FOREWORD

This Guidance Document (GD) was developed to (i) promote the use of histopathological evaluation as an additional endpoint for ocular toxicity testing; and (ii) provide specific guidance on using the TG 437 (BCOP) and TG 438 (ICE) for the purpose of expanding their respective databases towards optimising their use for identifying all hazard categories, including the complete recommended decision criteria for both test methods.

The present GD was originally adopted in 2011, and was subsequently updated based on increased knowledge on the use of histopathology especially with the ICE test method including: (i) the recommendation for having an internal peer-review process when evaluating histopathological effects, (ii) the use of semi-quantitative scoring systems for e.g. the ICE histopathology, and (iii) inclusion of an Atlas describing typical ICE histopathological effects.
TABLE OF CONTENTS

1

I. INTRODUCTION ...3

II. HISTOPATHOLOGICAL EVALUATION IN OCULAR SAFETY TEST METHODS4

 - Background ..4
 - Source of Tissue for Histopathological Evaluation ...5
 - Sample Identification ...5
 - Tissue Preparation ..5
 - Tissue Preservation ..6
 - Post-fixation Tissue Trimming ..6
 - Tissue Processing and Embedding ...7
 - Tissue Sectioning and Slide Preparation ...8
 - Staining of the Tissues ...8
 - Evaluation of Quality and Acceptability of the Corneal Sections ..9

III. DATA AND REPORTING ..9

 - Evaluation of Slides ..9
 - Test Report ...11
 - Decision Criteria for All Ocular Hazard Categories ..12
 - The BCOP Test Method ..13
 - The ICE Test Method ...14
 - Study Acceptance Criteria ..17
 - Test Report ...17

IV. LITERATURE ...18

24

ANNEX I: DEFINITIONS ..23

ANNEX II: ATLAS OF HISTOPATHOLOGICAL LESIONS OF ISOLATED CHICKEN EYES29

ANNEX III: GUIDELINES FOR HISTOPATHOLOGICAL EVALUATION OF BOVINE CORNEAS ...

 AS AN ENDPOINT OF THE BOVINE CORNEAL OPACITY AND PERMEABILITY ASSAY40

ANNEX IV: DETAILED PROTOCOL FOR STUDIES USING THE ISOLATED CHICKEN EYE

 TEST METHOD ..53

ANNEX V: DETAILED PROTOCOL FOR STUDIES USING THE BOVINE CORNEAL OPACITY

 AND PERMEABILITY TEST METHOD ...64

33

34
1. This Guidance Document (GD) accompanies the OECD Test Guideline (TG) 437 on the bovine corneal opacity and permeability (BCOP) test method (OECD 2013a) and TG 438 on the isolated chicken eye (ICE) test method (OECD 2013b). It provides users with guidelines for collecting histopathology data for in vitro and/or in vivo ocular safety test methods. The primary purposes of this GD are: i) to promote the collection of histopathological data; ii) to provide guidance on performing histopathological evaluations; (iii) to support further understanding of the usefulness and limitations of histopathology as an additional endpoint to improve the accuracy of in vitro ocular safety test methods; iv) to provide comprehensive protocols on the BCOP and ICE test methods to promote harmonization of approaches; and v) for those test chemicals (i.e. substances and mixtures) that are tested as a last resort, in vivo, to provide standard procedures for enucleating, fixing, and processing eyes from the in vivo rabbit eye studies for histopathological evaluation. Note that for a full evaluation of eye hazard effects after acute exposure, the Guidance Document on Integrated Approaches for Testing Assessment (IATA) should be considered (OECD, xxx). In particular, the IATA approach includes the use of recommended testing strategies based on in vitro test methods and on other information sources before considering testing in living animals (see paragraph 5).

2. Histopathological evaluation may be useful for (i) assessment of the histological damage of chemical classes or formulations that are not well characterized in the before-mentioned test methods; (ii) assisting with determination of a mode of action; (iii) assisting with determination of the likelihood of delayed effects; (iv) evaluation of the depth of injury, which has been proposed as a measure of reversibility or irreversibility (Maurer et al. 2002); (v) further characterization of the severity or scope of the damage as needed (Harbell et al. 2006) (ICCVAM 2010b) (Maurer et al. 2002); (vi) assisting with discrimination of cases where the response falls along the borderline between two categories based on the test method decision criteria. Therefore, users are encouraged to preserve tissues for histopathological evaluation.

3. Histopathological evaluation may also be used to support the development of other in vitro ocular safety test methods (e.g. Isolated Rabbit Eye test method (ICCVAM 2010a), Porcine Corneal Opacity and Permeability Assay (Van den Berghe et al. 2005), and 3-dimensional human corneal tissue constructs (Carrier et al. 2009) including the Reconstructed human cornea-like Epithelium test methods (OECD TG 492). Furthermore, in cases where an in vivo rabbit eye test is still needed as a last resort, histopathological evaluation may be used, when relevant, as an additional endpoint to more thoroughly evaluate the type and extent of ocular damage produced, as well as to provide a reference against which to compare effects produced in vitro. These additional data may help in the development of more accurate, mechanism-based in vitro alternatives to the rabbit eye test. Although the in vivo eye irritation study in rabbits seems to offer the possibility of performing histopathology of the treated eye in order to provide additional information on the inflammation process, in normal practice it will not be relevant. After all, in the standard in vivo rabbit eye irritation test, the rabbits may be sacrificed at the end of the observation period at which point the eye effects may have reversed. In the event that rabbits have to be sacrificed prematurely because of the severe nature of the eye effects, or in the event of persistence of effects in the cornea at the end of the observation period, sampling of the eyes for histopathology may be useful e.g. for better mechanistic understanding.

4. This GD describes the general procedures for the collection, preservation, and preparation of in vitro and in vivo ocular tissues for use in performing histopathological evaluations. Based on the latest progress on the use of histopathology for the ICE test method, it provides guidance in performing ICE histopathological evaluations including the recommendation of having an in-house peer-review system, the
use of a semi-quantitative scoring system to assess histopathological effects, and the use of an Atlas describing typical histopathological effects. Finally, it provides an example of interpretation of ICE histopathological data and the associated decision criteria that may be used for ocular hazard classification. The semi-quantitative scoring system has been developed and demonstrated to be adequate for the ICE test method. In case it is used with other test methods such as the BCOP, it should be demonstrated that it is adequate for use with the other test method. Similarly, the decision criteria described in Annex II has been developed for the ICE test method and the specific applicability domain of non-extreme pH detergents. Prior to use of the ICE semi-quantitative scoring system and/or decision criteria with other test method(s) and/or applicability domain(s), its/their adequacy to the new test method(s) and/or applicability domain(s) should be demonstrated first. Finally, in the case of the BCOP or of the in vivo test method, if differences exist regarding the collection, preservation, preparation, assessment and interpretation of the corneas or in vivo eyes, laboratories that routinely perform histopathological evaluations of ocular tissue can employ their existing procedures. When additional information becomes available, this GD will be updated accordingly.

5. It is currently generally accepted that, in the foreseeable future, no single in vitro eye irritation test will be able to replace the in vivo Draize eye test to predict across the full range of irritation for different chemical classes. The IATA for Serious Eye Damage and Eye Irritation describes several modules which group information sources and analysis tools, and provides guidance on (i) how to integrate and use existing testing and non-testing data for the assessment of eye hazard effects and (ii) proposes an approach when further testing is needed (OECD, xxx). In particular, strategic combinations of several alternative test methods within a (tiered) testing strategy may be able to replace the Draize eye test (OECD, 2012). For example, the Top-Down approach (Scott et al., 2010) is designed to be used when, based on existing information, a chemical is expected to have high irritancy potential, while the Bottom-Up approach (Scott et al., 2010) is designed to be used when, based on existing information, a chemical is expected not to cause sufficient eye irritation to require a classification. As described in TG 437 and 438, BCOP and ICE data are accepted for the hazard classification and labelling of test chemicals inducing serious eye damage (i.e., UN GHS Category 1) and test chemicals not requiring classification for eye irritation or serious eye damage (i.e., UN GHS No Category) (OECD 2013a) (OECD 2013b). However, even if none of these predictions are obtained, BCOP or ICE data can be useful, within an IATA approach in conjunction with other testing and/or non-testing data, to further evaluate potential eye hazard including moderate and mild irritants (i.e., UN GHS Category 2/2A and 2B). This GD provides further insights on the decision criteria and protocols of these two assays that can be reported in parallel with other data available.

6. Definitions are provided in Annex I.

II. HISTOPATHOLOGICAL EVALUATION IN OCULAR SAFETY TEST METHODS

Background

7. With the exception of some research projects (Cuellar et al. 2003) (Kadar et al. 2001) (Maurer et al. 2002), few in vivo eye irritation studies include histopathological evaluation. The lack of such data has impeded the identification of relevant histopathology endpoint(s) that can be used in in vivo eye irritation/corrosivity testing, and its use to develop in vitro ocular safety test methods. While this GD provides examples on the evaluation and interpretation of histopathological data, it is important to recognize that the markers of injury in isolated eyes or corneas are different from those observed in eyes treated in vivo. For example, in vitro test methods are devoid of an intact inflammatory response. However, the depth of injury in isolated corneas, as determined by histopathological evaluation, has been proposed to predict the degree and duration of the injury (Maurer et al. 2002).
8. To facilitate consideration of histopathological evaluation as a useful endpoint for *in vitro* and *in vivo* ocular safety testing, users are encouraged to submit data and histopathological specimens generated according to this GD to international validation organizations (i.e. the US National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods [US-NICEATM], the EU European Union Reference Laboratory for Alternatives to Animal Testing [EURL-ECVAM], or the Japanese Center for the Validation of Alternative Methods [JaCVAM]).

Source of Tissue for Histopathological Evaluation

9. The source of tissue to be considered for histopathological evaluation includes whole eyes or isolated portions of the anterior segment (e.g. cornea), obtained after completion of an *in vitro* or *in vivo* ocular safety test method. All information related to the type and treatment of a particular tissue sample should be included in the *Test Report*.

10. All procedures using animal eyes should follow the institution’s applicable regulations and procedures for handling animal-derived materials, which include, but are not limited to, tissues and tissue fluids. Universal laboratory safety precautions are recommended (Siegel *et al.* 2007).

Sample Identification

11. Each sample should be assigned a unique identifier that will allow it to be traced back to the study from which it was obtained (Billings and Grizzle 2008) (Harbell *et al.* 2006) (ICCVAM 2010b).

