Confidence Collapse in Macroeconomic Systems

M Benzaquen (with JP Bouchaud, F Morelli & M Tarzia)
CNRS, Ecole polytechnique, Capital Fund Management

Integrative Economics - NAEC OECD
5-6 March 2020
2 families of models
2 families of models

- **Dynamic Stochastic General Equilibrium (DSGE)**

Rational expectations
Representative agents
Many analytical results

DSGE

Well defined equilibrium
Small exogenous fluctuations
Widely accepted & used by CBs
2 families of models

- Dynamic Stochastic General Equilibrium (DSGE)
- Agent Based Models (ABM)

DSGE
- Rational expectations
- Representative agents
- Well defined equilibrium
- Small exogenous fluctuations
- Widely accepted & used by CBs

ABM
- Zero-intelligence
- Large heterogeneous populations
- Numerical simulations
- Out of equilibrium dynamics
- Endogenous dynamics/chocs
- Not taken seriously
In spite of their poor performance during the Global Financial Crisis (GFC), DSGE models still constitute the workhorse of monetary policy around the world.
In spite of their poor performance during the Global Financial Crisis (GFC), DSGE models still constitute the workhorse of monetary policy around the world.
The DSGE Framework

- **Household**: Max Utility with a budget constraint
- **Firm**: Max Profits
- **Central Bank**: Sets interest rates according to inflation
- **Chocs on productivity**
The DSGE Framework

Household

Max Utility with a budget constraint

Household

Firm

Max Profits

Central Bank

Sets interest rates according to inflation

Central Bank

Chocs on productivity

...interacting to determine

- consumption
- production
- working hours
- wages
- inflation
- interest rates
The DSGE Framework

- **Household**
 - Max Utility with a budget constraint

- **Firm**
 - Max Profits
 - Chocs on productivity

- **Central Bank**
 - Sets interest rates according to inflation

- **Central Bank**
 - Sets interest rates according to inflation

- **Consumption**
- **Production**
- **Working hours**
- **Wages**
- **Inflation**
- **Interest rates**

...interacting to determine

with the assumption that Markets will clear (consumption = production)
The DSGE Framework

- Household (Max Utility with a budget constraint)
- Firm (Max Profits)
- Central Bank (Sets interest rates according to inflation)

Chocs on productivity

- PH: (quite realistic but analytically solvable)
- CH: (exogenous fluctuations around a well defined equilibrium)

...interacting to determine

- consumption
- production
- working hours
- wages
- inflation
- interest rates

with the assumption that Markets will clear (consumption = production)

\[C_t \]
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of view (physical, behavioural, economical etc.)
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

• In one time step, simultaneously...

 The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear!
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

• In one time step, simultaneously...

physically impossible (no causality) → The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear!
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

• In one time step, simultaneously...

physically impossible (no causality) → The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear! ← wrong (unsold items, stock etc.)
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

• In one time step, simultaneously...

 The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear! \[\text{physically impossible} \quad \text{(no causality)} \quad \begin{align*} &\quad \quad \text{wrong (unsold items, stock etc.)} \end{align*} \]

• Fully rational representative agents (perfect optimisers)
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

- In one time step, simultaneously:
 - Physically impossible (no causality)
 - The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household’s strategy, given that the market must clear!
 - Wrong (unsold items, stock etc.)
 - Fully rational representative agents (perfect optimisers)
 - Not supported by behavioural studies (and common sense)
The DSGE Framework

So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

• In one time step, simultaneously...

physically impossible (no causality) → The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear! ← wrong (unsold items, stock etc.)

• Fully rational representative agents (perfect optimisers) ← not supported by behavioural studies (and common sense)

• Equal time optimisation, no real dynamics!
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

- In one time step, simultaneously...

 The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear! ← wrong (unsold items, stock etc.)

 physically impossible → (no causality)

- Fully rational representative agents (perfect optimisers) ← not supported by behavioural studies (and common sense)

- Equal time optimisation, no real dynamics! ← the only “dynamics” comes from the correlated noise (no feedback)

Shocks on productivity
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

- In one time step, simultaneously...
 - The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household’s strategy, given that the market must clear! \(\text{wrong (unsold items, stock etc.)}\)

- Fully rational representative agents (perfect optimisers) \(\text{not supported by behavioural studies (and common sense)}\)

- Equal time optimisation, no real dynamics! \(\text{the only “dynamics” comes from the correlated noise (no feedback)}\)

- Linearised equations (only small exogenous fluctuation around a well defined equilibrium)
So many things are wrong, DSGE is mathematically sound, but quite absurd from all other points of vue (physical, behavioural, economical etc.)

