.

The OECD Task Force on PRTR Release Estimation Techniques is developing an Internet-based Resource Centre of RETs, which will make available specific estimation techniques along with Internet links or other information on how to access background documentation about the technique (e.g. monitoring data use, process descriptions). When the Internet-based Resource Centre is completed, the Compendium will be incorporated into the database as a key reference guide.

1.4 Structure of the document

The overall purpose of the Resource Compendium is to provide information about the types of estimation techniques used in different Member countries and where they can be found. Such information has not previously been available in one place. It is not a comprehensive guide of all techniques available, nor does it contain the actual estimation techniques; rather it provides a range of information about techniques currently used in many OECD countries. This document is Part 1 of the Compendium, focusing on estimation techniques used for point sources.

Chapter 1 provides background and contextual information on release estimation techniques for point sources. Chapter 2 focuses on the application of estimation techniques and fundamental approaches used to estimate releases from point sources. Chapter 3 summarises RETs by source and by country. The Annexes contain specific information about the types of techniques available in OECD countries and international organisations and where further information can be found.

1.5 Planning phase

When planning a PRTR, the selection of the types of industries that must report, and the chemicals to be reported, will affect the types of techniques needed to estimate releases. It is also at this stage when the types of guidance or instructions to be provided to reporters should be determined.

The data quality objectives for the PRTR are directly related to the techniques that could be used to estimate releases. (The same holds true for estimating chemical concentrations in transfers; transfers are addressed in Part 3 of the Compendium.) The data quality level required by the PRTR would necessitate different types of techniques. For instance, if the PRTR aims at providing data to the public, it might not have the same requirements as a PRTR that provides data as an indicator of policy performance. Figure 1 depicts the PRTR planning and preparation process and the role of data quality objectives in this process.

A budget and schedule need to be determined before the data collection and analysis phases of the PRTR process begin. Resource planning will involve staffing, computer hardware and software, and potential
data collection costs. The amount of time needed to gather data should be factored into the schedule. The overall planning of the PRTR is an iterative process and integrated with resource planning. Decisions on source categories and the techniques to be used are usually affected by:

- data quality objectives according to inventory purposes;
- availability and difficulty of gathering data of acceptable quality;
- available resources, including timing, staff and budget; and
- relative significance of a source.

Another point to consider during the planning phase are the thresholds set for point source reporting. These thresholds will determine how much of the small and medium-sized industrial sector would be captured. For example, some countries may include dry cleaners as a point source while other countries may include this industry as a diffuse source. The planning stage can be a critical step for ensuring that a significant group of emitters is not missed, while also verifying that double counting does not occur. With respect to the number of pollutants covered by a national PRTR, it is worth noting that the number of chemicals would not affect the data collection and release estimation function, as long as there are available emission factors and speciation profiles.
Figure 1: Overview of PRTR Planning and Preparation

Role of data quality objectives (DQOs)

Define purpose of inventory: this determines level of detail needed

Determine data quality objectives (DQOs)

Develop inventory work plan and QA plan

Assess data/resources: adequate to achieve DQOs?

Prepare/revise inventory, including QA/QC activities

System audits: problems found?

Inventory completed

Renegotiate budget, schedule and/or objectives

Can inventory needs be satisfied with lower quality data?

Can plan be modified and still achieve DQOs?

no

no

yes

yes

no

no

yes

yes

Source: EIIP, Volume 1, USEPA, 1997
CHAPTER 2: APPLICATION OF ESTIMATION TECHNIQUES FOR RELEASES

2.1 Identifying the types of releases to be estimated

Several approaches have been developed for calculating pollutant releases to the environment from point sources. These range from simple intuitive assessments, to sophisticated empirical models. Before considering the application of any of these methods, whether by a government or by an industrial facility, it is important to have a clear understanding of the types of pollutant releases that are of concern and the overall objectives of the estimation effort. Without such an understanding, there is a high risk of selecting an estimation technique that is not appropriate for the intended purpose, or one that yields results that are less accurate or less complete than desired.

When selecting an appropriate method for estimating a release, the types of releases (or transfers) targeted in a PRTR programme must be well characterised in the following terms:

- pollutant type;
- release medium;
- source type;
- spatial scale for reporting; and
- the temporal scale for reporting data.

Each of these points are addressed further in the following sub-sections.

2.1.1 Pollutant type

A first step when selecting an appropriate method for estimating a release is to determine if the pollutant is a discrete chemical (e.g. toluene), a class of chemical substances defined by chemical structure or constituents (e.g. polycyclic aromatic hydrocarbons – PAHs, or heavy metals), or a member of a category of pollutants defined by a particular environmental effect (e.g. substances that deplete stratospheric ozone, precursors of acid precipitation). Some RETs only apply to particular chemicals, while others produce an estimate of total emissions within a class; in the latter instance it is difficult, if not impossible, to identify which individual members (i.e. substances) of that class were emitted. There are other RETs that will estimate or measure the effect of an emission, such as chemical oxygen demand (COD), rather than the emission per se. As a general rule, the number and variety of available release estimation methods are greater for an aggregate type of pollutant indicator than for specific chemical compounds.
2.1.2 Release medium

Most estimation methods for direct releases are specific to a particular medium (i.e. air, surface water, underground or ground water, land) although some methods are less specific and may require the user to provide additional information about partitioning in the receiving environment. Methods that address indirect releases, for example those resulting from transfers to a water treatment facility, may require a great deal of additional data to partition accurately releases among receiving media.

2.1.3 Source type

While large point sources are generally treated individually, PRTRs may differ in how they address smaller point sources. Some PRTRs may address them by using the same techniques that are applied to larger point sources, while others will treat a collection of small point sources as a diffuse source category.

2.1.4 Spatial scale for reporting

When small point sources are usually treated as an aggregate, it is necessary to define the scale of aggregation that will satisfy the programme objectives. RETs that are applicable at a global or national scale may not be useful, nor very accurate, if the intent is to collect and disseminate data on a provincial or local scale.

2.1.5 Temporal scale for reporting

As in the case for spatial data aggregation, the desired averaging time can affect applicable RETs. Methods well suited for producing estimates of annual averages may introduce significant uncertainty when they are applied over shorter intervals.

2.2 Common sources of releases covered by PRTRs

Pollutants covered in PRTRs can arise from a variety of processes, including the use of chemicals as a manufacturing aid, a formulation component, as a reactant, or if the chemical is formed as a by-product. The amount of the pollutant associated with a particular activity can be calculated using a variety of release estimation techniques. Although release estimation methods attempt to consider the variables associated with releases, it is not always possible to prepare an estimation technique that predicts pollutant release rates exactly. The following sub-sections address the origin of pollutants from point sources.

2.2.1 Origin of pollutant releases to air

The activity that results in the largest emissions of pollutants to air is combustion, related to energy and heat production, residential space heating, transportation, waste management, agricultural management practices and land clearing practices. In most cases, emissions of the principal combustion air pollutants are estimated using emission factors. These emission factors are generally of high quality and can be reliably applied and adapted to similar types of combustion equipment and fuel combinations in other countries.
Examples of other point sources that contribute to the release of pollutants to air include: metallurgical processes, wood pulp and paper manufacturing, chemical manufacturing, pharmaceuticals production, manufacturing of equipment and appliances, and textile production.

2.2.2 Origins of pollutant releases to water

The release of pollutants to water can be from a variety of sources, including point sources—such as effluent streams from manufacturing facilities or wastewater treatment plants. Water is used for a variety of reasons in industrial production processes and, in many cases, it is one of the main expenses incurred in manufacturing. Consequently, the use of water is often controlled and regulated within industrial processing facilities. Some of the uses of water in manufacturing and production processes include, but are not limited to, the following:

- as a solvent or a carrier;
- as a reactant;
- as a method to clean surfaces;
- as a liquid barrier to reduce or prevent air emissions;
- to produce steam for heating; and
- to cool a product that is subject to high heat during the process.

Wastewater streams absorb and carry away many different types of contaminants during any of these uses. In most industrial applications, that water is directed through a pipe or some other conveyance system to a sewer, or a treatment facility. The nature of industrial wastewater effluent, therefore, makes it relatively easy to measure the pollutant load directly. The amount of contaminant in many industrial wastewater streams is sometimes related to characteristics of the process, e.g. flow, temperature and pressure. Indirect monitoring based on volume proportional sampling schedules can be an effective method to estimate releases.

2.2.3 Origins of pollutant releases to land

There are different types of industrial waste streams that contain pollutants of concern and that can be subject to land disposal: solid and liquid (aqueous-based and organic-based). Solid wastes are generated in the form of slag, ash, sediments, and wastes cut from formed products. Liquid wastes include, but are not limited to, material from scrubbers used as air pollutant control devices; concentrated baths from metal finishing, etching or degreasing; contaminated oils, and conveyance slurries. The pollutants in these wastes that are tracked by a PRTR may include metals (e.g. nickel and its compounds, cadmium and its compounds), dioxins, PAHs, and solvents (e.g. toluene, benzene, methyl ethyl ketone). Often, industrial facilities will have disposal programmes linked to a permit system, or otherwise controlled through a handling fee or a disposal transaction. Therefore, the type and quantity of chemicals in wastes are frequently determined through direct monitoring and a permanent accounting system.

2.3 Fundamental approaches for estimating releases

The techniques most commonly used to estimate (or to actually measure) releases to the environment are:

(i) direct monitoring;

(ii) mass balance;

(iii) chemical-specific emission factors;
(iv) engineering calculations
 − indirect monitoring
 − models
 − other calculations
 − non-chemical specific emission factors; and

(v) engineering judgement (best guess with available data), techniques based on physical-chemical properties, combinations of techniques (engineering judgement and direct monitoring), the application of other techniques like default emission factors, etc.

2.3.1 Techniques based on direct monitoring

a) Characteristics of direct monitoring methods

Direct monitoring addresses a broad range of pollutants, or effects-based surrogates such as pH, if it is not possible to monitor for a specific chemical. In one sense, monitoring, which can be continuous or periodic, can be distinguished from all other methodologies. It is listed along with other techniques because, in many cases, a limited set of monitoring data is used to represent – or model – a broader range of emissions. A distinction should be drawn in the case of continuous monitoring, for which (at least for the particular monitored pollutant and source) no modelling is needed.

Continuous monitoring techniques are available for specific pollutants such as sulphur dioxide, lead, or hexavalent chromium. Generally speaking, costs and difficulty increase for methods used to monitor specific pollutants. These factors often combine to make continuous monitoring an impractical option.

In contrast to continuous monitoring is periodic monitoring, which is conducted less frequently than continuous monitoring. The frequency of periodic monitoring may range from daily to once or twice a year. In some cases, periodic monitoring of certain pollutants can be used to represent other pollutants by applying average ratios, or by using some other known condition related to the source.

There are also two types of monitoring: direct monitoring and indirect monitoring (an engineering calculation). Direct monitoring techniques are commonly employed for point sources. Monitoring of ambient conditions can be used to make valid inferences about discrete point sources. It is also possible to monitor many mobile sources, although this poses significant issues of data consolidation unless (as in a government mandated automobile emissions testing programme), the mobile source is brought to a particular location for testing and that there is an understanding of the percentage of all sources that will be actually tested.

b) Common applications of direct monitoring

Air releases

Direct monitoring provides a good option for determining releases from a limited number of regulated air pollutants, which may represent pollutant classes in some national programmes. It is also effective for some specific pollutants, if the emissions of that pollutant are associated with a small number of well-defined sources. For example, SO$_2$ emissions from large electric generation plants, and other large industrial boilers using fossil fuels, can be monitored efficiently and accurately using existing, well-established monitoring methods. In many cases, the number of such facilities will be relatively low, the locations will be well known, and those sources will contribute the majority of total SO$_2$ emissions.
In selected applications, emissions are determined from these types of sources using continuous emission monitoring (CEM). CEM refers to the collection of release data using a monitor that is a permanently mounted collection system. Sample streams of air are then directed to a device that records the data electronically.

Many of the sources that lend themselves to direct monitoring are those that are operated in a regular and consistent way. Emissions from such sources do not vary much with time; therefore, direct monitoring at periodic intervals (statistical sampling) can be used to determine average emissions over specified periods of time between the monitoring cycles. Sources of this type include large steam boilers at industrial facilities, smelters, blast furnaces and ovens at steel production facilities, and catalytic crackers at petroleum refineries.

Water releases

Pollutant releases into wastewater are generally confined to a pipe or some other conveyance system. Frequently, flow meters are placed at critical locations in the conveyance system in order to monitor conditions that would indicate a breech, a constriction, or a process upset. Releases can be easily estimated by measuring the concentrations of target pollutants in wastewater flows. The concentration of the pollutant in wastewater can be expressed in units of mass/volume multiplied by the flow rate in units of volume/time, yielding a direct release rate expressed in units of mass/time.

An approximation of continuous monitoring of water pollutants is often accomplished by collecting composite samples of wastewater. Composite samples, collected over a set period of time, are then analysed for a variety of different parameters. One approach based on volume proportional sampling has been shown to be nearly as accurate as continuous monitoring. When a process has instabilities, or otherwise varies over time, composite samples may obscure temporal patterns.

For those processes that have wastewater releases that are consistent over time, periodic monitoring of the pollutant concentration, along with the standard and continuous monitoring of flow, will provide accurate and representative estimates of the releases. Sample acquisition, stabilisation, and handling are all relatively straightforward procedures. Furthermore, the analytical methods for many common water pollutants are automated and the analysis costs are typically lower relative to the operating costs of modern industrial facilities. For these reasons, periodic direct monitoring approaches are a primary method for making estimates of pollutant releases from confined industrial wastewater flows.

Land releases

Land disposal techniques are used for both solid and liquid wastes that contain chemicals from a number of activities. Land disposal includes storage or treatment of chemicals in wastes on the land surface, under the land surface in landfills, or below the surface in deep injection wells. Each of these disposal methods is affected by the physical size of the area used for the disposal and by specific chemical or biological capacities of the disposal site. Therefore, in almost all cases, records of the amount of chemicals deposited to these sites are collected and maintained on a routine and continuous schedule. The maintenance of detailed records, such as the data on the concentrations of chemicals of concern in the waste, sent to an outside disposal location is a common requirement of the waste management regulations in most OECD countries.

