OECD HEALTH WORKING PAPERS No. 3

OECD STUDY OF CROSS-NATIONAL DIFFERENCES IN THE TREATMENT, COSTS AND OUTCOMES OF ISCHAEMIC HEART DISEASE

ANNEX 2: CHARTS

Pierre Moise, Stéphane Jacobzone and the ARD-IHD Experts Group

JEL Classification: I10, I18, I19.
DIRECTORATE FOR EMPLOYMENT, LABOUR AND SOCIAL AFFAIRS

HEALTH WORKING PAPERS

This series is designed to make available to a wider readership health studies prepared for use within the OECD. Authorship is usually collective, but principal writers are named. The papers are generally available only in their original language – English or French – with a summary in the other.

Comment on the series is welcome, and should be sent to the Directorate for Employment, Labour and Social Affairs, 2, rue André-Pascal, 75775 PARIS CEDEX 16, France.

The opinions expressed and arguments employed here are the responsibility of the author(s) and do not necessarily reflect those of the OECD.

Applications for permission to reproduce or translate all or part of this material should be made to:

Head of Publications Service
OECD
2, rue André-Pascal
75775 Paris, CEDEX 16
France

Copyright OECD 2003
TABLE OF CONTENTS

Chart 32. Utilisation rates for cardiac catheterisation procedures ... 5
Chart 33a. Proportion of AMI patients receiving cardiac catheterisation during the initial admission 6
Chart 33b. Proportion of AMI patients receiving cardiac catheterisation during the initial admission 8
Chart 34. Proportion of AMI patients receiving catheterisation during the 90-day episode of care 10
Chart 35. Utilisation rates for PTCA procedures 12
Chart 36a. Proportion of AMI patients receiving PTCA during the initial admission 13
Chart 36b. Proportion of AMI patients receiving PTCA during the initial admission 15
Chart 37. Proportion of AMI patients receiving PTCA during the 90-day episode of care 17
Chart 38. Proportion of PTCA using an intracoronary stent ... 19
Chart 39a. Proportion of AMI patients receiving CABG during the initial admission 20
Chart 39b. Proportion of AMI patients receiving CABG during the initial admission 22
Chart 40. Proportion of AMI patients receiving CABG within 90 days of initial admission 24
Chart 41. Admission rates for angina 26
Chart 42. Proportion of angina patients receiving cardiac catheterisation during the initial admission ... 28
Chart 43. Proportion of angina patients receiving catheterisation during the 90-day episode of care ... 30
Chart 44. Proportion of angina patients receiving PTCA during the initial admission 31
Chart 45. Total number of admissions in Perth based on ICD-9 411, 413 and 411 combined with 413 .. 33
Chart 46. Proportion of angina patients undergoing PTCA during the 90 day episode of care 34
Chart 47. Utilisation rates for CABG procedures 35
Chart 48. Proportion of angina patients receiving CABG during the initial admission 36
Chart 49. Proportion of angina patients receiving CABG during the initial admission 38
Chart 50a. Inhospital case fatality rates .. 39
Chart 50b. Inhospital case fatality rates .. 41
Chart 51a. 30-day case fatality rates ... 43
Chart 51b. 30-day case fatality rates (TECH) .. 44
Chart 52a. 90-day case fatality rates ... 46
Chart 52b. 90-day case fatality rates (TECH) .. 47
Chart 53a. One year case fatality rates ... 49
See Table 20 for data sources and data characteristics ... 49
Chart 53b. One year case fatality rates (TECH) ... 50
Chart 54. Cumulative inhospital, 90-day and one year case fatality [Men] (TECH) 52
Chart 55. Distribution of case fatalities within one year from the initial AMI admission (TECH) 54
Chart 56. Readmissions for AMI one year following initial admission for AMI (TECH) 56
Chart 57. Average length of stay for AMI patients ... 58
Chart 58. Distribution of length of stay ... 59
Chart 59. Average length of stay by age and sex .. 60
Chart 60. Unit costs for selected acute care treatments .. 62
Chart 61. Unit costs per day for selected acute care treatments .. 63
Chart 62a. Utilisation rates for CABG and number of cardiac surgery units, per 100 000 inhabitants ... 64
Chart 62b. Utilisation rates for PTCA and no. of catheterisation facilities, per 100 000 inhabitants 64
Chart 63a. Utilisation rates for CABG and IHD mortality, per 100 000 inhabitants 65
Chart 63b. Utilisation rates for PTCA and IHD mortality, per 100 000 inhabitants 65
Chart 63c. Number of catheterisation laboratories and IHD mortality, per 100 000 inhabitants............. 66
Chart 63d. Number of cardiac surgery facilities and IHD mortality, per 100 000 inhabitants 66
Chart 64. Utilisation of CABG as a proportion of total revascularisation procedures.......................... 67
Chart 65. One-year case fatality rates and use of revascularisations for 90-day episode of care............. 68
Chart 66. One-year readmission rates and use of CABG for 90-day episode of care.............................. 69
Chart 32. Utilisation rates for cardiac catheterisation procedures
Number per 100,000 inhabitants aged 40 and over

