Trends of Natural Disasters – the Role of Global Warming

Prof. Dr. Peter Hoepppe
Geo Risks Research
Munich Reinsurance Company

Geo Risks Research Department of Munich Re - Analyses of natural disasters since 1974

Staff: 29
1 based at Munich Re America in Princeton
2 based in Hong Kong office

Communication on Climate Change as a relevant risk in insurance industry for many years
The last years have brought records in natural disasters in respect to:

- Intensities
- Frequencies
- Damages and losses

Heat wave of 2003, the largest humanitarian natural catastrophe in Europe for centuries

Perceived Temperature on 8 August 2003 and excess mortality

Source: German Weather Service, 2004
2004: 1st Hurricane in South Atlantic

Hurricane Catarina off the Coast of Brasil, March 2004

July/August 2005 – Flooding in India
944 mm rain within 24 hours, highest ever in India
24.7- 5.8 Flooding in India (1.150 fatalities)
Economic losses (US$ m): 5.000
Insured losses (US$ m): 770

August 2005 – Hurricane Katrina
6th strongest hurricane, largest losses of a single event
25.-30.8 Hurricane Katrina, USA (1.322 fatalities)
Economic losses (US$ m): 125.000
Insured losses (US$ m): 61.000 (NFIP included)

Source: Image courtesy of Earth Sciences and Image Analysis Laboratory, NASA Johnson Space Center, Bild-Nummer ISS008-E-19646. http://eol.jsc.nasa.gov

source: Reuters
2005, a Year of Weather Extremes

Never before since the beginning of records (1850) have so many named tropical storms occurred in the North Atlantic basin in one season: 28, of which 15 with hurricane strength (old absolute record 21 in 1933, resp. 12 in 1969)

Hurricane Vince (9 October 2005)

Vince, a hurricane in a region without hurricane risk (easterly North Atlantic, Madeira)
The database today:

- From 1980 until today all loss events have been analysed and entered (19,000 data sets).
- For USA and selected countries in Europe all loss events between 1970 and 1980 - other countries will follow consecutively (1,000 data sets).
- Retrospectively all Great Disasters since 1950 have been analysed and entered (276 data sets).
- In addition all major historical events starting from 79 AD – eruption of Mt. Vesuvio (3,000 historical data sets).

more than 23,000 events
Great Weather Disasters 1950 – 2006
Overall and insured losses

* According to the definition criteria there was no Great Weather Disaster in 2006.

© 2007 NatCatSERVICE, Geo Risks Research, Munich Re

Number of events, with trend

© 2006 NatCatSERVICE®, Geo Risks Research, Munich Re
Thunderstorms* USA 1980 – 2006

Number of events with trend

- Small-scale loss event
- Moderate loss event
- Severe catastrophe
- Major catastrophe
- Devastating catastrophe
- Great natural catastrophe (none)

Number of events in the USA from 1980 to 2006

* Thunderstorms including tornado outbreaks and hailstorms

Natural catastrophes in economies at different stages of development between 1980 and 2005

Great natural disasters 1980-2005
- Earthquake, tsunami, volcanic eruption
- Windstorm
- Flood
- Extreme temperatures (e.g. heat wave, wildfire), mass movement (e.g. avalanche, landslide)

Income groups (GNI per capita in US$)
- low income (<765)
- lower middle income (765-3035)
- upper middle income (3036-9385)
- high income (>9385)
- unclassified

© 2006 Geo Risks Research, Munich Re (Income groups classified by World Bank)
Global distribution of insurance premiums per capita

 Hurricane losses in the selected Caribbean States in 2004 (GDP%)

<table>
<thead>
<tr>
<th>Location</th>
<th>GDP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dom. Republik:</td>
<td>1.9%</td>
</tr>
<tr>
<td>Bahamas:</td>
<td>10.5%</td>
</tr>
<tr>
<td>Jamaica:</td>
<td>8.0%</td>
</tr>
<tr>
<td>Grenada:</td>
<td>212.0%</td>
</tr>
<tr>
<td>Cayman Islands:</td>
<td>183.0%</td>
</tr>
</tbody>
</table>
Reasons for globally increasing losses due to natural disasters

Less problematic

- Rise in population
- Better standard of living
- Increasing insurance density

Problematic

- Concentration of people and values in large conurbations
- Settlement in and industrialization of extremely exposed regions
- Change in environmental conditions - Climate Change

Global mean temperature, 1856 - 2006

Departures in temperature from the 1961-1990 average

Temperature anomaly (°C)

2006: +0.42°C above the 1961-1990 annual average (14°C).

All the 10 warmest years were in the last 12 years.

The five warmest years in decreasing order are:

Source: CRU, UK (2007), compilation acc. to WMO
Global and Regional Temperature trends in the 20th century: modeled and observed

Source: climateprediction.net, Oxford University

CO₂ concentration in the atmosphere of the past 650,000 years from the Vostok ice core, Antarctica

Source: Siegenthaler et al. (2005), Spahni et al. (2005), Röthlisberger et al. (2004)
Scientific evidence of a link between global warming and tropical storm intensification

- Global warming will intensify the maximum wind speed by 0.5 on the Saffir Simpson scale and precipitation by 18% in hurricanes until 2050 (Knutson et al., J of Climate 2004).