- In one time step, simultaneously...
 - The household maximises its utility, knowing the firm’s strategy, the firm maximises its profits (decides wage...), knowing the household's strategy, given that the market must clear! → wrong (unsold items, stock etc.)

 - Fully rational representative agents (perfect optimisers) ← not supported by behavioural studies (and common sense)

 - Equal time optimisation, no real dynamics! ← the only “dynamics” comes from the correlated noise (no feedback)

 - Linearised equations (only small exogenous fluctuation around a well defined equilibrium)
 - you are throwing the baby out with the bath water (no crises by construction)...

 "physically impossible (no causality)"
DSGE models are (...) over-simplified, they have to become less imperialistic and accept to share the scene with other approaches to modelisation.

O. Blanchard
Can we do anything?
Can we do anything?

Usually when so many things are wrong you just throw it all away and start over...
Can we do anything?

Usually when so many things are wrong you just throw it all away and start over...

...but we decided to hire a brave PhD student instead.

F Morelli
Can we do anything?

Usually when so many things are wrong you just throw it all away and start over...

...but we decided to hire a brave PhD student instead.

Where to start?

F Morelli
Can we do anything?

Usually when so many things are wrong you just throw it all away and start over...

...but we decided to hire a brave PhD student instead.

Where to start?

→ Multi-household DSGE with feedback of past aggregate consumption on the sentiment of individual households.

Can we do anything?

Usually when so many things are wrong you just throw it all away and start over…

…but we decided to hire a brave PhD student instead.

Where to start?

→ Multi-household DSGE with feedback of past aggregate consumption on the sentiment of individual households.

Can we do anything?

Usually when so many things are wrong you just throw it all away and start over...
...but we decided to hire a brave PhD student instead.

Where to start?

→ Multi-household DSGE with feedback of past aggregate consumption on the sentiment of individual households.

Utility of Household i

$U_t^i = \log(c_t^i) - \frac{\gamma}{2}(n_t^i)^2$

Can we do anything?

Utility of Household i

$$U_t^i = \log(c_t^i) - \frac{\gamma}{2} (n_t^i)^2$$

Utility of Household i

$$U_t^i = F\left(\sum_{j \neq i} J_{ij} c_{t-1}^j\right) \log(c_t^i) - \frac{\gamma}{2} (n_t^i)^2$$

Can we do anything?

Utility of Household i

$U_t^i = F \left(\sum_{j \neq i} J_{ij} c_{t-1}^j \right) \log(c_t^i) - \frac{\gamma}{2} (n_t^i)^2$

increasing function

consumption

labour

influence of the past consumption of j on the confidence level of i

Utility of Household

\[U_t^i = F\left(\sum_{j \neq i} J_{ij} c_t^{i,j} \right) \log(c_t^i) - \frac{\gamma}{2} (n_t^i)^2 \]

- Increasing function
- Consumption
- Labour
- Influence of the past consumption of j on the confidence level of i
Can we do anything?

Utility of Household

The sentiment of households at time t is a function of the past realised consumption of others, “animal spirits”.

If household i sees that other households have reduced their consumption, it interprets it as a sign that the economy may be degrading, which reduces its consumption propensity (and increases its precautionary savings).
Can we do anything?

The sentiment of households at time t is a function of the past realised consumption of others, "animal spirits". If household i sees that other households have reduced their consumption, it interprets it as a sign that the economy may be degrading, which reduces its consumption propensity (and increases its precautionary savings).

Utility of Household

$$U_t^i = F\left(\sum_{j \neq i} J_{ij} c_{t-1}^j\right) \log(c_i^t) - \frac{\gamma}{2} (n_i^t)^2$$

Mean field approximation: $J_{ij} = \frac{J}{N}$

The sentiment of households at time t is a function of the past realised consumption of others, “animal spirits”.

If household i sees that other households have reduced their consumption, it interprets it as a sign that the economy may be degrading, which reduces its consumption propensity (and increases its precautionary savings).
Can we do anything?

The sentiment of households at time t is a function of the past realised consumption of others, "animal spirits".