Note: The population aged 40 and over was used as the denominator. Australia, Belgium, Germany, Greece, Italy, Japan, Norway, Spain and Sweden were able to provide rates using the 40 and over population as a denominator. For the countries that used the entire population as the denominator, we calculated the denominator as the ratio of the entire population multiplied by the ratio of the entire population to the population 40 and over.

The two charts use different scales for the number of catheterisations per 100,000 inhabitants.

Greece: only includes 17 out of a possible 24 hospitals.
Japan: estimated number of procedures performed during a one month period (eg. June 1997), since 1994.

Sources: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; OECD Health Data Base 2000 (Canada, Hungary, Switzerland and the United Kingdom); “Report on Survey of Medical Care Activities in Public Health Insurance”, Shakai Iryo Shinryou Kouibetu Chosa Houkoku (Japan); Mannebach 1998 (Germany).
Chart 33a. Proportion of AMI patients receiving cardiac catheterisation during the initial admission
As a percentage of AMI admissions (Figures using event-based data)
Chart 33a. (cont.)
As a percentage of AMI admissions (Figures using event-based data)

Note: In some countries the representativeness of the data may be limited to some hospitals and/or certain geographical areas.
Source: The data for Belgium, Norway and Switzerland were provided by the TECH Research Network. Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources.
Chart 33b. Proportion of AMI patients receiving cardiac catheterisation during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)
Chart 33b. (cont.) Proportion of AMI patients receiving cardiac catheterisation during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)

Source: The data for Australia (Perth), Canada (Ontario), Finland and the US were provided by the TECH Research Network; responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country report (Spain and UK).
See Table 20 for data sources and data characteristics.
Chart 34. Proportion of AMI patients receiving catheterisation during the 90-day episode of care
As a percentage of AMI admissions
Chart 34. (cont.) Proportion of AMI patients receiving cardiac catheterisation within 90 days of admission
As a percentage of AMI admissions

Source: The data for Australia (Perth), Canada (Ontario), Finland and the US were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Spain and UK).
See Table 20 for data sources and data characteristics.
Chart 35. Utilisation rates for PTCA procedures
Number per 100,000 inhabitants aged 40 and over

Note: The population aged 40 and over was used as the denominator. Belgium, Germany, Italy, Norway, Spain and Sweden were able to provide rates using the 40 and over population as a denominator. For the countries that used the entire population as the denominator, we calculated the denominator as the ratio of the entire population multiplied by the ratio of the entire population to the population 40 and over.

The two charts use different scales for the number of PTCA per 100,000 inhabitants.

Greece: After 1996 only includes 17 out of a possible 24 hospitals.

Japan: Estimated number of procedures performed during a one month period (eg., June 1997), since 1994.