Such record keeping (or manifesting) systems are used by the receiving facility to estimate the concentrations of chemicals in waste. This is important because it helps the receiving facility to manage the chemicals in waste effectively.
For example, waste wood generated by milling and sizing various forms of pressure treated wood products is likely to contain significant amounts of creosote and perhaps other pressure treating compounds. In most cases, the waste manifest would contain information on both the concentration of the creosote in the waste wood and on the entire weight of the waste including the wood scraps, sawdust, and other non-hazardous components of the process. In this case, the creosote is the constituent of concern, and by using the information provided by the waste manifest it would be possible to separate the fraction of the creosote from the total amount of waste wood.

2.3.2 Mass balance

(a) Characteristics of mass balance methods

The simplest conceptual form of such models, although in practice often the most complex to develop, is a mass balance model. These models rely on the fundamental fact that what goes in must either come out in the form of a product or as a release, or be chemically changed to some other compound. Thus, one can model an emission from any system by knowing the amount of substance going into the system and the amount that is created or destroyed within the system. Any positive difference between inputs and net destruction (destruction – creation) in the system must therefore represent a release.

The general form of these models is as follows:

\[\Sigma(\text{Output}) = \Sigma(\text{Input}) - \Sigma(\text{Consumption}) + \Sigma(\text{Generation}) \]

In practice, because most systems have multiple emissions, one generally deals with a set of known outputs (e.g. the amount of the substance incorporated into the product and the amount in known wastes) in order to model an unknown output (e.g. air emissions). For more complex systems, the conceptual simplicity of this approach is offset by intensive data requirements that will usually require direct monitoring of the other processes. Care should be taken to apply the mass balance approach to the media and pollutant combinations that have the lowest uncertainty or the most benign potential effects. Moreover, the margin of error resulting from mass balance applications should be taken into account when considering this technique.

It is also possible to apply an overall mass balance estimate to check the validity of the individual estimates of releases to the various media. A mass balance check may be particularly useful for source and pollutant combinations that have relied on differing estimation techniques and that have uncertainties that are either unknown or cannot be easily calculated. It is a relatively simple procedure to add up all of the release estimates for the individual media and compare the results to the known amounts of the pollutant that is input to the process. The results will help to establish a measure or degree of reasonableness for the individual estimates.

(b) Common applications of mass balance methods

Air releases

Mass balance methods for estimating air releases are often used to estimate solvent emissions from diffuse sources. However, there are certain forms of mass balance that can be used to estimate emissions from specific industrial applications. The amount of a solvent used as a raw material in any defined time period is almost always known. If the process adds a specific amount of the solvent to the product, and the amount released as a water pollutant and/or if the chemicals in the waste are known, the air release can be inferred by subtraction. These approaches can be used in complex operations for fugitive releases that result from
many potential release points such as pumps, valves, flanges or monitoring ports. The basic equation used to estimate these releases by mass balance is:

\[S_{air} = S_{input} - (S_{react} - S_{gener} + S_{prod} + S_{water} + S_{waste}) \]

Where:

- \(S_{air} \) = the amount of solvent released to air
- \(S_{input} \) = the amount of solvent input to the process
- \(S_{react} \) = the amount of solvent that is reacted away in the process
- \(S_{gener} \) = the amount of solvent (if any) generated by the process
- \(S_{prod} \) = the amount of solvent incorporated into the product
- \(S_{water} \) = the amount of solvent released in wastewater
- \(S_{waste} \) = the amount of solvent released in solid or liquid waste, including quantities recycled or treated

Water releases

Releases to water are often estimated by a mass balance approach. This technique is well suited to situations where releases to water are very complex and difficult to quantify with other approaches. The approach is similar to that used to quantify releases of solvents to air using mass balances. The mass balance equation for air releases can be rewritten for usage in quantifying releases to water:

\[R_{water} = R_{input} - (R_{react} - R_{gener} + R_{air} + R_{waste}) \]

Where:

- \(R_{water} \) = the amount of chemical released to water
- \(R_{input} \) = the amount of chemical input to the process
- \(R_{react} \) = the amount of chemical that is reacted away in the process
- \(R_{gener} \) = the amount of chemical that is created by the process
- \(R_{air} \) = the amount of chemical releases to air
- \(R_{waste} \) = the amount of chemical released in solid or liquid waste, including quantities recycled or treated

This technique may be especially well suited for facilities involved in chemical synthesis that wish to quantify their solvent releases to water, but do not have any direct monitoring or emission factors. For example, releases to water from a chemical facility may come from numerous discharge points that are not easily sampled or identified. In this case, performing a mass balance calculation for a specific solvent, or pollutant, can be the most efficient means of estimating representative releases to water.

Land releases

Mass balance equations offer an efficient method for estimating releases to land from industries when used in conjunction with direct monitoring. As with the application of mass balance for other media, this approach is most effective when good estimates are available for the fate of other chemicals used in a given process.

The basic equation used to estimate releases to land by mass balance is essentially the same as for air and water. As an example, chemical processes often produce sludge as a by-product of a chemical reaction or...
distillation. If the amount of chemical in the product is known, and the amount of waste released in the form of water and air emissions is known, the remainder can be assumed to be included in the sludge. As the total mass of sludge is likely to be tracked, the results of such a calculation can be verified using appropriate sampling of the concentration of the contaminant in sludge.

2.3.3 Chemical-specific emission factors

a) Characteristics of emission factors

An empirical model is one in which the modeller develops a mathematical relationship between one or more process related characteristics (input variables) and a set of release estimates (output variables). An example would be air emissions of sulphur dioxide from the recovery of air-dried unbleached pulp using multicyclone and venturi scrubbers and magnesium oxide as base. In this situation the input variable, expressed as 1,000 kilograms of air-dried unbleached pulp recovered, is known and is directly related to the output variable, expressed as the kilograms of sulphur dioxide emissions released. The model itself would simply consist of a ratio: the kilograms of sulphur dioxide emitted per 1,000 kilograms of air-dried unbleach recovered. Such a ratio is often referred to as an emission factor. The emission factor in this scenario is 4.5 kilograms of sulphur dioxide released per 1,000 kilograms of air-dried unbleached pulp recovered. Such emission factors probably represent the most widely used method of estimating air emissions.

Some emissions sources cannot be easily represented by a linear function between one operating parameter and the resulting emission rate. Emission factors for these types of processes may require more than one input variable, and as such become slightly more complex than the simple linear model. The great majority of emission factors are based on the results of a series of source tests conducted on a sample of sources chosen to represent the typical source in the defined source category. The assumption used in applying emission factors is that the untested sources, within a defined source category, have release characteristics that are similar to those of the tested sources. The great advantage associated with using emission factors is that emissions from many individual sources can be estimated by testing only a small fraction of those sources. Another advantage of emission factors is that they can sometimes be used to generate default emission factors for non-measurable substances by applying specific knowledge of the process characteristics.

Emission factors can be expressed in almost any units, allowing a great deal of flexibility in deciding on the most appropriate measure to use as the basis for the emission factor. Typically, emission factors can be based on a reactant or process input (for instance, tonnes of coal or tonnes of ore processed) litres of solvent, a product or process output (e.g. m² of paper produced) kilowatts of energy produced, number of vehicles produced, or on a land use activity, such as km² tilled land or km² of forest. ¹

The primary limitation associated with the use of emission factors is that not all sources are designed or operated the same way. For a large number of sources, however, some of the errors in the techniques would be associated with different operating conditions, and will very likely, average out. Another, more serious limitation of emission factors is that they are developed for a particular source type, and are at times applied to sources that are inherently different. (This often happens when a better method can not be found.) These limitations should be considered in all analyses that rely on emission factors, as it can be a source of great concern in trans-national comparisons, where facilities in a particular sector in one country may have significantly different features than those of the same sector in a different country.

¹ They may also be based on populations, e.g. number of people, number of cattle, number of households, a feature that makes emission factors particularly useful for estimating certain types of diffuse sources.
Emission factors can be applied to most sources or pollutants that can be measured by another technique so as to obtain the information needed to develop the factor. That factor is then applied to all other similar sources whether or not they were included in the set of sources that were tested to develop the factor. Most emission factors are developed by taking the average measured emission rate during a representative time interval and relating that to some other measure of the operating rate of the activity.

b) Chemical-specific emission factors

Air releases

An emission factor, as noted above, is a constant that relates the amount of emissions that are produced per unit of some measure of the activity that produces the emissions. Emission factors can be used to estimate releases from nearly any source type having emissions with a strong linear dependence on the amount of a particular activity. For example, the amount of NO\textsubscript{x} generated during coal combustion can be predicted by applying an emissions factor that is expressed in kilograms of NO\textsubscript{x} emitted per tonne of coal burned. Emission factors are widely used to estimate air emissions in environmental management programmes of all kinds. Several compilations of air emission factors are available and references to these documents are provided later in this report. Most of the emission factors listed in these compilations, however, were developed to support broad environmental planning activities and may not include all of the detail with respect to specific pollutants that might be desired in some PRTR programmes.

While there is considerable information available on air emission factors, a large portion of these documented emission factors address criteria pollutants such as VOCs or particulate matter, or very common compounds such as SO\textsubscript{2}, lead or NH\textsubscript{3}, and there are few emission factor compilations for other specific pollutants, such as benzene, mercury and specific dioxins.

Water releases

When monitoring data are not available, emission factors can be used to quantify pollutant releases to water from point sources. Emission factors are most useful for well-defined and regulated processes, such as chemical processing activities in continuous operation. As is the case for emission factors used to predict releases of air pollutants, emission factors for water pollutants will provide greater accuracy for aggregate estimates that represent large numbers of similar sources and for long averaging times. Individual source variability, and variability in the effluent characteristics over time, are generally not well represented by average emission factors. Many emission factors for water pollutants address classes of pollutants, such as total nitrates, soluble organic matter, or silt in water, as opposed to specific compounds such as mercury or chlorine.

Frequently, complex emission factors, relying on more than one parameter, are used to predict releases to water. As an example, the emissions of a chemical in fertiliser to surface waters from agriculture can be quantified using an emission factor with the following equation:

\[
\text{Quantity of pollutants directly entering surface waters} = (a) \times (b) \times (c) / 100,
\]

where:

- \(a \) = quantity of fertilisers used
- \(b \) = emission factor for particular chemical in fertiliser in certain types of soil conditions, directly entering surface waters, in kilograms of chemical entering surface water per kilogram of fertiliser used.
- \(c \) = pollution load in the fertiliser (distinguished between farm manure and mineral fertiliser).
The above example indicates that the dividing line between a purely empirical model and a process-specific model becomes somewhat blurred when additional assumptions are required regarding the properties of the environment in which the potentially polluting substance is applied.

Land releases

Emission factors are not commonly used to estimate releases to land. Direct monitoring, mass balance, engineering calculations or surveys are used more frequently to quantify such releases. Whenever emission factors are considered for land disposal releases, the same weaknesses that have been discussed for air and water pollutants are evident; that is estimates based on a large number of similar operations over a long averaging time will provide better accuracy than estimates made for any specific facility.

2.3.4 Engineering calculations

a) Characteristics of engineering calculations based on non-chemical specific emission factors

An alternative approach to modelling that can be somewhat less data intensive than mass balance models is to consider the detailed relationships that exist within an identified system. Such a process specific model, in effect, replaces knowledge of what the inputs and outputs of a system are with knowledge of what is likely to happen to an input or result, or an output, inside the modelled system. For example, while a mass balance model of a storage tank is likely to consider inflow and outflow to estimate breathing losses, a process specific model might focus on pressures inside the tank, vapour pressure of the liquid in the tank, and the operating parameters of relief valves. There is an infinite range of possible models between (what is commonly referred to as) the pure black box model and the completely transparent process model. The more information known about the inputs and outputs, the less knowledge is needed about internal processes, and vice versa.

b) Common applications of process-specific models

Air releases

Calculations using models can be applied to sources that have emissions related to an activity, and that are also influenced by some other external factor that is not related to the activity. For example, some sources of volatile organic pollutants are affected by temperature in addition to the amount of activity. In circumstances where it is easier to measure the operating parameters of a process than to directly assess emissions, the calculation model can be described as indirect monitoring. Indirect monitoring methods can be used to develop release estimates that are nearly as accurate as direct monitoring for selected sources at a fraction of the cost.

Calculations using models (with lesser degrees of measurement) are also widely used for mobile sources, because the influence from conditions of operation is essentially constant from one vehicle to another. Some examples of sources where emissions reflect both a primary measure of activity and an additional process condition are listed in Table 1.

The development of calculation models can be very expensive and, as a result, government agencies or large associations representing specific industrial entities that contribute to emissions from a particular activity frequently develop them. Once these methods have been developed, they can usually be applied with limited effort to provide reasonable estimates of emissions from certain types of sources.
Table 1. Examples of source/activity for which calculation models are used

<table>
<thead>
<tr>
<th>Source</th>
<th>Factors</th>
<th>Dependent parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Vehicles</td>
<td>Kilometres driven, litres of fuel consumed</td>
<td>Temperature, altitude</td>
</tr>
<tr>
<td>Heavy Equipment</td>
<td>Hours in operation, litres of fuel consumed</td>
<td>Load on engine, temperature</td>
</tr>
<tr>
<td>Fertiliser Use</td>
<td>Kilograms applied</td>
<td>Soil moisture, soil temperature</td>
</tr>
<tr>
<td>Tank (vapour evaporation)</td>
<td>Quantity of liquid stored</td>
<td>Temperature, turnover rate</td>
</tr>
<tr>
<td>Surface Impoundment (evaporation)</td>
<td>Mass loading rate</td>
<td>Temperature, wind speed, pH</td>
</tr>
</tbody>
</table>

A key weakness associated with calculation models is similar to the weakness associated with emission factors. These methods are sometimes inappropriately applied to sources that are operated differently from the sources that were used to develop the model. In other cases, these methods may require some specific types of information that may not be readily available to the inventory developer. References for calculation models for several sources are provided later in this document.

Water releases

With respect to water releases, calculation models are used more often to estimate releases to surface and ground water from diffuse sources. However, models have been developed to estimate point source releases to water. For example, a number of models have been developed to predict and evaluate the effects of landfill leachate on groundwater. Other sources for which groundwater pollution has been modelled include industrial effluent, deep-well injection and underground storage tanks.

Indirect monitoring (calculation models with some parameters monitored in real time) can be applied in many cases for estimating water contaminants from industrial point source releases. The amount and nature of water pollutants released from industrial facilities are often directly related to one or more process related parameters, and estimates of releases to water can often be determined to a high degree of accuracy from measurements of these parameters.

