Expert group -- Economics of Prevention

OECD ECONOMICS OF PREVENTION EXPERT GROUP MEETING

THE PREVENTION OF HARMFUL ALCOHOL USE

OECD Conference Centre, 2 rue André Pascal, 75016 Paris
31 March - 1 April 2011

Contact: Franco Sassi, Tel.: 33 (0) 1 45 24 92 39; Email: franco.sassi@oecd.org or
Michele Cecchini, Tel.: 33 (0) 1 45 24 78 57; Email: michele.cecchini@oecd.org
NOTE FROM THE SECRETARIAT

1. The OECD Health Committee endorsed the establishment of an Expert Group on the Economics of Prevention in its December 2010 meeting. The Group will meet once a year and will oversee work undertaken by the OECD Secretariat on the economics of chronic disease prevention. As part of the 2011-12 Programme of Work, three main projects will be undertaken in this thematic area.

2. The project discussed in this background paper will focus on policies to tackle harmful alcohol use, looking at past and projected future trends in harmful patterns of alcohol consumption in different social groups, as well as the likely health and economic impacts of alternative policies to tackle harmful alcohol use. This paper presents reviews of the existing evidence on alcohol consumption and policies to tackle harmful consumption, the analytical framework within which the project will develop, the data sources available and their main strengths and limitations.

3. Experts are asked to:

 1. Assess, and comment on, the relevance of the policy questions which the study attempts to address;

 2. Review, and comment on, proposals concerning the design of empirical analyses, especially in relation to the following aspects: country coverage; data sources; criteria for defining harmful alcohol use and its consequences; and analytical methods.
TABLE OF CONTENTS

NOTE FROM THE SECRETARIAT ... 2

Introduction... 4
 Background.. 4

Section 1. Existing data sources and findings of pilot analyses on trends in harmful alcohol use............ 5
 1.1. Trends and disparities in alcohol consumption... 5
 1.2. Proposal for analyses ... 8
 1.3. Data availability and limitations ... 11
 1.4. Preliminary findings ... 13

Section 2. Existing alcohol policy models and possible ways of assessing the effectiveness and efficiency of policies to tackle harmful alcohol use .. 14
 2.1. Modelling the effects of policies to tackle harmful use of alcohol: review of existing approaches 14
 2.2. Inputs and outputs .. 15
 2.3. Tackling harmful use of alcohol with the CDP model ... 16

REFERENCES .. 19

ANNEXES... 23

Tables

 Table 1. Quantity of alcohol in a standard drink across countries ... 10
 Table 2. Definition of the possible dependant variables in the 8 countries studied.......................... 11
 Table 3. Availability of the data from national health surveys .. 12

Figures

 Figure 1. Alcohol consumption in OECD area ... 6
 Figure 2. The structure of the CDP model .. 17
 Figure 3. Distribution of alcohol attributable deaths and DALYs ... 18
Introduction

4. This paper presents the two main components of the project on the prevention of harmful alcohol use. Section 1 deals with trends in alcohol consumption across OECD countries and disparities in the consumption observed across demographic and socioeconomic groups. Section 2 gives an overview of the existing alcohol policy models, and describes the possible ways of assessing policies to tackle harmful alcohol use.

Background

5. Studying alcohol consumption from a public health perspective is quite challenging since alcohol may both benefit and harm people. A moderate use of alcohol may have health and social benefits (Bray, 2005; Stampfer et al., 2005). On the other hand, an excessive alcohol consumption is harmful to health and brings considerable social and economic costs.

Harm to health

6. Heavy alcohol consumption may have considerable impacts on health (both on morbidity and mortality), health care cost and social harm cost (Rehm et al., 2009). According to the 2007 WHO report, the harmful alcohol use is responsible each year for about 2.3 million premature deaths worldwide. Deaths directly or indirectly attributable to alcohol consumption can be injuries from car accidents, violence, and suicides, or diseases caused by alcohol such as cardiovascular diseases, cancers of mouth and oesophagus, and cirrhosis of liver (Burki, 2010).

7. The relationship between harmful alcohol use and increased risk of cancer, liver cirrhosis, lung and cardiovascular disease, mental and behavioural disorders is strong (Anderson et al., 1993; Byrne et al., 2004). Rehm et al., 2010) show in a systematic literature review, that the average volume of alcohol consumption has a causal impact on many diseases outcomes and injuries. They found an impact on numbers of cancer, diabetes mellitus, alcohol use disorders, unipolar depressive disorders, epilepsy, hypertensive heart disease, ischaemic heart disease (IHD), ischaemic and haemorrhagic stroke, conduction disorders and other dysrhythmias, lower respiratory infections (pneumonia), cirrhosis of the liver, preterm birth complications and fetal alcohol syndrome.

Social and economic cost of alcohol abuse

8. In addition, alcohol abuse has a considerable effect on the labour market and society. Thavorncharoensap et al. (2009) found that the economic burden of alcohol was estimated at between 0.45 and 5.44% of GDP in the 12 studied countries. Lye and Hirschberg (2010) review the literature on the relationship between labour market outcomes and consumption of alcohol. Whilst they found older results indicated that alcohol consumption boosted wages (e.g. Grossman and Benham, 1974; Lee, 1982; Haveman et al., 1994; Cai, 2007), they found evidence that these may result from omitted variable bias and a large proportion of abstainers who may have stopped drinking owing to problems. Furthermore evidence on other labour market outcomes such as employment suggested a negative return to drinking. They also found that there is evidence that problem drinking reduces academic efficiency and therefore the accumulation of human capital itself (DeSimone and Wolaver, 2005; Renna, 2007; Wolaver, 2007).
Section 1. Existing data sources and findings of pilot analyses on trends in harmful alcohol use

1.1. Trends and disparities in alcohol consumption

9. This section presents an overview of the literature on the existing evidence of trends in alcohol consumption and the disparities in alcohol consumption across population groups.