Sources: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; OECD Health Data Base 2000 (Canada, Hungary, Switzerland and the United Kingdom); “Report on Survey of Medical Care Activities in Public Health Insurance”, Shakai Iryo Shinryou Kouibetu Chosa Houkoku (Japan); Mannebach 1998 (Germany).
Chart 36a. Proportion of AMI patients receiving PTCA during the initial admission
As a percentage of AMI admissions (Figures using event-based data)
Chart 36a. (cont.) Proportion of AMI patients receiving PTCA during the initial admission
As a percentage of AMI admissions (Figures using event-based data)

Note: In some countries the representativeness of the data may be limited to some hospitals and/or certain geographical areas.
Source: The data for Belgium, Norway and Switzerland were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
See Table 20 for data sources and data characteristics.
Chart 36b. Proportion of AMI patients receiving PTCA during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)
Chart 36b. (cont.) Proportion of AMI patients receiving PTCA during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)

Source: The data for Australia (Perth), Canada (Ontario), Finland, Sweden and the US were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Spain and UK).
See Table 20 for data sources and data characteristics.
Chart 37. Proportion of AMI patients receiving PTCA during the 90-day episode of care
As a percentage of AMI admissions
Chart 37. (cont.) Proportion of AMI patients receiving PTCA within 90 days of initial admission
As a percentage of AMI admissions

Source: The data for Australia (Perth), Canada (Ontario), Finland, Sweden and the US were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Spain and UK).
See Table 20 for data sources and data characteristics.
Chart 38. Proportion of PTCA using an intracoronary stent

Stenting as a percentage of PTCA procedures

As a percentage of all PTCA

Note: Based on aggregate data.
Sweden: Based on 6 hospitals.
Greece: After 1996 only includes 17 out of a possible 24 hospitals.
Ontario: Based on first-time PTCA. It is estimated that currently about 90% of first-time PTCA involve the use of stents.
Australia: Stents include ICD9CM 36.06 and 36.07. ICD10 codes were used beginning second half of 1998.

Sources: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; AIHW/NHF National Cardiac Surgery and Coronary Angioplasty Registers; AIHW National Hospital Morbidity Database (Australia); the Cardiac Care Network Registy database (Ontario); Finnish Heart Association (Finland); The First Nationwide Database for Cost Analysis of Percutaneous Transluminal Coronary Angioplasty, Dr. Masao Chino, Japanese Society of Interventional Cardiology (Japan); 2000 Heart and Stroke Statistical Update, American Heart Association (United States).
Chart 39a. Proportion of AMI patients receiving CABG during the initial admission
As a percentage of AMI admissions (Figures using event-based data)

AUSTRALIA – (Men)

AUSTRALIA – (Men)

BELGIUM – (Men)

BELGIUM – (Women)

ITALY – (Men)

ITALY – (Women)

JAPAN – (Men)

JAPAN – (Women)
Chart 39a. (cont.) Proportion of AMI patients receiving CABG during the initial admission
As a percentage of AMI admissions (Figures using event-based data)

Note: In some countries the representativeness of the data may be limited to some hospitals and/or certain geographical areas.

Source: The data for Belgium and Norway were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 39b. Proportion of AMI patients receiving CABG during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)
Chart 39b. (cont.) Proportion of AMI patients receiving CABG during the initial admission
As a percentage of AMI admissions (Figures using patient-based data)

Source: The data for Australia (Perth), Canada (Ontario), Finland, Sweden and the US were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Spain and UK).
See Table 20 for data sources and data characteristics.
Chart 40. Proportion of AMI patients receiving CABG within 90 days of initial admission
As a percentage of AMI admissions

AUSTRALIA (Perth) -- (Men)

AUSTRALIA (Perth) -- (Women)

CANADA (Ontario) -- (Men)

CANADA (Ontario) -- (Women)

FINLAND -- (Men)

FINLAND -- (Women)

SPAIN (Cataluña and País Vasco) -- (Men)

SPAIN (Cataluña and País Vasco) -- (Women)
Chart 40. (cont.) Proportion of AMI patients receiving CABG within 90 days of initial admission
As a percentage of AMI admissions

Source: The data for Australia (Perth), Canada (Ontario), Finland, Sweden and the US were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country report (Spain and UK).

