TECHNICAL BACKGROUND PAPER

SEARCHING FOR THE INCLUSIVE GROWTH TAX GRAIL: THE DISTRIBUTIONAL IMPACT OF GROWTH ENHANCING TAX REFORM IN IRELAND

NOTE BY THE SECRETARIAT
Thursday 9th July 2015 - 9h30 - Room CC 6

This technical paper provides background analysis for the draft Economic Survey on Ireland. It is circulated for information.

Any factual questions the Delegations may wish to raise before the meeting should be addressed to:

Mr David Haugh (tel:+33 1 45 24 80 46; email:David.HAUGH@oecd.org)
Mr Patrick Lenain (tel:+33 1 45 24 88 07; email: Patrick.MEAIN@oecd.org)

This paper is prepared by Brendan O’Connor and Terence Hynes from the Department of Finance, Ireland as well as David Haugh and Patrick Lenain from the OECD Economics Department.

JT03379667

Complete document available on OLIS in its original format

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.
TABLE OF CONTENTS

SEARCHING FOR THE INCLUSIVE GROWTH TAX GRAIL: THE DISTRIBUTIONAL IMPACT OF GROWTH ENHANCING TAX REFORM IN IRELAND...5

Introduction..6
Why and how does the tax structure matter for growth? ...7
Main Features of the Irish Tax System in an International Context ..8
 Ireland has a highly progressive income tax system and a highly redistributive tax and transfer system by OECD standards ..8
Taxation of Personal Income in Ireland ...10
Simulating Taxes and Welfare Changes ...15
SWITCH Model description ..16
Reform Simulations and Results..17
 Reductions in the Universal Social Charge can reduce marginal and average tax rates and achieve a broader impact on household incomes ..20
 Shifting the burden to property tax is challenging due to high home ownership shares throughout the income distribution ..22
 Low income groups could be protected through the careful introduction of income related supports, with revenue losses recovered through a more progressive rate structure24
 A carefully designed shift from USC to property tax can reduce marginal and average effective rates, boost economic output and employment, and do so in a manner that is not regressive ..30
Conclusions ...34

BIBLIOGRAPHY ..35

Tables

1. Income tax, including universal social charge, plus employee social security contributions as a percentage of gross wage earnings by wage level, 2014 ...8
2. Income Tax Bands and Rates ... 11
3. USC Rates and Bands Structure ... 11
4. Percentage of employed persons by change in marginal effective tax rates 22
5. LPT liabilities for different bands .. 23
6. Household Main Residence (HMR) ownership rates and HMR value as a percentage of Real and Financial Assets ... 24
7. Proportion of household that are owned (with or without mortgage), by decile 24
8. Median value of Household Main Residence ... 24
9. Number of persons experiencing a change in marginal effective tax rate as a result of Simulation 7 by original marginal effective tax rate .. 28
10. Macroeconomic Impacts of €500 million shift from USC to property tax 31
11. Change in METR .. 34

Figures

1. OECD Progressivity Measure - Ratio of tax wedges at 167% and 67% of Average Wage, 2014)9
2. Difference in Gini coefficient between market and disposable incomes, 2011) 10
3. Average and Marginal Effective Tax Rates in Ireland for a singly assessed individual, 2015) 12
4. Top Marginal Rates across OECD Countries in 2014) ... 13
5. Threshold where taxpayer becomes liable to the top marginal tax rate as a multiple of the average wage in 2014) .. 14
6. Simulation 1, Reduction in the 40% Income Tax rate by 1% to 39%, percentage change in equivalised disposable income) ... 18
7. Simulation 2, Increase in the standard rate band of €33,800 by €2000 to €35,800 for a individually assessed tax unit and correspondingly for other tax unit types, percentage change in equivalised disposable income) .. 19
8. Simulation 3, Reduce the top income tax rate by 1% to 39% and increase the 8% rate of USC to 9%, percentage change in equivalised disposable income) .. 20
9. Simulation 4, Reduce 7% USC rate by 1.5% and the 3.5% rate by 0.25%, percentage change in equivalised disposable income) ... 21
10. Simulation 5, Doubling of the rate of the Local Property Tax, percentage change in equivalised disposable income) .. 25
11. Simulation 6, Doubling LPT on properties above €300,000, percentage change in equivalised disposable income) ...26
12 Simulation 7, Double LPT rate with income rated supports, percentage change in equivalised disposable income) ...27
13. Simulation 8, proposed non-linear LPT rate structure, percentage change in equivalised disposable income) ..30
14. Simulation 9, Overall impact of USC-LPT reform, percentage change in equivalised disposable income, decile and quintile impact) ...33

Boxes

Box 1: Equivalisation within SWITCH ...17
Box 2: Description of HERMES Model and ‘Tax-Shift’ Simulations ..31
SEARCHING FOR THE INCLUSIVE GROWTH TAX GRAIL: THE DISTRIBUTIONAL IMPACT OF GROWTH ENHANCING TAX REFORM IN IRELAND

The economic literature suggests that a revenue-neutral shift of tax revenues from income taxes to property taxes would increase GDP per capita in the medium term. This paper analyses for Ireland the consequences of such a shift in the tax mix. In particular, it examines whether this can be carried out in a way that would neither undermine income distribution nor depress government revenue.

Simulations using the ESRI tax-benefit model, SWITCH,\(^1\) suggest it is possible to achieve such a broadly revenue-neutral tax shift in a non-regressive way, while lowering marginal tax rates for most taxpayers. In particular, reductions in the Universal Social Charge would reduce marginal and average tax rates and have a positive impact for the income of most households. This could be funded by shifting the tax base toward residential properties, though this might have an adverse effect on income distribution, due to Ireland’s high rates of home ownership throughout the income distribution. The analysis shows that low income groups could be protected through the careful introduction of income-related supports, with revenue losses recovered through a more progressive property tax rate structure.

Overall, the simulations show that a shift from labour to property tax can be pro-growth and pro-employment, without equity losses. The paper therefore suggests that tax reform can be inclusive.