If household i sees that other households have reduced their consumption, it interprets it as a sign that the economy may be degrading, which reduces its consumption propensity (and increases its precautionary savings).

Utility of Household

$$U_t^i = F\left(\sum_{j \neq i} J_{ij} c_{t-1}^j\right) \log(c_t^i) - \frac{\gamma}{2} (n_t^i)^2$$

- Increasing function of the past consumption of j on the confidence level of i
- Consumption
- Labour

Mean field approximation:

$$J_{ij} = \frac{J}{N}$$

Only the aggregate consumption matters, we neglect local network effects: $c_t^i = c_t \ \forall i$
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[c_t = e^{\xi_t} G(c_{t-1}) \]
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[c_t = e^{\xi_t} G(c_{t-1}) \]
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} \mathcal{N}(0, \sigma^2) \]

\[c_t = e^{\xi_t} G(c_{t-1}) \]

productivity fluctuations (technology shocks)
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

$$c_{t+1} = e^{\xi_t} G(c_{t-1})$$

productivity fluctuations (technology shocks) \[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} N(0, \sigma^2) \]
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[c_t = e^{\xi_t} G(c_{t-1}) \]

productivity fluctuations (technology shocks)

\[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} \mathcal{N}(0, \sigma^2) \]

minimum level of goods that households will ever consume with average productivity ($\xi_t = 0$)
Can we do anything?

A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} N(0, \sigma^2) \]

\[c_t = e^{\xi_t G(c_{t-1})} \]

- **Consumption**
- **Productivity fluctuations (technology shocks)**
- **Maximum level of goods (…)**
- **Minimum level of goods that households will ever consume with average productivity ($\xi_t = 0$)**
A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

$$c_t = e^{\xi_t} G(c_{t-1})$$

productivity fluctuations (technology shocks)
$$\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} \mathcal{N}(0, \sigma^2)$$

minimum level of goods that households will ever consume with average productivity ($\xi_t = 0$)

maximum level of goods (...)

confidence threshold (the concavity of G changes, $c > c_0$ tends to favour a high confidence state and $c < c_0$ a low confidence state.)
Can we do anything?

A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[c_t = e^{\xi_t} G(c_{t-1}) \]

productivity fluctuations (technology shocks)

\[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} \mathcal{N}(0, \sigma^2) \]

minimum level of goods that households will ever consume with average productivity \((\xi_t = 0) \)

maximum level of goods (…)

confidence state.

minimum level of goods that households will ever consume with average productivity \((\xi_t = 0) \)

confidence threshold (the concavity of \(G \) changes, \(c > c_0 \)
tends to favour a high confidence state and \(c < c_0 \) a low confidence state.

Can we do anything?
Can we do anything?

A little bit of math, and you are left with a nice discrete time evolution equation for the consumption level:

\[c_t = e^{\xi_t} G(c_{t-1}) \]

productivity fluctuations (technology shocks)

\[\xi_{t+1} = \eta \xi_t + \sqrt{1 - \eta^2} N(0, \sigma^2) \]

minimum level of goods that households will ever consume with average productivity \(\xi_t = 0 \)

maximum level of goods (…)

minimum level of goods that households will ever consume with average productivity \(\xi_t = 0 \)

confidence threshold (the concavity of \(G \) changes, \(c > c_0 \) tends to favour a high confidence state and \(c < c_0 \) a low confidence state.)
Phase diagram

\[\theta \]

\[G(x) \]

\[c_{\text{max}} \]

\[c_{\text{min}} \]

\[c_0 \]

\[x \]

High output with short-lived recessions

Long-lived booms & recessions

Low output with short-lived spikes

High Output, No Crises

Confidence threshold \(c_0 \)

A

B+

B−

C

Phase diagram
Phase diagram

\[t = c \cdot G(c_t) \]

- High Output, No Crises
- Short-lived recessions
- Long-lived booms & recessions
DSGE phenomenology

The feedback mechanism leads to excess volatility

High Output, No Crises
Short-lived recessions
Long-lived booms & recessions
A relatively mild drop of productivity can trigger large fluctuations of output (amplified by the self-referential “panic” effect).

High Output, No Crises | Short-lived recessions | Long-lived booms & recessions

DSGE phenomenology
The feedback mechanism leads to excess volatility
A relatively mild drop of productivity can trigger large fluctuations of output (amplified by the self-referential "panic" effect).