See Table 20 for data sources and data characteristics.
Chart 41. Admission rates for angina
Admissions per 100,000 population aged 40 and over
Chart 41. (cont.) Admission rates for angina
Admissions per 100,000 population aged 40 and over

Note: Only for Canada (Ontario) were figures based on patient-based admissions data. For Canada, non-fatal separations with a length of stay less than 3 days were not accounted for. Data for Japan are based on admissions for September; data were multiplied by 12 to obtain an estimate of yearly figures.

Source: AIHW National Hospital Morbidity Database (Australia); Patient Surveys, Ministry of Health and Welfare (Japan); Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Canada, including Ontario, Italy).

See Table 20 for data sources and data characteristics.
Chart 42. Proportion of angina patients receiving cardiac catheterisation during the initial admission
As a proportion of angina admissions (Figures using event-based data)

AUSTRALIA -- (Men)

AUSTRALIA -- (Women)

ITALY -- Men

ITALY -- Women

JAPAN -- Men

JAPAN -- Women

Note: Data for Japan are based on admissions to tertiary care teaching hospitals as part of the VHJ project.

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 42. (cont.) Proportion of angina patients receiving catheterisation during the initial admission
As a proportion of angina admissions (Figures using patient-based data)
Chart 43. Proportion of angina patients receiving catheterisation during the 90-day episode of care
As a proportion of angina admissions (Figures using patient-based data)

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
Chart 44. Proportion of angina patients receiving PTCA during the initial admission
As a proportion of angina admissions (Figures using event-based data)

Note: Data for Japan are based on admissions to tertiary care teaching hospitals as part of the VHJ project.

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 44. (cont.) Proportion of angina patients receiving PTCA during the initial admission
As a proportion of angina admissions (Figures using patient-based data)

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 45. Total number of admissions in Perth based on ICD-9 411, 413 and 411 combined with 413.

Note: The straight lines on each graph represent linear trendlines based on data points from 1989 to 1994.
Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
See Table 20 for data sources and data characteristics.
Chart 46. Proportion of angina patients undergoing PTCA during the 90 day episode of care. As a proportion of angina admissions (Figures using patient-based data)

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 47. Utilisation rates for CABG procedures
Number per 100,000 inhabitants aged 40 and over

Note: Data for the United States are not presented here since their much larger values would distort the chart display. The levels are: 409 (1990), 416 (1991), 469 (1992), 475 (1993), 481 (1994), 538 (1995), 548 (1996), 541 (1997). The population aged 40 and over was used as the denominator. Belgium, Canada, Germany, Finland, Italy, Norway, Spain and Sweden were able to provide rates using the 40 and over population as a denominator. For the countries that used the entire population as the denominator, we calculated the denominator as the ratio of the entire population multiplied by the ratio of the entire population to the population 40 and over.

Source: OECD Health Database 2000 (Hungary, Switzerland, the United Kingdom and the United States); Responses to OECD questionnaire “Core set of Indicators for ischaemic heart disease”.

35
Chart 48. Proportion of angina patients receiving CABG during the initial admission.
As a proportion of angina admissions (Figures using event-based data)

Note: Data for Japan are based on admissions to tertiary care teaching hospitals as part of the VHJ project.

