Organisation for Economic Co-operation and Development (OECD)

Education at a Glance 2008
Key results

Under embargo until 9 September 2008, 11:00 Paris time
EAG 2008: Three main findings

1. A rising tide in the demand for high-level qualifications
 - 8 million more students in tertiary systems than back in 1995 (share of age cohort moving into university level education rose from 37% to 57%)
 - Strong labour-market incentives suggest further expansion
 - Large and often growing earnings and employment differentials
 - Growth in skilled jobs

2. Current approaches to the financing of higher education under pressure
 - In spite of recent and considerable increases in spending levels, expenditure in some countries could not keep up with rising demand, particularly in countries finding difficulties mobilising private resources

3. Spending patterns can be explained by policy choices
 - Link between spending levels and outcomes tenuous
A rising tide in the demand for high-level qualifications

Changes in qualification levels (the past)
Changes in graduation rates (the present)
Changes in entry rates (best guess for the future)
Growth in university-level qualifications
Approximated by the percentage of the population that has attained tertiary-type A education in the age groups 25-34 years, 35-44 years, 45-54 years and 55-64 years) (2006)

Science has benefited most from the expansion

2. Average of ratios, not as a whole as in EAG 2007.
Number of tertiary science graduates per 100,000 employed 25-to-34-year-olds (2006)

2. Advanced research programmes refer to 2005.
Trends in university-level graduation output
First-time graduation rate at the tertiary-type A level

1. Net graduation rate is calculated by summing the graduation rates by single year of age in 2006.

Countries are ranked in descending order of the graduation rates for tertiary-type A education in 2006.
Source: OECD. Table A3.2. See Annex 3 for notes (www.oecd.org/edu/eag2008)
Tertiary-type A graduation rates by gender in 2006 (first time graduation)

A3.1

1. Entry rate for tertiary type A programmes is calculated as gross entry rate in 2006.
Contribution of international students to university graduate output
Percentage of tertiary qualifications awarded to international students (2005)

- **Tertiary-type A programmes, first degree**
- **Tertiary-type A programmes, second degree**
- **Advanced research programmes**

2. First degrees programmes include second degrees.
3. Proportion of foreign graduates in tertiary graduate output. These data are not comparable with data in international graduates and are therefore presented separately.
Distribution of foreign students by country of destination

Percentage of foreign tertiary students reported to the OECD who are enrolled in each country of destination (2006)

- United States, 20.0%
- United Kingdom, 11.3%
- Germany, 8.9%
- France, 8.5%
- Australia, 6.3%
- Canada, 5.1%
- Japan, 4.4%
- New Zealand, 2.3%
- South Africa, 1.8%
- Sweden, 1.4%
- Switzerland, 1.3%
- Austria, 1.3%
- Belgium, 1.6%
- Malaysia, 1.4%
- Other OECD countries, 6.3%
- Other partner countries, 10.7%
- Russian Federation, 2.6%
Trends in international education market shares
Percentage of all foreign tertiary students enrolled by destination

![Bar chart showing market shares of different countries for foreign tertiary students in 2000 and 2006. The United States has the highest market share in both years, followed by the United Kingdom, Germany, and France.](image-url)
Percentage of international students enrolled in tertiary education

International students who travelled to a different country for the purpose of tertiary study (2006)

Note: The data on the mobility of international students presented are not comparable with data on foreign students in tertiary education (defined on the basis of citizenship) presented in pre-2006 editions of Education at a Glance.

Entry rates into tertiary-type A education

Across OECD countries tertiary systems are now providing for around 8 million more students than back in 1995

1. Entry rate for tertiary type A programmes is calculated as gross entry rate in 2006.
Proportion of students who enter a tertiary programme but leave without at least a first tertiary degree (2005)

1. Response rate too low to ensure comparability.
2. Only full-time students.
Entry rates at tertiary education compared to population leaving without completing tertiary education (2005)
So what?

Has the increasing supply of well-educated labour been matched by the creation of high-paying jobs?