Two stable solutions. Any, however small, amount of productivity fluctuations can induce transitions.

The economy can remain for a very long time in a high output state, until a self-fulfilling panic mechanism throws it in a crisis state where output is low.
Although quite parsimonious, the model is rich enough to generate a variety of realistic dynamical behaviour, including short-lived downturns and more prolonged recessions.

The 2008 GFC could correspond to a confidence collapse modelled by a sudden $c_\rightarrow c_\leftarrow$ transition.

[Phase diagram image]
The time needed for such transitions to take place is however exponentially long

\[T \sim e^{W/\sigma^2} \]

activation barrier
The time needed for such transitions to take place is however exponentially long

\[T \sim e^{W/\sigma^2} \]

activation barrier

similar to Kramer's problem
The time needed for such transitions to take place is however exponentially long

\[T \sim e^{W/\sigma^2} \]

activation barrier

similar to Kramer’s problem

Clearly, any small uncertainty about the parameters of the model (i.e. \(c_0, c_{\min}, c_{\max}, \theta \)) or for that matter the precise specification of the function \(G(c) \), or any other feature neglected in the model, will affect the precise value of \(W \).

The crisis probability is exponentially sensitive to the estimation error of the parameters of the model.
Unknown knowns
Precisely as the famous butterfly effect (the exponential sensitivity on initial conditions) forbids any deterministic description of chaotic systems, the exponential dependence of the crisis rate means that this rate is, for all practical purposes, unknowable.
Precisely as the famous butterfly effect (the exponential sensitivity on initial conditions) forbids any deterministic description of chaotic systems, the exponential dependence of the crisis rate means that this rate is, for all practical purposes, unknowable.

→ “Unknown knowns” What may happen is known, but its probability is impossible to quantify.

De facto impossibility to price extreme risks
The model is usually closed by assuming a Taylor rule for the interest rate:

$$ r_t = \Phi \pi_t - \log \beta $$

fixes the amplitude of the response of the Central Bank to inflation.
The model is usually closed by assuming a Taylor rule for the interest rate:

\[r_t = \Phi \pi_t - \log \beta \]

One can show that anticipation of possible crises (\(c_0 \uparrow \)) decreases inflation.
The model is usually closed by assuming a Taylor rule for the interest rate:

$$r_t = \Phi \pi_t - \log \beta$$

This fixes the amplitude of the response of the Central Bank to inflation.

One can show that anticipation of possible crises (\(c_0 \uparrow\)) decreases inflation.

Another important aspect of our model is that it suggests alternative, behavioural tools for monetary policy, in particular in crisis time.
The model is usually closed by assuming a Taylor rule for the interest rate:

\[r_t = \Phi \pi_t - \log \beta \]

fixes the amplitude of the response of the Central Bank to inflation

One can show that anticipation of possible crises (c₀ ↗) decreases inflation.

Another important aspect of our model is that it suggests alternative, behavioural tools for monetary policy, in particular in crisis time.

Beyond adjusting interest rates and money supply, policy makers can use \textit{Narratives} to restore trust.

“What people say about the economy can set off a recession”

Robert J. Shiller, Sept. 12, 2019
Trust is parameterised in our model by the threshold c_0.
Trust is parameterised in our model by the threshold c_0.

If the economy lies in the neighbourhood of the C/B+ phase boundary, a mild decrease of c_0, engineered by the Central Bank, can help putting back the system on an even keel.
Trust is parameterised in our model by the threshold c_0.

If the economy lies in the neighbourhood of the C/B+ phase boundary, a mild decrease of c_0, engineered by the Central Bank, can help putting back the system on an even keel.
Trust is parameterised in our model by the threshold c_0.

If the economy lies in the neighbourhood of the C/B+ phase boundary, a mild decrease of c_0, engineered by the Central Bank, can help putting back the system on an even keel.
Trust is parameterised in our model by the threshold c_0.

If the economy lies in the neighbourhood of the C/B+ phase boundary, a mild decrease of c_0, engineered by the Central Bank, can help putting back the system on an even keel.
Trust is parameterised in our model by the threshold c_0.

If the economy lies in the neighbourhood of the C/B+ phase boundary, a mild decrease of c_0, engineered by the Central Bank, can help putting back the system on an even keel.
“The only thing we have to fear is fear itself”

Franklin Roosevelt, inaugural 1933 address