\(^1\) The authors would like to thank the ESRI for access to and technical support with SWITCH modelling work carried out in this paper. The authors would like to thank David Hegarty, Department of Finance, for useful comments on this paper. Any errors in the modelling or interpretation of results are solely the responsibility of the authors.
Introduction

1. The overall tax structure matters for GDP growth. Broadly speaking, a shift from labour income to consumption or property taxation is found to promote growth (Johansson et al., 2008, Arnold et al., 2011, O’Connor, 2013). However, shifting the taxation burden in this way can have adverse implications for income distribution, and thus often prove controversial.

2. Taxation changes, even if they would promote growth, are unlikely to be implemented or could be reversed if they are perceived as regressive and undermine other government goals. Is a growth, equity trade-off unavoidable or do ‘win-win’ reforms exist that can reduce the distortionary effects of the tax burden without leading to equity losses?

3. The paper first briefly discusses the fiscal composition literature on the tax mix and growth and identifies growth-promoting policies that are commonly advocated. Of these, the specific changes that would be the most growth enhancing in Ireland are a function of current features of the tax system compared with other OECD countries that are discussed below. The paper then simulates changes to policy calibrated to the Irish situation. The simulations examine the consequences of these policy changes for disposable income distribution, financial incentives to work as well as the fiscal costs.

4. The simulations suggest that a shift from labour taxation to property tax in Ireland can be achieved in a way that reduces marginal tax rates for most tax payers and does not lead to a regressive outcome. In addition, such a change would be expected to permanently increase output and employment in the economy. However, it should be acknowledged that there are trade-offs. Such a change requires a relatively complex tax design and some of the growth-enhancing effects of the shift are lowered by features required to maintain equity.
Why and how does the tax structure matter for growth?

5. Taxes matter for economic growth because they affect incentives to work, save and invest. The literature is, however, not entirely consensual. OECD empirical research has suggested a ranking of taxes according to their effects on GDP per capita. Recurrent taxes on immovable property are found to be the least distortive in terms of reducing the long-run GDP per capita level, followed by consumption taxes (and other property taxes), personal income taxes and corporate income taxes (Arnold et al. 2011).

6. Other work has found less clear evidence. Acosta-Ormaechea and Yoo (2012) using a larger sample of countries find that shifting from property and consumption taxes to income taxes is negative for GDP per capita growth in middle and high income countries but there is not strong evidence of this for low income countries. Afonso and Jalles (2014) using a large sample of developed and developing countries concludes that income taxes are usually negative to growth.

7. The results in Arnold et al. (2011) appear to be sensitive to estimation technique and sample but the result that property taxes are less harmful to growth than other taxation types does appear robust, particularly for Ireland, the United Kingdom and Finland (Xing, 2011, 2012). Property taxes are less distortive because these taxes do not affect the decisions of households and firms to supply labour, invest in human and physical capital and innovate to the same extent as other taxes (Johansson et al., 2008).

8. By contrast personal income taxes are found to have strong negative effects on labour supply, particularly of workers with high labour-supply elasticity, such as second earners in households, often women. Based on a sample of 21 OECD countries including Ireland for the period 1996-2003, a one percentage point increase in the marginal tax rate is estimated to reduce the hours worked by women by around 0.7% (Causa, 2008). Labour taxation is also found to have an impact on investment in human capital. Empirical evidence suggests reducing marginal income tax rates tends to boost investment in human capital (Heckman et al., 1998; Oliveira Martins et al., 2009).

9. Previous work suggests that a revenue-neutral shift of 1% of tax revenues from income taxes to consumption and property taxes would increase GDP per capita by between 0.25% and 1% in the long run, depending on the specification (Arnold et al., 2011). Modelling suggests that the effect is also strong in Ireland with a €1 billion shift leading to a 0.32% increase in the level of GDP and a 0.43% increase in employment in the medium-term (O’Connor, 2013).
Main Features of the Irish Tax System in an International Context

Ireland has a highly progressive income tax system and a highly redistributive tax and transfer system by OECD standards

10. Ireland has average effective tax rates which are much lower than the OECD average until well above the average wage (Table 1).

Table 1: Income tax, including universal social charge, plus employee social security contributions as a percentage of gross wage earnings by wage level, 2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>14%</td>
<td>21%</td>
<td>33%</td>
</tr>
<tr>
<td>OECD- Average</td>
<td>21%</td>
<td>26%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Note: The OECD average shown is lower than the average of total tax and social security contributions made by households in the OECD because for some countries (e.g. the United States) pension and health contributions are partially made privately.

Source: OECD Taxing Wages database

11. Despite low average taxation, Ireland maintains a highly progressive tax system relative to other countries. One way of capturing this idea is to look at the ratio of the tax wedge at different points on the income distribution across countries. Figure 1 below shows the ratios of tax wedges at 167% and 67% of the average wage across a range of OECD countries. Ireland’s ratio is 1.8, compared with 1.3 times for the OECD average, and is the second highest in the OECD after Israel.

3 The tax wedge measures the total taxes paid by employees and employers, including social security contributions, minus family benefits received, as a percentage of the total labour costs of the employer.
12. While this approach compares only two points on the income distribution, other research by the OECD has observed this relationship over multiple income ranges. Ireland’s tax system is generally progressive over multiple income ranges under this analysis compared to other OECD countries (Paturot et al., 2013).

13. The progressive nature of the tax system, along with social benefits, make the tax-transfer system highly redistributive by international standards. As a result, market income inequality in Ireland is reduced from the highest in the OECD to around the OECD median in terms of disposable income. Figure 2 illustrates this point by showing the reduction in the market income Gini Coefficient (i.e. before taxes and charges) achieved by a range of OECD countries. As can be seen, the Gini Coefficient falls by 0.27 for Ireland, compared with an OECD average reduction of 0.17, when moving from a market income to disposable income measure of inequality.