Trends

10. OECD Health at a Glance 2009 presents figures of alcohol consumption in litres per capita based on the annual sales of alcohol and reported per capita for people aged 15 years and over. Data sources are mostly from national institutes with the exception of the World Drink Trends 2005 which was used for 7 countries (Belgium, Greece, Italy, Luxembourg, Poland, Portugal and Spain). The methodology to convert alcoholic drinks to a more readily comparable metric of pure alcohol may differ across countries. Typically beer is weighted as 4-5%, wine as 11-12% and spirits as 40% of pure alcohol equivalent. In the OECD area, the consumption of alcohol is on average about 9.7 litres per capita per year. It should be noted that in some countries (e.g. Luxembourg), national sales do not accurately reflect actual consumption by residents, since purchases by non-residents may create a significant gap between national sales and consumption. Consumption of alcohol per capita over the period 1980-2007 has on average decreased by 13%. However, Ireland, Iceland and Mexico have seen increased consumption of 40% or more (OECD, 2009). These changes may reflect changes in drinking habits which in turn may have been caused policy changes to control alcohol use. Controls on advertising, sales restrictions and taxation have all proven to be effective measures to reduce alcohol consumption (Bennett, 2003). Strict controls on sales and high taxation are mirrored by overall lower consumption in most Nordic countries, while falls in consumption in France, Italy and Spain may be associated with the voluntary and statutory regulation of advertising, partly following a 1989 European directive.
11. According to the recent WHO report on Global Survey on Alcohol and Health (WHO, 2011), the worldwide adult per capita alcohol consumption is about 6.13 litres on average, and about 10.55 litres in the high-income countries. The total adult per capita alcohol consumption is an estimate of recorded and unrecorded adult per capita consumption of pure alcohol in 2005. Unrecorded alcohol is defined as “alcohol that is not taxed and is outside the usual system of governmental control, because it is produced, distributed and sold outside formal channels” – it refers to homemade or illegally produced alcohol. The recorded consumption figures correspond closely to the OECD Health Data figures except for Czech Republic (12.1 in OECD Health Data and 14.97 in WHO), and Korea (8.0 in OECD Health Data and 11.80 in WHO). The unrecorded consumption figures added by WHO sometimes correspond to 3 or more litres per capita (e.g. in Hungary, Korea, Poland, Slovak Republic and Sweden). Therefore, total estimates may significantly differ such as for Czech Republic (12.0 in OECD Health Data and 16.45 in WHO) and Korea (8 in OECD Health Data and 14.8 in WHO).

12. The change in the global alcohol consumption in adults is reported to be relatively stable since 1990 (WHO, 2011). However the consumption among younger people has increased in most countries.

13. A European study on people aged 15-16 which was carried out in 1995, 1999, 2003, and 2007 shows that between the last two surveys, there was a decrease in the average proportion of students that had been drinking beer and/or wine during the past 30 days. But on the other hand, heavy episodic drinking has increased in the later years (ESPAD, 2009).
14. Burki (2010) discusses possible causes for the increases in average consumption and highlights a correlation between the consumption and the affordability (and availability) of alcohol. He refers to a report by the British Medical Association which indicates a higher affordability of alcohol in the UK between 1980 and 2006 at the same time as an increase in per person alcohol consumption of 1.5L.

15. These data relying on recorded levels of consumption and sales consumption may be the most reliable data to deliver country profiles of accurate levels of consumption. However, this OECD project will focus on the alcohol-related behaviours such as heavy and binge drinking, and on the spread of the alcohol through family and social network. Data based on individual-level survey are the most adapted for such an investigation.

Gender, Age and Ethnicity

16. Patterns of drinking may differ among gender, age, ethnicity and social groups. The international literature on these patterns is large and results may not appear consistent, largely due to the different measures of drinking patterns considered as outcomes.

17. There is some evidence that alcohol consumption varies with age. Casswell et al. (2003) find on New Zealand data that the frequency of drinking increased over early adult years and the quantities consumed peaked at age 21 and decreased thereafter for both males and females. There is other evidence for a decrease of alcohol amount by age (McKee et al., 2000).

18. Numerous international studies confirm gender differences. Men are more often drinkers and consume more alcohol than women. Bloomfield et al. (2006a) highlight the gender differences in 13 European countries plus Brazil and Mexico, and find that the smallest gender differences in drinking behavior are found in Nordic countries, followed by western and central European countries, with the largest gender differences in countries with developing economies. Their results also indicate that the greater the societal gender equality in a country, the smaller the gender differences in drinking behavior.

19. Burki (2010) adds that patterns of alcohol consumption are also ‘bound up in issues of cultural identity’. A substantial literature refers to cultures from an international perspective – where drinking is seen to vary according to regions; e.g. the ‘Anglo-Saxon’ and ‘Latin’ cultures. Similarly, it is likely that separate identifiable cultures may exist within a country, especially given the existence of immigrant households. Whilst this may be the case, it is hard to empirically test this, due to problems defining culture and also confounding factors such as socioeconomic status.

Relationship between education and alcohol consumption

20. Attempts have been made in the literature to find associations between education and patterns of alcohol drinking. However, relationships between education and alcohol consumption are different across population groups and whether alcohol use or abuse is considered as outcomes. Some evidence suggests a positive association between education and the frequency of consumption but a negative link with heavy drinking (Bloomfield et al., 2005; Caldwell et al., 2008; Casswell et al., 2003).

21. Huerta and Borgonovi (2010) find a positive association between educational qualifications and alcohol abuse in England and highlighted strong gender differences. They find, for females, a strong positive link between educational attainment and frequency of alcohol consumption and life-time drinking problems, while no such association is found for males. Moreover, testing another education marker, they showed that academic performance in childhood is positively linked with alcohol abuse for both genders, but to a lower degree for males.
22. Helasajo et al. (2007) analyze a set of neighbouring countries: the Baltic countries (Latvia, Lithuania and Estonia) and Finland. They look into different aspects of alcohol consumption including heavy consumption and binge drinking. They find that education is negatively associated with alcohol abuse in men, but that it is positively associated with heavy, but not binge, drinking in women.

Relationship between socioeconomic status and alcohol consumption

23. Some studies highlight a relationship between alcohol consumption patterns and income level. Young people with higher income drink more often and this was persistent over time (Casswell et al., 2003). Some research finds that those with a less privileged socioeconomic background drink more (Kuntsche et al., 2004; Leigh, 1996; Mossakowski, 2008); other research has found the converse association (Grossman et al., 1995; Maggs et al., 2008; NHS, 2008; McKee et al., 2000). However, this relationship is complex as it might be influenced both by the level of income and by the relationship between the income levels and retail price.

Neighbourhood and living area effect

24. The area level may have an effect on the alcohol consumption. Scribner et al. (2000) using a multi-level model analyze the effect of alcohol retail outlet density, finding it affects problem drinking at the neighbourhood level rather than at the individual level. Other research finds that the divorce rate is both significant at an individual and an area level for frequency of alcohol consumption for the Czech Republic (Dzurova et al., 2010). Alcohol is consumed more often not only by divorced persons, but also by people living in municipalities with a higher divorce rate.

Social multiplier effect

25. Drinking behaviors spread throughout social networks. In this sense alcohol consumption is a contagious social behaviour. Rosenquist et al. (2010) find that not only are behaviours correlated amongst peer groups, but note that the spread of behaviours is dynamic – i.e. entering into a drinking peer group would increase the probability of the person starting to engage in drinking behaviours. Similar results have been found for other health factors – see for instance Christakis and Fowler (2007) who find similar results for obesity. Additionally, there is some evidence that the behaviour of relatives (husband/wife and siblings) is significantly associated with a person’s drinking behaviour (Rosenquist et al., 2010).

26. Cutler and Glaeser (2005) argue that situations encountered may determine health behaviours in conjunction with genetic pre-disposition. They advance a hypothesis that health behaviours result from a combination of ‘genetic pre-disposition’ and ‘situational influences’. The interaction between the two is crucial, since not everyone exposed to the same situation will, as a result, have the same set of health behaviours. They also find that only a fraction of behaviours are the same between twins. They therefore conclude that it is a combination of the two and express a desire for research as to what the ‘relevant situational influences are’.

