ECONOMIC MODELLING & MACHINE LEARNING

A PROOF OF CONCEPT

NICOLAS WOLOSZKO, OECD

NAEC – APRIL 16 2019
Economic forecasting with Adaptive Trees

I. Motivation

II. Method

III. Results

IV. Perspectives
I. Motivation

Linear models are constrained where economic complexity is concerned

• Non-linearities
• Structural change

Machine learning can provide relevant tools to tackle these challenges

• Modelling without a model: no prior knowledge is required
• Algorithms designed to capture complex patterns in the data
• Use of cross-validation to prevent over-fitting
II. ADAPTIVE TREES: A METHOD FOR ECONOMIC FORECASTING

1. Regression trees
2. Gradient Boosted Trees
3. Adaptive Boosting
1. Regression trees

At each node, the algorithm selects the splitting variable + splitting point that minimises sub-group variance of GDP growth.
2. Gradient Boosted Trees

- Simple regression trees lack robustness, hence the resort to ensemble methods.

- **Gradient Boosted Trees** (Freidman, 2002):

 \[F_m(x) = F_{m-1}(x) + \nu h_m(x) \]

 \(h_m(x) \): regression tree trained on the residual from \(F_{m-1}(x) \)

- Gives more and more weight to observations harder to predict
2. Gradient Boosted Trees

XGBoost trained on US data, GDP growth shifted by 6 months

Gradient Boosted Trees end up giving more weight to observations harder to predict (larger residuals)
3. Adaptive Trees

Adaptive Trees = Gradient Boosting + increasing \textit{ex ante} observation weights

\textbf{Ex ante observation weights:}

\begin{equation}
 w(t) = e^{-\gamma \left(\frac{t}{N} - 1 \right)}
\end{equation}

\textbf{Ex post observation weights:}
III. RESULTS

FORECAST OF GDP GROWTH
Simulations in **pseudo-real time** of a forecast of GDP growth in G6 countries

- Using the **exact same data** as benchmark OECD Indicator Model (housing prices, industrial production, PMI...) so as to provide a **methodological benchmark**
Comparison with OECD Indicator Model

1. USA, M+3
Accuracy: + 5 %

2. UK, M+6
Accuracy: + 22 %
Perspectives

• The method could be extended to broader sets of variables, as it can be applied in high dimension.

• That may include financial indicators or big data.

• Machine learning also has promising applications in inference and causal analysis. Existing methods address non-lineararities and causal heterogeneity.
THANK YOU
ADDITIONAL MATERIAL
Problem: interpretability

- Modelling complexity requires more complex models
- **Trade off simplicity/accuracy:**
 - Too much simplicity: fail to *capture important variations*
 - Too much complexity: fail to *produce a sensible story*
Interpretability

We can easily decompose in variable’s contribution

\[\hat{Y} = 0.9\% + \sum \text{Feature Contributions} \]
Variable contributions, Italy M+3
Variable selection

• For each variable:
 – What relevant lag: M-1, M-2, M-12, M-24?
 – In level? In growth rate?

• Data-driven variable selection:
 – Based on variable importance
 – Variable importance: a variable is all the more important that it is _high in the tree_, close to the root
 – Accounts for multiple interactions (can keep a variable that is loosely correlated with the GDP but that provides relevant interactions. Ex: price of gold)
In a regression with 10 variables, should we want to test all possible multiple interactions: \(10^{10}\) possibilities

With tree-based approaches, we explore all possible interactions with 120 variables

Amount of prior knowledge:
- Linear econometrics: we know the form of the relationship
- Bayesian econometrics: we know the relationship can take any of the known forms
- Machine learning: we know nothing