Latest Documents


  • 28-July-2015

    English

    Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method

    This Test Guideline describes an in vitro procedure that may be used for the hazard identification of irritant chemicals (substances and mixtures) in accordance with the UN Globally Harmonized System of Classification and Labelling (GHS) Category 2.  It is based on reconstructed human epidermis (RhE), which in its overall design closely mimics the biochemical and physiological properties of the upper parts of the human skin. Cell viability is measured by enzymatic conversion of the vital dye MTT into a blue formazan salt that is quantitatively measured after extraction from tissues. Irritant test substances are identified by their ability to decrease cell viability below defined threshold levels (below or equal to 50% for UN GHS Category 2). Coloured chemicals can also be tested by used of an HPLC procedure. There are three validated test methods that adhere to this Test Guideline. Depending on the regulatory framework and the classification system in use, this procedure may be used to determine the skin irritancy of test substances as a stand-alone replacement test for in vivo skin irritation testing, or as a partial replacement test, within a tiered testing strategy.

  • 28-July-2015

    English

    Test No. 404: Acute Dermal Irritation/Corrosion

    This method provides information on health hazard likely to arise from exposure to liquid or solid test substance by dermal application. This Test Guideline recommends sequential testing strategies, which include the performance of validated and accepted in vitro or ex vivo tests for corrosion/irritation.

    The albino rabbit is the preferable laboratory animal. The substance to be tested is applied in a single dose to a small area of skin (approximately 6cm²) of an experimental animal; untreated skin areas of the test animal serve as the control. The exposure period is 4 hours. Residual test substance should then be removed. The dose is 0.5ml (liquid) or 0.5g (solid) applied to the test site. The method consists of two tests: the initial test and the confirmatory test (used only if a corrosive effect is not observed in the initial test). All animals should be examined for signs of erythema and oedema during 14 days. The dermal irritation scores should be evaluated in conjunction with the nature and severity of lesions, and their reversibility or lack of reversibility. When responses persist to the end of the 14-day observation period, the test substance should be considered an irritant.

  • 28-July-2015

    English

    Test No. 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene

    The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced by chemical substances. This TG includes two distinct in vitro mammalian gene mutation assays requiring two specific tk heterozygous cells lines: L5178Y tk+/-3.7.2C cells for the mouse lymphoma assay (MLA) and TK6 tk+/- cells for the TK6 assay. Genetic events detected using the tk locus include both gene mutations and chromosomal events.

    Cells in suspension or monolayer culture are exposed to, at least four analysable concentrations of the test substance, both with and without metabolic activation, for a suitable period of time. They are subcultured to determine cytotoxicity and to allow phenotypic expression prior to mutant selection. Cytotoxicity is usually determined by measuring the relative cloning efficiency (survival) or relative total growth of the cultures after the treatment period. The treated cultures are maintained in growth medium for a sufficient period of time, characteristic of each selected locus and cell type, to allow near-optimal phenotypic expression of induced mutations. Mutant frequency is determined by seeding known numbers of cells in medium containing the selective agent to detect mutant cells, and in medium without selective agent to determine the cloning efficiency (viability). After a suitable incubation time, colonies are counted.

  • 28-July-2015

    English

    Test No. 430: In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test Method (TER)

    This Test Guideline addresses the human health endpoint skin corrosion. It is based on the rat skin transcutaneous electrical resistance (TER) test method, which utilizes skin discs to identify corrosives by their ability to produce a loss of normal stratum corneum integrity and barrier function. This Test Guideline was originally adopted in 2004 and updated in 2015 to refer to the IATA guidance document.

  • 28-July-2015

    English

    Test No. 492: Reconstructed human Cornea-like Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage

    This Test Guideline describes an in vitro procedure allowing the identification of chemicals (substances and mixtures) not requiring classification and labelling for eye irritation or serious eye damage in accordance with UN GHS. It makes use of reconstructed human cornea-like epithelium (RhCE) which closely mimics the histological, morphological, biochemical and physiological properties of the human corneal epithelium. The test evaluates the ability of a test chemical to induce cytotoxicity in a RhCE tissue construct, as measured by the MTT assay. Coloured chemicals can also be tested by used of an HPLC procedure. RhCE tissue viability following exposure to a test chemical is measured by enzymatic conversion of the vital dye MTT by the viable cells of the tissue into a blue MTT formazan salt that is quantitatively measured after extraction from tissues. The viability of the RhCE tissue is determined in comparison to tissues treated with the negative control substance (% viability), and is then used to predict the eye hazard potential of the test chemical. Chemicals not requiring classification and labelling according to UN GHS are identified as those that do not decrease tissue viability below a defined threshold (i.e., tissue viability > 60%, for UN GHS No Category).