Air and water releases

US EPA has developed the WATER9 model to estimate air and water releases of individual pollutants in wastewater collection, storage, treatment and disposal facilities. WATER9 is able to evaluate a full facility that contains multiple wastewater inlet streams, multiple collection systems, and complex treatment configurations. Also, WATER9 has the ability to use site-specific chemical property information, and the ability to estimate the missing chemical property values. This model can be accessed through the following link: http://www.epa.gov/ttn/chief/software/water/index.html.
Land releases

As previously stated, calculation models differ from emission factors particularly in respect to the number, complexity, and type of user defined input parameters required. The example that was provided on estimating releases to land using emission factors could be expanded to models.

Calculation models, based on user inputs, can provide information about the quantities of releases to the environment from numerous sources, including mine tailings, households and industries. For example, the amount of sewage sludge produced from publicly owned treatment works (POTWs) can be modelled, as can the amount of biodegradable and non-biodegradable wastes in household refuse, to obtain estimates of releases to land. Models can also be used to predict the amount of solid waste produced by the livestock industry.

c) Indirect monitoring

In most cases, it is possible to infer information about releases by monitoring other process parameters. This is known as indirect monitoring and can be very useful for sources that have release signatures that are dependent on standard operational conditions, such as temperature, pressure or moisture/water content. (NB Indirect monitoring can sometimes be used to characterise diffuse sources that are not well suited to direct monitoring approaches.) In most situations, however, indirect monitoring is used to obtain enough data to adequately represent average conditions related to the desired spatial and temporal scales. In some cases, periodic monitoring of certain pollutants can be used to represent other pollutants by applying average ratios, or by using some other known conditions related to the source.

Consider a process for which the release depends directly on the temperature and pressure within a reactor. In many cases, the product yield and/or product quality may also depend on those parameters, and therefore those parameters may be routinely monitored as a part of the production process. Those same parameters can then be used to estimate releases. For a process that has been very well characterised, indirect monitoring methods can be used to develop release estimates that are nearly as accurate as direct monitoring for selected sources at a fraction of the cost.

Water releases

Often, wastewater streams are not analysed for target pollutants but for more general parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen concentrations or total organic carbon (TOC). These measurements provide a relatively inexpensive and easy test of the pollutant load in wastewater, but not of the specific pollutants. Knowledge of the potential pollutants in the wastewater may make these general tests more cost effective than analysing water for specific levels of individual pollutants. Use of this technique will depend upon the degree of inaccuracy acceptable to the planner with regard to identifying specific pollutants.

2.3.5 Engineering judgement

a) Characteristics of engineering judgement methods

All of the approaches previously discussed are typically described as explicit models. That is, the parameters and assumptions used to make the prediction of a release can be stated unambiguously. Frequently, however, releases are estimated using methods that are more intuitive. Such implicit models take advantage of the experience and professional knowledge of the estimator. Over time these approaches have been discussed collectively as methods based on engineering judgement. While it has been recognised that the use of engineering judgement methods has the potential for errors and inconsistencies, the practical
advantages of their role in developing release estimates quickly and inexpensively should not be unduly
minimised. Often, engineering judgement methods are used initially to provide estimates in the first year or
two of a programme. The analysis and interpretation of these results then frequently lead to the use or
development of more sophisticated methods that can improve the accuracy, specificity and uses of the data.

b) Application of engineering judgement methods

Air, water, or land releases

Engineering judgement refers to approaches that are based on informed assessments and direct experience.
These approaches are primarily used in cases where none of the more explicit estimation methods are
judged to be applicable for a particular source or category of sources. Frequently, engineering judgement is
applied to make estimates of one pollutant component by assuming that the emission rate is proportional to
another component for which a more accurate method was used. For example, emissions of a particular
type of reactive organic solvent used in a process may be routinely estimated as part of another specific
environmental media programme. The reagent used in the process may include an additive that acts as a
preservative. The additive, which would be present in a small concentration and not be involved in the
process, would not be of as much interest as the reactive organic compound. The emissions of the additive
could be estimated in proportion to the emissions estimate for the reactive organic compound. This type of
estimate would be considered engineering judgement.

There are many possible engineering judgement methods that could be developed depending on the
particulars of specific processes and sources. It is not possible to mention all of them in this discussion, but
similar engineering judgement methods are likely to be obvious in particular circumstances as they arise.
There is no ready way of characterising the application of engineering judgements to different release
media.

2.3.6 The role of surveys

Surveys can be used in a variety of ways. They can be used to collect information from a subset of
activities that represent a population of that activity and the results can then be used to make estimates
about the whole range of activity. In some cases, a survey can be designed to collect information from all
of the specific sources of a particular activity. In other cases, the survey may only reach a subset of the
sources within an activity. When the survey addresses only a subset of the total activity, survey
participants can be selected using statistical sampling methods or simply by sending the survey to a
randomly selected subset.

For example, a survey could be developed to collect information from all commercial dry cleaners in an
urban area or region. Each might be asked to provide information on the amount of each specific dry
cleaning solvent that is used, and how much is recovered for reuse or recycling, and how much is disposed.
One could then assume that the remainder is released as an air pollutant. That estimate would represent
the total air release of the solvent for the surveyed area. The same survey could be sent to a subset of the dry
cleaner establishments that might also collect data on another measure of the activity, such as kilograms of
material cleaned, number of employees and total sales. Such information could be used to derive an emission factor to scale up the total air emissions for that activity by simply assuming that the ratio of air emissions to the activity is the same for all dry cleaners.

Surveys are also useful tools to quantify generation and disposal of chemicals in waste, and to estimate releases of those chemicals from land disposal. Many similar operations may generate wastes in approximately the same proportions. The use of surveys allows a central agency to get an estimate based on actual operating conditions without having to burden each generating facility to collect and maintain that particular data. Often surveys can be set up to collect particular critical information that can be used to estimate more than one type of release or at least more than one target pollutant of any of the media.

2.3.7 Estimating accidental releases

Estimating accidental releases, or releases from other unusual events, presents a different set of circumstances for PRTR programmes. Most accidental or otherwise unplanned releases usually represent an acute exposure to risk over a short time period. Examples of these types of releases include severe process upsets, major breaches from storage vessels or containment structures, explosions, or accidents during the transport of chemicals. Time is the critical factor for responding to such releases which, in turn, affects how they can be addressed in PRTR programmes.

Most of the release estimation techniques previously described cannot be implemented in situations that require an immediate response. Even in situations where they can be implemented, the data necessary to develop accurate estimates of the release may not be available. In most cases, accident response authorities will rely on some kind of simple transport model to quickly estimate the area that will be affected by such a release. These models are based on assumptions that will allow a quick assessment of the likely areas to be affected. Some of these assumptions are:

- the dispersion of the releases will follow a normal distribution pattern in response to wind or flows associated with a water body;
- the dilution of the releases in response to assumed dispersion is the only active process to counter the risk associated with exposure (no chemical reaction will occur to decrease the toxicity); and
- the risk will remain until the source is controlled or the leak or spill is contained.

The critical input variable needed is the source strength. Frequently, the best option available is to determine a maximum release strength, which can be calculated based on engineering judgement. For instance, in the situation in which a breach in a major storage vessel containing a highly flammable chemical that is also a respiratory irritant occurs, the worst case scenario would be that the tank was filled and all the chemicals leaked out and volatilised in, say, 20 minutes. The average source strength over the 20-minute period could be calculated quickly with a model.

2. It is important to note that surveys are also useful for collecting information from sub-threshold point sources in a PRTR and for diffuse sources. This is particularly true for large-scale type operations, such as fertiliser application, manure handling and treatment from agricultural activities, or the amount of motor oil removed from automobiles during routine maintenance at professional repair shops. As reporting programmes develop, surveys can be useful, particularly to set priorities and define more detailed and accurate data collection methods.
2.4 PRTR data objectives and the application of estimation techniques

2.4.1 General applicability across media

As noted in the beginning of this chapter, not all estimation methods are equally applicable to all pollutants, source types, or spatial and temporal scales of data collection. For some specific releases from specific source types, there may not be any well-documented methods. As concerns common pollutants from different source types, several estimation methods are available. The following sub-sections address each of the three key release media, and examine the applicability of selected methods to different types of pollutants, sources, and scales in space and time. Some of the key characteristics of each type of technique are summarised in Table 2.

a) Air emissions

Direct monitoring techniques can be expensive to use on a routine basis since they require staff to operate and maintain the instruments, complete QA/QC checks, and manage the data. For those reasons, direct monitoring techniques, while providing the highest quality and reliability of emissions estimates, are not commonly used to develop emissions estimates for point sources. However, calculation models based on indirect monitoring methods, that make use of other types of data routinely collected for other purposes, may be applied for point sources.

b) Water releases

For estimating releases to water from point sources, there is a heavy reliance on the monitoring of effects-based parameters for making pollutant release estimates, and on the use of indirect monitoring calculation models for specific chemicals.

c) Land releases

Estimation methods for land releases appear to be the crudest of all. This may reflect a general regulatory focus on total mass of managed land disposal, in addition to a focus on hazardous constituents. In addition, much of the land disposal can be identified as an independent process, with its (secondary) emissions being evaluated separately, rather than as part of the processes that led to the disposal.

2.5 Estimating releases from small and medium-sized industrial facilities

The "common" method described below can be used to quantify releases from small- and medium-sized enterprises (SME) or those industrial facilities that fall below the reporting threshold for point sources. This method is basically a national mass balance approach. One drawback of this method is that the accuracy is not as high as that for most of the point source methods discussed in this Compendium. Nevertheless, it can provide a reasonable estimate of the relationship between the amount of the pollutants released from these small individual sources relative to the amount released by the large point sources.

While the method described below is generally applicable to all industrial categories and for all media, its characteristics will depend on the nature of the sources and the other methods that are being applied to estimate point source releases. This method requires that information on some common measure of the overall activity be reported for the point sources in addition to the release estimates. For example, consider the releases of organic solvents to air from metal finishing activities (solvents used as degreasers, in plating or etching operations, and in finishing operations such as paint or lacquer, etc.). The national agency or ministry would need to collect information on the total amount of activity conducted in the metal finishing...
sector including both the large point sources and any smaller sources that are below the point source reporting threshold. The average pollutant release per unit of activity can be calculated from the totals reported by all of the point sources. The amount of activity represented by the large point sources can then be subtracted from the national total. The remainder would represent the amount of the activity that is being completed by the SMEs. The average release rate can then be applied to that remaining activity to provide an estimate of the amount of emissions from the SMEs (and, as needed, other diffuse sources).

a) Method example

In this example we will assume that in a particular country 10,000 litres of acrylic primer paint is used for undercoating in the repair of automobiles during a year. Measures of total production can frequently be determined from national sales figures. Assume there are 50 large repair shops that meet the point source reporting criteria. Those 50 large shops consume 8,500 litres of the primer paint and release 400 kg of toluene.

As a point of comparison, and to provide the total release of toluene from this activity, a calculation of the diffuse source release is also included. Thus, in a situation where the remainder of the acrylic primer paint is used by small shops is not required to be reported (as these shops fall under the reporting threshold limit); the toluene releases can be estimated by assuming that they consume the remaining 1,500 litres of paint, and that they release a proportional amount of toluene from that activity. The calculations below illustrate this example.

\[
\text{Point source release rate} = \frac{400\text{kg}}{8,500 \text{ litres}} = 47\text{grams per litre} \\
\text{Diffuse sources release} = 1,500 \text{ litres used} \times 47 \text{ grams per litre} = 70.5 \text{ kg.}
\]

This simple mass balance approach can be applied to essentially any activity and for any pollutants released to any environmental media. The essential assumption is that the release amount remains the same in all sizes of operations. That assumption does not always hold because of differences in technology, process efficiency and the amount of attention that is given to operational details. Nonetheless, this method will provide a reasonable estimate of the unreported amounts for general comparison and planning purposes in most cases.
Table 2. Application of Release Estimation Techniques

<table>
<thead>
<tr>
<th>Estimation Method</th>
<th>Pollutants</th>
<th>Source Types</th>
<th>Spatial Scale</th>
<th>Temporal Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring – continuous or parametric</td>
<td>Existing techniques tend to focus on pollutant classes with an increasing trend to cover more specific pollutants.</td>
<td>Generally limited to point sources.</td>
<td>Generally applied at a process level or for a specific release point.</td>
<td>Applicable at all scales. Shorter temporal intervals translate into increased cost.</td>
</tr>
<tr>
<td>Chemical-specific emission factors</td>
<td>Generally developed for classes of pollutants from limited measurement data. Trend is to develop more chemical-specific emission factors as programmes advance and data become available.</td>
<td>Wide range of point and diffuse sources within air and water media have been addressed. Efforts continue to expand current databases.</td>
<td>Applicable at all scales. Activity data needs and costs to collect data rise with increasing spatial resolution.</td>
<td>Depends on the time interval of process specific activity data.</td>
</tr>
<tr>
<td>Mass balance</td>
<td>Well-suited to individual chemicals, if the process chemistry is known.</td>
<td>Widely used for diffuse sources, yet, it can easily be applied to point sources.</td>
<td>For diffuse sources, not well suited to fine spatial resolution.</td>
<td>More accurate for longer time intervals.</td>
</tr>
<tr>
<td>Engineering calculations</td>
<td>Well suited for specific pollutants if process characteristics are well known.</td>
<td>Generally applicable to point sources.</td>
<td>Generally applied at a process level or for a specific release point.</td>
<td>Applicable to shorter time intervals or can be applied at longer time intervals.</td>
</tr>
<tr>
<td>Engineering judgement</td>
<td>Can always be applied.</td>
<td>Can always be applied.</td>
<td>Can always be applied.</td>
<td>Can always be applied.</td>
</tr>
</tbody>
</table>

Note: The time scale discussion here applies only to “routine” emissions
CHAPTER 3: RELEASE ESTIMATION TECHNIQUES FOR POINT SOURCES

3.1 Estimation methods for point sources

Most of the PRTR programmes upon which Part 1 of the PRTR Resource Compendium is based are designed to collect release estimates of the target pollutants from large-sized industrial and energy production facilities. This chapter describes the OECD survey and information collection process and provides a table (see Table 3) summarising information collected from OECD countries.

3.2 Overview of survey responses

As noted in Chapter 1, information on RETs used in OECD countries was collected via a survey. Table 3 presents a summary of the results of the survey responses from government agencies. It is organised by country, type of RET used and environmental media (air, water or land). This table lists only the methods noted in the survey responses.