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics.
Chart 48. (cont.) Proportion of angina patients receiving CABG during the initial admission
As a proportion of angina admissions (Figures using patient-based data)
Chart 49. Proportion of angina patients receiving CABG during the 90-day episode of care
As a proportion of angina admissions

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
Chart 50a. Inhospital case fatality rates
As a percentage of AMI admissions (Figures using event-based data)
Chart 50a. Inhospital case fatality rates (cont.)
As a percentage of AMI admissions (Figures using event-based data)

Source: The data for Belgium and the UK were provided by the TECH Research Network; Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; see Table 20 for data sources and data characteristics.
Chart 50b. Inhospital case fatality rates
As a percentage of AMI admissions (Figures using patient-based data)
Chart 50b. (cont.) Inhospital case fatality rates
As a percentage of AMI admissions (Figures using patient-based data)

Note: Admissions with a main diagnosis of AMI (ICD-10 I21-I22) for Switzerland.
Source: The data for Canada (Ontario), Denmark, Finland, Sweden and the US were provided by the TECH Research Network; Swiss Hospital Statistics, canton of Vaud, 1998 (Switzerland); otherwise responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
See Table 20 for data sources and data characteristics.
Chart 51a. 30-day case fatality rates
As a percentage of AMI admissions

AUSTRALIA (Perth) -- (Men)

AUSTRALIA (Perth) -- (Women)

UNITED KINGDOM (Oxford) -- (Men)

UNITED KINGDOM (Oxford) -- (Women)

ITALY -- (For people aged 40 to 64)

Note: 28-day event for Italy.

Source: MONICA - Friuli Area (Italy); responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.

See Table 20 for data sources and data characteristics.
Chart 51b. 30-day case fatality rates (TECH)
As a percentage of AMI admissions
Chart 51b. (cont.) 30-day case fatality rates (TECH)
As a percentage of AMI admissions

Source: See Table 20 for data sources and data characteristics.
Chart 52a. 90-day case fatality rates
As a percentage of AMI admissions

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; MONICA - Friuli Area (Italy).
See Table 20 for data sources and data characteristics.
Chart 52b. 90-day case fatality rates (TECH)
As a percentage of AMI admissions
Chart 52b. (cont.) 90-day case fatality rates (TECH)
As a percentage of AMI admissions

Source: See Table 20 for data sources and data characteristics.
Chart 53a. One year case fatality rates
As a percentage of AMI admissions

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports; MONICA - Friuli Area (Italy).

See Table 20 for data sources and data characteristics.
Chart 53b. One year case fatality rates (TECH)
As a percentage of AMI admissions
Chart 53b. (cont.) One year case fatality rates (TECH)
As a percentage of AMI admissions

Source: See Table 20 for data sources and data characteristics.
Chart 54. Cumulative inhospital, 90-day and one year case fatality [Men] (TECH)
As a percentage of AMI admissions (Men)
Chart 54. (cont.) Cumulative inhospital, 90-day and one year case fatality [Women] (TECH)
As a percentage of AMI admissions (Women)

Source: See Table 20 for data sources and data characteristics.
Chart 55. Distribution of case fatalities within one year from the initial AMI admission (TECH)

Inhospital, 30-day, 90-day and one year case fatality

Males and females aged 40 to 64 (1995)

For people aged 65 to 69 (1995)

For people aged 70 to 74 (1995)
Chart 55. (cont.) Distribution of case fatalities within one year from the initial AMI admission (TECH)

For people aged 75 to 79 (1995)

Source: See Table 20 for data sources and data characteristics.
Chart 56. Readmissions for AMI one year following initial admission for AMI (TECH)
As a percentage of AMI admissions

AUSTRALIA (Perth) -- (Men)

AUSTRALIA (Perth) -- (Women)

CANADA (Ontario) -- (Men)

CANADA (Ontario) -- (Women)

DENMARK -- (Men)

DENMARK -- (Women)
Chart 56. (cont.) Readmissions for AMI one year following initial admission for AMI (TECH)
As a percentage of AMI admissions

Source: See Table 20 for data sources and data characteristics.
Chart 57. Average length of stay for AMI patients

Note: Data for Japan are available from 1996 onwards. They are not presented here since their much larger values would distort the chart. Those levels are: 32.7 (1996), 35.7 (1997), 33.7 (1998), 32.3 (1999). Data for Australia are for the fiscal years 1993-94 to 1998-99.