Tissue Preparation

12. In the case of the *in vitro* Isolated Chicken Eye test method, treated eyes are collected after the final examination i.e., four hours after treatment (OECD, 2013b). Three eyes per test chemical is considered appropriate. Eyes can be incised almost completely in half with a scalpel just behind the level of the lens and through the vitreous body, leaving a part of the posterior tissue still attached where eyes can be held (that will later be discarded) to ensure that the cornea is not damaged during manipulation by dropping on a surface, whilst at the same time allowing optimal penetration of the fixation agent (see paragraphs 15 to 19).

13. In the case of the *in vitro* Bovine Corneal Opacity and Permeability test method, after completion of the fluorescein permeability endpoint sampling, remaining fluorescein and medium are removed from the corneal holders, the holders are carefully disassembled, and the corneas are carefully removed and transferred to individually labelled tissue cassettes. The corneas are placed endothelial surface down onto a histology sponge to protect the endothelium. The cassettes are placed in labelled containers filled with 10% neutral buffered formalin and fixed at room temperature for a minimum of 24 hours.

14. Corneas to be used for histopathological evaluation following *in vivo* studies following the OECD TG 405, conducted as last resort within the framework of the IATA for Serious Eye Damage and Eye Irritation, are kept moist with drops of physiological saline (pre-warmed from 31 to 32°C) applied throughout the dissection process. Scientists with expertise in performing the dissection have provided details of the procedure (Jones P, Guest R, personal communications) (ICCVAM 2006a). The nictitating membrane is deflected away using forceps and the conjunctivae are cut using angled forceps and curved scissors. The eyeball is removed by applying gentle pressure with fingers above and below the orbit. The remaining conjunctival tissue, the orbital muscles and the optic nerve (leaving approximately a 5-10 mm section to prevent loss of intraocular pressure) are removed and the eyeball is lifted from the orbit. Any tissue adhering to the globe is then removed by careful dissection, and the eyeball is gently rinsed with a stream of physiological saline to remove any adherent debris.
Tissue Preservation

15. Tissue fixatives prevent autolysis by inactivating autolytic enzymes that are released post-mortem (Banks 1993). Fixation also hardens the tissue thereby allowing thin sections to be cut without inducing mechanical artefacts (e.g. compression of the tissue). Factors that affect tissue fixation include time and temperature during incubation, the volume of the fixative relative to tissue size, the physicochemical properties of the fixative, and the concentration of the fixative (Banks 1993) (Grizzle et al. 2008). To prevent the tissues from drying out, which would induce substantial artefacts, they should remain immersed in fixative before processing and embedding.

16. Tissues should be placed in prelabelled containers filled with fixative. Most histology protocols recommend a fixative volume at least 5- to 10-fold greater than the size of the tissue (Billings and Grizzle 2008) (Kiernan 1990) (Samuelson 2007), although Banks (1993) recommends up to a 30-fold fixative-to-tissue size ratio. In the case of the ICE test methods, eyes (incised or not) are placed in a container with the fixation agent (e.g., approximately 20 mL of e.g. 10% formalin (see paragraph 18) for at least 24 hours. In the case of the BCOP test method, bovine corneas are placed into 10% neutral buffered formalin (10% NBF) at a rate of approximately 20 corneas per 300 mL.

17. All tissues should be completely immersed in the fixative. Smaller tissues may be placed into cassettes; however, for consistency in sectioning, care should be taken to orient them so that the epithelial (anterior) surface faces the top of the cassette (Harbell et al. 2006) (ICCVAM 2010b).

18. The depth of penetration of most fixatives is directly proportional to the square root of the duration of fixation (t) dependent on the coefficient of diffusibility (k) of the fixative, which averages to 1 for typically used fixatives. Fixation time thus translates to the square of the distance the fixative should penetrate. At a rate of 1 mm/hour, the time of fixation for a 10-mm sphere in neutral buffered formalin (NBF) will be \((5)^2 \) or 25 hours of fixation (Grizzle, Fredenburgh, and Myers 2008). Therefore, tissues are typically fixed for at least 24 hours at room temperature. However, the reported range for fixation is 4 to 48 hours (Kimura et al. 1995) (Kjellström et al. 2006), and some protocols perform fixation at 4°C (Kjellström et al. 1996) (Maaijwee et al. 2006).

19. The fixatives most commonly used for ocular tissues are 10% NBF and Davidson's (Bancroft and Cook, 1994) (Spencer and Bancroft, 2008). Neutral aqueous phosphate buffered 4% solution of formaldehyde (i.e., 10% formalin), has been generally used for incised eyes in the ICE test method (Prinsen, 2011), although Davidson’s fixative has also been suggested in case whole eyes are used in the ICE test method due to the rapid penetration into the deeper tissues by the alcoholic component of the fixative (Latendresse et al. 2002). For the isolated corneas used in the BCOP test method, extensive experience indicates that fewer artefacts are induced following fixation with 10% NBF than with Davidson’s fixative (Raabe H, personal communication). Other fixatives that have been used for ocular tissues include 4% glutaraldehyde (Chen et al. 2008), a mixture of 2.5% glutaraldehyde and 2% formaldehyde (Kimura et al. 1995) (Zhang and Rao 2005), and 4% paraformaldehyde (Kjellström et al. 2006) (Maaijwee et al. 2006).

Post-fixation Tissue Trimming

20. Prior to initiating the tissue-processing step, it may be necessary to trim the fixed tissues to ensure that they are adequately dehydrated and infiltrated with paraffin wax. Any post-fixation trimming should be done using a sharp scalpel, scissors, and/or razor blades to minimize tissue artefacts. In the case of the ICE test method, the fixed eye is trimmed with scissors in such a way that a thin piece containing the entire cornea and the adjacent sclera are embedded in the paraffin wax.
Tissue Processing and Embedding

21. Ocular tissues contain approximately 75% water (Banks 1993) and should be thoroughly dehydrated prior to embedding. This is most commonly achieved by immersing the fixed tissue in a graded alcohol series such as ethanol from 60%-70%, 90%-95%, and 100% (Rosa and Green 2008) (Spencer and Bancroft 2008). Lower concentrations, such as 30% ethanol, are recommended for delicate tissue (Spencer and Bancroft 2008). Other water-miscible solvents have also been used successfully (e.g. n-butanol, dioxane, isopropanol, propanol, tetrahydrofuranyl, and tetrahydrofurfuryl alcohol (Banks 1993) (Fischer et al. 2008) (Kiernan 1990) (Pantcheva et al. 2007). In the case of the ICE test method an ethanol series of 50%, 70%, 80%, 96%, 100% is generally used.

22. Because alcohols are not miscible with the paraffin wax used for embedding, a substance that is miscible with ethanol and paraffin wax in the absence of water should be used for intermediate clearing. This step also increases the transparency of the resulting tissue section (i.e. "tissue clearing" (Samuelson 2007) (Spencer and Bancroft 2008)). Xylene is the most common clearing agent used, although others have been used, including benzene, chloroform, n-butanol, n-butyl acetate, amyl acetate, ligroin, petroleum solvents (mainly hexanes), toluene, and trichloroethane, or terpenes such as cedarwood oil, limonene, and terpineol (Banks 1993) (Fischer et al. 2008) (Kiernan 1990) (Pantcheva et al. 2007). Many of these solvents may be toxic or potentially carcinogenic, so it is important to consult the Safety Data Sheets to determine proper handling conditions prior to use.

23. Because of the damage and resulting morphological artefacts produced by elevated temperatures (i.e. heating), tissues should ideally be dehydrated and cleared at moderate to room temperature. For example, in the case of the ICE test method, isolated eyes are usually dehydrated at 40°C.

24. Ocular tissue is typically embedded in paraffin wax, a polycrystalline mixture of solid hydrocarbons (Barequet et al. 2007) (Cerven et al. 1996) (Chen et al. 2008) (Harbell et al. 2006) (ICCVAM 2010b) (Maaijwee et al. 2006). Plastic materials such as glycol methacrylate have also been used to embed corneal or globe tissue of the rabbit (Kimura et al. 1995). Plastic embedding has some advantages over paraffin embedding for corneal disc preparations (e.g. no heat exposure, reduced distortion) (Lee 2002).

25. When processing only the isolated cornea (i.e. when using the BCOP test method or other isolated corneal models), following infiltration with liquid paraffin, the cornea should be bisected so that both halves can be embedded in the same block.

26. Processed tissues should be embedded so as to maintain the appropriate orientation in the hardened tissue block once the paraffin cools. For example, in case of need for measuring the corneal thickness due to e.g. swelling, true corneal cross-sections (i.e. anterior to posterior) are usually desired to permit an accurate measurement of the effects caused by the test chemical relative to the negative control (although this is not applicable to the ICE test method for which corneal swelling is measured prior to histopathology using a slit-lamp microscope). In any case, the tissue should be embedded in the block on its edge in the correct orientation to permit relevant sections to be made according to the evaluations sought.

27. A routine schedule for processing in vivo eyes with a tissue processor is provided by Barequet et al. (2007). Enucleated globes that are initially fixed overnight in 10% NBF are dehydrated in 4% phenol/70% alcohol for 1 hr each. Phenol is added to soften the sclera and lens. The eyes are then incubated in two separate stations of 95% alcohol (1 hr each), followed by two separate stations of 100% alcohol (1.5 hr each). Tissue-clearing steps include incubations in 50% alcohol/50% xylene for 2 hr, followed by two separate stations of 100% xylene (2 hr/each). Tissue is then infiltrated with liquid paraffin in two separate
2-hr incubations. This schedule may require modification depending on the manufacturer's specifications and the type of tissue processor used as e.g. described above.

Tissue Sectioning and Slide Preparation

28. Once embedded, the tissue is usually sectioned using a microtome with a sharpened steel blade. Depending on the type of microtome used, the thickness of microtome sections for tissue is generally 3-8 µm (Banks 1993) (Fischer et al. 2008) (Samuelson 2007) (Spencer and Bancroft 2008) (Lee 2002). In the case of the ICE and BCOP test methods, longitudinal serial slides are generally sectioned at 4-5 µm, prepared from the central area of the cornea and further processed with the staining. The microtome should be placed on a stable surface composed of a dense material that will minimize vibrations (e.g. a marble desktop). Vibrations can cause substantial tissue artefacts (Harbell et al. 2006) (ICCVAM 2010b) (Spencer and Bancroft 2008).