Not all survey responses provided the same type of information. Some government responses contained specific information about techniques in their country. Others provided general information about the national PRTR programmes rather than specific information about the methods used to estimate releases. While others stated that they use many different methods, depending on the specific aspects of an industrial category, targeted pollutant lists or availability of information.

The guidance materials provided by responding countries suggest that monitoring of releases at the source tends to be the preferred estimation method. Emission factors, calculation models, and mass balance approaches are discussed frequently in these guidance documents, and are considered preferred RETs when it is difficult or too costly to apply direct monitoring methods. It is worthwhile to mention that RETs based on engineering judgement were noted less often in the survey responses, and were not generally recommended as preferred approaches.
<table>
<thead>
<tr>
<th>Source Category</th>
<th>Australia</th>
<th>Denmark</th>
<th>France</th>
<th>Japan</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>W</td>
<td>L</td>
<td>A</td>
<td>W</td>
</tr>
<tr>
<td>Agriculture</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Energy</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Metallurgy Engineering</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Non-metallic minerals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Primary chemical industry</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Products based on primary chemicals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Textiles and leathers</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Paper/cardboard</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Commercial services</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Transportation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>General services</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Households</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Pollution control</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Waste disposal</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Regeneration</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Recovery</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Manufacturing industries</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

This chart contains information that was reported to OECD via a survey.
<table>
<thead>
<tr>
<th>Source Category</th>
<th>Norway</th>
<th></th>
<th>Switzerland</th>
<th></th>
<th>United Kingdom</th>
<th></th>
<th>United States</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>W</td>
<td>L</td>
<td>A</td>
<td>W</td>
<td>L</td>
<td>A</td>
<td>W</td>
</tr>
<tr>
<td>Agriculture</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Energy</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Metallurgy Engineering</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Non metallic minerals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Primary chemical industry</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Products based on Primary Chemicals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Textiles and Leathers</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Paper/Cardboard</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Commercial Services</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Transportation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>General Services</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Households</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Pollution Control Waste Disposal</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Regeneration Recovery</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Manufacturing Industries</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

A This chart contains information that was reported to OECD via a survey.
3.3 Summary of Information Sources and Contact Points in Member Countries

A large amount of information on release estimation techniques was gathered through the OECD survey. Most countries have compiled some guidance and technical assistance documents on preferred and alternate estimation techniques that can be used. Several countries have posted their guidance documents on the Internet to facilitate the dissemination of such materials.

This section provides a summary list of all of Internet locations included in survey responses, along with contact information for the PRTR representative in each country. Table 4 lists all of the references to RET descriptions and PRTR estimation guidance manuals identified. While many available documents are listed in Table 4 and in the accompanying Annexes, it is not a comprehensive list of all such materials available, and it is anticipated that the list will evolve.

Table 4 also includes URL addresses for Internet pages where the specific techniques, guidance manuals and other general information about a country’s PRTR can be found. Access to these documents is possible when using an electronic version by selecting the URL reference listed in the Table. Some documents listed in Table 4 can be also accessed as PDF files by selecting the particular file name. Further details about identified release estimation methods and OECD country PRTR programmes can be found in Annexes 2 through 11 of this report. Annex 12 describes RETs from specific industry sectors and Annex 13 describes some of the international resources available.

Whenever possible, a contact name with an E-mail address, telephone number and fax number are provided in Table 4 and in the Annexes. While contact names listed in Table and the Annexes will change over time, the co-ordinates for the Ministry, or other government body, should remain the same and can be used accordingly.
Table 4. Summary of Information Sources and Contact Points

<table>
<thead>
<tr>
<th>Country/Organisation</th>
<th>Contact Information</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Anne Cawsey</td>
<td>The Internet site listed in the first column is the home page for the Australian National Pollutant Inventory (NPI). The site contains over 78 industry manuals. The site also contains data from the reports provided to date for both point and diffuse sources. Details of the industry and source categories are provided in Annex 2.</td>
</tr>
<tr>
<td></td>
<td>Environment Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPO Box 787</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canberra ACT 2601</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: +61 2 6274 1175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: +61 2 0274 1593</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: anne.cawsey@ea.gov.au</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.npi.ea.gov.au</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Francois Lavellée; Chief</td>
<td>1. The URLs listed below contain guidance materials available to NPRI reporters, including:</td>
</tr>
<tr>
<td></td>
<td>National Pollutant Release Inventory</td>
<td>• Guide for Reporting to the National Pollutant Inventory</td>
</tr>
<tr>
<td></td>
<td>Environment Canada, PVM-09</td>
<td>• Database with emission factors for dioxins/furans, hexachlorobenzene, mercury and PAHs. It also contains information on mercury in products.</td>
</tr>
<tr>
<td></td>
<td>Ottawa, ON K14 0H3</td>
<td>• Substance information database</td>
</tr>
<tr>
<td></td>
<td>Tel: +1 819 994-4073</td>
<td>• Guide for wood preservation facilities</td>
</tr>
<tr>
<td></td>
<td>E-mail: francois.lavellee@ec.gc.ca</td>
<td>For the 2002 reporting year, guidance for NPRI reporting of criteria air contaminant emissions and from wastewater facilities will be available on this site.</td>
</tr>
<tr>
<td></td>
<td>Marc Deslauriers, Chief</td>
<td>2. The site contains several tools for estimating emissions of criteria air contaminants, including a metric version of the US EPA’s FIRE database system.</td>
</tr>
<tr>
<td></td>
<td>Criteria Air Contaminants</td>
<td>3. This site contains the Mining Association of Canada’s Guide for Reporting to the NPRI.</td>
</tr>
<tr>
<td></td>
<td>Environment Canada, PVM-09</td>
<td>4. Document prepared by the mining association of Canada that provides supplemental assistance in applying the guidance for PRTR reporting item 1.</td>
</tr>
<tr>
<td></td>
<td>Ottawa, ON K1A 0H3</td>
<td>5. Guidance for estimating releases from solvent degreasing and dry cleaners.</td>
</tr>
<tr>
<td></td>
<td>Tel: +1 819 994-3069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: marc.deslauriers@ec.gc.ca</td>
<td></td>
</tr>
</tbody>
</table>
| | 1. http://www.ec.gc.ca/pdb/npri/npri_g
<p>| | docs_e.cfm | |
| | 2. http://ww.ec.gc.ca/pdp/ape/capetools_e.cfm | |
| Denmark | Mette Skovgaard | The survey response indicates that releases to air and water are estimated for several categories of point in only the Danish inventory systems. Contact the Danish Ministry of Environment for more information. |
| | Strandgade 29 | |
| | 1401 Copenhagen K | |
| | Denmark | |
| | Tel: +45 32 66 01 00 | |
| | E-mail: msk@mst.dk | |
| | http://www.mst.dk/homepage | |</p>
<table>
<thead>
<tr>
<th>Country/Organisation</th>
<th>Contact Information</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **Japan** | Satoru Morishita
Environment Agency (EA)
1-2-2 Kasumigaseki, Chiyoda-ku,
Tokyo 100-8975
Tel: +81-3-5521-8260
Fax: +81-3-3580-3596
E-mail: satoru_morishita@eanet.go.jp | In 2001, Japan published a guidance document on release estimation techniques. This document will be translated into English for other countries to use.
Further information regarding available release estimation techniques is located in Annex 6. |
| **The Netherlands** | D.J. de Vries
RIZA
Afdeling EMN
PO Box 17
8200 AA
Tel: +31-(0)320-298536
Fax: +31-(0)320-298514 <
E-mail: h.dvries@riza.rws.minvenw.nl or Pieter.VanDerMost@imh-hi.dgm.minvrom.nl or Jan.vanderPlas@imh-hi.dgm.minvrom.nl | Contact D.J. de Vries for information on estimating releases to water.
Contact Pieter van der Most at the E-mail address in column 2 for information and help on methods for estimating releases to all other media (air and land). |
| **Norway** | Harald Sorby
Norwegian Pollution Control Authority
PO Box 8100 Dep. 0032 Oslo
Tel: +47 22 57 34 00
Fax: +4 7 22 67 67 06
E-mail: harald.sorby@sft.no | Guidance Documents on Environmental Related Standards. Techniques are available in guidance documents and other published government reports. |
| **Switzerland** | Hans-Peter Saxer
Swiss Agency for the Environment,
Forests and Landscape
CH-3003 Bern
Switzerland
Tel: +41 31 32 293 84
Fax: +4 1 31 32 479 78
E-mail: hanspeter.saxer@buwal.admin.ch | |

38
<table>
<thead>
<tr>
<th>Country/Organisation</th>
<th>Contact Information</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>Justin Goodwin</td>
<td>The UK's survey response indicates that releases are estimated for point sources. Additional information is provided in Annex 10.</td>
</tr>
<tr>
<td></td>
<td>Culham Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>329 Harwell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Didcot, Oxfordshire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX11 0QJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: +44 12 35 46 3033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: +44 12 35 46 3003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: justin.goodwin@aeat.co.uk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment Agency contacts:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlie Corbishley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: Charlie.corbishley@environment-agency.gov.uk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ian Whitwell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: lan.whitwell@environment-agency.gov.uk</td>
<td></td>
</tr>
</tbody>
</table>

United States	John W. Harman	
	TRI Program (7408)	
	U.S. Environmental Protection Agency	
	401 M. Street SW	
	Washington, DC 20460	
	Tel: +1 202 260 6395	
	Fax: +1 202 260 2219	
	E-mail: harman.john@epa.gov	

1. The first Internet address provides comprehensive information regarding the US EPA’s TRI programme and guidance to industries on estimation methods that can be applied to point and diffuse industrial sources. See Annex 11.
2. The second Internet address provides access to emission factors, emission estimation models, etc. See Annex 11.
3. The third Internet site contains chemical-specific guidance manuals that provide information on estimating releases from industries that emit chemicals. See Annex 11.
4. The fourth internet site contains many guideline documents that provide information useful to estimate releases to water. Most of these sources are specific for point sources. The surveys received from the US EPA indicate that releases are only estimated for point sources. Details can be found in Annex 11.

US EPA has also made several documents available on specific releases or pollutants from some specific sources under its Pre-Manufacture Notice (PMN) requirements. To find pdf formatted versions of these documents, refer to Annex 11.
International Organisations

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Contact Information</th>
<th>Internet Addresses</th>
<th>Notes</th>
</tr>
</thead>
</table>
3. http://org.eea.eu.int/news/ann980509317 | The first Internet address includes a software programme called Computer Programme to Calculate Emissions from Road Transport (COPERT), funded by the European Environment Agency. It calculates major air pollutants and other important compounds like N₂O, NH₃, SO₂ and Pb..
The second Internet address is the home page for COST 319 which provides background documents on the emission factors and calculation methodologies used for estimating releases from transport sources.
The third Internet address provides updates and news on their activities. Topic centres are: Air and Climate Change, Water, Nature and Biodiversity, Waste and Material Flow and Terrestrial Environment. |
| **Intergovernmental Panel on Climate Change (IPCC)** | The IPCC Secretariat, World Meteorological Organisation Building, 7bis Avenue de la Paix, C.P. 2300 CH- 211 Geneva 2, Switzerland | http://www.ipcc.ch/pub/guide.htm
http://www.ipcc.ch/ | The Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories can be found at the Internet address in column 1, including release estimation methodologies for industrial processes. Specific gases addressed in this document are greenhouse gases. Information regarding the IPCC is located in Annex 14. |
| **Organisation for Economic Co-operation and Development (OECD)** | | 1. http://www.oecd.org/env/prtr | This Internet site provides access to a wide array of PRTR related information which has been generated by the OECD. The site also includes a series of documents on PRTRs, including the PRTR Guidance Manual for Governments |
| **United Nations Institute for Training and Research (UNITAR)** | Palais des Nations
CH-1211 Geneva 10
Switzerland
Tel: +41 22 917 8525
Fax: +41 22 917 8047
E-mail: cwm@unitar.org | This Internet site is the UNITAR PRTR training and capacity building programmes homepage. It includes links to training materials, workshop proceedings and other information sources that can be used to facilitate the Design and implementation of national pollutant release and Transfer registers (PRTRs). |
| --- | --- | --- |
| **UNECE EMEP/CORINAIR** | Jessica Sully or Nikolas Hill
AEA Technology Environment
E6 Culham
AEA Technology
Abingdon, Oxon
OX14 3ED
United Kingdom
Tel: +44 1235 46 3251/3158
Jessica.sully@aeat.co.uk | The first Internet address links to the EMEP/CORINAIR Atmospheric Emission Inventory Guidebook (2nd Edition), which has been prepared by the expert panels of the UNECE/EMEP Task Force on Emission Inventories and Projections. The Guidebook is published by the European Environment Agency and it is intended for general reference and for use by parties to the Convention on Long Range Transboundary Air Pollution when reporting to the UNECE Secretariat in Geneva.
The second Internet address links to the working website of the Task Force on Emission Inventories and Projections. This gives further information about the work of the Task Force and contains Guidebook chapters, which are currently under development. Details can be found in Annex 13.
The third Internet address includes several downloadable computer tools developed by the European Environment Agency and its European Topic Centre on Air Emissions (ETC-AE) to support European countries in compiling annual air emission inventories within the framework of the Corinair (CORe INventory AIR emissions) programme. These tools include:
CollectER: used to collect and store information necessary to build an air emission inventory, and then calculate the emissions using emission factors, calculation models and other estimation methods recommended by EMEP/CORINAIR;
ReportER: used to create reports of the air emissions data developed using CollectER in several formats that conform to international reporting guidelines; and
TrainER: a training tool for how to use both CollectER and ReportER. |
| **World Bank** | For information on contacting the World Bank, please go to:
http://www.worldbank.org/html/extdr/geen.htm | This Internet site provides PRTR related information and links to other organisations involved in PRTR development. |

UNECE EMEP/CORINAIR

2. http://www.aeat.co.uk/netcen/airqual/TFEI/unece.htm
3. http://www.spirit.sk

World Bank

<table>
<thead>
<tr>
<th>World Health Organisation</th>
<th>Headquarters Office in Geneva (HQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avenue Appia 20</td>
</tr>
<tr>
<td></td>
<td>1211 Geneva 27</td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td></td>
<td>Tel: +41 22 791 21 11</td>
</tr>
<tr>
<td></td>
<td>Fax: +41 22 791 0746</td>
</tr>
<tr>
<td></td>
<td>This Internet site provides details on a wide range of chemicals.</td>
</tr>
</tbody>
</table>
ANNEX 1:
PRTR ESTIMATION METHODS SURVEY: DESIGN AND FORMAT

To survey the appropriate agencies and industries within OECD countries, two surveys were developed with which estimating techniques could be described: one for government agencies and one for industrial facilities. The surveys were developed as computer applications and posted on an OECD maintained Internet site, along with instructions on using the surveys. In most cases, users were able to access the survey files and the written instructions directly from this site.