27. To design appropriate policies, it is necessary to identify which groups of the population are the most affected by harmful drinking and how the problematic drinking spread. Such investigations help policy makers to target population groups and to turn the contagious effect positively to reduce harmful drinking.

1.2. Proposal for analyses

28. This section presents a proposal for the analyses to be undertaken across OECD countries. This proposal tries to answer to the following questions: What are the trends across the OECD area? Which are
the groups the most affected? Is there a role of the household aggregation in the spread of the consumption behaviour?

29. This study will broadly follow the analyses undertaken in the obesity project (Sassi et al., 2009a). It will focus on three main aspects: trends of the consumption over time, disparities among social groups, and spread among household members.

30. Our study will use cross-sectional data for different data points across a selection of OECD countries. It will utilize rich datasets from national health surveys, containing many covariates as well as having information on household structure (at least, for England, France and Korea). This enables associations to be investigated based on the theoretical literature, crucially shedding light on the role of household-level factors.

31. In addition, according to the literature, social disparities in drinking across countries may differ not only with the alcohol consumption variables examined, but also with the country studied. Bloomfield et al. (2006b) use survey results from 15 countries in order to study ‘social inequalities’ existing for four different types of alcohol consumption: drinking status, heavy drinking, heavy episodic (binge drinking) and alcohol-related problems. They note that the patterns observed in countries were not universal, but that patterns were observable within each country and some groups of countries. Thus, it is important in this OECD analysis to identify drinking variables which are comparable across countries and which allow a distinction between heavy and moderate drinking.

Methodology

32. The first step is to measure the age-standardised trends of alcohol consumption by gender across countries. In a second step, we will implement inequality analysis and multilevel models on the levels of individual and household, following a similar methodology that was applied to problems of obesity in Sassi et al. (2009a). Regression analyses will take into account the household structure when possible to account for the variance within households.

33. Even though there are differences in the questions asked, the answers available and the survey technique adopted both across countries and across years, we will concentrate our effort to construct the most comparable outcomes variables. A preliminary version of the possible three dependant variables for the analysis is described below.

The dependent variables

34. **Drinking status** might be constructed on a regular basis across countries. A binary outcome variables using responses of whether alcohol is consumed over the last 12 months or 4 weeks, seems feasible.

35. **Excessive drinking** can be based on the national guidelines. It is worth mentioning that in most national surveys, the questions are related to the number of ‘standard drink’ or ‘unit’ consumed. As shown in Table1, the ‘standard drink’ (or unit) varies significantly across countries from 8 grams of alcohol (=10mL) in the UK to 14 grams in the US (ICAP, 2009).
Table 1. Quantity of alcohol in a standard drink across countries

<table>
<thead>
<tr>
<th>Standard drink / unit size (in grams of ethanol)</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>9.9</td>
<td>Netherlands</td>
</tr>
<tr>
<td>10</td>
<td>Australia, France, Hungary, Ireland, New Zealand, Poland, Spain</td>
</tr>
<tr>
<td>11</td>
<td>Finland</td>
</tr>
<tr>
<td>12</td>
<td>Denmark, Italy, South Africa</td>
</tr>
<tr>
<td>13.6</td>
<td>Canada</td>
</tr>
<tr>
<td>14</td>
<td>Portugal, United States</td>
</tr>
</tbody>
</table>

Similarly, the recommendations vary widely across countries (see Annex 1). In the English literature, the limit is set at 21 units per week or more on average for men and 14 units or more per week for women. This is based on NHS ‘safe drinking levels’ guidelines that state “men should not regularly drink more than three to four units of alcohol a day” and “women … two to three units a day”, where “Regularly” means drinking this amount every day or most days of the week” (NHS Choices). This differs only slightly from the definition used in Bloomfield et al. (2006b) defined as “>20 g ethanol per day for women, >30 g a day for men” (British Medical Association, 1995) which are also the thresholds recommended in France (INPES, 2004; ICAP 2009; Anderson et al. 2008). In the US, the recommendation is 2 units per day for men and 1 unit per day for women (respectively, 28g and 14g of alcohol per day) while in Canada, it is 2 units per day (27.2 g) for both genders without exceeding 14 units/week for men and 9 units for women (see Table 3).

Binge drinking is defined as episodic excessive drinking. There is no international consensus on this definition. In the UK, it was defined according to the NHS definition: “For men, that's drinking more than eight units during one session. For women, it's more than six units” (NHS Choices). Other definitions of interest would be drinking within a certain time period (e.g. two hours) – or drinking with the intention of intoxication. Even though this variable is rarely available, it will be interesting to identify and understand this type of drinking behaviour as far as possible. In the US, binge drinking is defined as a consumption of 5 or more drinks for men, and 4 or more drinks for women, in about 2 hours (CDC, 2010). Canada uses the same thresholds (CAMH, 2008). Across European countries, it is often considered that episodic excessive drinking is 6 or more drinks per occasion (Anderson et al., 2005) (see Table2).
Table 2. Definition of the possible dependant variables in the 8 countries studied

<table>
<thead>
<tr>
<th>Country</th>
<th>Definition and Guidelines</th>
<th>Available in the survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Drinking status</td>
<td>Heavy drinking</td>
</tr>
<tr>
<td>Austria</td>
<td>yes / no</td>
<td>yes (# of drinks past day or last Friday or Saturday)</td>
</tr>
<tr>
<td>Canada</td>
<td>13.6g yes / no</td>
<td>Men: >2 drinks per day (27.2g) and up to 14/week Women: >2 drinks per day (27.2g) and up to 9/week</td>
</tr>
<tr>
<td>England</td>
<td>8g yes / no</td>
<td>Men: >21 drinks/week (>24g/day) Women: >14 drinks/week (>16g/day)</td>
</tr>
<tr>
<td>France</td>
<td>10g yes / no</td>
<td>Men: >3 drinks per day (30g) Women: >2 drinks per day (20g)</td>
</tr>
<tr>
<td>Korea</td>
<td>yes / no</td>
<td>yes(# of drinks a month)</td>
</tr>
<tr>
<td>Mexico</td>
<td>yes / no</td>
<td>Men: 5+ drinks per occasion Women: 5+ drinks per occasion</td>
</tr>
<tr>
<td>Spain</td>
<td>10g yes / no</td>
<td>Men: >3 drinks per day (30g) Women: >2 drinks per day (20g)</td>
</tr>
<tr>
<td>USA</td>
<td>14g yes / no</td>
<td>Men: >2 drinks per day (28g) Women: >1 drinks per day (14g)</td>
</tr>
</tbody>
</table>

Explanatory variables

38. Based on datasets that were used in the obesity project (Sassi et al., 2009a), the analysis will include the same explanatory variables that have already been harmonised across countries and over the years: age group, gender, ethnicity (where available), education level, socio-economic status (based on income or occupation), marital status, self-assessed health and occupation status.