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports (Belgium, Canada, including Ontario, Finland, Greece, Italy, Norway). OECD Health Data base 2000 (Denmark, Germany, Hungary, Spain, Switzerland and the United Kingdom).
Chart 58. Distribution of length of stay

<table>
<thead>
<tr>
<th>Country</th>
<th>Average Length of Stay (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Und King. (Oxford)</td>
<td>5</td>
</tr>
<tr>
<td>Australia (Ontario)</td>
<td>10</td>
</tr>
<tr>
<td>Canada (Ontario)</td>
<td>15</td>
</tr>
<tr>
<td>Switzerland</td>
<td>30</td>
</tr>
<tr>
<td>Italy</td>
<td>35</td>
</tr>
<tr>
<td>Japan</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Australia - same day admissions are included if patient died in hospital. Japan - the figures are based on admissions to a set of tertiary care teaching hospitals (VHI project). Switzerland - the figures are based on admissions in the canton of Vaud, 1998; transfers from another hospital, non-acute hospital patients and day cases excluded.

Source: Responses to OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports. See Table 20 for data sources and data characteristics. Chart 59 (Average length of stay by age and sex).
Chart 59. Average length of stay by age and sex

59a. AUSTRALIA (Men)
Number of days

59b. AUSTRALIA (Women)
Number of days

59c. CANADA (Ontario) (Men)
Number of days

59d. CANADA (Ontario) (Women)
Number of days

59e. DENMARK (Men)
Number of days

59f. DENMARK (Women)
Number of days
Chart 59. (cont.) Average length of stay by age and sex

Note: Australia - excludes admissions with length of stay less than 2 days, except if patient died in hospital or patient was transferred to another hospital and subsequently not transferred to another hospital.

Source: The data for Canada (Ontario), Denmark, Finland and the US were provided by the TECH Research Network; data for the other countries were taken from responses to the OECD questionnaire “Core set of indicators for ischaemic heart disease” and ARD country reports.
See Table 20 for data sources and data characteristics.
Chart 60. Unit costs for selected acute care treatments
Average expenditure per selected treatment bundle as a percentage of GDP/capita

Note: Denmark and Finland use NORD-DRGs. The two graphs for complicated AMI, with PTCA and without PTCA, both use the same DRG (DRG 121 - complicated AMI with no PTCA), therefore the unit cost for complicated AMI with PTCA is underestimated for both Denmark and Finland. Also, DRG 107 (CABG without catheterisation) was used for Denmark and Finland. The corresponding figures for DRG 106 (CABG with catheterisation) are 71.6% for Denmark and 73.7% for Finland.

Unit cost is calculated as average expenditure per selected treatment bundle as a percentage of gdp per capita for the year which data on average expenditure were available (1991 - US; 1993 - UK; 1996 - Canada; 1997 - Denmark; 1998 - Belgium, Italy; 1998-99 - Australia; 1999 - Finland, Greece, Japan).

Source: See Table 23 for the characteristics of the data sources.
Chart 61. Unit costs per day for selected acute care treatments
(Average expenditure per selected treatment bundle as a percentage of GDP/capita) divided by ALOS

Note: See Chart 60. Average length of stay was not available for Finland nor for the US for elective PTCA.
Source: See Table 23 for the characteristics of the data sources.
Chart 62a. Utilisation rates for CABG and number of cardiac surgery units, per 100 000 inhabitants

Note: the trendline does not take the USA into account

Note: Canada, Denmark, Sweden (1995); United States (1996); Italy (1997); Australia (1998). For Ontario, Finland, Greece and Norway: CABG (1998), cardiac surgery units (2000). Refer to Chart 4 for additional notes.

Source: For number of CABG per 100,000 population see Chart 47. For number of cardiac surgery units per 100,000 population see Chart 4.

Chart 62b. Utilisation rates for PTCA and no. of catheterisation facilities, per 100 000 inhabitants

Note: Canada, Ontario, Denmark, Sweden (1995); Germany, United States (1996); Greece (1999). For Australia, Finland and Norway: PTCA (1998), catheterisation laboratories (2000). The figures for facilities includes all facilities able to do cardiac catheterisation due to the difficulty of separating these facilities from those additionally equipped to do PTCA. Refer to Chart 3 for additional notes.