4 The Gini coefficient is a statistical measure of a country's inequality. The Gini coefficient ranges from a value of zero to one. A Gini coefficient of zero expresses perfect equality, i.e. where all households or individuals have the same income whereas a Gini coefficient of one expresses perfect inequality, i.e. where only one person has all the income and all others have none.
Figure 2: Difference in Gini coefficient between market and disposable incomes, 2011

Source: OECD Income distribution and Poverty database

Taxation of Personal Income in Ireland

14. Taxation of personal income in Ireland consists of two main component taxes – income tax, and the Universal Social Charge (USC) which was introduced in 2011. There also exists a social security system with employee and employer contributions.

15. Income tax operates using a two rate structure with different thresholds depending on family type (Table 2). A lower rate of 20% applies on all income up to a band threshold whereupon income is taxed up to a higher rate of 40%. This band threshold is €33,800 for a taxpayer who is assessed on an individual basis by the Revenue authorities. For a dual assessed one-income couple this threshold is €42,800 and for a two-income couple this is €67,600. A one-parent family has a threshold of €37,800. Ireland has two main tax credits in the form of a personal tax credit and an employee tax credit. Both are set at €1,650. As such, an employee with combined credits of €3,300 does not begin paying the income tax until they have income of €16,500.
Table 2: Income Tax Bands and Rates

<table>
<thead>
<tr>
<th>Family Type</th>
<th>20%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single person</td>
<td>€33,800</td>
<td>Balance</td>
</tr>
<tr>
<td>Married couple/civil partners, one income</td>
<td>€42,800</td>
<td>Balance</td>
</tr>
<tr>
<td>Married couple/civil partners, two incomes</td>
<td>Up to €67,600</td>
<td>Balance</td>
</tr>
</tbody>
</table>

How to read this table: A single person is taxed (before credits) at a rate of 20% of their income between EUR 0 and EUR 33800. The remaining income above EUR 33800 is taxed at a rate of 40%.

16. The USC is operated on the basis of low rates with a wide base. The base is wider than the income tax in the sense that individuals become liable to pay it at a €12,012 rather than €16,500 in the income tax system (Table 3). It also has fewer exemptions available to reduce the tax liability for individuals relative to the income tax system. Once a person’s income exceeds €12,012, their whole income is liable at 1.5% up to this value. A 3.5% rate applies between income from €12,012 to €17,576, a 7% rate between €17,576 and €70,044 and an 8% rate for those earning above €70,044. An additional rate is applied at 11% for those earning income from self-employment above €100,000.

Table 3: USC Rates and Bands Structure

<table>
<thead>
<tr>
<th>Rate</th>
<th>Income band</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50%</td>
<td>Up to €12,012</td>
</tr>
<tr>
<td>3.50%</td>
<td>From €12,012 to €17,576</td>
</tr>
<tr>
<td>7%</td>
<td>From €17,576 to €70,044</td>
</tr>
<tr>
<td>8%</td>
<td>From €70,044 to €100,000</td>
</tr>
<tr>
<td>8%</td>
<td>Any PAYE income over €100,000</td>
</tr>
<tr>
<td>11%</td>
<td>Self-employed income over €100,000</td>
</tr>
</tbody>
</table>

17. Social security (PRSI) contributions are a smaller component of labour taxation in Ireland. Most employees in Ireland pay PRSI at a rate of 4%. The combined top marginal tax rate for employees of 52% is therefore made up of the 40% income tax rate, the 8% USC rate and the PRSI rate of 4%.

18. Figure 3 shows the key points on an income range where marginal tax rates jump up in Ireland for an individually assessed taxpayer. USC becomes payable at €12,012 with income tax beginning at €16 500.

5 Employees earning over €352 per week pay 4% PRSI on all of their earnings, with employees earning less than €352 gross per week (before tax), exempt from employee contributions. Employers pay 8.5% an employee’s earnings up to €356 and 10.75% on earnings over €356.
At €18,304, USC, income tax and PRSI rate become payable at rates of 20% and 4% respectively, bringing the marginal tax rate up to 31% until €33,800, where the higher rate of income tax commences and the marginal tax rate becomes 51%. At €70,044 the higher USC rate of 8% kicks in and the top marginal tax rate of 52% for employee income applies. However for those with self-employment income over €100,000, there is an additional USC rate of 11%, resulting in a top marginal tax rate of 55%.

Figure 3: Average and Marginal Effective Tax Rates in Ireland for a singly assessed individual, 2015

19. Figure 4 below shows the top marginal tax rates for all OECD countries in 2014. This includes income taxes (in Ireland’s case, income tax and USC), as well as employee’s social security contributions (i.e. PRSI in Ireland). At 52%, Ireland’s top marginal tax rate is joint 9th highest in the OECD, 9 percentage points below the highest in the OECD (Portugal), and 8 percentage points above the OECD average.
Particularly striking in international comparison is that the relatively high top marginal tax rate in Ireland is reached at a low point in the income distribution by OECD standards. This can be established by comparing the relationship of the threshold at which one begins paying the top rate to the average wage for each country. In 2014, the point at which Irish taxpayers begin paying the top marginal tax rate of 52% was at the average wage (Figure 5) which was the 3rd lowest in the OECD compared to just over 5 times the average wage for the OECD as a whole.
Figure 5: Threshold where taxpayer becomes liable to the top marginal tax rate as a multiple of the average wage in 2014

Note: The threshold multiple for Mexico is 29.5.

21. This appears to be partly a function of the way gross earnings are distributed in Ireland and a desire to achieve strong progressivity. By OECD standards the distribution of gross earnings is skewed in Ireland. The OECD’s labour force survey database shows the ratios of the 9th to 1st deciles and median to 1st decile gross earnings are respectively 7th and 6th highest in the OECD. It also shows the incidence of low pay (i.e. the percentage of households earning less than two-thirds of median earnings) is the 3rd highest in the OECD at 23%. This combined with sizeable income tax credits means that a large share of households pay no income tax at all. For a given revenue need, this narrower tax base correspondingly requires a high marginal rate to be applied relatively low in the income distribution.

