Assessing impacts of climate changes on fisheries: An EAF perspective

Chang Ik Zhang1 and Do Hoon Kim2

1 Pukyong National University
2 National Fisheries R&D Institute
Outline

- Impacts of climate changes on fish and fisheries
- IFRAME approach as an EAF
- Application of the approach
- Management implications under changing climate condition
Examples of potential impacts of climate changes (Revised from UNEP (2007))

<table>
<thead>
<tr>
<th>State changes</th>
<th>Mediating environmental/ ecosystem impacts</th>
<th>Human well-being impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Human health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Socio-economy</td>
</tr>
<tr>
<td>Sea surface temperature ↑</td>
<td>Trophic structure and food web ↔</td>
<td>Food safety ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fishery species distribution ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aquaculture production ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost ↑</td>
</tr>
<tr>
<td>Coral Bleaching ↑</td>
<td>Disruption of utility services ↑</td>
<td>Artisanal fishers ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk in fisheries and agriculture ↑</td>
</tr>
<tr>
<td>Sea-level rise ↑</td>
<td></td>
<td>Aquaculture facilities ↔</td>
</tr>
<tr>
<td>Trophical storm and hurricane frequency and intensity ↑</td>
<td></td>
<td>Aquaculture damage ↑</td>
</tr>
</tbody>
</table>
Fish migrating to cooler waters
(IPCC SRES A1B scenario)

By 2050, large numbers of marine species (1,066 spp.) will migrate towards cooler waters – specifically the Arctic and Southern Ocean – at an average rate of 40 to 45 km per decades (Cheung et al. 2009).
Impacts of climate changes

An example of catch proportions in Korean waters of the Japan/East Sea: shifts in dominant species

![Graph showing catch proportions over time with shifts in dominant species]
Impacts of climate changes

Catch of bluefin tuna in Korea

- Continuous increase since mid-1980s

\[y = 129.89x - 739.26 \]

\[r^2 = 0.7813 \]
Studies on impacts of climate changes

- Biodiversity: Roessig et al. (2004), Harley et al. (2006), Munday et al. (2008),
- Species richness: Hiddink and Hofsted (2008),
- Productivity of fish populations: Zhang et al. (1999), Hollowed et al. (2009),
- Distribution of fish populations: Park et al. (2000), Nye et al. (2009), Cheung et al. (2009),

But, still limited knowledge and poor understandings on the relevant mechanisms of key ecological processes !!!
Why ecosystem-based fisheries management?

- Shortcomings of a single species management
 - lead to over-fishing in many areas
 (77% fully-, over-fished: FAO (2005))
- Limited management only on sustainability
 - ignoring habitat quality, biodiversity and socio-economic benefits
- Reykjavik Declaration (2002) and FAO (2003) stressed implementation of ecosystem approach to fisheries (EAF)
- WSSD (2002) encouraged the application of the ecosystem-based approach of fishery by 2010
Spectrum of Ecosystem-based Management Approaches

Traditional fishery management
- target species

Ecosystem-based fishery management
- start with the target species
- add issues of ecosystem impact on fishery resources

Ecosystem-based multi-sector management
- integrated multi-sector management

(Revised from Sainsbury)
Ecosystem-based fisheries assessment

- Numerous studies on ecosystem indicators carried out (Fulton et al. 2004; Jennings 2005; Kruse et al. 2006)

- However, only a few approaches synthesized indicators to obtain an integrated assessment (ERAEF by Australia, MSC’s FAM, IFRAME by Korea)
Integrated Fisheries Risk Analysis Method for Ecosystems: in the developing stages
IFRAME: 2 tier system

<table>
<thead>
<tr>
<th>Tier</th>
<th>Method</th>
<th>Level of information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quantitative analysis</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Semi-quantitative or Qualitative Analysis</td>
<td>Low</td>
</tr>
</tbody>
</table>
Management objectives, attributes & indicators

Sustainability
- Biomass
- Fishing intensity
- Size/age at first capture
- Habitat size
- Community structure

Habitat
- Habitat damage
- Discarded wastes
- Habitat protection

Socio-Economy
- Economic production
- Revenue
- Market
- Employment

Biodiversity
- Incidental catch
- Discards
- Trophic level
- Diversity
- Integrity of functional group
Reference points and Risks

Increased anthropogenic impact

Green zone
Target RP
Limit RP
Undisturbed
Risk

RS_x = RS_{max} \left(\frac{X_{target} - X}{X_{target} - X_{limit}} \right)