29. For embedded globes or corneas that have been bisected, tissue sections from each half of the bisected globe containing adequate corneal tissue or the bisected cornea itself are cut and placed on a slide for staining (i.e. a series of tissue sections in which the trailing edge of one section adheres to the trailing edge of the next section are usually floated on warm water to reduce wrinkles when they are mounted on glass slides) (Banks 1993) (Harbell et al. 2006) (Kierman 1990). In the case of the ICE test method, usually one section per eye is prepared whereas in the case of the BCOP test method (for which the cornea is bisected), two sections are usually prepared from each cornea. It is important to remove tissue from the water before it expands and causes artefactual spaces between tissues, cells, and extracellular fibres (Samuelson 2007) (Spencer and Bancroft 2008). While there is no standardized length of time for allowing the sections to float, they are typically allowed to expand to approximately the same dimensions as the block face from which they were cut for comparison purposes.

30. Poly-L-lysine-coated glass microscope slides are often used to ensure that the tissue sections adhere to the microscope slide throughout the staining procedures. Alternatively, gelatine can be added to the water bath (Spencer and Bancroft 2008).

31. Sharp knife blades should always be used; dull blades can cause microtome artefacts such as compression lines, knife marks or tears, and/or uneven thickness of the tissue section (Samuelson 2007) (Spencer and Bancroft 2008).

Staining of the Tissues

32. For routine histopathological evaluations, tissues are most commonly stained with hematoxylin and eosin (H&E) (Gamble 2008) (Fischer et al. 2008). Additional information on staining and other aspects of histopathological evaluation are available in the histology manuals edited by Bancroft and Cook (1994) or Bancroft and Gamble (2008).

33. In the case of the ICE test method it is advised to follow the guidance given in the manual AFIP Laboratory Methods in Histotechnology (Prophet et al., 1992) using the Periodic Acid-Schiff (PAS) staining as described previously (Prinsen et al., 2011). Staining histological slides alternatively with H&E (haematoxylin and eosin) is also possible. However, a better visibility of the basement membrane can be obtained when PAS is used. Apart from the effect on the visibility of the basement membrane, both stainings are suitable for histopathological evaluation of all relevant endpoints in the ICE and BCOP test methods. The differences in appearance of both types of staining are illustrated in Annex II.
Evaluation of Quality and Acceptability of the Corneal Sections

34. Tissues from animals/samples treated with test chemical should be processed together with positive and negative control tissues. Negative control tissues may be used to determine acceptability of the other slides in a group. They may also be used to evaluate the quality of the stain, artefacts, tissue architecture, and tissue thickness (Harbell et al. 2006) (ICCVAM 2010b). Positive control data from the testing laboratory may be used to develop a historical database for ocular damage produced by severe irritants. Benchmark controls could be used to identify potential mechanisms of action based on the type of injury produced by a given chemical or product class (e.g. oxidizer, surfactant).

35. Before using histopathology for regulatory purposes, it is recommended that laboratories develop an in-house bandwidth of morphological effects based on the negative controls, as well as a range of induced histopathological changes such as illustrated in Annex II.

III. DATA AND REPORTING

Evaluation of Slides

36. The prepared slides should be maintained for archival purposes. Furthermore, if feasible, digital slide scans of all tissue sections might be prepared as an additional option for archival purposes. In the case of the ICE test method, three eyes per test chemical and one section per eye is considered sufficient. In the case of the BCOP test method, also three corneas are used for each test chemical, but two sections are usually prepared from each cornea (see paragraph 29).

37. All histopathological evaluations should be performed by personnel trained to identify the relevant morphological changes in treated corneas or eyes. Original slides should preferably be used for assessment.

38. When used for regulatory purposes, consolidated training and transferability are recommended to ensure harmonized and consistent histopathological observations. Furthermore, an internal pathology peer review system is recommended especially when histopathology is needed for a risk assessment or classification and labelling decision, in accordance with current recommendations (Morton et al., 2010) and in accordance with the OECD Advisory document n. 16 on GLP requirements for peer review of histopathology (OECD, 2014). In this process, a pathologist trained (on the tissues to be evaluated) peer-reviews a number of slides and pathology data (e.g., 1 out of 3 eyes) to assist the study pathologist in refining pathology diagnoses and interpretations. Such peer review process allows to verify and improve the accuracy and quality of pathology diagnoses and interpretations.

Scoring system

39. In the case of the ICE, a semi-quantitative scoring system has been developed to promote harmonized observations of tissue effects and enable comparison of effects caused by different test chemicals (Prinsen et al., 2011; see also annex II). Table 1 shows the typical tissue effects and scores attributed to treated Isolated Chicken Eyes that were fixed, trimmed, embedded in paraffin wax, sectioned and stained.
Table 1. Semi-quantitative scoring system used for isolated chicken eyes that were fixed, trimmed, embedded in paraffin wax, sectioned and stained.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Observation</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium: erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very slight</td>
<td>½</td>
<td>Few single cells up to the entire single superficial layer</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>Up to 3 layers are gone</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Up to 50% of the epithelial layer is gone</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>Epithelial layer is gone up to the basement membrane</td>
</tr>
<tr>
<td>Epithelium: vacuolation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separately scored for the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>top, mid, and lower parts of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epithelium††††</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very slight</td>
<td>½</td>
<td>Few scattered cells</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>Groups of vacuolated cells or single string of cells with small vacuoles</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Up to 50% of the epithelium consists of vacuolated cells</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>50 – 100% of the epithelium consists of vacuolated cells</td>
</tr>
<tr>
<td>Epithelium: necrosis*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>*</td>
<td>< 10 necrotic cells</td>
</tr>
<tr>
<td></td>
<td>Very slight</td>
<td>½</td>
<td>10 – 20 necrotic cells</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>20 – 40 necrotic cells</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Many necrotic cells but < 50% of the epithelial layer</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>50 – 100% of the epithelial layer is necrotic.</td>
</tr>
<tr>
<td>Stroma: pyknotic nuclei††, †‡††</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In top or bottom region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>*</td>
<td>< 5 pyknotic nuclei</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>5 – 10 pyknotic nuclei</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>> 10 pyknotic nuclei</td>
</tr>
<tr>
<td>Stromal disorder of fibres*</td>
<td>Present</td>
<td>P</td>
<td>Irregular appearance of the fibres.</td>
</tr>
<tr>
<td>Endothelium: necrosis*</td>
<td>Present</td>
<td>P</td>
<td>The endothelium consists of only one layer, so a grade is not relevant</td>
</tr>
</tbody>
</table>

Note: Annex II displays an Atlas with typical photomicrographs of untreated as well as treated Isolated Chicken Eyes illustrating the various possible histopathological effects described above.

† Over the entire cornea except in case of test chemicals (e.g. some solid chemicals) causing localized effects despite of the homogenous application of the test chemical as required within the OECD TG 438. In this case the evaluation should be based on the localized effects at the site(s) of exposure.

†† Top, mid and lower parts represent equal one third parts of the epithelial layer each. If the top layer is missing, the mid layer will not become the new top layer, but is still the mid layer (see Annex II for more details).

†‡ Includes also detached cells.

†† Necrotic cells are counted across the entire length of the cornea (there is no need for a specific fixed length to report cell counts because the entire length of the cornea is consistent on each slide as there is almost no variation in the size of the chicken eyes used and in the size of the samples evaluated microscopically). The scoring system uses absolute cell counts from ‘normal’ to ‘slight’, versus a percentage for ‘moderate’ and ‘severe’. This is due to the way the evaluation is performed by the examiner: necrotic cells are seen as individual items. If there are more, they are usually scattered. Therefore the examiner counts them to get an impression of the amount of necrosis. This is in contrast to erosion, for which the first thing the examiner notices is that a part of the epithelium is missing, so it makes sense to use an estimated percentage of loss.

†‡‡ The ICE test method already includes a precise measurement of the thickness of the cornea using a slit lamp microscope. Therefore, swelling of the stroma is not separately scored during the subsequent histopathological evaluation.

*** The stromal effects that are scored consist of (1) pyknotic nuclei, which originate from the scoring system used by Maurer (2001) based on his observations in corneas of rabbits after in vivo exposure (described as keratocyte loss/necrosis), and of (2) disorder of fibres. Regarding (1), the presence of pyknotic nuclei is observed only occasionally and the development of pyknotic nuclei is proposed to be dependent on the depth of injury and/or the inflammation process of the cornea (in vivo). Furthermore, due to the elongated form of the stromal fibroblasts, normal nuclei could be misleadingly considered as pyknotic nuclei depending on the section orientation of cells. Regarding (2), the observation and scoring of disorder of fibres may be difficult because the stromal fibres already show a “natural” disorder. The processing of the cornea for microscopy can also contribute to an artificial disorder of stromal fibres. In both cases (pyknotic nuclei and disorder of fibres), these observations coincide with severe corneal effects already observed by the slit-lamp microscope observations, and with effects observed in the mid and/or lower epithelial layer.
40. The OECD TG 438 requires test chemicals to be homogenously distributed on the surface of the treated eyes. In this case test chemicals usually cause homogenous effects in the cornea of the isolated chicken eyes. In these cases, the mean of histopathological effects over the entire slide should be scored. However, some test chemicals may cause localized effects despite of their homogenous application (e.g., as for some solid test chemicals). In these cases, it is critical that the technician performing the ICE test method informs the histopathologist, and the histopathological scoring should be based on the local effects observed, where exposure to the test chemical occurred. Furthermore if doubts remain (e.g. a discrepancy between the ICE results and the histopathological observations is noticed), additional slices may be prepared on other parts of the cornea to ensure the localized effects are present in the observed section.

41. Only effects that are observed should be scored. No assumptions should be made (e.g., if the top layer of the epithelium is missing it will not be possible to score for vacuolation in that layer). Furthermore, the corneal parts adjacent to the limbus should not be scored due to effects not linked to the chemical exposure such as e.g. inflammation.

42. It is critical to distinguish actual effects from histopathological artefacts. For this purpose the Atlas presented in Annex II describes both types of effects. Furthermore consolidated training and transferability are recommended to ensure consistent histopathological observations (see paragraph 38).

Test Report

43. The test report should include the following information, if relevant to the conduct of the study:

Test Chemical and Control Substances

- Mono-constituent substance: chemical identification, such as IUPAC or Chemical Abstracts Service (CAS) name(s), CAS registry number(s), SMILES or InChI code, structural formula, and/or other identifiers;
- Multi-constituent substance, UVCB and mixture: characterization as far as possible by e.g., chemical identity (see above), purity, quantitative occurrence and relevant physicochemical properties (see above) of the constituents, to the extent available;
- Purity, chemical identity of impurities as appropriate and practically feasible;
- Physical state, volatility, pH, stability, chemical class, water solubility, and additional properties relevant to the conduct of the study, to the extent available;
- Treatment prior to testing, if applicable (e.g. warming, grinding);
- Storage conditions and stability to the extent available.