22. Budget 2015 increased the point at which people began paying the top rate of 52% to €70,044. However, a significant proportion of the population still begin paying the slightly lower marginal tax rate of 51% from an income of €33,800. This marginal tax rate would still be the joint 11th highest of all OECD countries in 2014.

23. This section identified that in comparison to other OECD countries, marginal tax rates in Ireland are high and more importantly the point at which people begin to pay them on the income distribution is quite low. High marginal tax rates penalise economic growth especially in the medium term as they reduce the incentive to work and can induce tax avoidance behaviour.
Simulating Taxes and Welfare Changes

24. The preceding sections illustrated the empirical and theoretical research on growth enhancing tax reforms as well as particular aspects of the Irish tax system that may act as a drag on growth. This section seeks to identify a win-win reform that would lead to growth enhancing macroeconomic outcomes, consistent with economic theory, in a manner that does not lead to losses for low income groups, or significant gains for high income groups.

25. OECD (2010) presented empirical and theoretical evidence that there could be gains in terms of long-run GDP per capita from increasing the use of property taxes relative to income taxes without changing overall tax revenues. This shift would likely have larger effects on GDP per capita if it was in the form of cuts in marginal personal income tax rates rather than increases in thresholds (although the latter would be more effective at reducing inequality). A shift to increased taxation of immovable property would also give rise to a more stable tax revenue base. The reform explored herein therefore considers marginal tax rates. In particular, the low entry point to the top marginal rate in Ireland, relative to other OECD countries, warrants examination.

26. O’Connor (2013) presented the results from the Economic and Social Research Institute (ESRI) HERMES macroeconomic model of €1 billion shift from income tax to property tax. The results indicated that such a reform would result in a permanent increase in GDP and employment of 0.4% in the medium term. The reforms in this paper are calibrated to a shift of €500 million but results from the HERMES model are linear and as such can be proportionately scaled to a smaller reform.

27. The distributional impacts of the reforms are simulated using the ESRI tax-benefit model, SWITCH. The SWITCH model is a micro-simulation model that estimates the distributional impact on household incomes, as well as impacts on financial incentives to work, in terms of changes in replacement rates and marginal effective tax rates, from changes in fiscal policy.

28. Simulations results are presented which show the estimated exchequer cost and distributional impacts of a range of labour tax and property tax reforms. The distributional impacts on household incomes are presented on a decile and quintile basis.
SWITCH Model description

29. The ESRI SWITCH model is a micro-simulation tax-benefit model based on data from the Survey of Income and Living Conditions (SILC), a large-scale nationally representative sample of households. The modelling processes includes the construction of new weights for the survey households, based on statistical information from the Revenue’s Income Distribution Statistics, and forecasts of employment, unemployment and whether the person is receipt of social welfare for the next budgetary year. In this way the model seeks to represent the great diversity of household circumstances relevant to tax and social welfare. Administrative tax data discussed in Kennedy et al. (2015) tends to have less coverage of poor and non-tax paying households, but has more accurate and reliable information on the highest income households.

30. At present the capabilities of the model include:

- Estimation of the net budgetary cost of packages of tax and/or welfare changes;
- Estimation of the distribution of gains and losses from certain tax and welfare policy changes; and,
- The impact of policy changes on financial incentives to work, and work more, as measured by replacement rates and changes in marginal effective tax rates.\(^7\)

31. Results from the model can be expressed for three basic units of analysis - a household, a tax unit and an income sharing unit. The household is the widest unit of analysis, while the difference between income-sharing units and tax units is that third-level students living with their parents are counted as separate tax units, but are included as part of the same income-sharing unit as their parents. For the purposes of this paper the unit of analysis is at the household level, on an equivalised basis (Box 1).

\(^7\) The ESRI carry out comparisons of the revenue/cost projections of changing different tax measures with the Revenue Commissioner’s forecasting model. While the SWITCH model projections are close to those of the Revenue Commissioners they are not perfectly consistent. As such, revenue/cost projections included in this paper are only approximate.
Box 1: Equivalisation within SWITCH

Household incomes are equivalised within SWITCH. Equivalisation takes into account the fact that larger households usually need a higher income than smaller households to achieve a comparable standard of living. Equivalence scales are used to calculate the **equivalised household size** in a household. The national scale for Ireland uses a scale of 1 for the first adult, 0.66 for each subsequent adult (aged 14+ living in the household) and 0.33 for each child aged less than 14.

Under the above scales a household of 1 adult, a household of 2 adults, and a household of 2 adults and one child under the age of 14 - are considered to have equivalent resources available to them if they have actual total household incomes of €1000, €1666 and €1999 per week respectively.

Reform Simulations and Results

32. As outlined above, the highly progressive nature of Ireland’s income tax system results in around 18% of tax-payer units facing high marginal tax rates of at least 51% from incomes just above the average wage. This negatively affects labour supply decisions, and through this channel, economic growth. Reducing the labour supply disincentives caused by the current income tax structure provides an opportunity for a growth enhancing reform.

Reductions in income tax and increases in the standard rate band benefit a relatively small cohort of taxpayers

33. The first reforms analysed relate to income tax, in particular the top rate of income tax and the threshold for this rate. In simulation 1 the top income tax rate is reduced by 1%, from 40 percent to 39 percent, and then the standard rate band is increased by €2000, from €33,800 to €35,800.