Source: For number of PTCA per 100,000 population see Chart 35. For number of cardiac catheterisation laboratories per 100,000 population see Chart 3.
Chart 63a. Utilisation rates for CABG and IHD mortality, per 100 000 inhabitants

Note: Belgium, Norway (1994); Australia, Spain (1995); Denmark, Finland, Sweden (1996); Canada, Germany, Greece, United Kingdom, United States (1997). For Italy: mortality (1995) and CABG (1996). Data standardised to the European population aged 40 and over.

Sources: For number of CABG per 100,000 population see Chart 47. For IHD mortality - OECD Health Database (2000).

Chart 63b. Utilisation rates for PTCA and IHD mortality, per 100 000 inhabitants

Note: Belgium (1994); Australia, Spain (1995); Denmark, Finland, Sweden (1996); Canada, Germany, Greece, United Kingdom, United States (1997). For Italy: mortality (1995) and PTCA (1996); for Norway: mortality (1995) and PTCA (1998). Data standardised to the European population aged 40 and over.

Sources: For number of PTCA per 100,000 population see Chart 35. For IHD mortality - OECD Health Database (2000).
Chart 63c. Number of catheterisation laboratories and IHD mortality, per 100 000 inhabitants

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Cath. Laboratories per 100 000 population</th>
<th>Standardised Number of Deaths due to IHD per 100 000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0.6</td>
<td>185</td>
</tr>
<tr>
<td>DEU</td>
<td>0.5</td>
<td>165</td>
</tr>
<tr>
<td>DNK</td>
<td>0.4</td>
<td>145</td>
</tr>
<tr>
<td>FIN</td>
<td>0.3</td>
<td>125</td>
</tr>
<tr>
<td>CAN</td>
<td>0.2</td>
<td>105</td>
</tr>
<tr>
<td>AUS SWE</td>
<td>0.1</td>
<td>85</td>
</tr>
</tbody>
</table>

Sources: For number of catheterisation laboratories see Chart 3. For IHD mortality - OECD Health Database (2000).

Chart 63d. Number of cardiac surgery facilities and IHD mortality, per 100 000 inhabitants

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Cardiac Units per 100 000 population</th>
<th>Standardised Number of Deaths due to IHD per 100 000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0.4</td>
<td>200</td>
</tr>
<tr>
<td>JPN</td>
<td>0.3</td>
<td>150</td>
</tr>
<tr>
<td>DEU</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>SWE</td>
<td>0.1</td>
<td>50</td>
</tr>
<tr>
<td>AUS</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>GRC</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>NOR</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Sources: For number of cardiac surgery facilities see Chart 4. For IHD mortality - OECD Health Database (2000).
Chart 64. Utilisation of CABG as a proportion of total revascularisation procedures

Note: Numerator (CABG per 100,000 inhabitants). Denominator (CABG+PTCA per 100,000 inhabitants).
Sources: For number of CABG per 100,000 population see Chart 47. For number of PTCA per 100,000 population see Chart 35.
Chart 65. One-year case fatality rates and use of revascularisations for 90-day episode of care

Note: Australia-Perth (1990-95); Canada-Ontario (1992-96); Finland (1990-97); United States (1990 - 1995).
Source: One-year case fatality - Perth (Chart 53a); Ontario, Sweden and United States (Chart 53b - TECH); CABG - See Chart 40 (data provided by TECH), PTCA - See Chart 37 (data provided by TECH).
Chart 66. One-year readmission rates and use of CABG for 90-day episode of care

Note: Australia-Perth (1990-95); Canada-Ontario (1992-97); Finland (1990-97); Sweden (1990-97); United States (1990-96).
Source: One-year readmission - See Table 21 - TECH. CABG - See Chart 40 (data provided by TECH).
OTHER SERIES OF WORKING PAPERS AVAILABLE FROM THE OECD INCLUDES:

LABOUR MARKET AND SOCIAL POLICY OCCASIONAL PAPERS

This series has now been replaced by two separate series: OECD HEALTH WORKING PAPERS and OECD SOCIAL, EMPLOYMENT AND MIGRATION WORKING PAPERS, available on the OECD website.

