Environment Directorate

Test No. 442E: In Vitro Skin Sensitisation

In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation

In series:OECD Guidelines for the Testing of Chemicals, Section 4: Health Effectsview more titles

Published on October 09, 2017

Also available in: French

book

The present Key Event based Test Guideline (TG) addresses the human health hazard endpoint skin sensitisation, following exposure to a test chemical. More specifically, it addresses the activation of dendritic cells, which is one Key Event on the Adverse Outcome Pathway (AOP) for Skin Sensitisation. Skin sensitisation refers to an allergic response following skin contact with the tested chemical, as defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS). This TG provides three in vitro test methods addressing the same Key Event on the AOP: (i) the human cell Line Activation Test or h-CLAT method, (ii) the U937 Cell Line Activation Test or U-SENS and (iii) the Interleukin-8 Reporter Gene Assay or IL-8 Luc assay. All of them are used for supporting the discrimination between skin sensitisers and non-sensitisers in accordance with the UN GHS. Test methods described in this TG either quantify the change in the expression of cell surface marker(s) associated with the process of activation of monocytes and DC following exposure to sensitisers (e.g. CD54, CD86) or the changes in IL-8 expression, a cytokine associated with the activation of DC. In the h-CLAT and U-SENS assays, the changes of surface marker expression are measured by flow cytometry following cell staining with fluorochrome-tagged antibodies. In the IL-8 Luc assay, the changes in IL-8 expression are measured indirectly via the activity of a luciferase gene under the control of the IL-8 promoter. The relative fluorescence or luminescence intensity of the treated cells compared to solvent/vehicle control are calculated and used in the prediction model, to support the discrimination between sensitisers and non-sensitisers.