34. The net exchequer cost for Simulation 1 is €200m and results in an average gain of 0.27% in equivalised disposable weekly income for all deciles. As the benefit of the tax change increases with income it is intuitive that the 10th decile shows the biggest gain of 0.87%. Smaller gains of 0.27% and 0.16% occur for the 9th and 8th deciles respectively. Gains below the 8th decile are negligible at less than 0.1% of weekly equivalised disposable income. Thus, the gains are largely concentrated in the top deciles.
Figure 6: Simulation 1, Reduction in the 40% Income Tax rate by 1% to 39%, percentage change in equivalised disposable income

35. Turning to an increase in the standard rate band, the SWITCH model estimates a net exchequer cost of €292m, with an average gain of 0.39% in equivalised disposable weekly income. Gains are more evenly distributed across the top 5 to 7 deciles than the reduction in the top rate as, for example, an individually assessed tax unit gains the same absolute amount of income if their income is above €35,800 i.e. the new higher rate threshold. The 9th decile shows the biggest gains of 0.75%, with gains falling off in the 10th decile. As the gain from the reform is constant in cash terms this fall in the 10th decile is due to a denominator effect caused by larger disposable income in the 10th decile relative to the 9th. Negligible gains occur in the first three deciles and may be explained due to the process of equivalisation wherein some households that benefit from the change in the standard rate band, and who would appear in the middle deciles on a pre-equivalisation basis, actually appear in the lower deciles on a post-equivalisation basis due to their household composition.
36. Budget 2015 introduced a new 8% rate of USC for those earning €70,044 and above. This was introduced to cap the benefit of reductions in the top income tax rate. It is possible to replicate the approach to limit the gains to the upper deciles by increasing the top rate of USC from 8% to 9%, alongside a 1% reduction in the top income tax rate. The simulation below illustrates the distributional impact.

37. SWITCH estimates the net exchequer cost is of this reform as €117m so, comparing with, increasing the top USC rate in tandem with decreases in the top income tax rate saves approximately €73m. The gains in the 10th decile are substantially reduced, with gains of 0.4% as against 0.87% in the reform without the USC increase, with small reductions in gains for the 8th and 9th deciles also.
38. In terms of why core income tax changes are mainly impacting on the higher deciles, work by Collins (2014) using 2013 SILC data, indicates that 82% of employees can be found in deciles 5 to 10 (on an equivalised basis); hence changes to the core income tax system tend to impact at the higher end of the income distribution.

Reduced in the Universal Social Charge can reduce marginal and average tax rates and achieve a broader impact on household incomes

39. Changes introduced in Budget 2015 resulted in the 7% USC rate applying to income between €17,542, approximately equivalent to income for a full time equivalent employee at the national minimum wage, and €70,044. The broad nature of the income range that the 7 percent rate applies to would suggest, *a priori*, that USC changes should have a wider distributional impact than the income tax reforms that were discussed above.

40. The distributional impact of a 1.5 percent reduction in the 7 percent rate, and 0.25 percent reduction in the 3.5 percent rate, which applied to income between €12,012 and €17,542, is shown below. The inclusion of a reduction in the 3.5 percent rate is designed to spread the gains to lower income groups.
SWITCH estimates this USC reform to result in a net exchequer cost of €475m with an average gain of 0.63% in weekly equivalised disposable income across all income deciles. The gains from this reform reach further down the income distribution, reflecting the low threshold to the 3.5% rate. Gains steadily rise between each decile until the 9th where they peak at just under 1% of disposable income.

Such a reform would result in a top marginal rate of 49.5% for all tax payers with income less than €70,000 and a lower average effective rate for all tax payers. While the top marginal rate would remain at 52% for tax payers with income above €70,000, the reduction in the average effective tax rate could improve Ireland’s attractiveness as a location for high skilled labour, as it is the average effective rate that determines participation (i.e. the extensive margin), as opposed to the marginal rate which determines the amount of work (i.e. the intensive margin) after the participation decision has been made.

Table 4 shows the percentage of those in employment by whether or not they experience a change in their Marginal Effective Tax Rate (METR). SWITCH models METRs by showing the amount of an additional €100 in earnings that is taxed away. This shows that 68% of the population of employed persons (i.e. employees and self employed) have a reduction in their METR as a result of Simulation.
Table 4: Percentage of employed persons by change in marginal effective tax rates

<table>
<thead>
<tr>
<th>Change</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td>0%</td>
</tr>
<tr>
<td>No Change</td>
<td>32%</td>
</tr>
<tr>
<td>Decrease</td>
<td>68%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Numbers subject to rounding

Shifting the burden to property tax is challenging due to high home ownership shares throughout the income distribution

44. Ireland introduced a recurring tax on residential property, the Local Property Tax (LPT), in 2013. In 2014 the LPT yielded revenue of approximately €480 million (roughly 0.3% of 2014 nominal GDP), which is low by international comparison (OECD, 2015). The tax is based on self-assessed market values with a rate of 0.18% applied to the mid-point of an applicable valuation band. The first valuation band applies to properties valued below €100,000 with nineteen further bands of €50,000 each up to €1 million (Table 4). The incremental value of a property above €1 million is taxed at a rate of 0.25%.

8 The 2014 LPT yield estimate is net of the impact of deferrals and exemptions but does not account for the local adjustment factor that was introduced in 2015.
Table 5: LPT liabilities for different bands

