Problem: How do we deal with crisis risk? With market dislocations?

Risk Management Version 1.0: Historical Data

“How often have we seen this?” → Value at Risk (VaR) Models

Risk Management Version 2.0: Static Scenarios

“What if this happens?” → Stress Tests

Risk Management Version 3.0: Dynamic Interaction

“And then, what happens next?” → Agent-based Models
Agent-based Models: The Traffic Engineer’s Problem

Agents
Cars and Drivers

Environment
Roadway and other (visible) agents

Heuristics
Speeders, lane-changers

Dynamic
The agents act, the environment changes

Running the ABM
• Draw agents from a distribution of heuristics
• Pepper the roadway with the agents
• Result after many runs: A distribution of traffic flows.
Components of an Agent-based Model

Agents
- Employ heuristics
- Act with some degree of independence or autonomy

Environment
- Each agent observes its environment
- Acts according to its heuristic

Interaction
- Agents’ actions change the environment
- Each agent sees its new environment, and takes action again

It boils down to:
- Dynamics of interactions
- Driven by the heterogeneous agents in their environment
- With interactions that alter the environment (Reflexivity)
Why Agent-based Models?

We interact with one another: **Computational Irreducibility**

We interact with our environment: **Emergence**

We change from our experiences: **Non-ergodicity**

We create and change our world: **Radical Uncertainty**
The Four Horsemen of the Econopolypse

Computational Irreducibility

Emergence

Non-ergodicity

Radical Uncertainty
Agent-based Models versus Standard Economics

<table>
<thead>
<tr>
<th>Component</th>
<th>Agent-based Models</th>
<th>Standard Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Irreducibility</td>
<td>Open (Simulations)</td>
<td>Closed (Solvable; deductive)</td>
</tr>
<tr>
<td>Emergence</td>
<td>Heterogeneous Agents</td>
<td>Representative Agent; Regularity</td>
</tr>
<tr>
<td>Non-ergodicity</td>
<td>Interactive and changing world</td>
<td>Atomistic and Equilibrium World</td>
</tr>
<tr>
<td>Radical Uncertainty</td>
<td>Heuristics</td>
<td>Optimization</td>
</tr>
</tbody>
</table>
If there is a fire, how many will make it out?

- Egress
- Flammability
- Crowding

People do not walk out in a single file
If there is a fire, how many will make it out?

- Egress
- Flammability
- Crowding

Egress ↔ Liquidity
Flammability ↔ Leverage
Crowding ↔ Concentration
Crisis Dynamics: Leverage, Liquidity, Concentration

The Crisis Dynamic

Asset Shock or Funding Shock
→ Forced sales *due to leverage*
→ Price effects *due to concentration*
→ Further declines *due to illiquidity*

⇒ Cascades and Contagion
Propagation and Crisis Dynamics Stage 1
Propagation and Crisis Dynamics Stage 2

STAGE 2

Diagram showing interactions between various entities labeled A1, A2, A3, HF1, HF2, BD1, BD2, and CP.
Propagation and Crisis Dynamics Stage 3

STAGE 3

Diagram showing interactions between different elements labeled A1, A2, A3, HF1, HF2, BD1, BD2, and CP.
The Agents in Real Life

Diagram overview of financial market agents and their relationships, focusing on asset and liability flows, financing, trading, derivatives, and treasury functions.
The Agent-based Model in Operation

Language
• Go – highly scalable and excellent at multithreading (thus parallel) processing.
• Javascript – for presentation, including D3.

Server
• Amazon Web Services (AWS) for our cloud infrastructure
• Master-worker architecture of Docker containers to parallelize simulations

Storage
• Results stored as static web sites on AWS’s S3 storage solution

Operation
• Begin with Var/Covar of Risk 1.0
• Calibrate the Risk 3.0 model using a genetic algorithm
• Specify leverage / liquidity characteristics to generate a heat map
• Take any Risk 2.0 set of shocks and regenerate our heat map.
Heat Map for Usual Case

We are here
Risk within the Heat Map for Usual Case

Each square shows distribution of assets and thus of a portfolio over time.

• Not symmetric.
• Movement into the tails is not smooth.
• Risk doesn’t resolve at a constant rate.
Not a totally different world.

Baseline

Value Reversal

Asset Shocks
Risk within the Heat Map for Stress Scenario

Cascades and contagion evident here.
Develop a scenario

Crowd-source to get the data

- Leverage
- Positions
- Funding liquidity
- Market maker capacity and market impact

Integrate into the investment process

- Build a narrative
- Build an improvable, consistent structure
- Test critical assumptions and variable
- Amass data in same way as for the investment decision process