Information Concerning the Sponsor and the Test Facility

- Name and address of the sponsor, test facility, study director, and study pathologist;
- Identification of the source of the eyes (e.g. the facility from which they were collected);
- Storage and transport conditions of eyes (e.g. date and time of eye collection, time interval prior to initiating testing);
- If available, specific characteristics of the animals from which the eyes were collected (e.g. age, sex, strain, weight of the donor animal).

Histology Report

- Unique sample identifier;
- Type of tissue analyzed (e.g. cornea, whole eye);
- Tissue species (e.g. bovine, rabbit);
- Time of animal slaughter and/or eye collection and time of tissue fixation;
- Number of tissues analyzed for each test chemical and control (e.g. n=3);
- Peer-review system used if applicable;
- Furthermore, if not included in the e.g. standard operating procedure (SOP), when available, the following information shall be included:
 - Description of consolidated training and transferability;
 - Fixative, dehydration and clarifying agents, and protocols used;
 - Embedding material, infiltration solvents, and concentrations used;
 - Thickness of tissue sections;
 - Stain (in report) and the associated staining protocol used;
 - Information on instruments used.

Results
- Optional digital images or digital slide scans, if feasible;
- Detailed descriptions of all lesions and artefacts using a semi-quantitative scoring system or, if not available, standard histopathological terminology;
- Description of the decision criteria used in the evaluation;
- Individual specimen data tables and if applicable, summary tables.

Decision Criteria for All Ocular Hazard Categories

44. As described in TG 437 (OECD 2013a) and 438 (OECD 2013b), BCOP and ICE can be used, under certain circumstances and with specific limitations, to classify substances and mixtures for eye hazards. They are considered relevant information sources to be used within an IATA approach before considering testing in living animals (OECD, xxx). In particular, while not considered valid as a stand-alone replacement for the in vivo rabbit eye test, both the ICE and BCOP test methods are recommended as an initial step within a testing strategy such as the Top-Down approach suggested by Scott et al. (2010) to identify chemicals inducing serious eye damage, i.e., chemicals to be classified as UN GHS Category 1 without further testing (UN, 2015). The ICE and BCOP test methods are also both recommended to identify chemicals that do not require classification for eye irritation or serious eye damage as defined by the UN GHS (No Category, NC) (UN, 2015), and may therefore be used as an initial step within a Bottom-Up testing strategy approach (Scott et al., 2010).

45. Within the context of the IATA for Serious Eye Damage and Eye Irritation, a substance or mixture that is not predicted as causing serious eye damage or as not classified for eye irritation/serious eye damage requires consideration of additional information sources such as additional testing (in vitro and/or in vivo as a last resort) to establish a definitive classification. Even if no predictions can be made on the classification based on the OECD TG 437 and 438, BCOP or ICE data can be useful within an IATA approach, in conjunction with other testing and/or non-testing data, to further evaluate eye hazard effects in a weight-of-evidence approach. Therefore, the following detailed decision criteria are provided to correspond to all current UN GHS hazard categories. These data can then be reported in parallel with the other data available.
The BCOP Test Method

46. A detailed protocol for BCOP is provided in Annex IV. As described in OECD TG 437 (OECD 2013a), the mean opacity and permeability OD₄₉₀ values for each treatment group are combined to calculate an in vitro irritancy score (IVIS) for each treatment group as follows: IVIS = mean opacity value + (15 x mean OD₄₉₀ value).

47. A substance or mixture that induces an IVIS > 55 is predicted as inducing serious eye damage (UN GHS Category 1) and a substance or mixture that has an IVIS ≤ 3.0 is predicted to not require classification according to the UN GHS (No Category). The recommended decision criteria for using BCOP to identify other hazard categories are provided in Table 2.

Table 2: Overall BCOP classification criteria

<table>
<thead>
<tr>
<th>In Vitro Classification</th>
<th>IVIS Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Classified²</td>
<td>≤ 3</td>
</tr>
<tr>
<td>Mild³</td>
<td>> 3; ≤ 25</td>
</tr>
<tr>
<td>Moderate⁴</td>
<td>> 25; ≤ 55</td>
</tr>
<tr>
<td>Severe⁵</td>
<td>> 55</td>
</tr>
</tbody>
</table>

¹As described in TG 437 (OECD 2013a), BCOP data are only accepted for regulatory hazard classification and labelling of UN GHS Cat. 1 (serious eye damage, IVIS > 55) and UN GHS No Category (IVIS ≤ 3.0).
²UN GHS No Category
³UN GHS Category 2B
⁴UN GHS Category 2A
⁵UN GHS Category 1

48. The ability of the BCOP test method to identify all categories of ocular irritation potential, as defined by the EPA, EU, and GHS classification systems (EPA 2003a) (EU 2008) (UN 2015), was evaluated by ICCVAM (2010a). Based on the then available BCOP database (n=211 test chemicals), (ICCVAM 2006b), the overall correct classification ranged from 49% (91/187) to 55% (102/187) when evaluating the entire database, depending on the hazard classification system used. Based on these performance statistics, the BCOP test method is not considered valid as a complete replacement for the in vivo rabbit eye test.

49. Although not considered valid as a stand-alone replacement for the in vivo rabbit eye test, the BCOP test method falling within the OECD TG 437 can be used to identify UN GHS Category 1 chemicals and UN GHS No Category chemicals without further testing (UN, 2015). If no predictions can be made on the classification based on the OECD TG 437, the BCOP test data may still be useful within an IATA approach, in conjunction with other testing and/or non-testing data, to further evaluate eye hazard effects in a weight-of-evidence approach (OECD, xxx). In addition, the detailed decision criteria as shown in Table 2 may be used to further evaluate the usefulness and limitations of the BCOP test method for identifying all categories of ocular irritation.

50. When such data are generated, the criteria described above may need to be modified in order to optimize the BCOP test method for identifying moderate and mild irritants (i.e. UN GHS Categories 2/2A and 2B). Furthermore, the concurrent testing of benchmark chemicals or materials relevant in chemistry
and formulation to the test chemical or material, and for which sufficient and adequate data on eye hazard classification exist, may provide further support for predicting the test chemical eye hazard potential in a Weight of Evidence approach.

The ICE Test Method

51. A detailed protocol for ICE is provided in Annex V. As described in OECD TG 438 (OECD 2013b), the overall in vitro irritancy classification for a substance or mixture is assessed by reading the irritancy classification that corresponds to the combination of categories obtained for corneal swelling, corneal opacity, and fluorescein retention (see Table 8).

52. Corneal swelling is determined from corneal thickness measurements made with an optical pachymeter on a slit-lamp microscope. It is expressed as a percentage and is calculated from corneal thickness measurements according to the following formula:

\[
\left(\frac{\text{corneal thickness at time } t - \text{corneal thickness at time } 0}{\text{corneal thickness at time } 0} \right) \times 100
\]

53. The mean percentage of corneal swelling for all test eyes is calculated for all observation time points. Based on the highest mean score for corneal swelling, as observed at any time point, an overall category score is then given for each test chemical (Table 3).

<table>
<thead>
<tr>
<th>Mean Corneal Swelling (%)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5</td>
<td>I</td>
</tr>
<tr>
<td>> 5 to 12</td>
<td>II</td>
</tr>
<tr>
<td>> 12 to 18 (>75 minutes after treatment)</td>
<td>II</td>
</tr>
<tr>
<td>> 12 to 18 (≤75 minutes after treatment)</td>
<td>III</td>
</tr>
<tr>
<td>> 18 to 26</td>
<td>III</td>
</tr>
<tr>
<td>> 26 to 32 (>75 minutes after treatment)</td>
<td>III</td>
</tr>
<tr>
<td>> 26 to 32 (≤75 minutes after treatment)</td>
<td>IV</td>
</tr>
<tr>
<td>> 32</td>
<td>IV</td>
</tr>
</tbody>
</table>

54. The above mean corneal swelling scores are only applicable if thickness is measured with a Haag-Streit BP900 slit-lamp microscope (or alternatively a Haag-Streit BQ900 slit-lamp microscope) with depth-measuring device no. I and slit-width setting at 9½, equalling 0.095 mm. Users should be aware that slit-lamp microscopes could yield different corneal thickness measurements if the slit-width setting is different. If another slit-lamp microscope, depth-measuring device or settings are used, equivalence should be demonstrated and/or the appropriate range for classification shall be established.

55. Corneal opacity is calculated by using the area of the cornea that is most densely opacified for scoring (Table 4). The mean corneal opacity value for all test eyes is calculated for all observation time points. Based on the highest mean score for corneal opacity, as observed at any time point, an overall category score is then given for each test chemical (Table 5).
Table 4: ICE corneal opacity scores

<table>
<thead>
<tr>
<th>Score</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No opacity</td>
</tr>
<tr>
<td>0.5</td>
<td>Very faint opacity</td>
</tr>
<tr>
<td>1</td>
<td>Scattered or diffuse areas; details of the iris are clearly visible</td>
</tr>
<tr>
<td>2</td>
<td>Easily discernible translucent area; details of the iris are slightly obscured</td>
</tr>
<tr>
<td>3</td>
<td>Severe corneal opacity; no specific details of the iris are visible; size of the pupil is barely discernible</td>
</tr>
<tr>
<td>4</td>
<td>Complete corneal opacity; iris invisible</td>
</tr>
</tbody>
</table>

Table 5: ICE classification criteria for opacity

<table>
<thead>
<tr>
<th>Mean Maximum Opacity Score</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0–0.5</td>
<td>I</td>
</tr>
<tr>
<td>0.6–1.5</td>
<td>II</td>
</tr>
<tr>
<td>1.6–2.5</td>
<td>III</td>
</tr>
<tr>
<td>2.6–4.0</td>
<td>IV</td>
</tr>
</tbody>
</table>

Fluorescein retention is evaluated at the 30 minute observation time point only (Table 6). The mean fluorescein retention value of all test eyes is then calculated for the 30-minute observation time point, and used for the overall category score given for each test chemical (Table 7).

Table 6: ICE fluorescein retention scores

<table>
<thead>
<tr>
<th>Score</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No fluorescein retention</td>
</tr>
<tr>
<td>0.5</td>
<td>Very minor single cell staining</td>
</tr>
<tr>
<td>1</td>
<td>Single cell staining scattered throughout the treated area of the cornea</td>
</tr>
<tr>
<td>2</td>
<td>Focal or confluent dense single cell staining</td>
</tr>
<tr>
<td>3</td>
<td>Confluent large areas of the cornea retaining fluorescein</td>
</tr>
</tbody>
</table>

Table 7: ICE classification criteria for mean fluorescein retention

<table>
<thead>
<tr>
<th>Mean Fluorescein Retention Score at 30 minutes post-treatment</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0–0.5</td>
<td>I</td>
</tr>
<tr>
<td>0.6–1.5</td>
<td>II</td>
</tr>
<tr>
<td>1.6–2.5</td>
<td>III</td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>IV</td>
</tr>
</tbody>
</table>
57. Results from corneal opacity, swelling, and fluorescein retention should be evaluated separately to generate an ICE class for each endpoint. The ICE classes for each endpoint are then combined to generate an Irritancy Classification for each test chemical (see Table 8).