Both the government and industry surveys had similar designs and questions. The registration page requested information pertaining to the government agency or industry facility submitting the survey. Information such as the contact name, phone number and E-mail was requested, along with information pertaining to PRTR reporting responsibilities. For the industry survey, information was also requested regarding the countries in which facilities were operating and reporting releases to the environment.

The registration page was followed by the actual pollutant release estimation techniques questionnaire. This page was split to show both a data tree containing a comprehensive source category list and the questions. Identical questions were provided for releases to air, water, and land. Additionally, a set of questions was provided for a category named All Releases. This was provided to facilitate data entry for source categories that used the same pollutant release estimation techniques for air, water, and land.

Boxes 1 and 2 of this Annex contain all survey questions. Annexes 2 to 11 contain information about release estimation techniques for ten OECD countries. Annexes 12 and 13 provide information about industry and international sources of information about release estimation techniques.
<table>
<thead>
<tr>
<th>Box 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Page Information</td>
</tr>
</tbody>
</table>

Country
Name of Contact Person
Agency or Ministry
Address
Telephone, Fax, E-mail Address

Source Types Reported by Government Agency:
- **Choices:**
 - Point Sources Only
 - Diffuse Sources Only
 - Point and Diffuse Sources
 - Releases are not estimated by Government Agency

Do Industry or Trade Associations Report Releases for Their Industry?
- **Choices:**
 - Yes
 - No

Users were asked to select from the following list which Industries are Required to Report Releases:
- Agriculture
- Pulp and Paper Manufacturing
- Wood Products
- Fossil Fuel Extraction and Processing
- Petroleum Refining and Related Industries
- Energy Production
- Extraction and Use of Metallic Ores
- Extraction and Use of Non-metallic Ores
- Manufacture of Expendable Consumer Goods
- Manufacture of Appliances
- Manufacture of Transportation Equipment
- Primary Chemical (organic and inorganic) Manufacturing
- Chemical and Pharmaceutical Manufacturing
- Textile and Leather Goods
- Waste Disposal (solid and liquid)
- Other - Space to comment

Users also asked to list other Government Agencies that report release data and the categories covered.
Box 2
Survey Questions

1. Origin of Method:
 Choices: Developed by a Government Programme
 Developed by another Government or International Agency
 Developed by an Industry Group
 Developed by a Trade Association
 Developed by Academia or a Consulting Group
 Available in the Open Literature
 Independent Certification Organisation
 Other - with space to specify.

2. Documentation of the Method
 Choices: Documented in a Published and Peer Reviewed Journal
 Unpublished Government Protocol
 Each Government or International Group Develops Specific Methods
 Other – with space to specify.

3. Availability of the Method
 Is the documentation available? Yes or No
 Please describe the general features of the method.
 Are you willing to share the method with other OECD countries? Yes or No

4. Type of Method
 Choices: Emission Factor
 Calculation Model
 Mass Balance
 Periodic Monitoring applied to all sources in the Category
 Continuous Monitoring
 Survey with Statistical Sampling
 Non-statistical Survey
 Survey of all Sources
 Engineering Judgement
 Other – with space to specify

5. Data for Method Based on
 Choices: Population
 Sales or Value Added
 Tax Receipts
 Land Use
 Process Throughput
 Physical Characteristics of the Source
 Chemical Characteristics of the Source
 Periodic Monitoring
 Continuous Monitoring
 Number of Production Units
 Number of Employees
 Other – with space to specify

6. Level of Aggregation
 Choices: Release Estimated at National Level
 Release Estimated at Sub-national or Regional Level
 Release Estimated at Facility Level
 Release Estimated at Process/Operation Level
Box 2

7. Types of Chemical Reported
 Indicate major categories not individual pollutants

8. Frequency of Reporting
 Choices: Per year, per month, per day etc.
 Does your PRTR programme specify a regular reporting cycle?
 Are different source categories subject to different cycles?
 Is reporting triggered by some other condition or event? Permit condition, etc.
 Other – with space to specify

9. Opportunity to provide general comments.
ANNEX 2: SURVEY RESPONSE- AUSTRALIA

Point of Contact Anne Cawsey
Address: Environment Australia
 GPO Box 787
 Canberra ACT 2601
 Australia
Telephone: +61 2 6274 1175
Fax: +61 2 6274 1593
E-mail: anne.cawsey@ea.gov.au

Guidance documents:
Industry handbooks, which give information on release estimation methods for the following industries (see below).

Industry handbooks

Industry handbooks are guidance documents to assist industries in estimating their emissions of the National Pollutant Inventory (NPI) pollutants. A total of 77 handbooks covering the majority of the industry sectors have been published and three more are being finalised. In addition, several Emission Estimation Technique (EET) Manuals are under revision. All the handbooks are available from the NPI industry handbook site.

The NPI Guide, along with one or more EET Manuals, forms part of the handbooks. The Guide, which has recently been revised, helps industry reporters to determine whether or not they are required to report to the NPI.

NPI Industry Handbooks

These handbooks incorporate those Emission Estimation Technique (EET) Manuals regarded as “core” to the industry or sector for which they have been produced.

<table>
<thead>
<tr>
<th>Industry Handbook</th>
<th>EET Manuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive Tapes</td>
<td>Pressure-sensitive Tapes & Labels, Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Alumina Production</td>
<td>Alumina Refining, Combustion in Boilers, Mining, Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Aluminium Smelting</td>
<td>Aluminium Smelting, Combustion in Boilers, Mining, Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Animal and Bird Feed Manufacture</td>
<td>Animal and Bird Feed Manufacture</td>
</tr>
<tr>
<td>Industry Handbook</td>
<td>EET Manuals</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Appliance, Machinery & Electrical Equipment Manufacture</td>
<td>Appliance, Machinery & Electrical Equipment Manufacture</td>
</tr>
<tr>
<td>Bakery Product Manufacturing</td>
<td>Bread Manufacturing, Combustion in Boilers, Combustion Engines</td>
</tr>
<tr>
<td>Basic Non-Ferrous Metal Manufacture</td>
<td>Non-Ferrous Metal Manufacture</td>
</tr>
<tr>
<td>Battery Manufacturing</td>
<td>Lead Acid Battery Manufacturing, Combustion Engines</td>
</tr>
<tr>
<td>Beer & Malt Manufacturing</td>
<td>Beer Manufacturing, Combustion in Boilers, Combustion Engines</td>
</tr>
<tr>
<td>Cement & Lime Manufacturing</td>
<td>Cement Manufacturing, Lime & Dolomite Manufacturing, Combustion Engines</td>
</tr>
<tr>
<td>Ceramic Product Manufacturing</td>
<td>Bricks, Ceramics, & Clay Product Manufacturing, Combustion Engines</td>
</tr>
<tr>
<td>Chemical Product Manufacture</td>
<td>Chemical Product Manufacture</td>
</tr>
<tr>
<td>Concrete Product Manufacturing</td>
<td>Concrete Batching & Concrete Product Manufacturing, Fugitive Emissions</td>
</tr>
<tr>
<td>Confectionery Manufacture</td>
<td>Confectionery Manufacture</td>
</tr>
<tr>
<td>Copper Concentrating, Smelting & Refining</td>
<td>Copper Concentrating, Smelting & Refining</td>
</tr>
<tr>
<td>Dairy Product Manufacturing</td>
<td>Dairy Product Manufacturing, Combustion in Boilers, Combustion Engines, Sewage & Wastewater Treatment, Fugitive Emissions</td>
</tr>
<tr>
<td>Defence Facilities</td>
<td>Defence Facilities</td>
</tr>
<tr>
<td>Dry Cleaners & Laundries</td>
<td>Dry Cleaning, Combustion in Boilers, Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Explosives Detonation</td>
<td>Explosives Detonation</td>
</tr>
<tr>
<td>Explosives Manufacturing</td>
<td>Explosives Manufacturing, Combustion in Boilers, Combustion Engines, Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Ferroalloy Production</td>
<td>Ferroalloy Production</td>
</tr>
<tr>
<td>Fertiliser Manufacturing:</td>
<td>Phosphate Manufacturing, Ammonium Sulfate Manufacturing, Synthetic Ammonia Manufacturing, Urea Manufacturing (Ammonium Nitrate), Sewage & W/water Treatment, Fugitive Emissions</td>
</tr>
<tr>
<td>Fruit & Vegetable Processing</td>
<td>Fruit & Vegetable Processing, Combustion Engines, Combustion in Boilers</td>
</tr>
<tr>
<td>Industry Handbook</td>
<td>EET Manuals</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Fugitive Emissions</td>
<td>Fugitive Emissions</td>
</tr>
<tr>
<td>Furniture Manufacturing</td>
<td>Furniture & Fixtures Manufacturing, Combustion in Boilers</td>
</tr>
<tr>
<td>Gas Supply</td>
<td>Gas Supply</td>
</tr>
<tr>
<td>Glass & Glass Product Manufacturing</td>
<td>Glass & Glass Fibre Manufacturing, Combustion Engines, Fugitive Emissions</td>
</tr>
<tr>
<td>Hospitals</td>
<td>Hospitals</td>
</tr>
<tr>
<td>Hot Mix Asphalt Manufacturing</td>
<td>Hot Mix Asphalt Manufacturing, Combustion in Boilers, Fuel & Organic Liquid Storage, Fugitive Emissions</td>
</tr>
<tr>
<td>Inorganic Industrial Chemical Manufacturing</td>
<td>Inorganic Chemicals Manufacturing, Combustion in Boilers, Combustion Engines, Fuel & Organic Liquid Storage, Sewage & Wastewater Treatment, Fugitive Emissions</td>
</tr>
<tr>
<td>Intensive Livestock (Beef Cattle)</td>
<td>Beef Cattle Feedlots</td>
</tr>
<tr>
<td>Intensive Livestock (Pig Farming)</td>
<td>Pig Farming</td>
</tr>
<tr>
<td>Iron and Steel Casting and Forging, & Steel Pipe and Tube Manufacturing</td>
<td>Ferrous Foundries, Combustion Engines</td>
</tr>
<tr>
<td>Lead Concentrating, Smelting & Refining</td>
<td>Lead Concentrating, Smelting & Refining</td>
</tr>
<tr>
<td>Leather Tanning & Fur Dressing</td>
<td>Leather Tanning & Finishing, Combustion in Boilers, Combustion Engines, Fuel & Organic Liquid Storage, Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Log Sawmilling, Timber Dressing, & Wood Product Manufacturing</td>
<td>Timber & Wood Product Manufacturing, Combustion in Boilers, Combustion Engines, Fugitive Emissions</td>
</tr>
<tr>
<td>Maritime Operations</td>
<td>Maritime Operations</td>
</tr>
<tr>
<td>Meat & Meat Product Manufacturing</td>
<td>Meat Processing, Combustion in Boilers, Combustion Engines, Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Medicinal & Pharmaceutical Product Manufacturing</td>
<td>Medicinal & Pharmaceutical Product Manufacturing, Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Metal Coating and Finishing</td>
<td>Surface Coating, Galvanising, Combustion in Boilers, Combustion Engines, Fuel & Organic Liquid Storage, Electroplating and Anodising, Fugitive Emissions</td>
</tr>
<tr>
<td>Mining (includes coal, iron ore, bauxite, copper ore, gold, nickel ore, silver-lead-zinc ore, & metallic mineral ore)</td>
<td>Mining, Combustion in Boilers, Fossil Fuel Electric Power Generation, Explosives Detonation</td>
</tr>
<tr>
<td>Non-ferrous Metal Casting</td>
<td>Non-ferrous Foundries, Combustion Engines</td>
</tr>
<tr>
<td>Non-Metallic Mineral Product Manufacture</td>
<td>Non-Metallic Mineral Product Manufacture</td>
</tr>
<tr>
<td>Non-Petroleum Industrial Gases</td>
<td>Non-Petroleum Industrial Gases</td>
</tr>
<tr>
<td>Industry Handbook</td>
<td>EET Manuals</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Oil and Fat Manufacturing (vegetable oils only)</td>
<td>Vegetable Oil Processing Industry, Combustion Engines, Fuel & Organic Liquid Storage, Vegetable Oil Processing Industry</td>
</tr>
<tr>
<td>Oil and Gas Extraction</td>
<td>Oil & Gas Exploration and Production</td>
</tr>
<tr>
<td>Paint and Ink Manufacturing</td>
<td>Paint and Ink Manufacturing, Combustion Engines, Fuel & Organic Liquid Storage, Organic Chemical Processing Industries</td>
</tr>
<tr>
<td>Petroleum & Coal Product Manufacturing</td>
<td>Oil Recycling</td>
</tr>
<tr>
<td>Petroleum Product Wholesaling</td>
<td>Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Petroleum Refining</td>
<td>Petroleum Refining</td>
</tr>
<tr>
<td>Plastic Product Rigid Fibre Reinforced Manufacturing</td>
<td>Fibreglass Product Manufacturing, Surface Coating</td>
</tr>
<tr>
<td>Rubber Product Manufacture</td>
<td>Rubber Product Manufacture</td>
</tr>
<tr>
<td>Seafood Processing</td>
<td>Seafood Processing, Combustion in Boilers, Sewage & Waste water Treatment</td>
</tr>
<tr>
<td>Sewerage and Drainage Services</td>
<td>Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Soft Drink Manufacture</td>
<td>Soft Drink Manufacture</td>
</tr>
<tr>
<td>Solvent Recycling</td>
<td>Solvent Recycling, Fuel & Organic Liquid Storage</td>
</tr>
<tr>
<td>Structural & Fabricated Metal Product Manufacture</td>
<td>Structural & Fabricated Metal Product Manufacture</td>
</tr>
<tr>
<td>Sugar Manufacturing</td>
<td>Sugar Milling & Refining, Combustion in Boilers, Combustion Engines</td>
</tr>
<tr>
<td>Surface Coating</td>
<td>Surface Coating, Combustion Engines, Fuel & Organic Liquid Storage, Fugitive Emissions</td>
</tr>
<tr>
<td>Industry Handbook</td>
<td>EET Manuals</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tobacco Product Manufacture</td>
<td>Tobacco Product Manufacture</td>
</tr>
<tr>
<td>Waste Disposal Services: Landfills</td>
<td>Municipal Solid Waste Landfills, The Landfill Area Based Spreadsheet (LABS), Combustion Engines</td>
</tr>
<tr>
<td>Waste Disposal Services: Sewage Sludge & Biomedical Waste Incineration</td>
<td>Sewage Sludge & Biomedical Waste Incineration</td>
</tr>
<tr>
<td>Water Supply</td>
<td>Potable Water Treatment</td>
</tr>
<tr>
<td>Wine & Spirit Manufacturing</td>
<td>Wine & Spirit Manufacturing, Combustion Engines, Sewage & Wastewater Treatment</td>
</tr>
<tr>
<td>Wool Scouring</td>
<td>Wool Scouring, Sewage & W/water Treatment</td>
</tr>
<tr>
<td>Zinc Concentrating, Smelting & Refining</td>
<td>Zinc Concentrating, Smelting & Refining</td>
</tr>
</tbody>
</table>
SUBSTANCES
Substances for which reports are currently required are:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>Methanol</td>
</tr>
<tr>
<td>Arsenic and compounds</td>
<td>Methyl ethyl ketone</td>
</tr>
<tr>
<td>Benzene</td>
<td>Methyl isobutyl ketone</td>
</tr>
<tr>
<td>1,3-Butadiene (vinyl ethylene)</td>
<td>Methyl methacrylate</td>
</tr>
<tr>
<td>Cadmium and compounds</td>
<td>Nickel carbonyl</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Nickel subsulphide</td>
</tr>
<tr>
<td>Chromium (vi) compounds</td>
<td>Oxides of nitrogen</td>
</tr>
<tr>
<td>Cobalt and compounds</td>
<td>Particulate matter 10.0μm</td>
</tr>
<tr>
<td>Cyanide (inorganic) compounds</td>
<td>Polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>2-Ethoxyethanol</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>2-Ethoxyethanol acetate</td>
<td>Toluene (methylbenzene)</td>
</tr>
<tr>
<td>Ethylene glycol (1,2-ethanediol)</td>
<td>Toluene – 2,4-diisocyanate</td>
</tr>
<tr>
<td>Fluoride compounds</td>
<td>Total nitrogen</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>Total phosphorus</td>
</tr>
<tr>
<td>Lead and compounds</td>
<td>Trichlorophosphorus</td>
</tr>
<tr>
<td>Mercury and compounds</td>
<td>Xylenes (individual or mixed isomers)</td>
</tr>
</tbody>
</table>