<table>
<thead>
<tr>
<th>Property Band (€)</th>
<th>Mid-point (€)</th>
<th>LPT Liability (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>150,000</td>
<td>125,000</td>
</tr>
<tr>
<td></td>
<td>50,000</td>
<td>90</td>
</tr>
<tr>
<td>150,000</td>
<td>200,000</td>
<td>175,000</td>
</tr>
<tr>
<td></td>
<td>175,000</td>
<td>315</td>
</tr>
<tr>
<td>200,000</td>
<td>250,000</td>
<td>225,000</td>
</tr>
<tr>
<td></td>
<td>225,000</td>
<td>810</td>
</tr>
<tr>
<td>250,000</td>
<td>300,000</td>
<td>275,000</td>
</tr>
<tr>
<td></td>
<td>275,000</td>
<td>990</td>
</tr>
<tr>
<td>300,000</td>
<td>350,000</td>
<td>325,000</td>
</tr>
<tr>
<td></td>
<td>325,000</td>
<td>1,170</td>
</tr>
<tr>
<td>350,000</td>
<td>400,000</td>
<td>375,000</td>
</tr>
<tr>
<td></td>
<td>375,000</td>
<td>1,350</td>
</tr>
<tr>
<td>400,000</td>
<td>450,000</td>
<td>425,000</td>
</tr>
<tr>
<td></td>
<td>425,000</td>
<td>1,530</td>
</tr>
<tr>
<td>450,000</td>
<td>500,000</td>
<td>475,000</td>
</tr>
<tr>
<td></td>
<td>475,000</td>
<td>1,710</td>
</tr>
<tr>
<td>500,000</td>
<td>550,000</td>
<td>525,000</td>
</tr>
<tr>
<td></td>
<td>525,000</td>
<td>1,890</td>
</tr>
<tr>
<td>550,000</td>
<td>600,000</td>
<td>575,000</td>
</tr>
<tr>
<td></td>
<td>575,000</td>
<td>2,070</td>
</tr>
<tr>
<td>600,000</td>
<td>650,000</td>
<td>625,000</td>
</tr>
<tr>
<td></td>
<td>625,000</td>
<td>2,250</td>
</tr>
<tr>
<td>650,000</td>
<td>700,000</td>
<td>675,000</td>
</tr>
<tr>
<td></td>
<td>675,000</td>
<td>2,430</td>
</tr>
<tr>
<td>700,000</td>
<td>750,000</td>
<td>725,000</td>
</tr>
<tr>
<td></td>
<td>725,000</td>
<td>2,610</td>
</tr>
<tr>
<td>750,000</td>
<td>800,000</td>
<td>775,000</td>
</tr>
<tr>
<td></td>
<td>775,000</td>
<td>2,790</td>
</tr>
<tr>
<td>800,000</td>
<td>850,000</td>
<td>825,000</td>
</tr>
<tr>
<td></td>
<td>825,000</td>
<td>2,970</td>
</tr>
<tr>
<td>850,000</td>
<td>900,000</td>
<td>875,000</td>
</tr>
<tr>
<td></td>
<td>875,000</td>
<td>3,150</td>
</tr>
<tr>
<td>900,000</td>
<td>950,000</td>
<td>925,000</td>
</tr>
<tr>
<td></td>
<td>925,000</td>
<td>3,330</td>
</tr>
<tr>
<td>950,000</td>
<td>1,000,000</td>
<td>975,000</td>
</tr>
<tr>
<td></td>
<td>975,000</td>
<td>3,510</td>
</tr>
</tbody>
</table>

45. The share of home ownership across income deciles has important implications for how property taxes can be structured to ensure they are equitable. Overall a high share of Irish households own their own home. According to the Household Finance and Consumption Survey (HFCS) 70.5% of households own their homes, compared with a euro area average of 60%. Approximately 10% of households own other residential properties (e.g. buy-to-let, holiday homes, etc.).

46. The share of home ownership is not particularly concentrated amongst higher income groups with a 60% share attributed to the first quintile according to the HFCS, dipping slightly in the second quintile and rising in quintiles 3 to 5, (Table 5). A cross-check of these statistics against data from SILC, show a similar reported pattern of home ownership (Table 6). In addition, the median value of the household’s main residence does not increase that steeply with income (Table 7). This high home ownership share and relatively flat value distribution throughout the income distribution poses challenges for structuring a reform that shifts the labour tax burden towards property taxes in a non-regressive manner.
Table 6: Household Main Residence (HMR) ownership rates and HMR value as a percentage of Real and Financial Assets

<table>
<thead>
<tr>
<th>Income Quintile</th>
<th>% who own Household Main Residence</th>
<th>HMR % of real & financial assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%-20%</td>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td>20%-40%</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>40%-60%</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>60%-80%</td>
<td>79</td>
<td>48</td>
</tr>
<tr>
<td>80%-100%</td>
<td>89</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 7: Proportion of household that are owned (with or without mortgage), by decile

<table>
<thead>
<tr>
<th>Bottom</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63%</td>
<td>51%</td>
<td>59%</td>
<td>67%</td>
<td>68%</td>
<td>76%</td>
<td>74%</td>
<td>87%</td>
<td>89%</td>
</tr>
</tbody>
</table>

Source: Survey on Income and Living Conditions, Central Statistics Office, 2010

Table 8: Median value of Household Main Residence

<table>
<thead>
<tr>
<th>Income quintile</th>
<th>0-20%</th>
<th>20-39%</th>
<th>40-59%</th>
<th>60-79%</th>
<th>80-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euros 000s</td>
<td>120</td>
<td>130</td>
<td>150</td>
<td>150</td>
<td>220</td>
</tr>
</tbody>
</table>

Low income groups could be protected through the careful introduction of income related supports, with revenue losses recovered through a more progressive rate structure

47. The proposed USC reforms outlined above were estimated to cost [in the range of €450-500m], which approximately equates to the 2014 LPT yield of [€470m]. The simulations are designed to be broadly revenue neutral reform as the focus of the paper is fiscal composition holding the fiscal stance roughly constant. In the first instance a ‘straw-man’ reform that doubles the current LPT rate of 0.18% to 0.36%, and which should, *a priori*, finance the USC reduction, is simulated (Figure 10).

9 The authors thank Michael Savage and Tim Callan of the ESRI for providing these statistics from SILC 2010
48. The results show that a straight increase (doubling) in the local property tax rate would have a regressive impact, with the largest losses expected to occur in the first decile with losses generally declining as income rises. Overall an average loss of 0.56% is estimated across the full distribution which is less than the average gains from the USC reforms. It is noteworthy that losses of just under 1% are estimated in the first decile which would not be compensated for by the USC reform.

49. An interesting outcome from the simulation is that the lowest losses are observed in decile 8. Deeper analysis shows that while home ownership is high in this decile, property values are relatively low in relation to income. This may partly be explained by equivalisation, which would, ceteris paribus, increase the decile position of a young household without children, a household that would be expected to have comparatively lower value properties.