- Major tropical storms both in the Atlantic and the Pacific region have already increased since the 1970s in duration and intensity by about 50 percent (Emanuel, Nature 2005; Webster, Science 2005)

- Due to climate change the sea surface temperatures have increased already by 0.5°C (Barnett, Pierce, 2005, Science; Santer et al., PNAS, Sept. 2006)

- Of all the factors that drive a major storm only the steady increase in sea surface temperatures over the last 35 years can account for the rising strength of storms in six ocean basins around the world (Hoyos et al., Science 2006)

Projections of air temperature changes relative to 1980-1999 (IPCC, 2007)
Changes in sea level since 1850

Projected sea level rise in the 21st century:
18 – 59 cm with no increase in ice flow rates in Greenland and Antarctica included

Source: IPCC 4th AR, WGI, Paris, 5.2.2007

IPCC assessment climate change and extreme weather events (2 February, 2007)

<table>
<thead>
<tr>
<th>Phenomenon* and direction of trend</th>
<th>Likelihood that trend occurred in late 20th century (typically post 1960)</th>
<th>Likelihood of a human contribution to observed trend a</th>
<th>Likelihood of future trends based on projections for 21st century using SRES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer and fewer cold days and nights over most land areas</td>
<td>Very likely b</td>
<td>Likely*</td>
<td>Virtually certain*</td>
</tr>
<tr>
<td>Warmer and more frequent hot days and nights over most land areas</td>
<td>Very likely d</td>
<td>Likely (nights)*</td>
<td>Virtually certain*</td>
</tr>
<tr>
<td>Warm spells / heat waves. Frequency increases over most land areas</td>
<td>Likely</td>
<td>More likely than not f</td>
<td>Very likely</td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas</td>
<td>Likely</td>
<td>More likely than not f</td>
<td>Very likely</td>
</tr>
<tr>
<td>Area affected by droughts increases</td>
<td>Likely in many regions since 1970</td>
<td>More likely than not</td>
<td>Likely</td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely in some regions since 1970</td>
<td>More likely than not f</td>
<td>Likely</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis) g</td>
<td>Likely</td>
<td>More likely than not f a</td>
<td>Likely f</td>
</tr>
</tbody>
</table>

* The term “phenomenon” refers to a specific climate event or trend.

f The likelihood is based on the presence of human activities.

a The likelihood is based on historical data and projections.

b The likelihood is based on observational evidence.

d The likelihood is based on climate model simulations.

g The likelihood is based on statistical analysis of long-term data.
Regional, at least country specific prospective risk assessment and mapping necessary
Policies to Cope with Climate Change Effects

• Regional, at least country specific prospective risk assessment and mapping necessary
• Region specific prevention and adaptation measures
• Regional strategies to cope with losses from disasters induced by global warming
  - In developed countries: traditional insurance schemes
  - In developing countries: micro insurance, donor based insurance mechanisms
• Mitigation of causes of global warming

The Munich Climate Insurance Initiative (MCII)
The MCII was founded by representatives of Germanwatch, IIASA, Munich Re, the Potsdam Institute for Climate Impact Research (PIK), the Swiss Federal Institute of Technology (SLF), the Tyndall Centre, the World Bank, and independent experts.
Objectives

- Wealthy countries will be able to cope with financial losses from increasing disasters by means of insurance solutions and state funding, the poorest countries will suffer most.

- The increasing natural catastrophe damages in poor countries will consume increasing ratios of the donor money of development funding, delaying their further development.

- New insurance related systems are necessary to get these countries, where currently almost no insurance is available, out of the global warming trap.

- MCII is working on solutions to provide expertise on insurance related mechanisms to cover losses due to climate change, especially in developing countries.

Insurance of Natural Hazards
Carrier of the burden/liabilities

**up to now**
- Insured
- Insurer
- Reinsurer unlimited

**future solution?**
- Insured
- Insurer limited
- Reinsurer
- Government
Munich Re: many activities to promote climate protection

- Member of The Climate Group
- Member of the Global Roundtable on Climate Change (Jeff Sachs)
- Board member of the European Climate Forum
- Hosting side events at the annual global climate summits of the UNFCCC (COP)
- UNEP-Financial Initiative
- Carbon Disclosure Project

Increase of corporate responsibility activities in the field of climate change

Publications and strategic board game
Conclusions

- Natural catastrophes, especially weather related events, are increasing dramatically in number and magnitude. Loss potentials have reached new dimensions.

- Climate change is happening already, it cannot be stopped anymore, just attenuated.

- There is more and more scientific evidence for causal links between global warming and increasing frequencies and intensities of natural catastrophes.

- We have to mitigate global warming and adapt to the changing risks in respect to the regionally specific risk patterns.

- Insurance mechanisms are part of the adaptation process (UNFCCC) – they have to be designed in regard to the regional characteristics.