Will one day everyone have a university degree but work for the minimum wage?
In OECD countries, the proportion of skilled jobs in the economy is generally larger than the potential supply of tertiary educated individuals. For countries in which work-based learning is central to occupational advancement, this difference is large. In a few countries, tertiary attainment matches or marginally exceeds the proportion of skilled jobs, so that further expansion of higher education will to some extent depend on the growth of skilled jobs in the coming years.

Note: For the United States, ISCO groupings 3 and 9 are not separated and thus distributed among remaining ISCO categories.
Changes in skilled jobs and tertiary attainment between 1998-2006

For countries with large differences in skilled jobs and tertiary attainment levels, the fundamental question is whether higher growth in skilled occupations could be achieved if more individuals with tertiary education were available to the labour market or whether labour market experience and adult learning is sufficient to provide the necessary skills.

3. ISCO groupings 3 and 9 are not separated and thus distributed among remaining ISCO categories.
Relative earnings from employment for females
By level of educational attainment and gender for 25-to-64-year-olds (upper secondary and post-secondary non-tertiary education=100) (latest available year)

Females

- Below upper secondary education
- Tertiary-type B education
- Tertiary-type A and advanced research programmes

Relative earnings from employment for males
By level of educational attainment and gender for 25-to-64-year-olds (upper secondary and post-secondary non-tertiary education= 100) latest available year

Males with a degree from a tertiary-type A or advanced research programme have a substantial earnings premium in the Czech Republic, Hungary and Poland that is close to 100%.

Private internal rates of return for an individual obtaining a university-level degree, ISCED 5/6 (2004)
Components of the internal rate of return for a male obtaining tertiary education, ISCED 5/6 (2004)

The data show no relationship between tuition levels and the rate of return.
Cumulated streams of assumed costs and benefits

The IRR is the discount rate at which the Net Present Value=0. Given a stream of assumed costs and benefits over 25-to-64-years-old, the IRR represents the rate of return on investment expressed as an interest rate.

Note: Those amounts (in USD equivalents) are not discounted by the IRR and then differ from the amounts upon which Chart A10.2 is based. Chart A10.2 gives a more accurate picture of the components weight.
The effects of tertiary expansion: A high calibre workforce or the overqualified crowding out the lesser qualified?

Lower secondary unemployment rate as a ratio of upper secondary unemployment rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Top group</th>
<th>Middle group</th>
<th>Bottom group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>1998</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>1999</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>2000</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>2001</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>2002</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

"Middle group" The eight countries with the greatest increase in tertiary education (2.4% on average)

"Bottom group" The nine countries with no or very modest increases in tertiary education (0.1% on average)

"Top group" The nine countries that expanded tertiary education fastest in the 1990s (5.9% on average)

In those countries that did not expand tertiary education (the bottom group), failure to complete upper secondary education is now associated with an 80% greater probability of being unemployed, compared to less than 50% in the top group.
Difference between unemployment rates of females and males, by level of education attainment (2006)

Gender differences in unemployment are much smaller for those with higher qualifications

Unemployment rate higher for females

Unemployment rate higher for males

Percentage points

Below upper secondary education
Upper secondary and post-secondary non tertiary education
Tertiary education

Japan Germany Turkey Korea Czech Republic United Kingdom Austria Australia Hungary Norway Ireland Mexico New Zealand Slovenia Canada Estonia United States Denmark Sweden Netherlands France Finland Israel Switzerland Portugal Belgium Luxembourg Poland Italy Greece Spain

A8.3
Expected years in education and not in education for 15-to-29-year-olds (2006)

1. Data refer to 15-to-24-year-olds.
Current approaches to the financing of higher education under pressure
Expenditure on educational institutions as a percentage of GDP for all levels of education