Improved by proper management
Nested risk indices of IFRAME

Ecosystem
Fishery A
Species 1
Objective S … ORI
Objective B … ORI
Objective H … ORI
Objective E … ORI
Species 2
Objective S … ORI
Objective B … ORI
Objective H … ORI
Objective E … ORI
Fishery B
Species 1
Objective S … ORI
Objective B … ORI
Objective H … ORI
Objective E … ORI
Species 2
Objective S … ORI
Objective B … ORI
Objective H … ORI
Objective E … ORI

\[
ORI = \frac{\sum_{i=1}^{n} I_i W_i}{\sum_{i=1}^{n} W_i}
\]

\[SRI = \lambda_S ORI_S + \lambda_B ORI_B + \lambda_H ORI_H + \lambda_E ORI_E\]

\[FRI = \frac{\sum B_i SRI_i}{\sum B_i}\]

\[ERI = \frac{\sum C_i FRI_i}{\sum C_i}\]

\(I_i\) : Score of i
\(W_i\) : Weighting factor of indicator i
\(n\) : Number of indicators

\(\lambda_S, \lambda_H, \lambda_B, \lambda_E\) : Weighting value for objectives
\[\sum \lambda = 1.0\]

\(ORI_S\) : Sustainability risk index
\(ORI_B\) : Biodiversity risk index
\(ORI_H\) : Habitat risk index
\(ORI_E\) : Socio-economic risk index

\(B_i\) : Biomass or biomass index of species i

\(C_i\) : Catch of fishery
Application to the Korean large purse seine fishery (Preliminary)

- **Korean large purse seine fishery**
 - Main species: chub mackerel (*Scomber japonicus*)
 - Bycatch species: bluefin tuna, horse mackerel, Spanish mackerel, squids, etc.
 - Annual catch: around 250,000 mt

- **Catch and CPUE data**
 - 30’x30’ blocks
 - 1980-2008 (29 years)
Warming of fishing ground

- IPCC SRES A2 scenario (Kim et al., 2007)
 - Increasing rate: 0.062°C/year

- SST in northern East China Sea
 - Main fishing ground of the Korean large purse seine
 - Warming rate of SST: 0.086°C/year
 (higher than 0.062°C/year of IPCC rate)
Methods

• Predictions for habitat areas
 - Warming rate of 0.06°C/year (SST)
 - Reference year 2008, predicted habitat areas for 2033, 2058, 2083, and 2108

• Predictions for biomass and risk indices
 – Using SOM, NEMURO, ECOPATH with ECOSIM
 – Predicting biomass altering F-values ranging from zero to 2.0xF_{ABC}, based on the changes in habitat areas of chub mackerel due to warming
 – IFRAME, Tier 1 for chub mackerel
Changes in fishing grounds of chub mackerel

- Northward movements of fishing grounds for 1980s-2000s (19 years):
 - Cheung’s method
 - 81.5km northward movement
 - 42.9km/decade
 - Equal-frequency ellipse method
 - 81.2km northward movement
 - 42.7km/decade
 - Fish movement rate similar with Cheung et al. (2009)’s prediction of 40-45km/decade
Prediction of habitat areas of chub mackerel

- SST range: 14.4-22.5°C
- Faster northward movement in the Japan/East Sea than that in the Yellow Sea
- The main habitat area of chub mackerel will be outside of the South Korean EFZ in Japan/East Sea in 2108
<table>
<thead>
<tr>
<th>Sustainability</th>
<th>Biodiversity</th>
<th>Habitat</th>
<th>Socio-economic benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass (B)</td>
<td>Bycatch rate (BC/C)</td>
<td>Critical habitat damage rate (DH/H)</td>
<td>Landings</td>
</tr>
<tr>
<td>Fishing mortality (F)</td>
<td>Discards rate (D/C)</td>
<td>Pollution rate of spawning and nursery ground (PG/G)</td>
<td>Revenue (per vessel or person, etc.)</td>
</tr>
<tr>
<td>Age (or length) at first capture (t or L)</td>
<td>Mean trophic level of the community (TL<sub>c</sub>)</td>
<td>Lost fishing gear (frequency, FR)</td>
<td>Return on Investment (ROI)</td>
</tr>
<tr>
<td>Habitat size (H)</td>
<td>Diversity index (DI)</td>
<td>Discarded wastes (DW)</td>
<td>% ratio of landing to total supply</td>
</tr>
<tr>
<td>Mean trophic level in catch (TL)</td>
<td>Pelagic sp./ Benthic sp. (P/B)</td>
<td></td>
<td>Employment rate</td>
</tr>
<tr>
<td>Rate of mature fish (MR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope of size spectra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A total of 16 indicators used for IFRAME (Revised from Zhang et al., 2010)
ORIs of chub mackerel for 2058

- Sustainability: risk index began to increase as F increased from $0.25F_{ABC}$
- Biodiversity and Habitat: risk index increased moderately as F increased
- Socio-economy: W-shaped risk indices lower at $0.75F_{ABC}$ and $1.5F_{ABC}$
Species Risk Indices of chub mackerel