This listing has expanded to 90 substances from 1 July 2001. Explanations for the substances, e.g. PAHs, and the list to be introduced from 2001, are on the website.

Summary of the Survey Response from Australia

The Australian PRTR system is called the National Pollutant Inventory (NPI). Individual facilities are required to provide release estimates for 36 listed substances or groups of substances, if there is a guidance manual covering that industry. For the first year of the NPI, 23 industry sectors reported, for the second year, approximately 80 industry sectors were covered. The following list of industries are exempted from individual reporting:

- mobile sources outside of the facility;
- establishments that engage in retail sales of petroleum products;
- dry cleaning facilities that employ fewer than 20 people;
- scrap metal processing facilities that do not reprocess batteries or smelt any metal; and
- most (that is, non-intensive) agricultural activities.

Government facilities are also required to report to the NPI unless reporting the required information would pose a threat to national security.

The Australian PRTR programme requires the use of one of the estimation methods provided in the industry guidance manuals, unless government approval is given for using another technique. When emission factors are an estimation option, the reference manual provides those which are appropriate for the process. Many of the emission factors are based on the emission factors provided by the US EPA (AP-42). Estimates are reported on an annual basis and represent the total release for the preceding year ending 30 June.

Estimates of diffuse or mobile source emissions into certain airsheds and nutrient emissions into certain water catchments are also provided.
ANNEX 3: SURVEY RESPONSE- CANADA

Point of Contact: Michael Abreu
Address: Environment Canada
E-mail: npri@ec.gc.ca

Guidance Documents:
2. Canada maintains an Internet site for Criteria Air Contaminants that includes several emission estimation tools, some of which are for diffuse sources. This site includes a metric version of the U.S. EPA air pollution Emission Factors Database called FIRE.
3. Canada also maintains an Internet site for its Residual Discharge Inventory System (RDIS), with an Emission Estimation Manual that includes methods to estimate either point or diffuse sources.

Summary of Canada’s PRTR Programme

Canada established its PRTR system, the National Pollutant Release Inventory (NPRI), in 1993. Yearly reporting to the NPRI is required. Canada is also actively modifying and updating its NPRI; for example, for the reporting year 1999, it added 73 new substances to its list of reportable pollutants.

Canada publishes an annual NPRI summary report that is made publicly available on the Internet. A Guide for Reporting to the National Pollutant Inventory is also available on the Internet site. According to this guide, the principle methods for quantifying releases to the environment in Canada are (in order of declining accuracy):
1. monitoring and direct monitoring;
2. mass balance;
3. emission factors; and
4. engineering estimates.

In addition to its work with the NPRI, Canada also completes a comprehensive national air emissions inventory on a yearly basis. Individual industrial facilities that meet the reporting criteria are required to submit estimates of their releases to air. The Pollutant Data Branch within Environment Canada supplements these point source release estimates by calculating releases from all other major diffuse sources. Environment Canada is currently preparing guidance manuals to explain how the release estimates are prepared for these diffuse sources.

3. The manuals were not in a final form when this report was prepared. Users can check the emissions inventory pages of the Environment Canada Internet site to obtain these guidance manuals when they are completed.
ANNEX 4: SURVEY RESPONSE- DENMARK

Point of Contact: Mette Skovgaard
Address: Environmental Protection Agency
Department of Development and Data
Strandgrade 29
1401 Copenhagen K
Denmark
Telephone: +45 32 66 01 00
Fax:
E-mail: msk@mst.dk

Guidance Documents:
1. Guidelines for the Discharge of Industrial Effluent into Sewerage DS (- 2399 Effluence)
2. Control Computation on Effluence Data (- Bek. 637)

Summary of the Survey Response

The government of Denmark collects release information for several industrial and non-industrial sectors. Releases to air and water are estimated for point sources (and diffuse sources). The survey response did not indicate if any methods are applied for releases to land.

In the Danish programme, most manufacturing sources report their releases through local municipal or county level agencies. This information is then passed through to the national government. The reporting frequency is determined by the conditions of the permits managed by the municipal and county agencies. Reporting is required by industry representatives in the energy and waste disposal sectors.

The survey indicates that there is a specific set of air pollutants that are of interest in some of the agricultural source categories, and that all relevant air and water pollutants are of interest in the other industry sectors. The target pollutants in agriculture are:

- Sulphur dioxide (SO₂)
- Oxides of nitrogen (NOₓ)
- Carbon monoxide (CO)
- Carbon dioxide (CO₂)
- Nitrous oxide (N₂O)
- Methane (CH₄)
- Ammonia (NH₃)
- Non-methane volatile organic compounds (NMVOC)
- HFC’s, PFC’s and SF₆ (greenhouse gases and stratospheric ozone depleting compounds)
- Heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium, and zinc)
- Dioxin/Furan
- Polycyclic aromatic hydrocarbons (PAH)
The survey response indicates that estimates of releases to air are dependent on calculations based on some subset of monitoring data, or directly on emission factors. The estimates for water releases are all dependent on surveys that use statistical sampling to select the survey recipients and the survey results are applied ultimately to periodic monitoring data.

Guidance manuals are available for air releases and water releases. The guidance for air releases is based on the Industrial Air Pollution Control Guidelines. Guidance for estimating water releases is provided in two reports, Guidelines for Discharge of Industrial Effluent to Sewage and Control Computation of Effluence Data. The air industrial guidelines are available directly through the Internet. The water effluent guidance documents can be obtained directly from the Danish EPA.
ANNEX 5: SURVEY RESPONSE- FRANCE

Point of Contact: Jean-Pierre Fontelle
Address: CITEPA
10, Rue du Faubourg Poissonniere
75010 Paris
Telephone: +33 1 44 83 68 83
Fax: +33 1 40 22 04 83
E-mail: CITEPA@COMPUSERVE.COM

Guidance Documents:
1. EMEP/CORINAIR Atmospheric Emissions Inventory Guidebook

Summary of the Survey Response

The French survey response was prepared by the Centre Interprofessionnel Technique d’Etudes de la Pollution Atmospherique (CITEPA). In addition to CITEPA, the Institut Français de l’Environnement and the French Ministry of Industry are responsible for reporting releases to the environment. The survey submitted by CITEPA only addressed releases to air.

In addition to government reporting, CITEPA indicated that the following industries are responsible for reporting their releases:

- Pulp and paper manufacturing
- Wood products
- Fossil fuel extraction and production
- Petroleum refining and related industries
- Energy production
- Extraction and use of metallic ores
- Manufacturing of expendable consumer goods
- Manufacturing of appliances
- Manufacturing of transportation equipment
- Primary chemical (organic and inorganic) manufacturing
- Chemical and pharmaceutical manufacturing
- Textiles and leather goods industry
- Waste disposal

To estimate releases to air, CITEPA acts as the national reference centre. Most methods refined for unique requirements for France have been documented but not published. The IPCC and EMEP/CORINAIR methods are also widely accepted and used. The French survey response also indicated that it is willing to
share methods with other countries and agencies. The French PRTR system is designed and maintained to estimate releases at the national and sub-national level, and reporting occurs once a year.

The French survey response indicated that reporting occurs for at least five types of chemicals, including:

- Pollutants/chemicals that lead to acidification
- Pollutants/chemicals that react with sunlight (photochemistry)
- Greenhouse gas substances
- 9 heavy metals
- 9 Persistent organic pollutants (POPs)

Persistent organic pollutants include dioxins, furans, polycyclic aromatic hydrocarbons (PAHs) and various pesticides.
ANNEX 6: SURVEY RESPONSE- JAPAN

Point of Contact: Mitsuo Matsumoto
Address: Ministry of Economy, Trade and Industry
1-3-1 Kasumigaseki
Chiyoda ku
Tokyo 100-8901
Telephone: +81 3 3501 0080
Fax: +81 3 3580 6347
E-mail: Matsumoto-mitsuo-dos@meti.go.jp

Point of Contact: Satoru Morishita
Address: Ministry of the Environment
1-2-2 Kasumigaseki
Chiyoda ku
Tokyo 100-8975
Telephone: +81 3 5521 8260
Fax: +81 3 3580 3596
E-mail: SATORU_MORISHITA@env.go.jp

Guidance Documents:
Manual for PRTR Release Estimation Methods

Summary of the Survey Response

According to the Law concerning Reporting, etc. of Releases to the Environment of Specific Chemical Substances and Promoting Improvements in Their Management, Japan’s PRTR system began in April 2001. Businesses submitted their data on chemicals released to the environment during the year of April, 2001 through June, 2002. The government will compile the data and make the results publicly available. Emitted volumes of individual sites will be disclosed when requested.

Businesses required to submit their emitted and/or transferred volumes of chemicals to the government are as follows:

- Businesses that belong to any of the following industrial sectors:
 1. Metal mining;
 2. Crude oil and natural gas mining;
 3. Manufacturing;
 4. Electricity;
 5. Gas;
 6. Heat supply;
 7. Sewage;
 8. Railways;
 9. Warehouses (limited to warehouses that store agricultural products or gas, or liquid in a storage tank);
 10. Petroleum (wholesale);
 11. Scrap iron (wholesale; limited to automotive air conditioners);
(12) Automobiles (wholesale; limited to automotive air conditioners);
(13) Fuel retail;
(14) Laundry;
(15) Photography;
(16) Automobile maintenance;
(17) Machinery and equipment repairs;
(18) Product testing;
(19) Measurement certification (excluding general measurement certification);
(20) Household waste disposal (limited to the disposal of garbage);
(21) Industrial waste disposal (including the disposal of industrial waste under special management);
(22) Higher educational institutions (including affiliated facilities except for institutions for social sciences); and
(23) Research institutes for natural science.

- Business that have 21 or more employees.
- Businesses that manufacture and/or use more than, or equal to, 1 tonne per year of any of the 354 chemicals listed in a Cabinet Order. Related legislation and Cabinet Orders can be downloaded electronically, from the following URLs: http://www.env.go.jp/en/index.html and http://www.prtr.nite.go.jp/english/calc-e.htm. (NB In the case of 12 specific chemicals such as benzene, the threshold is 0.5 tonnes per year). Businesses that have certain facilities designated in the Cabinet Order are also required to report their data.

The General Manual, is applicable only to point sources, which is comprised of 8 chapters: 1) How to identify the businesses subject to the PRTR; 2) How to calculate emitted and/or transferred volumes - principle approaches; 3) How to calculate emitted and/or transferred volumes – detailed procedures; 4) Examples of the calculations; 5) Information on calculation methods for specific industry categories; 6) Questions and answers; 7) Glossaries and 8) References. Apart from the General Manual, many industrial associations, aided by METI, published manuals for specific industries (“Industry-Specific Manual”). Industry-Specific Manuals can be downloaded from the following URL: http://www.prtr.nite.go.jp/english/calc-e.htm.
ANNEX 7: SURVEY RESPONSE- NETHERLANDS

Point of Contact: D. J. de Vries
Address: Ministry of Transport, Public Works and Water Management
RIZA
Afdeling EMN
P.O. Box 17
8200 AA
Telephone: +31 (0) 320 298536
Fax: +31 (0) 320 298514
E-mail: hdvries@riza.rws.minvenw.nl
Pieter.VanDerMost@imh-hi.dgm.minvrom.nl

Point of Contact: Pieter van der Most or Jan van der Plas
Address: Ministry of Housing, Spatial Planning and the Environment
Inspectorate for the Environment/IPC 680
8, Rijnstraat
P.O. Box 30945, 2500 GX
The Hague, The Netherlands
Telephone: +31 70 3394606 / 31 70 3394322
Fax: +31 70 3391298
E-mail: Pieter.vanderMost@IMH-HI.DGM.minvrom.nl
Jan.vanderPlas@imh-hi.dgm.minvrom.nl

Guidance Documents:
1. PER Methods Handbook (for all sources reported in 1994)
2. National Target Group Monitoring Protocols (in development for point and diffuse sources)
3. Series of Special Reports for specific categories
4. Assessment of the Pollutant Emission Register in the Netherlands

Summary of the Survey Response

Two survey responses were received from the Netherlands. One survey was received from the Ministry of Transport, Public Works and Water Management and provided information on release estimation methods used for water pollutants. The second survey was received from the Ministry of Housing, Spatial Planning and the Environment and provided information on estimating releases to all environmental media.
The Netherlands has a well established system for reporting releases to all media, and the data that are generated by that reporting system are used in many sophisticated environmental management activities. Both surveys indicate that all major industries are required to prepare reports detailing their releases to all media for both point and diffuse sources. Each facility is covered by a permit and the reporting activity is a condition of the permit. The results of the release reporting activities are used to determine compliance with the permit conditions.