<table>
<thead>
<tr>
<th>Country</th>
<th>2005</th>
<th>2000</th>
<th>OECD total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israel</td>
<td>8.4%</td>
<td>8.1%</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>7.6%</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>6.9%</td>
<td>6.5%</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>6.8%</td>
<td>6.4%</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>6.4%</td>
<td>6.0%</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>6.2%</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>6.2%</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>6.2%</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>6.1%</td>
<td>5.7%</td>
<td></td>
</tr>
<tr>
<td>Canada1</td>
<td>6.1%</td>
<td>5.7%</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>5.9%</td>
<td>5.5%</td>
<td></td>
</tr>
<tr>
<td>Switzerland1</td>
<td>6.0%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>5.6%</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>5.6%</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Norway2</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Chile3</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>5.2%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Brazil2</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Russian...</td>
<td>4.9%</td>
<td>4.5%</td>
<td></td>
</tr>
</tbody>
</table>

2. Expenditure from public sources only (for Switzerland, in tertiary education only).
Who pays for high-level qualifications

Expenditure on tertiary educational institutions as a percentage of GDP (2005)
Expenditure on educational core services, R&D and ancillary services in tertiary educational institutions as a percentage of GDP (2005)

1. Some levels of education are included with others.
2. Total expenditure at tertiary level including R&D expenditure.
4. Total expenditure at tertiary level excluding R&D expenditure.
Changes in student numbers and expenditure for tertiary education

Index of change between 2000 and 2005 (2000=100, 2005 constant prices)

- Change in expenditure
- Change in the number of students (in full-time equivalents)
- Change in expenditure per student

1. Public institutions only.
2. Public expenditure only.
3. Some levels of education are included with others.
In 2005, the share of public funding at the tertiary level represented 73% on average in OECD countries. On average among the 18 OECD countries for which trend data are available, the share of public funding in tertiary institutions decreased slightly from 79% in 1995 to 77% in 2000 and to 73% in 2005.

2. Some levels of education are included with others.
In eight OECD countries, public institutions charge no fees, but in one-third of countries public institutions charge annual tuition fees for national students in excess of USD 1,500. Among the EU19 countries, only the Netherlands and the United Kingdom have annual tuition fees that represent more than USD 1,000 per full-time student; these relate to government-dependent institutions.

Australia (82%), Japan (44%), Korea (51%)
Canada (m)

Israel1 (55%)
New Zealand (79%)

United Kingdom1 (51%)
Netherlands1 (59%)

Italy (56%)
Austria (37%), Spain (43%),
Belgium (Fr. and Fl.) (33%)
Turkey (27%), France (m)

Czech Republic (41%), Denmark (57%), Finland (73%),
Ireland (45%), Iceland (74%), Norway (76%),
Poland (76%), Sweden (76%)

1. Public institutions do not exist at this level of education and most of the students are enrolled in government dependent institutions.

This chart does not take into account grants, subsidies or loans that partially or fully offset the students' tuition fees.
OECD countries spend, on average, 18% of their public budgets for tertiary education on subsidies to households and other private entities. In Australia, Denmark, the Netherlands, New Zealand, Norway and Sweden and the partner country Chile, public subsidies account for 27% or more of public spending on tertiary education. Only Greece, Korea and Poland spend less than 5% of total public spending on tertiary education on subsidies.
Relationships between average tuition fees and proportion of students who benefit from public loans and/or scholarships/grants

Tertiary-type A, public institutions, academic year 2004/05, national full-time students

Group 1:
No (or low) financial barriers for tertiary studies due to tuition fees and still a high level of student aid.

Group 2:
Potentially high financial barriers for entry to tertiary-type A education, but also large public subsidies to students.

Group 3:
Extensive and broadly uniform cost sharing across students, student support systems somewhat less developed.

Group 4:
Relatively low financial barriers to entry to tertiary education and relatively low subsidies

B5.3
School education
Growth in baseline qualifications
Approximated by percentage of persons with upper secondary or equivalent qualifications in the age groups 55-64, 45-55, 44-44 and 25-34 years

1. Year of reference 2004
Upper secondary graduation rates

Percentage of graduates to the population at the typical age of graduation (unduplicated count)

Access to tertiary-type A education for upper secondary graduates (2006)

- Graduation rates from programmes designed to prepare students for tertiary-type A education
- Entry rates into tertiary-type A education

1. Entry-rate for tertiary-type A programmes is calculated as gross entry rate.
2. Includes ISCED 4A programmes (Berufsbildende Höhere Schulen).
Cumulative expenditure on educational institutions per student over primary and secondary studies (2005)