1.3. Data availability and limitations

39. This section assesses the availability of alcohol consumption variables in the national health surveys which were used for the obesity analyses in eleven OECD countries. Data limitations are discussed.

Available data

40. A first attempt has been made to identify the surveys for which questions on alcohol are available among the health survey data we had collected in the frame of a previous project on obesity prevention (Sassi et al. 2009a). This project included national health surveys for 11 OECD countries. Recent national health surveys including relevant questions on alcohol have been identified for 8 countries: Austria, Canada, England, France, Korea, Mexico, Spain, and the US (see Table 3).
Datasets for England, France, and Korea are household-based surveys and will allow the multi-level analysis by household aggregation.

Table 3. Availability of the data from national health surveys

<table>
<thead>
<tr>
<th>Country</th>
<th>Survey name</th>
<th>Survey editions available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Health Interview Survey</td>
<td>2006/07</td>
</tr>
<tr>
<td>England</td>
<td>Health Survey for England</td>
<td>1991-2009 (all years)</td>
</tr>
<tr>
<td>Mexico</td>
<td>Mexican National Health and Nutrition Survey (Ensanut)</td>
<td>2006</td>
</tr>
<tr>
<td>Spain</td>
<td>Encuesta Europea de Salud</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>National Health Interview Survey</td>
<td>1980-2009 (all years)</td>
</tr>
</tbody>
</table>

Limitations

42. Using different national survey data for several years may be a source of data heterogeneity across countries and over time. However, all the variables will be constructed to get the highest level of comparability across countries.

43. One limitation of these survey-based data is that alcohol consumption is a self-reported measure which may be biased downward. Self-reported consumption of alcohol is generally underestimated in general population surveys (Stockwell et al., 2004). Reported drinking accounts for only 40 to 60% of alcohol sales (Midanik, 1982; WHO, 2011). This under-reporting bias is also verified in our dataset since for England (aged 16-75) we found an estimate of 6.0-6.6 litres of alcohol per capita per year. However, World Drink Trends found that the UK (aged 15+) drank on average, in the years 1992-1998, 7.4-8.2 litres\(^1\). In the framework of an inequality analysis this would not necessarily affect the interpretations of the results significantly, but there is some evidence that suggests that under-reporting may not be uniformly distributed across respondents. For instance, the under-reporting bias is higher among the heavy drinkers (Townshend & Dukat, 2002). In the instructions provided for interviewers implementing the Health Survey for England for instance, there was explicit mention of the increased likelihood of Muslims under-reporting consumption of alcohol. Hence this represents an issue of concern for this study. Another limitation of these survey data is a possible under-sampling bias since household based surveys may under-represent some groups of people who drink the most (Stockwell et al., 2004).

Other possible data sources

44. Another source of data that has been identified as a potential source is from the Nielsen Company that collects information across about 20 OECD countries on the consumption per week by type of alcohol over the last 2 years (Consumer Panel), and the volume sales over the same period (Retail Measurement

\(^1\) Some of this discrepancy may be due to higher levels of alcohol consumption in other UK countries.
Panel). However, this source of alcohol consumption only provides the amount of alcohol purchased which is only a proxy of our variable of interest. Moreover the socio-characteristics variables are very limited.

45. One additional possible source of data is the European Health Interview Survey. Its first wave has been carried out between 2006 and 2009 across 15 OECD European countries (Austria, Belgium, Czech Republic, Estonia, France, Germany, Greece, Hungary, Norway, Poland, Slovak Republic, Slovenia, Spain, Switzerland, and Turkey). Three questions about alcohol were asked: the frequency of alcohol consumption during the past 12 months, the number of drinks per day in the last week, and the number of heavy drinking occasions. However, this first wave will be available for researchers only by the end of 2011.

46. Finally is the European school Survey Project on Alcohol and other Drugs (ESPAD) which collects information on substance use among 15–16 year old student since 1995, every fourth year. In addition to a general population analysis, this dataset might be useful for a focus on children.

1.4. Preliminary findings

47. This section sums up the preliminary work which has been conducted so far focusing on the data from the Health Survey for England 1992-2007.

Analysis on England data

48. Preliminary analyses on data from the Health Survey for England 1992-2007 focused on the three drinking patterns described above (drinking status/excessive drinking/binge drinking) and especially on education-related inequalities in drinking.

49. There is some trend over time for increasing participation in drinking behaviours and the most pronounced trend is for binge drinking. These results for England are consistent with those of World Drink Trends (2005) and OECD Health at a Glance (2009).

50. The multivariate regression analysis identifies not only correlations between a range of demographic characteristics and drinking patterns, but also, strong associations between education and drinking patterns which may vary across demographic groups.

- Drinking behaviours have a quadratic association with age, and findings show consistently that age after a certain level has a significant negative effect on the probability of engaging in drinking behaviours.

- Concerning the relationship with self-assessed health, it is shown that the better the health status, the higher the likelihood of drinking.

- Living with children is always negatively associated with drinking behaviours. Being married is also estimated to be negatively associated with binge and excessive drinking, although a positive effect on drinking status is established.

- Socioeconomic status proxied by educational achievements has different effects upon different drinking behaviours. It is generally positively associated with drinking or drinking excessively, but negatively with binge drinking for some groups of the population. The association is not straight forward and varies across demographic groups (by gender and ethnicity). About the drinking status, the relationship is linear: the likelihood of drinking increases with education level in White and South Asian with a stronger magnitude in women. However, it is inverted U-shaped
among Black African, Black Caribbean and other ethnicity group. Concerning the excessive drinking behaviour, the relationship is significantly linear and stronger in women with higher probability of drinking excessively in higher educated women. On the other hand, the relationship with binge drinking follows an inverted-U pattern in women, and we observe a negative effect of ‘the highest educated’ in binge drinking amongst the White ethnic group. An exception is found for South Asians where having a higher education is significantly positively associated with binge drinking for both genders.

51. Finally, a quite large household effect is found among drinking behaviours. The magnitude of this effect is comparable, if not greater, than that observed in other health behaviours such as smoking, and fruit and vegetable consumption. Hence, this investigation suggests that any theory looking to explain alcohol-related health behaviours must account for the substantial correlation of behaviours within the household. More investigation is required to establish to what extent another person drinking in the house has upon an individual’s drinking behaviours and also the relative effect caused by genetic pre-disposition. However, the finding that the majority of variation occurs between households and not individuals, to a greater extent than with other health behaviours, may imply that the social multiplier effect is indeed substantial.

Section 2. Existing alcohol policy models and possible ways of assessing the effectiveness and efficiency of policies to tackle harmful alcohol use

2.1. Modelling the effects of policies to tackle harmful use of alcohol: review of existing approaches

52. This section will review the key features of existing models to assess the health and economic impacts of policies to tackle harmful use of alcohol, including an illustration of the application of such models in national settings.