58. The overall in vitro irritancy classification for a test chemical is assessed by reading the irritancy classification that corresponds to the combination of categories obtained for corneal swelling, corneal opacity, and fluorescein retention and applying the scheme presented in Table 8.

Table 8: Overall ICE classification criteria

<table>
<thead>
<tr>
<th>Irritant Classification</th>
<th>Combinations of Three Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Classified(^2)</td>
<td>3 x I</td>
</tr>
<tr>
<td></td>
<td>2 x I, 1 x II</td>
</tr>
<tr>
<td></td>
<td>2 x II, 1 x I(^4)</td>
</tr>
<tr>
<td>Mild(^3)</td>
<td>3 x II</td>
</tr>
<tr>
<td></td>
<td>2 x II, 1 x III</td>
</tr>
<tr>
<td></td>
<td>2 x III, 1 x I</td>
</tr>
<tr>
<td></td>
<td>1 x II, 1 x III, 1 x III</td>
</tr>
<tr>
<td>Moderate(^4)</td>
<td>3 x III</td>
</tr>
<tr>
<td></td>
<td>2 x III, 1 x II</td>
</tr>
<tr>
<td></td>
<td>2 x III, 1 x IV</td>
</tr>
<tr>
<td></td>
<td>2 x III, 1 x I</td>
</tr>
<tr>
<td></td>
<td>2 x II, 1 x IV(^**)</td>
</tr>
<tr>
<td></td>
<td>1 x II, 1 x III, 1 x IV(^**)</td>
</tr>
<tr>
<td></td>
<td>2 x I, 1 x IV(^**)</td>
</tr>
<tr>
<td></td>
<td>1 x I, 1 x III, 1 x IV(^**)</td>
</tr>
<tr>
<td></td>
<td>1 x I, 1 x III, 1 x IV</td>
</tr>
<tr>
<td>Severe(^5)</td>
<td>3 x IV</td>
</tr>
<tr>
<td></td>
<td>2 x IV, 1 x III</td>
</tr>
<tr>
<td></td>
<td>2 x IV, 1 x II(^**)</td>
</tr>
<tr>
<td></td>
<td>2 x IV, 1 x I(^**)</td>
</tr>
<tr>
<td></td>
<td>Corneal opacity ≥ 3 at 30 min (in at least 2 eyes)</td>
</tr>
<tr>
<td></td>
<td>Corneal opacity = 4 at any time point (in at least 2 eyes)</td>
</tr>
<tr>
<td></td>
<td>Severe loosening of the epithelium (in at least 1 eye)</td>
</tr>
</tbody>
</table>

As described in TG 438 (OECD 2013b), ICE data are only accepted for regulatory hazard classification and labelling of UN GHS Cat. 1 (i.e. ‘Severe’ in Table 8) and UN GHS No Category (i.e. Not Classified in Table 8).

\(^2\) UN GHS Not Classified
\(^3\) UN GHS Category 2B
\(^4\) UN GHS Category 2A
\(^5\) UN GHS Category 1

* Combination agreed by the OECD Expert Group on Eye Irritation in November 2016 following re-evaluation of newly generated data together with the ICE existing dataset and taking into account the latest acceptance criteria for test methods aiming at identifying UN GHS No Category test chemicals, based on the gained knowledge on the reproducibility of the in vivo test method (Adriaens et al., 2014).

** Combinations less likely to occur.

Comment [C1]: Not yet updated within TG 438.
Comment [C2]: With the exception of criteria 2xIII,1 which was not yet adopted within TG 438 for the identification of UN GHS No Cat.
Comment [C3]: Not yet updated within TG 438.
59. The ability of the ICE test method to identify all categories of ocular irritation potential, as defined by the EPA, EU, and GHS classification systems (EPA 2003a) (EU 2008) (UN 2015), was evaluated by ICCVAM (2010a). The overall correct classification ranged from 59% (83/141) to 77% (118/153) when evaluating the entire database, depending on the hazard classification system used. Based on these performance statistics, the ICE test method is not considered valid as a complete replacement for the in vivo rabbit eye test.

60. However, to further evaluate the usefulness and limitations of the ICE test method for identifying all categories of ocular irritation it is recommended that the complete classification scheme of the ICE test method (see Table 8) be applied and that these data are reported in parallel with any other data available e.g. within the IATA context (OECD, xxx).

61. When such data are generated, the criteria described above may need to be modified in order to optimize the ICE for identifying moderate and mild irritants (i.e. UN GHS Categories 2/2A and 2B).

Study Acceptance Criteria

62. For the BCOP and ICE test methods, the study acceptance criteria are outlined in TG 437 (OECD 2013a) and 438 (OECD 2013b), respectively.

Test Report

63. For the BCOP and ICE test methods, the information to be included in the test report is outlined in TG 437 (OECD 2013a) and 438 (OECD 2013b), respectively.
IV. LITERATURE

Prinsen, M.K., Wijnands, M., Schipper M.E.I. (2009), Histopathology in the isolated chicken eye test; comparison of different stainings of the cornea. ALEX 26(Special Issue): 278.

Siegel, J.D., Rhinehart, E., Jackson, M., Chiarello, L., and the Healthcare Infection Control Practices

ANNEX I: DEFINITIONS

Accuracy: The closeness of agreement between test method results and accepted reference values. It is a measure of test method performance and one aspect of relevance. The term is often used interchangeably with “concordance” to mean the proportion of correct outcomes of a test method (OECD, 2005).

Benchmark control: A sample containing all components of a test system and treated with a known substance (i.e. the benchmark substance) to induce a known response. The sample is processed with test chemical-treated and other control samples to compare the response produced by the test chemical to the benchmark substance to allow for an assessment of the sensitivity of the test method to assess a specific chemical class or product class.

Benchmark chemical: A chemical used as a standard for comparison to a test chemical. A benchmark chemical should have the following properties: (i), a consistent and reliable source(s); (ii), structural, functional and/or chemical or product class similarity to the chemical(s) being tested; (iii), known physical/chemical characteristics; (iv), supporting data on known effects; (v), known potency in the range of the desired response.

Bottom-Up Approach: A step-wise approach used for a test chemical suspected of not requiring classification and labelling for eye irritation or serious eye damage, which starts with the determination of chemicals not requiring classification (negative outcome) from other chemicals (positive outcome).

Bowman’s layer: The anterior lamina of the cornea located under the epithelial layer in some species (e.g. humans, avians, cetaceans) and above the corneal stroma (see annex II).

Chemical: Means a substance or mixture.

Clearing solvent: Substance miscible with ethanol or any other dehydrating agent that is also miscible with an embedding agent such as paraffin wax. Infiltration of this solvent results in clearing of the tissue or in an increase in the transparency of the tissue.

Concordance: This is a measure of test method performance for test methods that give a categorical result, and is one aspect of "relevance". The term is sometimes used interchangeably with "accuracy", and is defined as the proportion of all chemicals tested that are correctly classified as positive or negative. Concordance is highly dependent on the prevalence of positives in the types of chemicals being examined (OECD, 2005).

Cornea: The transparent part of the coat of the eyeball that covers the iris and pupil and admits light to the interior.

Corneal opacity: Measurement of the extent of opaqueness of the cornea following exposure to a test chemical. Increased corneal opacity is indicative of damage to the cornea. Opacity can be evaluated subjectively as done in the Draize rabbit eye test, or objectively with an instrument such as an "opacitometer."

Corneal permeability: Quantitative measurement of damage to the corneal epithelium by a determination of the amount of sodium fluorescein dye that passes through all corneal cell layers.

Corneal swelling: An objective measurement in the ICE test of the extent of distension of the cornea following exposure to a test chemical. It is expressed as a percentage and is calculated from baseline (pre-
dose) corneal thickness measurements and the thickness recorded at regular intervals after exposure to the test material in the ICE test. The degree of corneal swelling is indicative of damage to the cornea.

Corneoscleral button: A cornea dissected from an enucleated eye that typically includes a rim of 2-3 mm of scleral tissue.

Cutting: Use of a microtome or other knife-bladed instrument to produce thin ribbons of tissue (e.g. 3 to 8 \(\mu M \) for tissue) that can be mounted on glass slides prior to staining.

Davidson's Fixative: A rapid tissue fixative that may be used in place of 10% neutral buffered formalin to reduce tissue shrinkage, particularly useful for large ocular tissues (e.g. enucleated whole globe eyes).

Descemet's membrane: The posterior lamina of the cornea that lies at the posterior end of the stroma and precedes the endothelial layer (see Annex II).

Dehydration: The process of removing the natural water content of the tissue using a series of increasing concentrations of a solvent such as ethanol that is miscible with water.

Embedding: Process of surrounding a pathological or histological specimen with a firm and sometimes hard medium such as paraffin, wax, celloidin, or a resin, to allow for cutting thin tissue sections for microscopic examination.

Endothelium: A single layer of flat, hexagonally arranged cells continuous with the irido-corneal angle of the anterior chamber of the eye. The endothelium actively maintains corneal transparency by regulation of fluid exchange with the aqueous humor (Samuelson 2007, see also Annex II).

Epithelium: The anterior epithelium covers the anterior corneal surface. It is composed of a thin basement membrane with columnar epithelial cells, followed by two or three layers of polyhedral wing cells, various layers of non-keratinized squamous cells (Samuelson 2007, see also Annex II).

Eye irritation: Defined *in vivo* as the production of change in the eye following the application of a test chemical to the anterior surface of the eye, which are fully reversible within 21 days of application (UN, 2015). Interchangeable with “reversible effects on the eye” and with UN GHS Category 2.

False negative rate: The proportion of all positive chemicals falsely identified by a test method as negative. It is one indicator of test method performance.

False positive rate: The proportion of all negative chemicals that are falsely identified by a test method as positive. It is one indicator of test method performance.

Fixation: The process of placing a tissue sample in 5 to 10 volumes of a substance known to stabilize the tissue from decomposition (e.g. 10% NBF or Davidson's fixative) as soon as possible after procurement and trimming. The time needed to infiltrate the tissue depends on the chemical characteristics of the fixative (e.g. \(\geq 24 \text{ hr} \) for NBF and no more than 24 hr for Davidson's fixative).

