Drivers of Innovation in Energy and Fuel Cell Technology: Supply-Demand and R&D

Madeline Woodruff IEA and
Yukiko Fukasaku OECD
Overview

● Drivers of energy technology innovation
 – Sustained increase in demand
 – Diversification of sources of fossil fuel supply due to growing security and economic concerns
 – Fuel switching and development of new fuels due to efficiency and environmental concerns
 – De-regulation and increasing competition

● Increasing importance of R&D and technological innovation

● How the energy innovation system works

● Focus on fuel cells
Part I
Supply, Demand, and Investment Trends
Role of Fuel Cells in the Energy System
International Energy Agency

- Established in 1974 in response to the oil price shocks within the framework of the OECD
- 26 member countries, plus the European Union
- Basic aims:
 - maintain and improve energy security
 - promote rational energy policies in a global context
 - improve the world's energy supply and demand structure by developing alternative energy sources and increasing efficiency
 - assist in the integration of energy and environmental policies

http://www.iea.org
Today’s Energy Challenges

- Energy security to fuel economic growth and mobility and curbing environmental and climate damage from energy use
 - “business as usual” energy demand is rising inexorably
 - greenhouse gas emissions also
 - stronger policies stabilize OECD emissions only after 2020.

- Access to modern energy for all
 - 1.6 billion people have no access to electricity, 80% of them in South Asia and sub-Saharan Africa

- Lower costs in deregulated markets; infrastructure stresses
Renewables Growing Fast, but From a Low Base

Growth of Renewables Supply from 1971 to 2000

- Geothermal: 8.8%
- Solar: 32.6%
- Wind: 52.1%
- Tide, other: 8.4%
- Other: 9.4%

TPES: Total Primary Energy Supply
CRW: Combustible Renewables and Waste
Source: International Energy Agency
Faster progress in energy technology development is an essential element:
- more cost-effective solutions
- capitalize on capital stock turnover as it occurs
- costs depend on not only development and investment costs but also the extent to which capital stock is retired early

How?
- more resources for technology R&D and demonstration and underlying sciences; identify and fill gaps *(as usual)*
- fostering of public/private partnerships, and of international collaboration, especially for large demonstrations *(as usual)*
- support and facilitation of technology uptake *(as usual, but connection to R&D and technology learning sometimes missed)*
- other efforts to foster and facilitate innovation – *more specific policy advice to governments*
What Can Hydrogen Offer?

A number of IEA member countries have made commitments to accelerate the development of the hydrogen energy economy:

- **Energy security**: reduced dependence on imported fuels *(depending on the source)*
- **Climate change**: potentially near-emissions-free vehicles and distributed generation *(carbon sequestration required if fossil-based; lower-cost production essential)*
- **Investment**: some heavy demands promising enormous dividends

Two main strategies for dealing with climate change:
- Europe: renewables, energy efficiency
- North America: carbon capture and storage
- **Both** pursuing hydrogen – from fossil fuels, nuclear energy, renewable energy
Roles for Fuel Cells – Stationary, Distributed Generation

Local and system benefits, including storage to back up intermittent renewables

<table>
<thead>
<tr>
<th>TODAY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• niche markets -- telecommunications, back-up power systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOMORROW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Natural gas fuel cells: significant contribution to energy supply expected after 2020 -- primarily stationary applications (WEO 2002)</td>
</tr>
<tr>
<td>• Competitive fuel cells (distributed generation): expected when -- capital costs fall below $1,000/kWe (~75% reduction) -- efficiencies approach 60% (>50% increase)</td>
</tr>
<tr>
<td>• Natural gas reforming first -- coal, biomass, water electrolysis not expected to be economically feasible before 2030</td>
</tr>
<tr>
<td>• Fuel cell/gas turbine combined cycle -- over 70% efficiency?</td>
</tr>
</tbody>
</table>
Roles for Fuel Cells