53. We review here two main studies that have been identified in the literature: the model developed by the University of Sheffield (2008), and the study by Anderson, Chisholm and Fuhr (2009).

54. Researchers from the University of Sheffield examined the impact of various policies around pricing and promotion of alcohol on health (47 conditions analysed), crime, and employment, in England. This analysis is conducted for the population as a whole and also with a focus on (a) young people under 18 who drink alcohol, (b) 18-24 year old binge drinkers, (c) harmful drinkers whose patterns of drinking damage their physical / mental health or causes substantial harm to others.

55. This modelling aims to assess the potential effect on alcohol related harm of introducing changes to current policies as: (a) general price increases, including separate analyses for on- and off-trade and for low priced alcohol (on-trade refers to licensed premises, off-trade to supermarkets, off licenses etc), (b) minimum prices per unit of alcohol, (c) restrictions on the extent of discounted price-based promotion in the off-trade. This modelling based on simulations analysed 53 separate scenarios. In the study, 16 categories of alcohol were distinguished and 3 categories of drinkers were identified. Drinkers are classified according to their mean intake by week as moderate drinkers, hazardous drinkers or harmful drinkers.

56. The datasets used in this study are based on individual-level population surveys. On one hand, data on alcohol consumption are collected from the 2006 General Household Survey for people aged 16 and over, and from the Smoking Drinking and Drug Use Survey for the youngsters aged 11-15. On the other hand, the data on alcohol purchasing including price paid are collected from the latest 5 waves of the Expenditure and Food Survey. Information on volumes of purchasing and distribution of prices paid were collected for the 3 categories of drinkers. The elasticities of demand for alcohol (own-price and cross-price
elasticities for 16 beverage categories) were estimated on this dataset. To analyse the effect of restrictions to price-based promotion, data on alcohol sales and prices in the off-trade sector from Nielsen were used.

57. The main results of policy effects on alcohol consumption are the following: (a) General price increases to all products in the on- and off-trade at once tend to show relatively large reductions in mean consumption for the population, and large consumption reduction. Targeting only low priced products causes some switching behaviours. (b) Minimum prices targeted at particular beverages are less effective than all-product minimum prices. Differential minimum pricing for the on-trade and off-trade leads to more substantial reductions in consumption. (c) Restrictions on off-trade price promotions like “buy one get one free” have small impacts as these affect a small proportion of total sales. But tighter restrictions have increasing effects.

58. Overall, problems related to health, crime and employment, are estimated to reduce as prices are increased, and unemployment harm reduces proportionately more than health or crime harms.

59. As mentioned in the website of the University of Sheffield, findings from this report have been used by senior decision making bodies, including the Parliamentary Health Select Committee, Chief Medical Officer, WHO Alcohol Strategy group, to inform UK and international policy (accessed on 11 March 2011: http://www.shef.ac.uk/scharr/sections/ph/research/alpol).

60. Based on the results of the modelling developed by the researchers of Sheffield, The National Institute for Health and Clinical Excellence released a set of 12 recommendations to reduce alcohol-related harm on its website (accessed on 11 March 2011: http://guidance.nice.org.uk/PH24) (NICE, 2010). The guidance is based on strong evidence resulting in particular from this modelling work. The policy recommendations 1 to 3 underline how government policies on alcohol pricing, its availability and how it is marketed could be used to combat such harm. The recommendations for practice (recommendations 4 to 12) support, complement – and are reinforced by – these policy options. They include the use of screening and brief interventions (structured brief advice and extended brief interventions).

61. Anderson, Chisholm and Fuhr (2009) review evidence for the effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol. They examine a large set of policies in the WHO subregions. These policy options are grouped under nine policy target areas: (1) Education and information, (2) Health-sector response, (3) Community programmes, (4) Drink-driving policies and countermeasures, (5) Addressing the availability of alcohol, (6) Addressing the marketing of alcohol beverages, (7) Pricing policies, (8) Harm reduction, (9) Reducing the public health effects of illegally and informally produced alcohol. First, they assess the effectiveness of these strategies using systematic reviews and meta-analyses. Then, they evaluate the cost-effectiveness of policies (except for areas (8) and (9)) using the data from an earlier WHO analysis of the health costs and effects of measures for countering hazardous alcohol use in the WHO regions (Chisholm et al., 2004). Updates are included for the cost of the interventions implementation and for intervention health effects to reflect demographic changes. Results show that effective policies in reducing alcohol related harms are those regulating the environment in which alcohol is marketed (economic and physical availability and commercial communications), enforced legislative measures in reducing drive-drinking, and individually-directed interventions to drinkers already at risk. However, programmes related to information and education are not effective. Cost-effective strategies are those making alcohol more expensive and less available, and those banning advertising.

2.2. Inputs and outputs

62. Modelling a risk factor and its associated chronic diseases is a daunting task. The first step, once identified the risk factor (harmful use of alcohol in this case), is to pinpoint all the major chronic diseases
that show a clear link with the risk factor and discern any other physiological or behavioural risk factor that falls between the risk factor under scrutiny and chronic diseases. The first list of risk factors and diseases is, usually, too wide to be modelled and the following step consists in ranking risk factors and diseases by level of importance as, for instance, by burden of disease or mortality. Another fundamental issue to take into account is the availability of evidence about the relationship between the different factors. This provides the essential starting point to outline the causal web that will be embedded into the software through algorithms.

63. The second step is to find the input data to “mathematically” model the relationship between risk factors and between risk factors and diseases. Epidemiological data is required by gender (males and females), by class of age (age 0 to 100) and, in some cases, by socioeconomic status (upper and lower). A full explanation of the parameters needed to simulate a causal web can be found elsewhere (Sassi et al, 2009b). In general, both for risk factors and diseases the model need: prevalence, incidence of new cases and remission rates. The initial clustering of risk factors on a virtual individual is modelled through relative risks (e.g. how more likely is an individual with low physical activity level to be, at the beginning of the simulation, overweight or obese compared to a person with a sufficient level of activity), while the likelihood of developing a more proximal risk factors or developing/dying of a disease during the simulated life is modelled through relative rates (e.g. how more likely is an obese person to develop or die of stroke compared to a person with normal-weight). A final parameter to be inputted, only for diseases, is the fatality rate, that is the hazard of dying due to a disease for individuals who have that disease.

64. Interventions, particularly their effectiveness, are modelled on three dimensions: efficacy in changing behaviours and risk factors, coverage (i.e. share of the population covered by the intervention) and time to steady state. Data for the first two dimensions is usually retrieved from the literature by carrying out reviews of papers describing homogeneous interventions. Results are then summarized to produce consistent quantitative estimations that can be used to feed the model. The third dimension, time to steady state, is calculated as direct reflection of the age groups covered by the intervention. Further details on how the time to steady state is calculated can be found in box 2 of the background paper titled “Enhancing OECD’s health and health care modelling capabilities”.