All facilities that are larger than a specified size (the specific size limitation was not provided in the survey responses) are required to report their releases. Approximately 300 of the largest facilities, which include chemical production facilities, energy producing facilities, petroleum refineries, and sewage treatment plants, are required by law to submit an annual report on processes that includes information on releases. The report is made available to the government and the general public. In addition, several hundred other facilities also complete similar annual reports under agreements between the government and the industry sectors (e.g. chemicals, paper products and dairy products). The formal reporting programme is coordinated by the Ministry of Housing, Spatial Planning and the Environment.

The methods used in the reporting programme have been developed by the government agencies. There is a general guidance document known as The PER Methods Handbook and several industry and category specific guidance documents. Many of these documents are available and can be shared with other OECD countries, although many of these are only available in Dutch.

For most large facilities, water effluents are estimated by periodic monitoring of concentrations and flow rate in effluent streams. (NB The smaller facilities are often treated collectively as diffuse sources and the government estimates releases for these collective diffuse sources by extrapolation - calculation model, emission factors, or through surveys using statistical sampling. The calculation for a diffuse source is frequently dependent on process throughput, value added, or number of employees.)

The Netherlands system has a tiered approached to data collection. Estimates for all of the large sources are reported at the facility level. The estimates for the aggregate diffuse sources are represented at regional levels. These data are combined to form regional and national summaries.

There is a core list of approximately 50 particular chemical species that are targeted by the reporting programme. Individual facilities are required to report specific chemical species that are determined to be of interest at the facility. The list of targeted chemicals for each facility is defined in the permit.
ANNEX 8: SURVEY RESPONSE- NORWAY

Point of Contact: Harald Sorby
Address: Norwegian Pollution Control Authority
 PO Box 8100 Dep. 0032 Oslo
Telephone: 47 22 57 34 00
Fax: 47 22 67 67 06
E-mail: harald.sorby@sft.telemax.no

Guidance Documents:

Summary of the Survey Response

The Norwegian Pollution Control Authority administers the PRTR system. For this function, the government collects and reports releases for point sources. Industries are also required to report their releases to air, water and land. Any industrial facility whose activities result in releases to the environment is required to obtain a discharge permit under the Norwegian Pollution Control Act. All facilities required to obtain discharge permits must report releases to the Norwegian Pollution Control Authority. Local county pollution authorities also collect similar release estimates for selected facilities.

Releases to environmental media are estimated, and for a wide range of industries. The Norwegian survey indicated that releases are estimated for all listed source categories. While no specific release estimation techniques were supplied, the methods can be obtained from open literature and are specified in published government reports and guidance documents. The survey indicated that the Norwegian Standard Association and other international associations help to develop these methods. The Norwegian Pollution Control Authority requires the use of national or international standards when releases are measured or estimated for reporting. The authority does not set any specific release estimation technique requirements for facilities that perform release estimations.

The type of method and the data used for the method are dependent upon the type of releases that are to be estimated. For example, to estimate the releases of dust particles from point sources, data obtained from periodic and continuous monitoring are used. Releases of CO₂ are estimated by using sales or value added information. The survey also indicated that releases are estimated at the facility level and are reported on a yearly basis.

The survey did not present any specific information on the types of chemical/pollutants for which releases are estimated. It stated that all relevant releases with potential negative effects to the environment must be reported. Furthermore, the components selected for reporting are based on an individual survey of the processes performed by the company.
Guidance manuals for filling in the report form, and for applying for a discharge permit are available from the Norwegian Pollution Control Authority.
ANNEX 9: SURVEY RESPONSE - SWITZERLAND

Point of Contact: Hans Peter Saxer
Address: Swiss Agency for the Environment, Forests and Landscape
 CH-3003 Bern
 Switzerland
Telephone: +41 31 32 293 84
Fax: +41 31 32 479 78
E-mail: hanspeter.saxer@buwal.admin.ch

Guidance Documents:
1. Emission factors for point sources (1995, available only in German)
2. “Nationales Schadstoff- Emissionsregister- Situationsbericht”, BUWAL Umwelt-Materialien Nr. 109, Berne, Switzerland (1999, available only in German)

Summary of the Survey Response

The Swiss government initiated a pre-pilot PRTR project with chemical industry in 1996 collecting emission data for reporting years 1995 and 1996. Information was gathered from 5 chemical companies that included a total of 17 facilities. The objective of the project was to obtain experience to be used at a later time to define the features of a comprehensive programme.

Five solvents were selected for reporting in the pre-pilot project, based upon the large volumes in which they are produced and used: Acetonitrile, Bisphenol-A, Dichloromethane, Chlorobenzene, Pyridine.

According to the Swiss PRTR survey response, the chemical companies that were involved in the PRTR pre-pilot project fell into three categories: fertiliser fabrication, fabrication of pharmaceuticals and pesticides, and other manufacture of finished chemicals.

The predominant release estimation techniques were: mass balance, non-statistical surveys, periodic monitoring and engineering judgement.

A pilot project involving interested stakeholders from federal and cantonal offices, industry and NGOs was initiated in May 2000. A working party was set up for planning, scheduling and guiding the process. Analogous to the requirement for the European Pollutant Emission Register of the European Union, data on the release of 50 substances to water and air are being collected for the years 2000 and 2001 on a voluntary basis. Companies of the following branches of industry are prepared to supply emission data: refineries, chemical, metal, mineral, ceramics, cement, dyes and lacquers industry, waste management, etc. The same release estimation techniques as in the pre-pilot project are used. Results are expected to be available in 2003.
ANNEX 10: SURVEY RESPONSE- UNITED KINGDOM

Point of Contact: Ian Whitwell or Charlie Corbishley

Address: Environment Agency
Rio House
Waterside Drive
Aztec West
Almondsbury

Telephone: +44 1454 624472
Fax: +44 1454 624374
E-mail: Ian.whitwell@environment-agency.gov.uk or Charlie.corbishley@environment-agency.gov.uk

Justin Goodwin
Culham Laboratory
329 Harwell
Didcot, Oxfordshire
OX11 0QJ
Tel: +44 12 35 46 3033
Fax: +44 12 35 46 3003
E-mail: justin.goodwin@aeat.co.uk

Guidance Documents:
1. Inventory of Sources and Releases: Guidance for Operators (November 1998)
2. Inventory of Sources and Releases: Conclusions of Consultations (March 1999)
3. ISR Reporting Forms British Library Science Technology and Industry Environmental Information - A guide to sources (ISBN 0-7123-0852-3) (1997) which includes details of information database sources such as:
 - ENVIROLINE - air emission data (CD ROM)
 - AQUALINE - water emission data (CD ROM)
 - HSELINE - emission data from various process activities (CD ROM)
 - WASTEINFO - data on non-radioactive waste management (CD ROM)
6. Stationary Source Emissions - Determination of the mass concentration of PCDDs/PCDFs. This is a joint BSI/CEN standard for the determination of stack emissions of dioxins and is issued in three parts:
 - Part 2. Extraction and clean-up - BS EN 1948-2:1997
Summary of Survey Responses

The reporting programme in the United Kingdom is called the Inventory of Sources and Releases (ISR). This system has grown out of the previous system known as the Chemical Release Inventory. The first full year of reporting for the ISR was 1998 and reporters were expected to improve on the initial data submittals for their reporting in 1999. A large list of industrial sources has been identified under the integrated pollution control features of the Environmental Protection Act of 1990. A list of approximately 200 chemical compounds and classes of compounds was identified. The list of chemicals can be found in the ISR Reporting Form which can be obtained from the UK Environment Agency.

All facilities that meet the reporting criteria and use any of these compounds in quantities greater than the minimum threshold or cut-off are required to report their releases to air, water, and land on an annual basis. The cut-off levels depend on the particular pollutants or classes of pollutants. Guidance on these cut-off levels for specific pollutants to the various media are discussed in the document titled Inventory of Sources and Releases (ISR) Guidance for Operators which can be directly obtained from the UK Environment Agency. The Guidance for Operators also provides a list of references for specific information on various estimation methods.
ANNEX 11: SURVEY RESPONSE- UNITED STATES

Point of Contact: John W. Harman
Address: TRI Programme (7408)
U.S. Environmental Protection Agency
401 M. Street SW
Washington, DC 20460
Telephone: +1 202 260 6395
Fax: +1 202 260 2219
E-mail: harman.john@epamail.epa.gov

Guidance Documents:
4. American Petroleum Institute, various publications including:
 - Evaporation Loss from Internal Floating Roof Tanks, Technical Bulletin 2519 (1990)
5. The US EPA provides several resources that are useful in estimating releases to air and water including:
 - AP-42 and its Supplements: Compilation of Air Emission Factors
 - Factor Information Retrieval System (FIRE): electronic listing of air emission factors, including factors that are not part of AP-42
 - Fugitive Dust Emissions: Guidance on estimating fugitive dust emissions
 - LANDFILL Model; Estimation model for air emissions from landfills
 - TANKS3.2; Estimation model for breathing and working losses from organic liquids storage tanks
 - WATER8 & CHEMDAT8; Estimation model for air emissions from wastewater collection and treatment systems
 - CHEM9; Predictive system to calculate chemical properties for over 1000 individual chemicals
6. EPA documents on the sources of particular toxic chemicals and information on how to estimate releases of air pollutants from the main sources of those pollutants. These documents are called locating and estimating documents and cover the pollutants listed below:

- arsenic
- benzene
- 1,3 butadiene
- cadmium
- carbon tetrachloride
- chlorobenzenes
- chloroform
- chromium
- cyanide
- dioxins/furans
- epichlorohydrine
- ethylene dichloride
- ethylene oxide
- formaldehyde
- lead
- mercury
- methyl chloroform
- methyl ethyl ketone
- methylene chloride
- nickel
- perchloroethylene
- trichloroethylene
- phosgene
- polycyclic organic materials
- styrene
- toluene
- vinylidene chloride
- xylenes

7. Various documents detailing issues and concerns for estimating water releases from point sources

8. The following special guidance manuals are available for assistance in pre-manufacture notice provisions of the US EPA TRI programme:

- [Newspaper Printing]
- [Manufacture and Use of Paper Dyes]
- [Waterborne Wood Preservatives using Pressure Treatment]
- [Spray Coating Furniture]
- [Fabric Finishing]
- [Surfactants in Industrial/Commercial Laundries]
- [Manufacture and Use of Fragrances]
- [Manufacture and Use of Printing Inks]
- [Formulation of Latex/Emulsion Coatings]
- [Transformer Manufacturing]
- [Application of Chemicals in Enhanced Oil Recovery]
- [Application of Chemicals in Well Casing and Cementing]
- [Auto Spray Coating]
- [Printed Circuit Card Assembly using Conformal Coatings]
- [Manufacture of Printed Circuit Boards]
- [Film Deposition in Integrated Circuit Fabrication]
- [Wet Cleaning Processes in Integrated Circuit Fabrication]

Summary of the Survey Responses

The United States Environmental Protection Agency (US EPA) has overseen a release reporting system since 1990. This programme is known as the US Toxic Release Inventory (TRI) database. The programme started with requirements for all industries in the manufacturing and chemical sectors to report all releases of a set of listed chemicals. Facilities were required to report on an annual basis their releases to air, water and land if they used more than 5 short tonnes (4,545 kilograms) of any one of the listed chemicals, or 12.5 short tonnes (11,364 kilograms) of any listed chemicals in a year. Over the years, the
 programme has been expanded to include additional source categories and currently it includes all of the
categories listed in the survey with the exception of agricultural activities and fossil fuel extraction
processes. The list of chemicals that must be reported has grown to approximately 640 specific chemicals
and chemical classes.

Release estimates are to be reported annually and the estimates represent releases for a one-year period and
a one-day period. Estimates are prepared for point sources only and represent the facility level. Industries
can use any form of activity data available to them to complete their report.

The TRI programme does not identify or recommend specific estimation methods. The only mandate in
the programme is that the affected facilities must report their releases on an annual basis. The data
collected in the programme are made available to the public. Each facility is given complete flexibility in
choosing a method to use, and all reasonably documented methods are allowed. A check in the table
signifies methods that have been discussed in guidance manuals, and the survey has indicated that these are
the most common methods applied for that source category. The code ma is used to signify method
allowed to indicate that any of the potential estimation methods is allowed in the TRI system.

The US EPA does provide a large amount of guidance manuals and assistance documents to help industries
meet these reporting requirements. Many of these manuals can be obtained directly from the US EPA and
through Internet sites maintained by the US EPA.
ANNEX 12: SUMMARY OF INFORMATION FROM REPORTING INDUSTRIES THAT RESPONDED TO THE OECD SURVEY

Summary of Information Submitted by the Australian Aluminium Council:

Point of Contact: Tony Puclin
Address: Australian Aluminium Council
PO Box 3761
Manuka ACT 2602
Telephone: +61 2 62957300
Fax: +61 2 62957514
E-mail: aac@aluminium.org.au

Guidance Documents:
Reference Manuals for Alumina Production and Aluminium Production

The Australian Aluminium Council stated that the aluminium industry has to report releases to the environment from activities associated with the production of alumina, and aluminium metallurgical processing activities. Each facility estimates its own emissions, and emissions estimates may be calculated at the unit process/operation level for some substances.

The survey indicates that the government agency Environment Australia has published “Emission Estimation Technique” manuals to assist with the reporting to the National Pollutant Inventory (NPI). The Australian government, in association with industry and private consultants, has developed these manuals. The survey also indicates that many of the methods are based upon United States EPA methods. The Australian guidance documents are listed in the summary description of the survey response provided by the Australian government.

