Impact of Inequality on the Future Elderly – Policy Tools and Actions

Ageing in Asia

Future projection of health trajectories and health disparity in the super-aged society of Japan

Presenter: Hideki Hashimoto, MD DPH
Contact; hidehashimoto-circ@umin.ac.jp

Coauthored with Megumi Kasajima and Tetsuya Iwamoto
the University of Tokyo School of Public Health, Japan
Acknowledgement

Funded by

- Research Grant at Stanford University (“A Future Elderly Model for Japan: Exploring Projected Health Status, Medical Spending and Long-Term Care Spending for Japan’s 50+ Population” PI: Jay Bhattacharya).
- Research fund in aids from Ministry of Health Labour and Welfare 2016 (“Evidence based evaluation of health systems performance” PI: Kanji Shibuya) for government statistics use approval

Special thanks to

- Japanese FEM team (Prof. J Bhattacharya and Dr. K Eggleston at Stanford, Dr. S Suen at Univ. Southern California and Dr. BK Chen at Univ. Southern Carolina)
- Prof. M Kituregawa and Dr. K Goda at the Institute of Industrial Science at the University of Tokyo for their generous support for high-spec computer simulation environment
Japan

Frontline of shrinking and ageing society

2025 is the epoch when first baby boomers enters old-old (75+). 2035 will be the next epoch when baby boomer juniors enter age65+.

Japanese version of FEM; The first fruit

Forecasting Trends in Disability in a Super-Aging Society: Adapting the Future Elderly Model to Japan.

Journal of the economics of ageing

- Based on Japanese sister panel survey (JSTAR) with US HRS
- Problem; age range (lacking age +75) and selective attrition in older layer due to institutionalization
Alternative data sources

- National Comprehensive Survey of Living Conditions of People (CSLC)
 - Nationally representative with two-staged cluster sampling
 - Aprx 600,000 individuals from 295,000 households
 - Repeated cross-sectional every 3 years: 2001 – 2013
 - Comorbid condition, subjective health, functional status, and mobility status with demographic and socioeconomic variables

- Vital Statistics
 - 1.2 million per year

- Population Census 2010
Pseudo panel approach basically following FEM frame

(1) First order Markov process
(2) Absorbing health statuses
(3) Additive assumption for multiple mortality causes

CSLC (age 60+) in 2001

New 60-62 year-olds in 2004

New 60-62 year-olds in 2007

\[H_{t+1}^* = H(H_t, X) \]

\[H_{t+1} = H(H_t, X) \]

\[H_{t+1} = H(H_t, X) \]

survivors

survivors

survivors

deceased

dead

dead
Exact estimation of dynamic equilibrium using contingency tables (Kasajima, et al. manuscript presented at 2018 iHEA at Boston)

Assumptions

• Disease (d_n) incidence holds in equilibrium with prevalence and mortality in the cohort within a period (month).

• Comorbidity of 14 health statuses as reflected in all possible combinations of two statuses

• Use of contingency tables for exact estimation of “transition probability” over time periods

<table>
<thead>
<tr>
<th>$d_i \times d_j$</th>
<th>$d_i=0$</th>
<th>$d_i=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_j=0$</td>
<td>$pop_t(0,0)$</td>
<td>$pop_t(0,1)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha_{baseline}$</td>
<td>$\alpha_{baseline}+\alpha_{di}$</td>
</tr>
<tr>
<td>$d_j=1$</td>
<td>$pop_t(1,0)$</td>
<td>$pop_t(1,1)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha_{baseline}+\alpha_{dj}$</td>
<td>$\alpha_{baseline}+\alpha_{di}+\alpha_{dj}$</td>
</tr>
</tbody>
</table>
Future Projection of disease burden 2013->2034

Coronary heart disease and stroke will reduce in absolute number despite of population ageing

Source; Kasajima, et al. prepared for submission. Do Not cite without permission
Future Projection of disease burden 2013-> 2034

Cancer incidence and case fatality will be lowered, while the size of population at risk will grow due to population ageing, resulting in similar prevalence in number with older age distribution (longer survival!)

Diabetes will increase in number and with older distribution

Source: Kasajima, et al. prepared for submission. Do Not cite without permission
Future Projection of disease burden 2013-> 2034

Those with difficulties in daily activities and cognitive dysfunction will increase in number (though less than originally expected thanks to improvement in cardiovascular morbidity), and shifted toward older range.

Source; Kasajima, et al. prepared for submission. Do Not cite without permission
Projection of medical and long-term care expenditure for age 65+ (billion JPY 2013 value)

Note1; effects of price inflation and innovative technology are not considered.
Note2; Age-sex-condition specific expenditure based on regression results from national claim database (3% sample) and long-term care claim database was multiplied by the estimated number of comorbidity conditions.
Note3; long-term care utilization as expected from comorbidity (currently about 30% are replaced by informal care)

Conclusion

• Japan in the frontline of population shrinkage and ageing needs detailed future projection using Future Elderly Model framework.

• Complementary use of pseudo panel method could provide stable and convergent estimation of older-old population.

• Compared to traditional static average-out projection, a new projection provides different views of future burden of disease/disability, implying different messages for health policy makers to prepare future challenge.

• Socioeconomic disparity in disease prevalence in older-old is complicated due to balance between improved incidence and case fatality. Microsimulation could be used as an experimental tool for searching the mechanism of health disparity, as well as for evaluating future policy impact among older-old population.