Fluorescein retention: A subjective measurement in the ICE test of the extent of fluorescein sodium that is retained by epithelial cells in the cornea following exposure to a test chemical. The degree of fluorescein retention is indicative of damage to the corneal epithelium.

Good Laboratory Practices (GLP): Regulations promulgated by a number of countries and national regulatory bodies that describe record keeping and quality assurance procedures for laboratory records that
will be the basis for data submissions to regulatory authorities; the subject of the OECD Series on “Principles of Good Laboratory Practise and Compliance Monitoring”.

Hazard: Inherent property of a substance or mixture having the potential to cause adverse effects when an organism, system or (sub)population is exposed to that substance or mixture.

Histopathology: The science or study dealing with the cytologic and histological structure of abnormal or diseased tissue.

Infiltration: The passive diffusion of a dehydrating solvent, clearing solvent, or liquid embedding material into a fixed tissue sample.

In Vitro Irritancy Score (IVIS): An empirically-derived formula used in the BCOP assay whereby the mean opacity and mean permeability values for each treatment group are combined into a single *in vitro* score for each treatment group. The IVIS = mean opacity value + (15 x mean permeability value).

Iris: The contractile diaphragm perforated by the pupil and forming the coloured portion of the eye.

Irreversible effects on the eye: See “Serious eye damage” and “UN GHS Category 1”.

Limbus: Transition zone between the corneosclera and conjunctiva that houses the collecting vessels for aqueous humor outflow and stem cells for regeneration of epithelium in wound healing.

Mixture: Means a mixture or a solution composed of two or more substances in which they do not react (UN, 2015).

Mono-constituent substance: A substance, defined by its quantitative composition, in which one main constituent is present to at least 80% (w/w).

Multi-constituent substance: A substance, defined by its quantitative composition, in which more than one main constituent is present in a concentration ≥ 10% (w/w) and < 80% (w/w). A multi-constituent substance is the result of a manufacturing process. The difference between mixture and multi-constituent substance is that a mixture is obtained by blending of two or more substances without chemical reaction. A multi-constituent substance is the result of a chemical reaction.

Negative control: An untreated sample containing all components of a test system. This sample is processed with test chemical-treated samples and other control samples to determine whether the chemical or its solvent (if applicable) interacts with the test system.

Neutral Buffered Formalin (10%): 10% neutral buffered formalin is a tissue fixative composed of 37 to 40% formaldehyde solution in 0.1 M phosphate buffer, pH 7.4.

Not classified: Chemicals that are not classified for eye irritation (UN GHS Category 2, 2A or 2B) or serious damage to eye (UN GHS Category 1). Interchangeable with “UN GHS No Category”.

Opacitometer: An instrument used to measure “corneal opacity” by quantitatively evaluating light transmission through the cornea. The instrument has two compartments, each with its own light source and photocell. One compartment is used for the treated cornea, while the other is used to calibrate and zero the instrument. Light from a halogen lamp is sent through a control compartment (empty chamber without windows or liquid) to a photocell and compared to the light sent through the experimental compartment, which houses the chamber containing the cornea, to a photocell. The difference in light transmission from the photocells is compared and a numeric opacity value is presented on a digital display.
Positive control: A sample containing all components of a test system and treated with a substance known to induce a positive response in the test system. This sample is processed with the test chemical-treated samples and other control samples. To ensure that variability in the positive control response across time can be assessed, the magnitude of the positive response should not be excessive.

Relevance: Description of relationship of the test to the effect of interest and whether it is meaningful and useful for a particular purpose. It is the extent to which the test correctly measures or predicts the biological effect of interest. Relevance incorporates consideration of the accuracy (concordance) of a test method (OECD, 2005).

Reliability: Measures of the extent that a test method can be performed reproducibly within and between laboratories over time, when performed using the same protocol. It is assessed by calculating intra- and inter-laboratory reproducibility and intra-laboratory repeatability (OECD, 2005).

Reversible effects on the Eye: See “Eye Irritation” and “UN GHS Category 2”.

Sclera: A portion of the fibrous layer forming the outer envelope of the eyeball, except for its anterior sixth, which is the cornea.

Sensitivity: The proportion of all positive-active test chemicals that are correctly classified by the test. It is a measure of accuracy for a test method that produces categorical results, and is an important consideration in assessing the relevance of a test method (OECD, 2005).

Serious eye damage: Defined in vivo as the production of tissue damage in the eye, or serious physical decay of vision, following application of a test chemical to the anterior surface of the eye, which is not fully reversible within 21 days of application (UN, 2015). Interchangeable with “irreversible effects on the eye” and with UN GHS Category 1.

Slit-lamp microscope: An instrument used to directly examine the eye under the magnification of a binocular microscope by creating a stereoscopic, erect image. In the ICE test method, this instrument is used to view the anterior structures of the chicken eye as well as to objectively measure corneal thickness with a depth-measuring device attachment.

Solvent/vehicle control: An untreated sample containing all components of a test system, including the solvent or vehicle that is processed with the test chemical-treated and other control samples to establish the baseline response for the samples treated with the test chemical dissolved in the same solvent or vehicle. When tested with a concurrent negative control, this sample also demonstrates whether the solvent interacts with the test system.

Specificity: The proportion of all negative-inactive test chemicals that are correctly classified by the test. It is a measure of accuracy for a test method that produces categorical results and is an important consideration in assessing the relevance of a test method (OECD, 2005).

Staining: The addition of substances to tissue that has been processed, cut, and mounted on a glass slide that adds colour and permits visualization of the tissue of interest.

Standard Operating Procedures (SOP): Formal, written procedures that describe in detail how specific routine, and test-specific, laboratory operations should be performed. They are required by GLP.

Stroma: The framework of connective tissue and keratocytes that provides structure to the eye. The anterior portion of the stroma begins after Bowman’s layer or the anterior lamina and ends with Descemet’s membrane or the posterior lamina that precedes the endothelial cell layer.
Substance: Means chemical elements and their compounds in the natural state or obtained by any production process, including any additive necessary to preserve the stability of the product and any impurities deriving from the process used, but excluding any solvent which may be separated without affecting the stability of the substance or changing its composition (UN, 2015).

Surfactant: Also called surface-active agent, this is a substance and/or its dilution (in an appropriate solvent/vehicle), which consists of one or more hydrophilic and one or more hydrophobic groups that is capable of reducing the surface tension of a liquid and of forming spreading or adsorption monolayers at the water-air interface, and/or forming emulsions and/or microemulsions and/or micelles, and/or of adsorption of water-solid interfaces.

Test: An experimental system used to obtain information on the adverse effects of a substance. Used interchangeably with assay.

Test chemical: The term "test chemical" is used to refer to what is being tested including e.g., substances and mixtures.

Test method: A process or procedure used to obtain information on the characteristics of a substance or agent. Toxicological test methods generate information regarding the ability of a substance or agent to produce a specified biological effect under specified conditions. Used interchangeably with “test” and “assay.” See also “validated test method.”

Tiered testing strategy: A stepwise testing strategy where all existing information on a test chemical is reviewed, in a specified order, using a Weight of Evidence process at each tier to determine if sufficient information is available for a hazard classification decision, prior to progression to the next tier. If the irritancy potential of a test chemical can be assigned based on the existing information, no additional testing is required. If the irritancy potential of a test chemical cannot be assigned based on the existing information, a step-wise sequential procedure is performed until an unequivocal classification can be made.

Tissue: A collection of similar cells and the intercellular substances surrounding them. There are four basic tissues in the body: 1) epithelium; 2) connective tissues, including blood, bone, and cartilage; 3) muscle tissue; and 4) nerve tissue.

Tissue processing: The protocol followed for fixation, post-fixation trimming, dehydration, clearing, and embedding of tissue for use in histology.

Top-Down Approach: A step-wise approach used for a test chemical suspected of causing serious eye damage, which starts with the determination of chemicals inducing serious eye damage (positive outcome) from other chemicals (negative outcome).

Trimming: The process of removing non-critical, excess tissue before or after fixation by cutting with scissors or a scalpel to minimize a tissue sample to those sections that are needed for the evaluation.

United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS): A system proposing the classification of chemicals (substances and mixtures) according to standardized types and levels of physical, health and environmental hazards, and addressing corresponding communication elements, such as pictograms, signal words, hazard statements, precautionary statements and safety data sheets, so that to convey information on their adverse effects with a view to protect people (including employers, workers, transporters, consumers and emergency responders) and the environment (UN, 2015).

UN GHS Category 1: see “Serious damage to eyes” and/or "Irreversible effects on the eye".
UN GHS Category 2: see "Eye Irritation" and/or "Reversible effects to the eye".

UN No Category: Substances that do not meet the requirements for classification as UN GHS Category 1 or 2 (2A or 2B). Interchangeable with “Not classified”.

UVCB: Substances of unknown or variable composition, complex reaction products or biological materials.

Valid test method: A test method considered to have sufficient relevance and reliability for a specific purpose and which is based on scientifically sound principles. A test method is never valid in an absolute sense, but only in relation to a defined purpose (OECD, 2005).

Validated test method: A test method for which validation studies have been completed to determine the relevance (including accuracy) and reliability for a specific purpose. It is important to note that a validated test method may not have sufficient performance in terms of accuracy and reliability to be found acceptable for the proposed purpose (OECD, 2005).

Weight of Evidence: The process of considering the strengths and weaknesses of various pieces of information in reaching and supporting a conclusion concerning the hazard potential of a test chemical.
ANNEX II: ATLAS OF HISTOPATHOLOGICAL LESIONS OF ISOLATED CHICKEN EYES
(from Triskelion, Zeist, The Netherlands)

Table of contents

1. Introduction..29
2. Semi-quantitative microscopic evaluation of the cornea ...29
3. Histopathology Criteria for Identification of test chemicals according to UN GHS.......................34
 3.1. Histopathology Criteria for Identification of Non-Extreme pH Detergents as UN GHS Cat. 135
4 Atlas...36
 4.1 General ...36
 4.2 Control cornea ...38
 4.3 Epithelium: erosion ...39
 4.4 Epithelium: vacuolation ...39
 4.5 Epithelium: necrosis ..39
 4.7 Effects on the endothelium ..39
 4.8 Artefacts ..39
 4.9 Staining with HE or PAS ..39

1. Introduction

In the Isolated Chicken Eye test (ICE) the eyes (cornea) of spring chickens acquired from the slaughter house are exposed to test chemicals according to standardized protocols. At the end of the test, the eyes are collected and processed and the cornea is evaluated for histopathological changes by light microscopy. The goal of this atlas is to present photomicrographs of chicken corneas, untreated as well as treated, and to show a variety of possible histopathological changes.