50. To illustrate the difficulty in shifting the burden to property tax in a manner that protects low income groups, the simulation below shows the distributional impact of doubling the LPT only for properties valued above €300,000 (Figure 11). The results, which are driven by high home ownership rates throughout the income distribution as well as the weak correlation between property values and income, indicates that the impact of this approach does not fit either a regressive or progressive pattern.
51. Increasing the rate of LPT on higher value properties does not, on its own, protect low income groups as one might a-priori assume. An income related offset would be needed to avoid losses for low income groups but this would be at the expense of complicating the administration of the property tax system as well as having some negative effect on labour supply incentives.

52. As with all income related supports, poverty traps may arise when an individual’s income rises above the threshold for the support in question. A system known as ‘marginal relief’ that tapers the liability to LPT as income progresses above the threshold, could be introduced to avoid these traps.10 However such a system has the drawback of introducing a marginal effective tax rate for the beneficiary which, depending on the property value, could have a very long ‘tail’ up the income distribution.

10 The approach to marginal relief in SWITCH is to apply a payment equal to the lower amount of either (a) the actual amount of property tax due or (b) a rate of marginal relief times the difference between the person’s income and the income threshold for the income related support (i.e. $MR\ rate \times (income - threshold)$). For example consider a person with income of €12,000 that owns a property valued in the €150,000 to €200,000 band, with an associated LPT liability of €315 as per Table 4 above. With a marginal relief rate of 5% this person’s LPT liability would be the lower amount of either (a) the actual LPT liability of €315, or (b) 0.05 \times (12,000 - 10,000) which equals €100.
53. Simulation 7 builds on Simulation 5 by adding an income related support such that those households with equivalised incomes below a threshold of €10,000 pay a capped amount of the minimum of €90 (Figure 12). The threshold is itself equivalised and is defined such that a single adult household is €10,000 with an increase of €6,660 for each additional person over the age of 14 and an additional €3,330 for each person below 14. In this simulation marginal relief is offered at a rate of 5% of the difference between a household’s threshold and their income. It should be noted that such an arrangement would introduce a degree of complexity into the administration of the local property tax.

![Figure 12: Simulation 7, Double LPT rate with income rated supports, percentage change in equivalised disposable income](image)

54. Simulation 7 shows a progressive shape to the LPT reform (Figure 12). However, the revenue gain is almost halved compared to the reform without income supports. This implies that a progressive change in LPT will have to generate the bulk of revenue needed for the reform from higher deciles and would require significantly higher rates.

55. Table 8 below shows the change in Marginal Effective Tax Rate (METR) for the population from Simulation 7. As can be seen, over 100,000 people experience an increase in their METR (the sum of the totals of ‘from 0.5% to 2%’ and ‘from 2% to 5%’), while 1.48 million experience no change in their METR.
56. The increases in the METR in Table 8 relate to the introduction of the system of marginal relief. While a system of marginal relief does avoid a step-effect poverty trap by phasing in a household’s full LPT liability, the benefit of marginal relief is, by definition, withdrawn as income rises thus giving rise to a METR equal to the rate of marginal relief. Indeed the higher the rate of marginal relief is, the more rapidly a household becomes liable to pay their full LPT liability, thus illustrating the trade-off between labour supply incentives and low income supports inherent in a system of marginal relief.

Table 9: Number of persons experiencing a change in marginal effective tax rate as a result of Simulation 7 by original marginal effective tax rate

<table>
<thead>
<tr>
<th>Change in METR</th>
<th>From -2% to -0.5%</th>
<th>From -0.5% to 0.5%</th>
<th>From 0.5% to 2%</th>
<th>From 2% to 5%</th>
<th>From 5% to 10%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 20%</td>
<td>194,793</td>
<td>16,565</td>
<td>219,976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 20 to 30%</td>
<td>198,614</td>
<td>26,487</td>
<td>230,416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 30% to 40%</td>
<td>439,523</td>
<td>12,970</td>
<td>25,282</td>
<td>477,775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 40% to 50%</td>
<td>209,554</td>
<td>20,368</td>
<td>234,938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 50% to 60%</td>
<td>536,400</td>
<td>18,644</td>
<td>557,756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 60% to 70%</td>
<td>30,882</td>
<td>13,396</td>
<td>50,234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 70% to 80%</td>
<td>13,985</td>
<td>16,634</td>
<td>27,185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 80% to 90%</td>
<td>20,353</td>
<td>20,420</td>
<td>48,104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater than 100%</td>
<td>42,943</td>
<td>54,432</td>
<td>115,825</td>
<td>3,224</td>
<td>1,883,438</td>
<td></td>
</tr>
</tbody>
</table>

Table note: Data for cells with low entries have been removed for data confidentiality reasons

57. The number experiencing an increase in their METR can be lowered by increasing the rate of marginal relief from 5 percent. In the final property tax simulation, specified below, a marginal relief rate of 20 percent is used.

58. Given the foregoing analysis, the final property tax simulation, which targets a revenue yield close to the estimated €450m-€500 million cost associated with the simulated USC changes, introduces a non-linear rate structure so as to offset losses from the income related reliefs from higher value properties. The

11 For an explanation of marginal relief, see paragraph 0 above.
overall revenue yield is estimated at €400-€450 million which would generate a broadly revenue neutral tax shift if introduced with the USC changes. The rate structure modelled is as follows:

- Minimum payment of €100 up to an equivalised income related threshold of €10,000 and marginal relief at 20% thereafter
- 0.2% LPT rate for properties with valuation less than 200K;
- 0.4% for properties valued between 200 and 400K;
- 0.65% from 400 to 600K;
- 0.85% from 600 to 800K;
- 1% from 800K to 1m; and,
- 1.25% on the incremental property value above 1m.

59. The distributional impact is broadly progressive, with the largest losses incurred for the highest income groups (deciles 9 and 10), and a pattern of losses that increase with income in deciles 2 to 5, declining losses in deciles 6 to 8, and gains in decile 1 (Figure 13).

