Scenarii for endogenous liquidity crises

Antoine Fosset, Jean-Philippe Bouchaud & Michael Benzaquen
Ecole polytechnique & Capital Fund Management

NAEC-ECOLE POLYTECHNIQUE WORKSHOP
The Policy Implications of Econophysics
21 January 2020
An example of liquidity crisis: the flash crash

Figure: Price of the SPMini future contract during the flash crash, 6th of May 2010
The study of Joulin et al.1 shows that anomalous price movements ($> 4\sigma$) on the scale of one minute:

- Only 5\% are news related (i.e. exogenous).
- 95\% are not news related (i.e. endogenous).

Necessity to have a feedback in the price formation mechanism in order to take into account the endogeneity!

Example of feedback in a physical system

Figure: Flock of birds: collective behaviour emerging from a zero-intelligence feedback.
Definition of the limit order book

Continuous double auction markets - the limit order book

Bid (buy orders)
- Limit orders (rate λ^f_t)
- Market orders (rate λ^m_t)

Mid-price p_t

Ask (sell orders)
- Cancellations (rate λ^c_t)

Volume

Spread S_t

Price p/share

Liquidity: Number of orders in the order book.
Rate: Number of orders per unit time.
Limit order: Buy or sell the item at its specified price.
Market order: Buy or sell the item immediately, at the current best price.
Figure: Example of a real order book.
Necessity to put some feedback of past price on the price formation process. Possible mechanism of feedback:

\[\lambda_t^c \propto \lambda_0^c + \alpha_K \left(\int_0^t \sqrt{2t} e^{-\beta(t-s)} dp_s \right)^2 \]

Feedback on past price changes on cancelations:
We would like to motivate this choice of feedback by looking at the data.

We aim to fit the following rate of events:

$$\lambda_t \propto \text{base rate} + \text{past trend contribution} + \text{square past trend contribution}$$ \hspace{1cm} (1)

Take home message

The **past square trend** diminishes the **future liquidity** equally at the bid and at the ask. This effect is mainly in the **cancelations**.

The **past trend** has a slight effect on the bid-ask imbalance (*i.e.* difference of liquidity between the bid and ask).
Numerical simulations

- **N** size of the system *i.e.* the number of available price levels.
- **T** time of simulation.
- **α_K feedback intensity:**
 \[
 \lambda_t^c \propto \alpha_0^c + \alpha_K \left(\int_0^t \sqrt{2\beta} e^{-\beta(t-s)} dp_s \right)^2.
 \]
- **$1/\beta$:** time scale of the feedback.

Video of an order book

We measure the time τ_c of first liquidity crisis: first time when one side of the order book empties.
Figure: Snapshots of the order book. The left figure is taken at the beginning of the simulation and the right figure is taken during a period of high volatility. We can see that the liquidity almost dries out.
Figure: Stability map: Crisis probability $\mathbb{P}[\tau_c \leq T]$ for $T = 200$, $N = 280$, $\lambda_0^\ell = 10$, $\lambda_0^G = 1$ and $\lambda_0^m = 20$. The blue region corresponds to a stable order book, whereas the red region corresponds to liquidity crises.

Numerical simulations show that we have an exact phase transition. For an infinite order book ($N = T = +\infty$), if $\alpha_K < \alpha^*$ there is no crisis and if $\alpha_K > \alpha^*$ there are crises. α^* is the critical point.
To make this scenario consistent, we have two possibilities:

- Real financial markets would have to sit below, but very close to the critical point and his critical point is attractive (see Self-Organized Criticality).

- The feedback parameters α_K is time dependent and occasionally visit the unstable phase.
Key ingredient: **spread opening events trigger more spread opening events.**

Model definition:

- Number of spread opening events before t: S_t^+
- Rate of spread closing event: λ_0^-
- Rate of spread opening event: $\lambda_t^+ = \lambda_0^+ + \epsilon X_t^2 = \text{base rate} + \text{feedback}$
- Number of spread opening events on time scale $1/\beta$: $X_t := \int_0^t \beta e^{-\beta(t-s)} dS_s^+$.

Let's call τ_c the time of liquidity crisis.

- If $\epsilon > 0$ there is always a liquidity crises.
- If $\epsilon > 0$ is small enough, before the liquidity crisis the spread seems stable: it is **metastable**.
- $\log \mathbb{E}[\tau_c] \approx \frac{1}{\beta \epsilon} \log \frac{1}{\epsilon \lambda_0^+}$ for $\epsilon > 0$ small enough.
Key ingredient: spread opening events trigger more spread opening events.

Model definition:

- Number of spread opening events before t: S_t^+
- Rate of spread closing event: λ_0^-
- Rate of spread opening event: $\lambda_t^+ = \lambda_0^+ + \epsilon X_t^2 = \text{base rate} + \text{feedback}$
- Number of spread opening events on time scale $1/\beta$: $X_t := \int_0^t \beta e^{-\beta(t-s)} dS_s^+$.

Let's call τ_c the time of liquidity crisis.

- If $\epsilon > 0$ there is always a liquidity crisis.
- If $\epsilon > 0$ is small enough, before the liquidity crisis the spread seems stable: it is metastable.

$$\log \mathbb{E}[\tau_c] \approx \frac{1}{\beta \epsilon} \log \frac{1}{\epsilon \lambda_0^+} \text{ for } \epsilon > 0 \text{ small enough.}$$
Figure: Set of parameters: $\lambda_0^+ = 1$, $\lambda_0^- = 0.5$ and $\epsilon = 0.2$. (a) Survival function (sf) of the time of metastability which is found to be exponential. (b) Evolution of the average metastability time with ϵ. The dotted red curve is the continuous time prediction. The plain red curve is obtained by multiplying the term in the exponential by a empirical factor 2.5. (c) Typical metastable trajectory.
Physical interpretation of metastability: the "particule" tries to minimize V. When it is trapped in X_{eq}, it needs a fluctuation large enough to cross the barrier $V(X^*) - V(X_{eq})$ and go beyond X^*.
Conclusions
On empirical data, the past square trend diminishes the future liquidity.
Two scenarii of liquidity crises: one from a phase transition, the other from a metastable description.

Outline
We could also design an empirical test that could help discriminating between the second order phase transition and activation scenarii.
We also would design a complete protocol to estimate the price feedback and use it to predict liquidity crises.

Thank you!