2. Semi-quantitative microscopic evaluation of the cornea

Eyes were fixed in phosphate buffered formalin, trimmed, embedded in paraffin wax, sectioned at 5 µm and stained with Periodic Acid Schiff (unless indicated otherwise). The grading of the changes observed are based on the criteria given in Table 1 below. This set of criteria proposes a semi-quantitative evaluation which is as objective as possible and enables comparison of effects caused by different test chemicals. Using this system, an experienced observer should be able to detect subtle changes and discriminate treatment-related changes from artefacts.
Table 1. Semi-quantitative scoring system used for Isolated Chicken Eyes that were fixed, trimmed, embedded in paraffin wax, sectioned and stained. Photomicrographs of epithelial erosion, epithelial vacuolation, stromal effects and endothelial necrosis are shown in section 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Observation</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium: erosion</td>
<td>Very slight</td>
<td>½</td>
<td>Few single cells up to the entire single superficial layer</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>Up to 3 layers are gone</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Up to 50 % of the epithelial layer is gone*</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>Epithelial layer is gone up to the basement membrane</td>
</tr>
<tr>
<td>Epithelium: vacuolation</td>
<td>Very slight</td>
<td>½</td>
<td>Few scattered cells</td>
</tr>
<tr>
<td>Separately scored for the top, mid, and lower parts of the epithelium**</td>
<td>Slight</td>
<td>1</td>
<td>Groups of vacuolated cells or single string of cells with small vacuoles</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Up to 50% of the epithelium consists of vacuolated cells</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>50 – 100% of the epithelium consists of vacuolated cells</td>
</tr>
<tr>
<td>Epithelium: necrosis</td>
<td>Normal</td>
<td>-</td>
<td>< 10 necrotic cells†</td>
</tr>
<tr>
<td></td>
<td>Very slight</td>
<td>½</td>
<td>10 – 20 necrotic cells†</td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td>1</td>
<td>20 – 40 necrotic cells†</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>Many necrotic cells but < 50% of the epithelial layer*</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>3</td>
<td>50 – 100% of the epithelial layer is necrotic.</td>
</tr>
<tr>
<td>Stroma: pyknotic nuclei††, †††</td>
<td>Normal</td>
<td>-</td>
<td>< 5 pyknotic nuclei</td>
</tr>
<tr>
<td>In top or bottom region</td>
<td>Slight</td>
<td>1</td>
<td>5 – 10 pyknotic nuclei</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>2</td>
<td>> 10 pyknotic nuclei</td>
</tr>
<tr>
<td>Stromal disorder of fibres*</td>
<td>Present</td>
<td>P</td>
<td>Irregular appearance of the fibres.</td>
</tr>
<tr>
<td>Endothelium: necrosis</td>
<td>Present</td>
<td>P</td>
<td>The endothelium consists of only one layer, so a grade is not relevant</td>
</tr>
</tbody>
</table>

*Over the entire cornea except in case of test chemicals (e.g. some solid chemicals) causing localized effects. In this case the evaluation should be based on the localized effects at the site(s) of exposure.

**Top, mid and lower parts represent equal one third parts of the epithelial layer each. If the top layer is gone, the mid layer will not become the 'new' top layer, but is still the mid layer (see figure 1).

***Includes also detached cells.

† Necrotic cells are counted across the entire length of the cornea (there is no need for a specific fixed length to report cell counts because the entire length of the cornea is consistent on each slide as there is almost no variation at all in the size of the chicken eyes used and in the size of the samples evaluated microscopically). The scoring system uses absolute cell counts from 'normal' to 'slight', versus a percentage for 'moderate' and 'severe'. This is due to the way the evaluation is performed by the examiner: necrotic cells are seen as individual items. If there are more, they are usually scattered. Therefore the examiner counts them to get an impression of the amount of necrosis. This is in contrast to epithelial erosion, which the first thing the examiner notices is that a part of the epithelium is missing, so it makes sense to use an estimated percentage-loss.

†† The ICE test includes precise measurement of the thickness of the cornea at evaluation with the slit lamp microscope. Therefore, swelling of the stroma is not separately scored during the subsequent histopathological evaluation.

***The stromal effects that are scored consist of (1) pyknotic nuclei, which originate from the scoring system used by Maurer (2001) based on his observations in corneas of rabbits after in vivo exposure (described as keratocyte loss/necrosis), and of (2) disorder of fibres. Regarding (1), the presence of pyknotic nuclei is observed only occasionally and the development of pyknotic nuclei is proposed to be dependent on the depth of injury and/or the inflammation process of the cornea (in vivo). Furthermore, due to the elongated form of the stromal fibroblasts, normal nuclei could be misleadingly considered as pyknotic nuclei depending on the section orientation of cells. Regarding (2), the observation and scoring of disorder of fibres may be difficult because the stromal fibres already show a “natural” disorder. The processing of the cornea for microscopy can also contribute to an artificial disorder of stromal fibres. In both cases (pyknotic nuclei and disorder of fibres), these observations coincide with severe corneal effects already observed by the slit-lamp microscope observations, and with effects observed in the mid and/or lower epithelial layer.
Additional observations

Wrinkling Epithelial layer is wrinkled but the basement membrane is not.
Undulating Epithelial layer including the basement membrane is wrinkled.
Detachment Epithelial layer is (partly) detached from the basement membrane.

The terms are descriptive. Their relevance is difficult to assess, but these findings never occur in controls and are definitely treatment related.

General

Unless otherwise indicated, lesions are often diffuse. In ‘diffuse’ lesions the central part of the cornea is usually more affected than the peripheral part. This may be due to the fact that the test chemical, which is applied on the centre of the cornea, dilutes when it flows to the peripheral parts of the cornea. In contrast, lesions can be called focal or multifocal if they are actually confined to certain spots. This may be observed when the test chemical is a powder.

The corneal parts directly adjacent to the limbus should be ignored when scoring.

In the case of ‘diffuse’ lesions caused e.g. by liquid test chemical, when scoring the histopathological change ‘vacuolation’ the whole picture must be taken into account. For example: the epithelial layer shows complete vacuolation of the mid part at one or a few spots. Although at those spots 100% of the mid layer is vacuolated the criterion ‘groups of vacuolated cells’ applies, hence: score 1 (slight) for mid layer. In contrast, in case of solid or viscous test chemicals that cause local effects, scoring should be conducted based on these localized effects.

For scoring erosion the approach is slightly different: if only part of the epithelial layer is no longer present, up to the basement membrane, this clearly shows that the test chemical is able to damage the entire epithelium in that way, so the score 3 (severe) is justified. This would also be the case for focal lesions produced by powders.

Histopathological changes should only be scored when they are actually present in the slide. Any assumption should not be scored. For example: when the top layer is completely gone one may assume that necrosis of the cells of the top layer (i.e. the top one third part of the epithelial layer) may have been the cause of the erosion. However, only the erosion should be scored. If necrotic cells are detached/eroded from the epithelial layer, but still present in the slide, they should be counted. Sometimes a combination of changes is present, for example there is severe erosion but part of the epithelium is still present and shows necrosis. Then both changes should be scored.

Occasionally, part of the epithelial layer is detached from the basement membrane. This should be mentioned as a ‘note’.
Vacuolation effects

Vacuolation is a degenerative change. The vacuoles may represent accumulations of water, lipids or (parts of) damaged cellular organelles. The cause may be a pathological metabolic change of the cell or damage of the cellular membrane resulting in the cell losing the ability to maintain homeostasis. Either way, the vacuolation is an intracellular process. Vacuoles are spherical and usually empty spaces of variable size, sometimes causing considerable enlargement of the cell (‘ballooning’). Very fine vacuolation causes a foamy appearance of the cytoplasm.

Sometimes a small space around the nuclei (like a halo) can be observed. This represents a shrinking artefact and should not be mistaken for vacuolation. Histological processing of the tissue may result in displacement of the nucleus, leaving an open space in the cell (ghost cells). This is also to be considered an artefact.

A degenerating cell may recover unless a point of no return is reached and then the cell dies. If the cell membranes of adjacent cells containing large vacuoles disintegrate, the large vacuoles merge. The epithelial layer above then loses connection with the below layer. At that point this change should be scored as ‘erosion’.

When evaluating vacuolation, the part of the epithelial layer in which the effects are observed should be indicated: top (outer part of the epithelial layer), mid or low (closest to Bowman’s membrane). As shown in Figure 1, the top, mid and lower parts represent equal one third parts of the epithelial layer each. If the top layer is gone, the mid layer will not become the ‘new’ top layer, but is still the mid layer. In contrast to the scores for vacuolation (for three different layers), the scores for erosion and necrosis should be applied to the entire cornea.

Artefacts

Treatment of the cornea may result in damage of intercellular junctions known as desmosomes. This may show in the slide as regular intercellular ‘cracks’ (expanded intercellular spaces). It is unclear whether the histotechnical procedures may contribute to the visibility of these ‘cracks’. This phenomenon may sometimes resemble vacuolation at first sight. However, it should not be scored as vacuolation, because it
does not represent an intracellular degenerative process as described above. When such effects are observed they are always accompanied by other histopathological changes scored within the prediction model, so they do not need to be taken into account in the scoring of the histopathological effects.

Indeed, when the microscopic slides are evaluated, the examiner must be aware of the possibility that artefacts may cause confounding morphological changes. Commonly encountered artefacts should be recognised as such and should not be confused with treatment-related pathological changes (pictures of various artefacts are presented in section 4.8). Some examples include:

- Variation in staining intensity. This may occur due to slight differences between batches of the staining chemicals or the staining procedures applied (see also notes in section 4.3).
- ‘Saw teeth appearance’. The top layer of the epithelium shows a regular pattern resembling the appearance of saw teeth. This might be mistaken for very slight erosion, but is, in fact, the result of the cutting procedure which occasionally results in this phenomenon.
- Complete detachment of the endothelium. This is occasionally observed. The endothelium as such looks fine, however, it has apparently detached from the cornea and is present at an unusual location, for example double folded and adjacent to the lens. This can never be the effect of a test compound, but should be recognised as a histotechnical artefact.
- ‘Cracks’ or folds in the tissue may occur during the histological procedure as described above.
- Abrupt absence of part of the epithelium
- Shrinking artefact resulting in a clear halo around the nuclei.
- Ghost cells resulting from nuclear displacement.