65. Outcomes are produced in terms of effects on health and longevity; intervention costs and effects on health care costs; and cost-effectiveness. In particular, effectiveness is evaluated both as life years gained and as DALYs (Disability-Adjusted Life Years) that allow a quantification of the decrease of the morbidity of the diseases. Some intermediate outcomes can be quantified as well. For instance, in the case of the modelling work on obesity, the model was modified to produce figures on the decrease of the prevalence of obese people, and modification in the incidence of the three considered diseases (i.e. ischaemic heart disease, stroke and a set of the most common cancers).

2.3. Tackling harmful use of alcohol with the CDP model

66. The current version of the CDP model includes seven risk factors divided into three levels: distal, intermediate and proximal and three diseases (figure 2). As further dimension, the CDP model also includes socio-economic status that produces direct effects on the development of the diseases as well as on the distal risk factors that are usually used to represent behaviours. One of the main advantages of the CDP modelling software is that it allows a good degree of flexibility. So, for instance, if not needed, some of the risk factors or of the diseases may be simply switched off without interfering with the portions of the web that are still in use. On the other hand, changes in the structure of the causal web entail major modifications on the programming code.
67. Modelling the health effects of alcohol is completely different from any other risk factors. The reason of this statement can be easily understood by taking a look at the latest WHO estimates (WHO, 2011), presented in figure 3. First of all, most of the mortality and morbidity produced by alcohol comes from unintentional and intentional injuries, a sizeable portion of which is due to harm caused on other people other than on the person with the unhealthy behaviour. Second, neuropsychiatric disorders are alone responsible for almost 40% of the morbidity linked to alcohol but cause just 6% of its mortality. Finally, cardiovascular diseases, which are, by far, the top killers in OECD countries are only moderately affected by this risk factor. Conversely, a number of studies (Corrao, 2004) would suggest that a moderate intake of alcohol would have a protective effect on coronary heart diseases and on ischaemic stroke (albeit the effect on the latter is not statistically significant).
In addition to worsening health outcomes, harmful use of alcohol produces also negative social outcomes the most important of which include effects on: crime or public disorder; family and social network; and the labour market. For instance, a study carried out in England (Strategy Unit, 2004) suggested that alcohol misuse has an overall annual cost of 7.3 billion because of anti-social behaviours and 6.4 billion due to losses in productivity and profitability. Unfortunately, these dimensions cannot be fully assessed in the current version of the CDP model which is, mainly, an epidemiological model. As part of the enhancement of the CDP model we are considering a nested model on the labour market (see the relevant section in the background paper number 3) that would allow an economic appraisal of the effect on the workplace of prevention policies to tackle alcohol harmful consumption. However, even if the proposed enhancement was to be accepted, the “second-layer” model would be ready only in the future.
REFERENCES

Anderson P., D. Chisholm and DC. Fuhr (2009), Effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol Lancet; 373: 2234–46.

Bloomfield, K. et al. (2006b), Social inequalities in alcohol consumption and alcohol-related problems in the study countries of the EU concerted action ‘Gender, Culture and Alcohol Problems: a Multi-national Study’. Alcohol & Alcoholism 41, Supplement 1, pp i26–i36.

Caldwell TM. et al. (2008), Lifecourse socioeconomic predictors of midlife drinking patterns, problems and abstention: findings from the 1958 British Birth Cohort Study. Drugs and Alcohol Dependence 95: 269-78.
CAMH (2008), Centre for Addiction and Mental Health.

Rehm J. et al. (2009), Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. The Lancet. 373:223-33