Vehicles: transport is responsible for over half of world oil demand

- fuel cells in vehicles expected to become attractive only around 2020 (WEO 2002)
- by 2030, only a small share of the vehicle fleet; even under alternative (stronger) policies, less than 5% of the OECD fleet
- difficult to supply substantial quantities of hydrogen for vehicles before 2050 unless carbon sequestration is applied on a large scale -- only fossil fuels could achieve this at reasonable cost
- any increase in renewable or nuclear electricity before 2050 would probably best be used to reduce emissions in the power sector
Investments in Developing a Hydrogen Economy

- **Iceland, Singapore, others:** committed to introducing hydrogen and fuel cell products in the electric utility and transport sectors.
- **European Union:** recently announced a long-term, 2 billion euro R&D program in hydrogen energy, ren. energy technologies.
- **United States:** recently announced a five-year, $1.2 billion hydrogen energy technology and infrastructure program.
- **Japan:** fuel cell and hydrogen technology research program has tripled since 1995, reaching over $200 million in 2002.
- **Others:** e.g., Italy, Canada, United Kingdom have accelerated and expanded their investments.
- **China:** has an organized program intended to lead to development of fuel cell vehicles.
- **Private sector:** investments in hydrogen energy technology, fuel cells have grown dramatically over the past decade (in developed and developing countries).
- **Several developing countries:** financing for demonstrations of hydrogen fueling stations, fuel cell-powered buses.
Part II
Innovation in energy and fuel cell
How can innovation influence energy supply and demand?

- More efficient use of primary energy sources (e.g., combined cycle power generation)
- Increased efficiency in end-use (e.g., electric appliances, lower-consumption cars)
- Harnessing emerging sources of energy (e.g., solar, wind, biomass)
- Developing technologies that address efficiency and environmental concerns (e.g., fuel cells, advanced turbines, advanced exploration and extraction)
- Putting in place infrastructure that can deliver new energy services (e.g., hydrogen)
How can innovation in energy technology be stimulated?

- Assuring well-functioning markets
- Assuring well-functioning innovation system
 - Innovation takes place in a system of inter-linked actors,
 - In both public and private sectors.
 - Depends on government policies to:
 - Fund R&D and demonstration including through public-private partnerships,
 - Supply highly qualified S&T human resources and ensure mobility,
 - Put in place appropriate framework conditions including regulations, competition policy and intellectual property protection,
 - Stimulate use of emerging organisational innovations, e.g., industrial clusters and venture capital
What are the characteristics of energy technology innovation system?

- The sector itself is diverse - there is no one characteristic type of innovation system
- Traditionally a large role of the public sector, but the private sector is growing in importance.
- Technology rapidly becoming more diverse and complex (nuclear fusion, renewables)
- Important role of R&D and innovation
- Requires long time horizon for development and commercialisation
- Infrastructure dependent – tendency for technology lock-in.
What are the characteristics of fuel cell innovation system?

- Rapidly growing energy technology sub-sector for stationary, mobile and portable applications,
- Co-existence of mature and emerging technology - the innovation system is changing fast,
- Actors include diverse industrial sectors outside the energy sector, firms of differing sizes and specialisation, and diverse scientific disciplines,
- Many government programmes and research consortia,
- Further development highly dependent on a well-functioning innovation system.
Public and private energy R&D trends
Figure 2 IEA Government Energy R&D Budgets, 1974-2001
Energy R&D Expenditure in the U.S. (in millions of constant 1995 $)
Energy R&D Expenditure in Japan (in millions of constant 1995 PPP $)
Private R&D Expenditure of the German Energy Sector (in millions of constant 1995 PPP $)
Challenges in enhancing innovation in energy and fuel cells

- Sustaining R&D investment levels, in view of the decreasing overall R&D in both public and private sectors,
- Efficiently channelling R&D funds through public/private partnerships and research consortia,
- Taking measures to stimulate networking, in view of actors that are dispersed in diverse sectors in the innovation system,
- Extending the innovation system globally, including non-OECD member economies.