To estimate releases from the aluminium metallurgy and the production of alumina, a wide array of estimation techniques can be used. The survey did not specifically state which ones should be used, but it did indicate that the accuracy of the estimation could vary substantially depending on the process and substance.

Over 90 substances are reportable to the NPI. The Australian Aluminium Council referred to the following chemicals in its survey:

- specific organic chemicals
- PM_{10}
- volatile organic compounds (VOC)
- NO_x
- polycyclic aromatic hydrocarbons (PAHs)
Reporting to the NPI is required on an annual basis, but the survey indicates that the programme has not been fully implemented yet. A threshold based on use or production of a substance triggers reporting to the NPI.

Summary of Information Submitted by BASF Germany:

Point of Contact: Dr. Hansjoerg Siegle
Address: BASF Aktiengesellschaft
DUU/L Z 75
D 67056 Ludwigshafen
Telephone: +49 621 6049296
Fax: +49 621 6049022
E-mail: hansjoerg.seigle@basf-ag.de

Guidance Documents:
Government Reports, including: Technical Instructions for Air (TA-Luft) and 11.BImSchV

BASF Germany completed a survey providing information on release estimation methods that are applied to 29 individual source types within 5 major source sectors. The methods that BASF uses to estimate releases to air, water and land are based upon German DIN standards, and they are publicly available. BASF was not specific in identifying techniques used in estimating releases to air. It reported that multiple methods are used which are based upon the physical characteristics of the sources. For land and water releases, BASF reported that it used “analysis” as its primary approach for estimating releases. This response was interpreted to indicate that measurement based estimation methods are applied for water and land releases.

According to the BASF survey, the German government has developed a list of chemicals of concern based upon the estimated release magnitude. BASF is required to report individual chemicals that are present in the list, some of which are:

- heavy metals with strong impact on the environment
- ammonium
- cyanide
- AOX (no further explanation was provided)

The BASF survey indicated that facilities are required to report their releases on a yearly basis. In addition, if a landfilled chemical is subject to a new permitting condition (*i.e.* a new waste type) it will be subject to reporting.

The guidance documents that BASF uses to estimate its pollutant releases are publicly available. The documents mentioned in the survey include German Industry Standards and various technical instructions (ex. Technische Anleitung) for air, water and land releases. BASF has indicated that all guidance documents are publicly available on the Internet at: http://www.umwelt-online.de
Summary of Information submitted by the Japanese Chemical Industry Association:

Point of Contact: Yoshinobu Kawase
Address: Japanese Chemical Industry Association
2-4 Kasumigaseki
3 Chome, Chiyodaku
Tokyo
Telephone: +81 3 3580 1381
Fax: +81 3 3580 1383
E-mail: ykawase@jcia-net.or.jp

Guidance Documents: JCIA PRTR Manual

The Japanese Chemical Industry Association (JCIA) reported releases from point sources to air, water and land for over 150 primary chemical manufacturing facilities. It is assumed that this reporting was included as part of the Japanese PRTR pilot project. The JCIA has developed its own PRTR guidance manual that provides documentation for the methods used to estimate releases. This manual has been made available, and the JCIA has indicated that it is willing to share the information it contains. The survey response from the Japanese government indicates that the documentation of selected methods is in Japanese. The JCIA survey did not indicate if their documentation was available in languages other than Japanese.

The JCIA survey showed that it uses periodic monitoring as its primary method for estimating releases from the primary chemical industry to all media. Release estimates are subsequently aggregated at the national level, and reporting occurs on a yearly basis.

As a requirement of the PRTR programme, a list of chemicals for which reporting is mandatory has been developed by industry. It is based upon environmental and health risks posed by individual pollutants, such as:

- carcinogens;
- chemicals that exhibit chronic toxicity; and
- chemicals that exhibit eco-toxicity.

The survey indicates that in some cases the amount of the chemicals produced may trigger reporting in the PRTR system.
Summary of Information Submitted by Merck and Company, Inc. (USA):

Point of Contact:
Address: WS2F-20
Merck and Company, Inc.
PO Box 100
Whitehouse Station
New Jersey 08889
Telephone: 908 423 6860
Fax: 908 735 1109
E-mail:

Guidance Documents:
Various EPA reference documents and internal methods developed by Merck facilities

Merck and Company submitted a survey for its operations in the US. The Merck survey indicates that it is primarily engaged in the production of pharmaceuticals, biocides, pesticides and herbicides. As the Merck facility is located in the United States, it is subject to reporting its releases to the U.S. EPA’s Toxic Release Inventory (TRI). As such, it is required to estimate and report releases of the set of TRI chemicals to air, water and land.

Merck reports that it has a very complex manufacturing facility that has numerous emissions points. As the US TRI system allows for various release estimation techniques, Merck reports that each reporter has the freedom to choose the most appropriate method based on individual circumstances. This means that two similar sources, even at the same site, could have their emissions estimated by different techniques.

Each release estimation methodology used by Merck typically has some sort of basis document, such as EPA’s 1978 Reasonably Available Control Technology for the Pharmaceutical Industry Guidance document. The reporter at each facility independently develops other methods, such as material balances. The documents developed by the U.S. EPA are publicly available to interested parties.

The U.S. EPA has published a list of chemicals for which reporting to the TRI is mandatory. Merck has indicated that it reports mostly individual chemicals, and that reporting for groups of chemicals (such as pesticides) is uncommon.
ANNEX 13: INTERNATIONAL RESOURCES

European Environment Agency

Much of the relevant information described below is available on the following EEA web site (http://www.eea.eu.int/). EEA is responsible for the compilation of regular State of the Environment Reports for Europe which are increasingly being built around key indicators and follow the DPSIR causal chain: Driving Force = socio-economic activities; Pressures = emissions, waste generation, land use; State = e.g. concentrations in water, deposition; Impact on ecosystems, health; and Responses=policy actions.

The most recent reports were Environment in the EU at the Turn of the Century (http://themes.eea.eu.int/toc.php/improvement/information?doc=39038&l=en) and the first Yearly Indicator Report (http://themes.eea.eu.int/toc.php/improvement/information?doc=39262&l=en) and the Transport and Environment indicator report, Environmental Signals 2000, (http://themes.eea.eu.int/toc.php/activities/transport?doc=39270&l=en). All these main EEA reports contain much information on air emissions, waste generation and emissions to water. The more detailed and most recent data are available in the EEA data warehouse that can be accessed through the web site as follows: http://service.eea.eu.int/, http://warehouse.eea.eu.int/cgi-bin/broker_service=default&_program=programs.eeadw.index.source&_debug=0

In particular there is much data available on emissions to air, under the headings of:
- acidification
- tropospheric ozone
- climate change

The EEA funds European Topic Centres that perform specific tasks for the EEA and that work on many parts of the EEA work programme. Relevant for PRTRs is, in particular, ETC work on air emissions, inland water and (possibly) waste. One of the ETC’s tasks is to assist countries to compile and report data to international organisations; another task is to maintain and make data and information accessible. The ETC’s each have their own web sites that can be accessed through EEA’s web site:

http://eionet.eea.eu.int/
http://etc-ae.eionet.eu.int/etc-ae/index.htm
http://etc-iw.eionet.eu.int/

These web sites contain technical information sites on specific methodologies, software tools, workshops, etc, not contained in EEA’s web. However, the most recent and up-to-date data are generally available through the EEA Data Service mentioned above.
Another very relevant EEA activity is co-operation with the UNECE Task Force on Emission Inventories and Projections (TFEIP). Over the past years, this Task Force, through expert panels on transport, energy, agriculture, industry, and nature, produced a first edition of the joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook in 1996, and recently a second edition (November 1999, web publication http://themes.eea.eu.int/toc.php/state/air?doc=39186&l=en; early 2000 printed publication). This Guidebook contains the most up-to-date, best available and scientifically sound information on methodologies to measure and/or estimate emissions to air. An annual workshop evaluates new information. The most recent workshop, organised jointly between UNECE/TFEIP and EEA/ETC-AE, took place in Rome in May 2000, and included 150 participants. Further updates of the Guidebook in the coming years will be prompted by new information on PM (PM2.5/PM10) and, possibly, on emissions to water.

The EEA publishes the final, approved Guidebook, but the draft chapters are made available beforehand on the web site of the TFEIP (the site also contains the report from the Rome workshop): http://www.aeat.co.uk/netcen/airqual/TFEI/unece.htm

For more information on TFEIP please contact the chairmen Mike Woodfield: mike.woodfield@aeat.co.uk

Furthermore, it is useful to mention the recently adopted European Commission Decision on a European Pollutant Emission Register (EPER) for large stationary emission sources, under the IPPC Directive (Integrated Pollution Prevention and Control). The EPER will be based on combining national emissions registers that will be implemented and report to the Commission for the first time in 2003, and then on a 3-year basis. The first Commission report will be available in 2004. EEA assists the Commission in the development of the EPER and is interested in dissemination of the final results on its web site.
EMEP/CORINAIR Atmospheric Emissions Inventory Guidebook

This document provides a listing of emission factors and methodologies for air pollutants. Methods are available for the following categories:

- Combustion in energy and transformation industries
- Non-industrial combustion plants
- Combustion in manufacturing industry
- Production processes
- Extraction and distribution of fossil fuels
- Solvent and other product use
- Road transport
- Other mobile sources and machinery
- Waste treatment and disposal
- Agriculture and forestry
- Nature

Documentation for methods applicable to the source categories listed above are available at: http://eea.eu.int/aegb/indice.htm

Additional sections for the EMEP/CORINAIR Guidebook

Methods are available for the following categories:

- Coke oven furnaces and coke oven (door leakage and extinction)
- Sinter plants
- Primary copper production
- Secondary zinc production
- Secondary aluminium production
- Cement
- Electric furnace steel plant
- Oil and gas extraction, first treatment and loading
- Gasoline distribution
- Solvent use
- Paint application
- Metal degreasing
- Preservation of wood
- Underseal treatment of vehicles and vehicle dewaxing
- Domestic solvent use
- Road transport
- Gasoline evaporation from cars
- Shipping activities
- Air traffic
- Incineration of domestic or municipal wastes
- Cremation
Cultures with fertilisers
Cultures without fertilisers
Manure management
Use of pesticides
Soils
Forests
Forest and other vegetation fires
Natural grasslands and other vegetation
Animals and humans
Volcanoes
Gas seeps
Lightning
Wetlands

Documentation for methods applicable to the source categories listed above are available at: http://www.aeat.co.uk/netcen/airqual/TFEI/reports.htm

CollectER Background

CollectER (Collect Emission Register) is a tool for national air emission experts to help them to update national emission inventories and to prepare appropriate emission data for international obligations. The programme CollectER includes the following main functions:

- it collects data, produced by air emission activities of area and point sources
- it stores these data in an emission inventory (bottom up as well top down) following the national territorial split; and
- it enables local reporting, as well as the transfer of national data for the central database of the European Topic Centre on Air Emissions.

A downloadable version of the CollectER programme can be found at: http://www.spirit.sk/products/corinair/e_collecter.html

ReportER Reporting Emissions Register

ReportER (Reporting Emission Register) is a software tool for national experts on air emissions. The current version of the ReportER software tool enables national experts to create a set of IPCC reports and UNECE/LRTAP reports based on the national emission inventory data stored in the CollectER annual inventory databases. The basic features implemented in version 1.1 of the ReportER software are:

- the IPCC report to automatically generate “overview” sheets of aggregate emissions divided into the IPCC sectors of economic activities; and
- calculation of aggregate emissions for UNECE/LRTAP reporting.

A downloadable version of the ReportER programme can be found at: http://www.spirit.sk/products/corinair/e_reporter.html
TrainER (Train Emission Register)

This document is a training tool with a sample database for national air emission experts to help them learn to use the new CORINAIR software tools. It:

- describes the basics of the system;
- gives an over all picture of the inventorying process as supported by the software;
- gives step by step guidance for inventory data collection using CollectER and ReportER for a virtual country called Middle Earth; and
- introduces a limited number of activities, demonstrates updating data, and adding new sources (emission factors are taken from existing (CollectER) inventories available at ETC/AE as of mid-April 1998).

A downloadable version of the TrainER programme can be found at:
http://www.spirit.sk/products/corinair/e_trainer.html

Computer Programme to Calculate Emissions from Road Transport (COPERT)

COPERT is an MS Windows* software programme designed to enable the user to calculate emissions from road traffic. Emissions from internal combustion engines used in off road applications are also covered. The emissions calculated include all major pollutants (CO, NOx, VOC, PM) and several more (N2O, NH3, SO2). In addition, fuel consumption results are computed. A detailed methodology can be found with the software application.

The development of COPERT was funded by the European Environment Agency (EEA), in the framework of the activities of the European Topic Centre on Air Emissions. It is used by the EU for the compilation of the CORINAIR emission inventories. In principle, COPERT methodology can be applied for the calculation of traffic emission estimates at a relatively high aggregation level, both temporally and spatially, i.e. on a yearly basis for NUTS 0. However, it has been shown that the methodology can also be used with a sufficient degree of certainty at a higher resolution, i.e. for the compilation of urban emission inventories with a spatial resolution of 1x1 km² and a temporal resolution of 1 hour.

The methodology developed is largely based on the work of a working group established to design COPERT; however, it draws its main principles from two ongoing European activities which both aim to harmonise emission factors and national methodologies developed over the last few years:

- the action COST 319 on the Estimation of Emissions from Transport; and
- MEET (Methodologies to Estimate Emissions from Transport), a European Commission (Directorate for Transport) sponsored project in the framework of the 4th Framework Programme in the area of Transport.

A downloadable version of the COPERT programme can be found at:
http://vergina.eng.auth.gr/mech/lat/copert/copert.htm

COST 319 Estimation of pollutant emissions from transport

Background documents and emission factors and calculation models for estimating air emissions from transport sources.

A downloadable version of the COST319 programme can be found at: http://www.inrets.fr/infos/cost319/
Intergovernmental Panel on Climate Change (IPCC)

The IPCC maintains an Internet site at which guideline and methodology documents can be retrieved. Among the documents that can be retrieved at this site is the Revised 1996 *IPCC Guidelines for National Greenhouse Gas Inventories*, which includes:

- Greenhouse Gas Inventory Reporting Instructions, Volume 1,
- Greenhouse Gas Inventory Workbook, Volume 2,

These can be accessed at: http://www.ipcc.ch/pub/guide.htm.

World Health Organisation

The World Health Organisation provides details on a wide range of chemicals. The information can be accessed via the Internet at: http://www.who.int