ANNEXES
<table>
<thead>
<tr>
<th>Country</th>
<th>Source</th>
<th>Men</th>
<th>Women</th>
<th>Standard Drink</th>
<th>Other Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>National Health and Medical Research Council (NHMRC):</td>
<td>no more than 2 standard drinks on any day reduces the lifetime risk of harm; no more than 4 standard drinks on a single occasion reduces the risk of alcohol-related injury arising from that occasion</td>
<td>no more than 2 standard drinks on any day reduces the lifetime risk of harm; no more than 4 standard drinks on a single occasion reduces the risk of alcohol-related injury arising from that occasion</td>
<td>10g</td>
<td>For children and young people under 18 years of age, not drinking alcohol is the safest option. For women who are pregnant, planning to become pregnant, or breastfeeding, not drinking is the safest option. In some situations, not drinking is the safest option; this includes: when taking part in recreational or occupational activities that require a high level of attention, psychomotor skills, and concentration (e.g., driving, water activities, operating heavy machinery, etc.); when supervising others who are taking part in such activities; when supervising children. Specific population groups can be at increased risk if they drink alcohol; these include: young adults aged 18 to 25 years; older people aged over 60 years; people with family history of alcohol dependence; people who use drugs illicitly. A range of people may need to seek professional advice about drinking because of the possibility of interactions and harmful effects; they include: anyone taking medication; people with alcohol-related or other physical conditions that can be made worse or affected by alcohol; people with mental health conditions. See http://www.nhmrc.gov.au/publications/synopses/ds10syn.htm for the full text of the Australian Guidelines to Reduce Health Risks from Drinking Alcohol (2009).</td>
</tr>
<tr>
<td>Austria</td>
<td>Bundesministerium fur Arbeit, Gesundheit und Soziales (Federal Ministry for Labour, Health and Social Affairs): http://www.bmsg.gv.at/</td>
<td>24g pure ethanol per day</td>
<td>16g pure ethanol per day</td>
<td>10g</td>
<td>The "hazardous level" of drinking (posing unacceptable risk for health consequences) is defined as consuming 40g-60g alcohol or more.</td>
</tr>
<tr>
<td>Canada</td>
<td>Centre for Addiction & Mental Health</td>
<td>not to exceed 2 units per day (27.2g/day); not to exceed 14 units per week (190g/week)</td>
<td>not to exceed 2 units/day (27.2g/day); not to exceed 9 units per week (121.5g/week)</td>
<td>13.6g</td>
<td>Lowrisk Drinking Guidelines: http://www.camh.net/addiction/pims/pdfs/lowrisk_drinking.pdf Note: The drinking guidelines do not apply to pregnant women--don't drink if you are pregnant or planning to become pregnant. (Source: Centre for Addiction and Mental Health, CAMH) Moderate drinking means no more than 1 drink a day, and no more than 7 drinks a week. Having more than 4 drinks on one occasion, or more than 14 drinks a week, poses a risk to health and safety. If you are pregnant or breastfeeding, avoid alcohol.</td>
</tr>
<tr>
<td>Canada</td>
<td>Health Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>National Institute of Public Health http://www.szu.cz</td>
<td>less than 24g per day</td>
<td>less than 16g per day</td>
<td>N/A</td>
<td>The recommendations are for adults (aged over 18 years) who are healthy and not engaged in risky behaviors or taking medication.</td>
</tr>
<tr>
<td>Denmark</td>
<td>Sundhedsstyrelsen [National Board of Health (NBH)]: http://www.sst.dk/english/index.asp</td>
<td>not to exceed 21 alcohol units (252g) a week</td>
<td>not to exceed 14 (168g) units a week</td>
<td>12g</td>
<td>The National Board of Health recommends that children under the age of 15 years should not drink alcohol.</td>
</tr>
<tr>
<td>Finland</td>
<td>Oy Aiko AB (Aiko Inc.): http://www.alko.fi/</td>
<td>not to exceed 15 units/week (165g/week)</td>
<td>not to exceed 10 units/week (110g/week)</td>
<td>11g</td>
<td>« La santé vient en mangeant : le guide alimentaire pour tous », National Program for Health & Nutrition (PNNS) recommends: Those who drink should reduce their consumption; pregnant women should not drink; do not drink and drive.</td>
</tr>
<tr>
<td>France</td>
<td>Ministry of Health and Sports www.sante-sports.gouv.fr</td>
<td>not to exceed 30g/day</td>
<td>not to exceed 30g/day</td>
<td>10g</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Source</td>
<td>Men</td>
<td>Women</td>
<td>Standard Drink</td>
<td>Other Recommendations</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Germany</td>
<td>Bundeszentrale für gesundheitliche Aufklärung (BzGA, Federal Center</td>
<td>not to exceed 24g/day</td>
<td>not to exceed 12g/day</td>
<td></td>
<td>BzGA recommends at least two days of abstinence from alcohol a week. Drinking above the recommended levels is said to be risky for one's health.</td>
</tr>
<tr>
<td></td>
<td>for Health Education) [http://www.kenn-dein-limit.de/]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Department of Health & Social Security</td>
<td>not to exceed 3-4 units/day, not to exceed</td>
<td>not to exceed 2-3 units/day, not to exceed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 units/week</td>
<td>14 units/week</td>
<td>1 unit = glass/wine or pint/beer</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>Alcohol and Drug Abuse Prevention Council</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>Ministry of Health</td>
<td></td>
<td></td>
<td>N/A</td>
<td>Pregnant women are advised to abstain from alcohol during pregnancy and breastfeeding.</td>
</tr>
<tr>
<td>Ireland</td>
<td>Department of Health</td>
<td>21 units/week (210g/week)</td>
<td>14 units/week (140g/week)</td>
<td>10g</td>
<td>Recommended: Pregnant women should not drink; students should not drink more than one unit of alcohol per drinking session; avoid alcohol if taking medication.</td>
</tr>
<tr>
<td>Israel</td>
<td>Ministry of Education, Psycological & Counselling Services</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Ministry for Agriculture & Forestry and National Institute for Food &</td>
<td>less than 40g per day</td>
<td>less than 40g per day</td>
<td>12g</td>
<td>The Nutritional Guidelines (Linee guida per una sana alimentazione italiana) state: The acceptable daily quantity of alcohol is 0.6g per kilo of body weight. If only wine is consumed, the guidelines suggest drinking less or equal to 450ml (3 glasses) for men and less or equal to 350 ml (2 glasses) for women, to be divided between lunch and dinner. Consumers are recommended to avoid consumption during “evolutive age,” pregnancy, and breastfeeding; older adults are recommended to reduce their drinking; alcohol should be avoided before driving, when using dangerous machinery, or if undergoing drug therapy. [Legislation: Law Decree 28 Dec. 1998 converted in Law 26 Feb. 1999 n. 39 – Chapter “The aims of Health” pg. 17-18]</td>
</tr>
<tr>
<td></td>
<td>Nutrition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Ministry of Health, Labor & Welfare</td>
<td>1-2 units/day (19.75-39.5g/day)</td>
<td>19.75g</td>
<td></td>
<td>The health authorities promote moderate alcohol consumption (without specifying limits of daily or weekly amounts of pure alcohol that should not be exceeded) and urge consumers to refrain from drinking alcohol when driving.</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Ministry of Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Stichting Verantwoord Alcoholgebruik (STIVA) [www.stive.nl]</td>
<td>not to exceed 4 units/day (39.6g/day)</td>
<td>not to exceed 2 units/day (19.8g/day)</td>
<td>9.9g</td>
<td>STIVA recommends that consumers do not drink at least 2 days in a week and avoid alcohol when pregnant, driving, or operating machinery. Underage young people should avoid alcohol. Women with a low body weight are advised to drink less than the recommended daily limit.</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Alcohol Liquor Advisory Council (ALAC)</td>
<td>not to exceed 3 units/day (30g/day), not to</td>
<td>not to exceed 2 units/day (20g/day), not to</td>
<td></td>
<td>ALAC recommends that, on special drinking occasions, consumption should not exceed 6 units/day (60g/day) for men and 4 units/day (40g/day) for women. Consumers are reminded that alcohol-containing drinks are high in energy density and may contribute to weight gain. Some alcohol-free days are recommended each week. To reduce the risk of cancer, it is recommended to avoid alcohol. To reduce cardiovascular risk, it is suggested to drink only moderate amounts of alcohol. When serving drinks, servers are urged to ensure that non-alcoholic (and low-alcohol) drinks and food are available. Consumers are recommended to eat food when drinking alcohol and to restrict or avoid alcohol when driving, operating machinery, or engaging in water activities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exceed 21units/ week</td>