- SRI for 2058: higher than that of 2008 from zero F to $1.25F_{ABC}$
- SRI: lowest with $0.75F_{ABC}$ in 2008 and 2058
- Fishing with population-based F_{ABC} level will cause ecological overfishing, suggesting to reduce the F level to $0.75F_{ABC}$
IFRAME is still in the developing stages

- Preliminary results indicate that this approach has potential as a tool for forecasting risk indices of objectives, species and fisheries.
- However, it is still far from practical applications due to lack of knowledge for assessing risks of a number of indicators.
- Especially, specific ecological process studies on the indicators and reference points under a changing climate are required.
Management implications from the preliminary analysis

<table>
<thead>
<tr>
<th>Management Objectives</th>
<th>Strategies</th>
<th>Tactics</th>
</tr>
</thead>
</table>
| **Sustainability** | - Increasing biomass
- Reducing fishing capacity
- Maintaining community structure | - TAC reduction (by $0.75F_{ABC}$)
- Reducing number of licenses or permits
- Limiting number of trips and/or fishing days
- Developing new fishing gears and methods |
| **Habitat** | - Preventing habitat damage
- Restricting discarded wastes | - Establishing marine protected area (MPA)
- Modifying closed season and areas
- Restricting use of harmful fishing gears |
| **Biodiversity** | - Preventing incidental catches and discards
- Preserving diversity and trophic level | - Adopting temporary fishing recession
- Modifying stock enhancement programs |
| **Socio-economy** | - Increasing revenues
- Maintaining viable production
- Supporting employment | - Enhancing community-based management
- Government supports due to shifted fisheries
- Predicting supply and demand of shifted fish species
- Predicting employment due to shifted fisheries
- Strengthening international cooperation for EAF management |
Legal systems and relevant policies in fisheries management under climate changes: A Korean case

Two major acts for fisheries legal systems and policies

("Fishery Resources Management Act" and "Marine Ecosystem Conservation and Management Act")

<table>
<thead>
<tr>
<th>Objectives</th>
<th>To establish a comprehensive plan for fisheries resources and ecosystem management, and to contribute to a sustainable fisheries and marine ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>- Conducting assessment of fisheries resources every year</td>
</tr>
<tr>
<td></td>
<td>- Establishing a master plan for fisheries management every 5 years and for ecosystem conservation and management every 10 years</td>
</tr>
<tr>
<td></td>
<td>- Building up an institutional foundation for self-management of fisheries resources</td>
</tr>
<tr>
<td></td>
<td>- Embracing international regulations and encouraging international cooperation</td>
</tr>
<tr>
<td></td>
<td>- Using eco-friendly fishing gears and methods</td>
</tr>
<tr>
<td></td>
<td>- Applying a precautionary approach</td>
</tr>
<tr>
<td></td>
<td>- Stipulating management of habitats and ecological environments</td>
</tr>
<tr>
<td>Limitations</td>
<td>- Lack of scientific data and research for EAF</td>
</tr>
<tr>
<td></td>
<td>- No clear explicit provisions on EAF and climate changes</td>
</tr>
</tbody>
</table>
Suggested policies and measures responding climate changes

<table>
<thead>
<tr>
<th>Current management</th>
<th>EAF management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Managing and protecting species, fisheries and their ecosystems responding to climate changes</td>
</tr>
<tr>
<td>Managing and rebuilding species</td>
<td>Sustainability, habitat quality, biodiversity, socio-economic benefits, responding to climate changes</td>
</tr>
<tr>
<td>Objective</td>
<td>Scientific research, fishery data, non-scientific knowledge and information from fishers and other stakeholders</td>
</tr>
<tr>
<td>Sustainability of species itself</td>
<td>Central and local governments, and all relevant stakeholders including fishers, by establishing Fishery Management Councils</td>
</tr>
<tr>
<td>Information</td>
<td>Scientific research and fishery data</td>
</tr>
<tr>
<td>Scientific research and fishery data</td>
<td>Central and local governments</td>
</tr>
<tr>
<td>Bodies</td>
<td>Central and local governments</td>
</tr>
<tr>
<td>Central and local governments</td>
<td>Central and local governments, and all relevant stakeholders including fishers, by establishing Fishery Management Councils</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Restricted</td>
</tr>
<tr>
<td>Flexible</td>
<td>Flexible</td>
</tr>
<tr>
<td>Range of areas</td>
<td>Areas within and beyond one nation’s EEZ, cooperating with neighboring nations, possibly by establishing a Regional Management Body</td>
</tr>
<tr>
<td>Areas within one nation’s EEZ</td>
<td>Flexible</td>
</tr>
<tr>
<td>Period</td>
<td>Short-term</td>
</tr>
<tr>
<td>Short-term</td>
<td>Short-term, and mid- and long-terms as well</td>
</tr>
</tbody>
</table>
Thank you very much!