60. Looking closer at the pattern of losses, the decline in losses in deciles 6 to 8 is consistent with the pattern in simulation 5, which doubled the LPT rate for all properties and is driven by the breakdown in correlation between income and property value in these deciles. The gains in decile 1 relate to the introduction of the minimum payment, with some of these benefits as well as the marginal relief minimising losses for neighbouring deciles.
A carefully designed shift from USC to property tax can reduce marginal and average effective rates, boost economic output and employment, and do so in a manner that is not regressive.

61. The overall macroeconomic and distributional impacts of an approximate €500m revenue neutral shift from USC to property taxes are described below. This shift results in a top marginal rate of less than 50% for all taxpayers with income below €70,000, with a lower average effective tax rate for all payers regardless of income.

62. The macroeconomic gains are based on the results from the HERMES model described in O’Connor (2013), and summarised in Box 2 below, which were based on a €1 billion shift. The HERMES model results are linear and so results can be scaled to a lower reform. The results are based on the medium-term impact and so relate to the year 5 impact of the reform. The results suggest a permanent increase in employment after five years of 0.43%, representing an additional 4,550 jobs relative to the Department of Finance (2015) baseline (Table 10).\(^\text{12}\)

\(^{12}\) See Ireland’s Stability Programme April 2015 Update, Department of Finance, April 2015.
Table 10: Macroeconomic Impacts of €500 million shift from USC to property tax

<table>
<thead>
<tr>
<th>Amount</th>
<th>Employment Change</th>
<th>Employment (000s)</th>
<th>Jobs Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>€1bn</td>
<td>0.43%</td>
<td>2,115</td>
<td>9,100</td>
</tr>
<tr>
<td>€0.5bn</td>
<td>0.22%</td>
<td>2,115</td>
<td>4,550</td>
</tr>
</tbody>
</table>

Source: O’Connor (2013) based on ESRI HERMES model, and SPU 2015

Box 2: Description of HERMES Model and ‘Tax-Shift’ Simulations

The HERMES model was first estimated in the 1980s and is described in Bergin et al. (2013). The model is based on a detailed empirical literature on the behaviour of the Irish economy. In respect of a ‘tax shift’ the key features of the Irish economy relate to why the incidence of taxation differs between direct, indirect and property taxes.

As described in Bergin et al. (2013), HERMES models the wage setting mechanism as a bargaining process between firms and workers over the real after tax wage. Irish manufacturing output prices are assumed to be determined primarily in the world market place and as such cannot easily be altered to respond to Irish cost conditions. In other words, Irish firms trading internationally tend to be price takers. Labour supply is assumed to be elastic with labour demand relatively inelastic such that in the medium term the incidence of labour taxation falls mainly on employers rather than employees. Thus as Irish exporters are assumed to not have the ability to pass on higher input costs on the world market, the medium term impact of higher labour taxes is a loss of competitiveness for Irish firms with a consequent fall in output and employment. The opposite effect occurs in the medium term from a reduction in labour taxes.

While economic theory suggests that in the medium term the impact of an increase in indirect taxes for workers is equivalent to an increase in direct taxes, indirect taxes affect a wider population, such that in the HERMES model some of the incidence falls of indirect taxation falls on the household sector with a lower consequent impact on employment and competitiveness. As regards property taxes, the incidence is assumed to fall entirely on the household sector and does not affect competitiveness.

The results presented in O’Connor (2013) were based on a €1 billion increase in revenue from property taxes offset by a cut in income tax sufficient to keep the general government balance unchanged relative to baseline. The HERMES results are broadly symmetric and linear and, within plausible bounds, can be scaled up or down to reflect a greater or lesser shift than that modelled. The results herein are scaled to represent a €500m ‘shift’ in the tax burden.

Source: Description of results from O’Connor (2013)
63. The distributional impact, which combines the USC reform in Simulation 4 and the LPT reform in Simulation 8, is shown in Simulation 9 below on a decile and quintile basis (Figure 14). Overall the reform is estimated to give rise to an average increase of 0.1% in weekly equivalised household disposable income.

64. The impacts in deciles 2 to 6 and deciles 9 and 10 are effectively zero, with gains of 0.5% of disposable income estimated in deciles 1 and 8. The gain in the first decile is due to the introduction of an income related LPT payment, while the gains in decile 8 are slightly more complex and are due to the low asset values, relative to income, which result in a relatively low increase in LPT compared with the USC gain. On a quintile basis, the estimated impact is effectively zero for quintiles 2, 3 and 5 with gains in quintiles 1 and 4.

65. However, while the reform is distributionally neutral across the decile and quintile distribution, it is important to note that within these deciles there would be winners and losers depending on individual household circumstances.

66. The revenue projections within the SWITCH model indicate that the USC costs €60-70m (0.03%-0.04% of 2014 nominal GDP) more than the LPT reforms gains. Although not perfectly revenue neutral it is in practical terms close to neutrality relative to the government’s overall spending and the economy. In addition, although finely calibrated and based on the best available micro data on Irish households, the simulations do not account for possible positive behavioural effects that could result in revenue gains.
As a result of the simulation, 67% of persons (employees and self-employed) experience a decrease in their METR with no change in METR for a further 31%. Only 2% face an increased METR from the simulation which arises due to the system of marginal relief.
Table 11: Change in METR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td>2%</td>
</tr>
<tr>
<td>No Change</td>
<td>31%</td>
</tr>
<tr>
<td>Decrease</td>
<td>67%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: ESRI SWITCH Model

Conclusions

68. Overall, the illustrated shift from labour to property tax is pro-growth and pro-employment, without the equity losses that often arise with some growth enhancing tax reforms. It therefore suggests that growth enhancing tax reforms can be inclusive. There are some trade-offs though. The introduction of the property tax with a capped payment and marginal relief for low income households does mean some (but importantly not all) of the benefits of higher incentives to work from lower labour taxation are lost. It is also a relatively complex change which would complicate the relatively simple nature of the existing property tax system and increase administrative and compliance costs.