<td>exceed 14 units/week</td>
<td>10g</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Source</td>
<td>Men</td>
<td>Women</td>
<td>Standard Drink</td>
<td>Other Recommendations</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>New Zealand</td>
<td>The Ministry of Health</td>
<td>10g</td>
<td>10g</td>
<td></td>
<td>The Food and Nutrition Guidelines for Health Pregnant and Breastfeeding Women: A Background Paper advises women to avoid drinking alcohol during pregnancy and breastfeeding. [http://www.moh.govt.nz/moh.nsf/by+unid/F4F10903136588EFC225716200123030?Open]</td>
</tr>
<tr>
<td>Norway</td>
<td>Directorate for Health & Social Welfare</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Situational abstinence is recommended, such as when driving, during pregnancy, at work, or in the company of children and young people.</td>
</tr>
<tr>
<td>Norway</td>
<td>Alkokutt [http://www.alkokutt.no]</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Alkokutt suggests: Don't drink on an empty stomach; warn friends when they have had enough to drink; show respect to people who do not drink alcohol; remember that women can hold less alcohol than men; listen to experienced professionals; be on guard against social pressures to drink, even among friends; remember situations when no alcohol should be consumed; never drink alone; do not drink if you are underage.</td>
</tr>
<tr>
<td>Philippines</td>
<td>Department of Health</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>National Dietary Guidelines state: “For a healthy lifestyle and good nutrition, exercise regularly, do not smoke, and avoid drinking alcoholic beverages.”</td>
</tr>
<tr>
<td>Poland</td>
<td>State Agency for Prevention of Alcohol Related Problems</td>
<td>2 units/day (20g/day) up to 5 times/week (not to exceed 100g/week)</td>
<td>1 unit/day (10g/day) up to 5 times/week (not to exceed 50g/week)</td>
<td>10g</td>
<td>Two alcohol-free days a week are recommended.</td>
</tr>
<tr>
<td>Portugal</td>
<td>National Council on Food and Nutrition</td>
<td>2-3 units/day (28-42g/day)</td>
<td>1-2 units/day (14-28g/day)</td>
<td>14g (unofficial)</td>
<td>Based only on wine consumption.</td>
</tr>
<tr>
<td>Romania</td>
<td>Ministry of Health</td>
<td>not to exceed 32.5g beer/day or 20.7g wine/day</td>
<td>not to exceed 32.5g beer/day or 20.7g wine/day</td>
<td>N/A</td>
<td>Based only on wine consumption.</td>
</tr>
<tr>
<td>Singapore</td>
<td>Ministry of Health</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>National Dietary Guidelines state: “Limit alcohol intake to no more than 2 standard drinks a day” (about 30g alcohol).</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Institute of Public Health of Slovenia</td>
<td>not to exceed 20g/day and not to exceed 50g/drinking occasion</td>
<td>not to exceed 10g/day and not to exceed 30g/drinking occasion</td>
<td>N/A</td>
<td>Based only on wine consumption.</td>
</tr>
<tr>
<td>South Africa</td>
<td>South African National Council on Alcoholism & Drug Dependence</td>
<td>not to exceed 21 units/week (252g/week)</td>
<td>not to exceed 14 units/week (168g/week)</td>
<td>N/A</td>
<td>The government's position is outlined in a brochure titled Healthy Lifestyles (1995), which calls for drinking in moderation (“Limit yourself to no more than 2 to 3 drinks a day”).</td>
</tr>
<tr>
<td>Spain</td>
<td>Ministry of Health and Spanish Institute for the Investigation of Beverage Alcohol</td>
<td>not to exceed 3 units/day (30g/day)</td>
<td>not to exceed 3 units/day (30g/day)</td>
<td>10g</td>
<td>It is noted that wine is officially considered as an integral part of a Mediterranean diet.</td>
</tr>
<tr>
<td>Spain</td>
<td>Basque Country: Department of Health & Social Security</td>
<td>not to exceed 70g/day</td>
<td>not to exceed 70g/day</td>
<td>N/A</td>
<td>Based only on wine consumption.</td>
</tr>
<tr>
<td>Spain</td>
<td>Catalonia: Central Authority</td>
<td>not to exceed 4-5 units/day (32-50g/day)</td>
<td>not to exceed 4-5 units/day (3250g/day)</td>
<td>8-10g</td>
<td>Based only on wine consumption.</td>
</tr>
<tr>
<td>Sweden</td>
<td>Vetenskapsradet (Swedish Research Council) [http://www.vr.se/English/]</td>
<td>not to exceed 20g/day</td>
<td>not to exceed 20g/day</td>
<td>N/A</td>
<td>The government's position is outlined in a brochure titled Healthy Lifestyles (1995), which calls for drinking in moderation (“Limit yourself to no more than 2 to 3 drinks a day”).</td>
</tr>
<tr>
<td>Sweden</td>
<td>The Swedish National Institute of Public Health (SNiPH)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>It is recognised that moderate alcohol intake may have certain positive medical effects.</td>
</tr>
<tr>
<td>Country</td>
<td>Source</td>
<td>Men</td>
<td>Women</td>
<td>Standard Drink</td>
<td>Other Recommendations</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Swiss Federal Commission for Alcohol Problems and Institut Suisse de Prevention de l'Alcoolisme et Autre Toxicomanies (Swiss Institute for the Prevention of Alcohol & Drugs Problems)</td>
<td>not to exceed 2 units/day (not to exceed 24g/day)</td>
<td>not to exceed 2 units/day (not to exceed 24g/day)</td>
<td>10-12g</td>
<td>Consumers are recommended not to drink more than 4 units of alcohol in one session and not to consume more than 1 unit per hour; they are asked to avoid drinking alcohol when participating in sports or before driving/operating machinery. Underage young people are urged to avoid alcohol.</td>
</tr>
<tr>
<td>Thailand</td>
<td>Ministry of Public Health</td>
<td></td>
<td></td>
<td>N/A</td>
<td>National Dietary Guidelines state: "Avoid or reduce the consumption of alcoholic beverages."</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>Ministry of Health</td>
<td></td>
<td></td>
<td>N/A</td>
<td>No official drinking guidelines exist. Alcohol is available in hotels to guests and visitors. Expatriate residents must possess a liquor permit, available to non-Muslims. Retail outlets sell only to permit holders for personal consumption. Providing alcohol to others (beyond licensed retail outlets) is forbidden.</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Department of Health</td>
<td>should not regularly drink more than 3-4 units/day (24-32g/day)</td>
<td>should not regularly drink more than 2-3 units/day (16-24g/day)</td>
<td>8g</td>
<td>"Regularly" means drinking every day or most days of the week; a break of 48 hours after a heavy drinking session is recommended "to let your body recover." Consumers are reminded the following: "Don't mix alcohol with any kind of medication as it can reduce the effect of the medication and increase harmful side-effects; don't mix alcohol with recreational drugs; don't drink and drive or operate machinery; be careful if you have mental health problems such as depression, as alcohol can make these worse."</td>
</tr>
<tr>
<td>United States</td>
<td>Department of Agriculture and Department of Health & Human Services</td>
<td>1-2 units/day (14-28g/day), not to exceed 14 units/week (196g/week)</td>
<td>1 unit/day (14g/day), not to exceed 7 units/week (98g/week)</td>
<td>14g</td>
<td>Women who are pregnant or who are trying to become pregnant are advised to avoid drinking alcohol; if they do choose to drink, they "should not to drink more than 1-2 units of alcohol once or twice a week and should not get drunk."</td>
</tr>
<tr>
<td>United States</td>
<td>National Institute of Alcohol Abuse and Alcoholism (NIAAA)</td>
<td>not to exceed 4 units/day (56g/day), not to exceed 14 units/week (196g/week)</td>
<td>not to exceed 3 units/day (42g/day), not to exceed 7 units/week (98g/week)</td>
<td>14g</td>
<td>Nutrition and Your Health: Dietary Guidelines for Americans (5th ed.) recognizes that moderate drinking may lower the risk of coronary heart disease among men over 45 and women over 55 and that exceeding moderate consumption can raise the risk for accidents, high blood pressure, stroke, violence, suicide, birth defects, and certain cancers; a safe level of alcohol intake has not been established for women at any time during pregnancy; consumers are urged to avoid drinking before or when driving. It is recommended to consume alcohol with food to slow absorption.</td>
</tr>
<tr>
<td>United States</td>
<td>American Heart Association</td>
<td>not to exceed 2 units/day (28g/day)</td>
<td>not to exceed 1 unit/day (14g/day)</td>
<td>14g</td>
<td>Source: ICAP 20.</td>
</tr>
</tbody>
</table>

Source: ICAP 20.