No. 62 THE RELATIONSHIP BETWEEN PERSONAL, FAMILY, RESOURCE AND WORK FACTORS AND MATERNAL EMPLOYMENT IN AUSTRALIA (2002) Edith Gray and Peter McDonald

No. 61 LOW FERTILITY AND LABOUR FORCE PARTICIPATION OF ITALIAN WOMEN: EVIDENCE AND INTERPRETATIONS (2002) Daniela Del Boca

No. 60 GETTING OLDER, GETTING POORER, A STUDY OF THE EARNINGS, PENSIONS, ASSETS AND LIVING ARRANGEMENTS OF OLDER PEOPLE IN NINE COUNTRIES (2002) Bernard Casey and Atsuhiro Yamada

No. 58 SOCIAL ASSISTANCE IN GERMANY (2003) Willem Adema, Donald Gray and Sigrun Kahl

No. 57 IMPROVING THE PERFORMANCE OF HEALTH CARE SYSTEMS: FROM MEASURES TO ACTION (2001) Zynep Or

No. 56 AN ASSESSMENT OF THE PERFORMANCE OF THE JAPANESE HEALTH CARE SYSTEM (2001) Hyoung-Sun Jeong and Jeremy Hurst

No. 55 PUBLIC SUPPORT FOR RETIREMENT INCOME REFORM (2001) Peter Hicks

No. 53 TOWARDS MORE CHOICE IN SOCIAL PROTECTION? INDIVIDUAL CHOICE OF INSURER IN BASIC MANDATORY HEALTH INSURANCE IN SWITZERLAND (2001) Francesca Colombo

Recent available working papers can be found on the OECD website: www.oecd.org.
RECENT RELATED OECD PUBLICATIONS:

SOCIETY AT A GLANCE (2002)

MEASURING UP: IMPROVING HEALTH SYSTEMS PERFORMANCE IN OECD COUNTRIES (2002)

KNOWLEDGE AND SKILLS FOR LIFE: First Results from PISA 2000 (2001)

HEALTH AT A GLANCE (2001)

SOCIETY AT A GLANCE: OECD Social Indicators (2001)

INNOVATIONS IN LABOUR MARKET POLICIES: The Australian Way (2001)

OECD EMPLOYMENT OUTLOOK July 2002 (published annually)

LABOUR MARKET POLICIES AND THE PUBLIC EMPLOYMENT SERVICE (Prague Conference) (2001)

OECD HEALTH DATA (2002)

available in English, French, Spanish and German on CD-ROM (Windows 95, 98, 2000, NT or Me)

REFORMS FOR AN AGEING SOCIETY (2000)

PUSHING AHEAD WITH REFORM IN KOREA: Labour Market And Social Safety-Net Policies (2000)

A SYSTEM OF HEALTH ACCOUNTS (2000)

LABOUR MIGRATION AND THE RECENT FINANCIAL CRISIS IN ASIA:

Third edition - Available in English and French on CD-ROM

THE BATTLE AGAINST EXCLUSION - Volume 3
Social Assistance in Canada and Switzerland (1999)

THE BATTLE AGAINST EXCLUSION - Volume 2
Social Assistance in Belgium, the Czech Republic, the Netherlands and Norway (1998)

THE BATTLE AGAINST EXCLUSION
Social Assistance in Australia, Finland, Sweden and the United Kingdom (1998)

For a full list, consult the OECD On-Line Bookstore at www.oecd.org, or write for a free written catalogue to the following address:

OECD Publications Service
2, rue André-Pascal, 75775 PARIS CEDEX 16
or to the OECD Distributor in your country