  • 28-July-2015

    English

    Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists

    This Performance-Based Test Guideline (PBTG) describes in vitro assays, which provide the methodology of Stably Transfected Transactivation to detect Estrogen Receptor Agonists and Antagonists (ER TA assays). It comprises mechanistically and functionally similar test methods for the identification of estrogen receptor agonists and antagonists and should facilitate the development of new similar or modified test methods. The two reference test methods that provide the basis for this PBTG are: the Stably Transfected TA (STTA) assay using the (h) ERα-HeLa-9903 cell line, derived from a human cervical tumor, and the BG1Luc ER TA assay using the BG1Luc-4E2 cell line, derived from a human ovarian adenocarcinoma. The cell lines used in these assays express ER and have been stably transfected with an ER responsive luciferase reporter gene. The assays are used to identify chemicals that activate (i.e. act as agonists) and also suppress (i.e. act as antagonists) ER- dependent transcription. ER are activated following ligand binding, after which the receptor-ligand complex binds to specific DNA response elements and transactivates the reporter gene, resulting in increased cellular expression of a marker enzyme (e.g. luciferase in luciferase based systems). The enzyme then transforms the substrate to a bioluminescent product that can be quantitatively measured with a luminometer. These test methods are being proposed for screening and prioritisation purposes, but also provide mechanistic information that can be used in a weight of evidence approach.

  • 28-July-2015

    English

    Test No. 431: In vitro skin corrosion: reconstructed human epidermis (RHE) test method

    The test described in this Test Guideline allows the identification of corrosive chemical substances and mixtures and it enables the identification of non-corrosive substances and mixtures when supported by a weight of evidence determination using other existing information. The test protocol may also provide an indication of the distinction between severe and less severe skin corrosives. This Test Guideline does not require the use of live animals or animal tissue for the assessment of skin corrosivity.

    The test material (solid or liquid) is applied uniformly and topically to a three-dimensional human skin model, comprising at least a reconstructed epidermis with a functional stratum corneum. Two tissue replicates are used for each treatment (exposure time), and for controls. Corrosive materials are identified by their ability to produce a decrease in cell viability below defined threshold levels at specified exposure periods. Coloured chemicals can also be tested by used of an HPLC procedure. The principle of the human skin model assay is based on the hypothesis that corrosive chemicals are able to penetrate the stratum corneum by diffusion or erosion, and are cytotoxic to the underlying cell layers.

  • 28-July-2015

    English

    Test No. 491: Short Time Exposure In Vitro Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage

    This Test Guideline describes a cytotoxicity-based in vitro assay that is performed on a confluent monolayer of Statens Seruminstitut Rabbit Cornea (SIRC) cells, cultured on a 96-well polycarbonate microplate. After five-minute exposure to a test chemical, the cytotoxicity is quantitatively measured as the relative viability of SIRC cells using the MTT assay. Decreased cell viability is used to predict potential adverse effects leading to ocular damage. Cell viability is assessed by the quantitative measurement, after extraction from the cells, of blue formazan salt produced by the living cells by enzymatic conversion of the vital dye MTT, also known as Thiazolyl Blue Tetrazolium Bromide. The obtained cell viability is compared to the solvent control (relative viability) and used to estimate the potential eye hazard of the test chemical. A test chemical is classified as UN GHS Category 1 when both the 5% and 0.05% concentrations result in a cell viability smaller than or equal to (≤) 70%. Conversely, a chemical is predicted as UN GHS No Category when both 5% and 0.05% concentrations result in a cell viability higher than (>) 70%.

  • 28-July-2015

    English

    Test No. 483: Mammalian Spermatogonial Chromosomal Aberration Test

    This test measures structural chromosomal aberrations (both chromosome- and chromatid-type) in dividing spermatogonial germ cells and is, therefore, expected to be predictive of induction of heritable mutations in these germ cells. The purpose of the in vivo mammalian spermatogonial chromosomal aberration test is to identify those chemicals that cause structural chromosomal aberrations in mammalian spermatogonial cells (1) (2) (3). In addition, this test is relevant to assessing genetoxicity because, although they may vary among species, factors of in vivo metabolism, pharmacokinetics and DNA-repair processes are active and contribute to the response.

    The original Test Guideline 483 was adopted in 1997. This modified version of the Test Guideline reflects many years of experience with this assay and the potential for integrating or combining this test with other toxicity or genotoxicity studies.

  • 28-July-2015

    English

    Test No. 493: Performance-Based Test Guideline for Human Recombinant Estrogen Receptor (hrER) In Vitro Assays to Detect Chemicals with ER Binding Affinity

    This Performance-Based Test Guideline (PBTG) describes in vitro assays, which provide the methodology for human recombinant in vitro assays to detect substances with estrogen receptor binding affinity (hrER binding assays). It comprises two mechanistically and functionally similar test methods for the identification of estrogen receptor (i.e. ERα) binders and should facilitate the development of new similar or modified test methods. The two reference test methods that provide the basis for this PBTG are: the Freyberger-Wilson (FW) In Vitro Estrogen Receptor (ER) Binding Assay Using a Full Length Human Recombinant ERα, and the Chemical Evaluation and Research Institute (CERI) In Vitro Estrogen Receptor Binding Assay Using a Human Recombinant Ligand Binding Domain Protein. This assay measures the ability of a radiolabeled ligand ([3H]17β-estradiol) to bind with the ER in the presence of increasing concentrations of a test chemical (i.e. competitor).  Test chemicals that possess a high affinity for the ER compete with the radiolabeled ligand at a lower concentration as compared with those chemicals with lower affinity for the receptor. This assay consists of two major components: a saturation binding experiment to characterise receptor-ligand interaction parameters and document ER specificity, followed by a competitive binding experiment that characterises the competition between a test chemical and a radiolabeled ligand for binding to the ER. These test methods are being proposed for screening and prioritisation purposes, but also provide mechanistic information that can be used in a weight of evidence approach.

  • << < 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 > >>