Annual expenditure on educational institutions per student multiplied by the theoretical duration of studies, in equivalent USD converted using PPPs

In equivalent USD using PPPs

- Primary education
- Lower secondary
- Upper secondary education
- All secondary education

OECD average (primary and secondary)
Changes in student numbers and expenditure
Primary, secondary and post-secondary non-tertiary education
Index of change between 2000 and 2005 (2000=100, 2005 constant prices)

- Change in expenditure
- Change in the number of students (in full-time equivalents)
- Change in expenditure per student

Index of change (2000=100)

1. Public expenditure only.
2. Public institutions only.
3. Some levels of education are included with others.
Teacher compensation cost per student varies from 3.9% of GDP per capita in the Slovak Republic (less than half the OECD average rate of 10.9%) to over five times that rate in Portugal (20.9%, nearly twice the OECD average). Four factors influence these trends - salary level, instruction time for students, teaching time of teachers and average class size - so that a given level of compensation cost per student can result from quite different combinations of the four factors.
Expenditure on educational institutions per student at various levels of education for all services relative to primary education (2005)

Primary education = 100

<table>
<thead>
<tr>
<th>Country</th>
<th>Pre-primary education</th>
<th>Secondary education</th>
<th>Tertiary education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovak Republic 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary 1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece 1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A ratio of 300 for tertiary education means that the expenditure on educational institutions per tertiary student is three times the expenditure on educational institutions per primary student. A ratio of 50 for pre-primary education means that expenditure on educational institutions per pre-primary student is half the expenditure on educational institutions per primary student.

1. Public institutions only.
2. Some levels of education are included with others.
Total number of intended instruction hours in public institutions between the ages of 7 and 14 (2006)

Students in OECD countries are expected to receive, on average, 6 907 hours of instruction between the ages of 7 and 14, of which 1 591 between ages 7 and 8, 2 518 between ages 9 and 11, and 2 798 between ages 12 and 14. The large majority of intended hours of instruction are compulsory.
Average class size in primary education

Number of students per class

2006 2000

1. Public institutions only
Average class size (2006)

Number of students per classroom

- Primary education
- Lower secondary education

D2.2

11. Public institutions only
Teachers’ salaries (minimum, after 15 years experience, and maximum) in lower secondary education (2006)

Annual statutory teachers’ salaries in public institutions in lower secondary education, in equivalent USD converted using PPPs, and the ratio of salary of 15 years of experience to GDP per capita.

The annual statutory salaries of lower secondary teachers with 15 year experience range from less than USD 15 000 in Hungary and the partner countries Chile and Estonia, to over USD 51 000 in Germany, Korea and Switzerland and exceed USD 90 000 in Luxembourg.
Changes in teachers' salaries in lower secondary education, by point in the salary scale (1996, 2006)

Index of change between 1996 and 2006 (1996=100, 2006 price levels using GDP deflators)

Starting salary/minimum training
Salary after 15 years of experience/ minimum training
Salary at top of scale/minimum training

Index of change

Hungary
Estonia
Mexico
Finland
Australia
England
Denmark
Scotland
Greece
Italy
Japan
Ireland
Norway
Belgium (Fl.)
Portugal
Netherlands
New Zealand
Belgium (Fr.)

1. The data for Belgium in 1996 are based on Belgium as a whole.
Number of teaching hours per year, by level of education (2006)

Net contact time in hours per year in public institutions

A primary school teacher teaches an average of 812 hours per year. Lower secondary education teachers teach an average of 717 hours per year. A teacher of upper secondary general education has an average statutory teaching load of 667 hours per year.
Parents’ reports of child’s past science reading and student performance on the PISA science scale (2006)

Compared with 15-year-old students who had not, at the age of 10, read books on scientific discoveries, students who had done so performed, on average, 45 score points higher in the PISA 2006 science assessment, more than the equivalent of a school year, and this advantage remained significant, at 35 score points, even after taking into account socio-economic factors (one school year corresponds to an average of 38 score points on the PISA science scale).
Parents’ view of their child’s school and socio-economic background (PISA 2006)

Difference in score before accounting for ESCS
Difference in score after accounting for ESCS

Statistically significant differences are marked in darker tone.

a. “Standards of achievement are high in the school”

Source: OECD PISA 2006.
Parents' view of their child's school and socio-economic background (PISA 2006)

Statistically significant differences are marked in darker tone.

b. "I am satisfied with the disciplinary atmosphere in the school"

Source: OECD PISA 2006.
Parents' view of their child’s school and socio-economic background (PISA 2006)

According to the graph, New Zealand has a statistically significant difference in score before and after accounting for ESCS. The school does a good job in educating students, as indicated by the higher score point difference compared to other countries such as Hong Kong-China, Denmark, Iceland, Germany, Luxembourg, Italy, Turkey, Macao-China, Qatar, Croatia, Korea, Portugal, Bulgaria, Poland, and Colombia.

Source: OECD PISA 2006.
Parents' perceptions of instructional quality (PISA 2006)

Statistically significant differences are marked in darker tone

a. “Most of my child’s school teachers seem competent and dedicated”

b. “I am happy with the content taught and the instructional methods used in my child’s school”

Source: OECD PISA 2006.
Parents' perceptions of instructional quality (PISA 2006)

Statistically significant differences are marked in darker tone

c. “My child’s progress is carefully monitored at school”

d. “My child’s school provides regular and useful information on my child’s progress”

Source: OECD PISA 2006.
Equity challenges

How well are countries using their potential to generate future human capital by providing equitable learning opportunities?
Occupational status of higher education students' fathers

Proportion of students with fathers from a blue-collar background compared with men of corresponding age group as students' fathers.

Ireland and Spain stand out as providing the most equitable access to higher education, whereas students from blue-collar background in Austria, France, Germany, Portugal are about one-half as likely to be in higher education as their proportion in the population would suggest.

Source: EUROSTUDENT 2005.
Educational status of students’ fathers

Proportion of students’ fathers with higher education compared with men of corresponding age group as students’ fathers with higher education

- Finland, France, the Netherlands and the United Kingdom have the largest intake of students with fathers holding a higher education degree, whereas Ireland and Italy have the lowest intake from this group.

1. England and Wales. Data refer to the parent (male or female) with the highest income.

Source: EUROSTUDENT 2005.
Educational status of students' fathers (2004)

Ratio of the proportion of students' fathers with higher education to the proportion of men of the corresponding age group as students' fathers with higher education.

In Austria, France, Germany, Portugal and the United Kingdom, students are at least about twice as likely to be in higher education if their fathers hold a university degree as their proportion in the population would suggest.

Austria | 2.5
Finland | 1.7
France | 2.0
Germany | 2.2
Ireland | 1.1
Italy | 1.7
Netherlands | 1.6
Portugal | 3.5
Spain | 1.5
United Kingdom | 2.0

1. England and Wales. Data refer to the parent (male or female) with the highest income.

Source: EUROSTUDENT 2005.
Proportion of students in higher education (2003-2005) from a blue-collar background and between school variance in PISA 2000

Among the countries for which data are available on the socio-economic status of students in higher education, it appears that providing a good quality education across all schools is important to have more students from less affluent backgrounds participating in higher education.

Note: The first bar shows the ratio of students with fathers from a blue collar background compared with men of corresponding age group (‘40-to-60-year-olds) in blue collar occupations. The second bar shows the between school variance in mathematics from PISA 2000 survey.
Females with tertiary education are more disadvantaged than males in terms of realising low earnings: in Austria, Canada and New Zealand, 20% or more of the female population earn less than half the median. While males are less likely to have low earnings, more than 10% earn less than half of the median in Canada, Denmark, Norway and Sweden. This dispersion in educational outcomes provides an indication of the overall investment risk associated with higher education.
• www.oecd.org
 - All national and international publications
 - The complete micro-level database
• Email: Andreas.Schleicher@OECD.org

Thank you!

... and remember:
Without data, you are just another person with an opinion