Staining of the histological slides

The treated isolated chicken eyes are collected in a neutral aqueous phosphate buffered 4% solution of formaldehyde at termination, i.e. 4 hours after treatment, of the standard ICE test according to the OECD TG 438. For this purpose, the eyes are first incised almost completely in half with a scalpel just behind the level of the lens and through the vitreous body, leaving a part of the posterior tissue still attached where eyes can be held (that will later be discarded) to ensure that the cornea is not damaged during manipulation by dropping on the surface. The sectioned eyes are placed in a container with approximately 20 mL of formalin. After fixation for at least 24 hours, the tissue is trimmed with scissors in such a way that a thin piece containing the entire cornea and the adjacent sclera is embedded in paraffin wax. Longitudinal serial slides (sectioned at 5 μm) are prepared from the central area of the cornea and further processed with the staining. The directions given in the manual AFIP Laboratory Methods in Histotechnology are followed using the Periodic Acid-Schiff (PAS) staining as described previously.

Semi-quantitative microscopic evaluation of PAS stained corneas is then performed according to the criteria described in the present document.

Staining histological slides alternatively with HE (haematoxylin and eosin) also gives excellent results. However, a better visibility of the basement membrane can be obtained when PAS is used. Apart from the effect on the visibility of the basement membrane, both stainings are suitable for histopathological evaluation of all relevant endpoints in the ICE test. To illustrate the differences in appearance of both types of staining some examples are presented in section 4.9.

Peer review

The laboratory conducting the histopathological evaluation of the isolated chicken eyes should have a peer review system in place, where a proportion of the slides (e.g., 1 out of 3) are re-evaluated by another person. This enhances the quality, consistency and reproducibility of the evaluation. Both the first evaluator and the peer reviewer should have experience in evaluating isolated chicken eyes and the application of the scoring system.

3. Histopathology Criteria for Identification of test chemicals according to UN GHS

Currently only criteria for identification of UN GHS category 1 test chemicals have been developed. The International Association for Soaps, Detergents and Maintenance Products (A.I.S.E.) conducted an in vitro study from 2010 to 2012 where specific ICE histopathological effects were found to be correlated with serious eye damage classification induced by non-extreme pH detergents⁴⁵. The study comprehended a total of 30 non-extreme pH detergents (2<pH<11.5)⁴ and 18 extreme pH detergents (pH ≤ 2 or pH ≥ 11.5)⁵. Epithelial vacuolation (mid and lower layers) and epithelial erosion (at least moderate level) were found to be the most typical histopathological effects induced by the non-extreme pH detergents classified in vivo as UN GHS Cat. 1. Use of these histopathology criteria substantially increased the sensitivity of the standard ICE prediction model for UN GHS Cat. 1 identification (from 0% to at least 75%, n=8) whilst maintaining a good concordance (73%, n=30), and an acceptable specificity (from 100% to 73%, n=22). In particular, it allowed correctly identifying 5 of 6 non-extreme pH detergents classified in vivo as UN GHS Cat. 1 based on in vivo persistence of effects i.e., having tissue effects that do not reverse 21 days after treatment and that do not lead to severity of effects that would warrant a UN GHS Cat. 1 classification⁴. In contrast, for extreme pH detergents, 5 of the 6 tested in vivo UN GHS Cat. 1 were classified in vivo due to severity of effects and not persistence. In this case, the A.I.S.E. histopathology criteria did not improve the sensitivity of the standard ICE test method (83%, n=6), whilst it strongly decreased specificity (from 83% to 33%, n=12), and concordance (from 83% to 50%, n=18)⁵.

These data indicate that there are specific applicability domains for the use of the ICE histopathology for detergents that are likely based on the mode of action of the tested detergents. Indeed, the decision criteria developed by A.I.S.E. (described below) were found to be applicable to non-extreme pH detergents but not to extreme pH detergents. In order to expand the applicability of the ICE histopathology decision criteria to other chemistries it would be necessary to generate appropriate and relevant data to demonstrate such applicability.

3.1. Histopathology Criteria for Identification of Non-Extreme pH Detergents as UN GHS Cat. 1

Based on the study described above A.I.S.E. developed decision criteria that are to be used in addition to the standard validated ICE prediction model as described in OECD TG 438 (see table 2). The A.I.S.E. histopathology decision criteria shown in Table 2 were found most suitable to identify UN GHS Cat. 1 detergent and cleaning products having non-extreme pH (2<pH<11.5) that are classified in vivo mainly based on persistence of effects, and could be used in addition to the standard validated ICE prediction model as described in OECD TG 438. Furthermore, the between-laboratory reproducibility of the below criteria is currently under evaluation.

Table 2: Histopathology decision criteria recommended to be used in addition to the standard validated ICE test method (OECD TG 438) for the identification of UN GHS Cat. 1 non-extreme pH detergents*

<table>
<thead>
<tr>
<th>Tissue layer</th>
<th>Effects triggering eye serious damage (GHS Cat 1) identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium</td>
<td>- erosion ≥ moderate (score 2) in at least 2 out of 3 eyes</td>
</tr>
<tr>
<td></td>
<td>- and/or, any vacuolation ≥ very slight, score ½ observed in</td>
</tr>
<tr>
<td></td>
<td>the mid and/or lower parts in at least 2 out of 3 eyes</td>
</tr>
<tr>
<td></td>
<td>- or, if erosion ≥ moderate (score 2) in 1 out of 3 eyes +</td>
</tr>
<tr>
<td></td>
<td>vacuolation ≥ very slight in mid and/or low part (score ½)</td>
</tr>
<tr>
<td></td>
<td>is observed in at least another eye out of the 3 eyes</td>
</tr>
<tr>
<td></td>
<td>- and/or, necrosis ≥ moderate (score 2) observed in at least</td>
</tr>
<tr>
<td></td>
<td>2 out of 3 eyes</td>
</tr>
</tbody>
</table>

* Detergents here are defined as a mixture (excluding dilutions of single surfactant) containing one or more surfactants at a final concentration of >3%, intended for washing and cleaning processes. Detergents may be in any form (liquid, powder, paste, bar, cake, moulded piece, shape, etc.) and marketed for or used in household, or institutional or industrial purposes.

In addition, in case stromal pyknotic nuclei scores ≥ slight (score 1) in at least 2 out of 3 eyes are observed; or any endothelium effects are observed in at least 2 out of 3 eyes, such effects should be noted as observations to give indication on the severity of effects. Such effects are however not integral part of the decision criteria due to the fact that according to depth of injury principle (Maurer et al. 2002), effects on stroma and endothelium shall occur only if effects in the mid and/or lower epithelial layer are already observed.
4 Atlas

The slides were scanned with 3DHistech Midi scan and pictures were prepared from the scans with Pannoramic Viewer software, except Fig 4.4.8, 4.4.9 and 4.6.2, that were made using a Zeiss AxioCam ICc 1 digital camera mounted on a microscope. Every effort was made to present pictures of optimal quality. However, it was not always possible to retrieve pictures with the presence of a representative lesion without artefacts, perfectly stained and with all parts of the photomicrograph in focus.

Multiple pictures for similar observations were included to show a certain bandwidth of biological variation for each observation, of which one should be aware. Furthermore, slight variations in the histotechnical process (the technician involved, the temperature, thickness of the slide, etc…) can also cause variation in morphology.

The collection of slides with representative morphology will continue to increase in the future. A regular update of the atlas will be made with new observations added and, if better quality pictures become available, pictures of lesser quality will be replaced.

4.1 General

Figure 4.1.1 Spring chicken as eye-donor.
Fig. 4.1.2 Cross section of the chicken eye.
(Adapted from: http://www.class.cvm.uic.edu/j-eurell/eye4.htm).

Fig. 4.1.3 After trimming, only the front part of the eye is further processed.
4.2 Control cornea

Fig. 4.2.1 Control cornea (treated with physiological saline).

Fig. 4.2.2 Control cornea. A normal epithelium consists of 6-8 layers of epithelial cells. Basement membrane and Bowman’s membrane between the epithelium and stroma.
4.3 Epithelium: erosion
(see separate annex for full photo Atlas)

4.4 Epithelium: vacuolation
(see separate annex for full photo Atlas)

4.5 Epithelium: necrosis
(see separate annex for full photo Atlas)

4.6 Effects on the stroma
(see separate annex for full photo Atlas)

4.7 Effects on the endothelium
(see separate annex for full photo Atlas)

4.8 Artefacts
(see separate annex for full photo Atlas)

4.9 Staining with HE or PAS
(see separate annex for full photo Atlas)
ANNEX III: GUIDELINES FOR HISTOPATHOLOGICAL EVALUATION OF BOVINE CORNEAS AS AN ENDPOINT OF THE BOVINE CORNEAL OPACITY AND PERMEABILITY ASSAY
(from IIVS, Gaithersburg (MA), USA)

Table of contents

1. Brief Introduction of the Bovine Corneal Opacity and Permeability Assay.................................40
2. Depth of Injury as a Predictor of Degree and Duration of Ocular Injury41
3. Application of Histopathology to the Determination of Ocular Irritation Potential42
4. Overview of the Histology Procedures Used at IIVS ...42
 4.1 Corneal Accession Numbers ..42
 4.2 Fixation of the Corneas ..42
 4.3 Preparation of the Slides ..43
5. Evaluating the Corneal Histology ..44
 5.1 Evaluation of the Corneal Sections (Overview) ...44
 5.2 Evaluation of the Quality and Acceptability of the Corneal Sections44
 5.3 Recording Observations ..48
 5.4 Preparation of the Photomicrographs ..50
6. A Short Compendium of Micrographs to Illustrate Negative Control-Treated (Normal) and Select Histologic Changes in Bovine Corneal Tissue ...50
 6.1 Negative Control Corneas ...51
 6.2 Epithelial Damage ..51
 6.3 Stromal Histologic changes ..51
 6.4 Endothelial Cell Histologic changes ..51
7. REFERENCES ..51

1. Brief Introduction of the Bovine Corneal Opacity and Permeability Assay

The Bovine Corneal Opacity and Permeability (BCOP) assay was developed by Drs. Pierre Gautheron (Gautheron et al. 1992) and Joe Sina (Sina et al. 1995) to address the ocular irritation potential of pharmaceutical intermediates for industrial hygiene purposes. The assay measures changes in corneal opacity (determined by changes in light transmission) and permeability to fluorescein (measured by increases in permeability to fluorescein) as a result of chemical insults. The opacity and permeability values are used to calculate an in vitro score, in order to evaluate the ocular irritation potential. The method is now widely applied across industries and chemical/formulation classes. For many chemical/formulation classes, the mode of action(s) of the test material is generally known. Membrane lysis, protein coagulation, and saponification are common modes of action that lead to ocular irritation. The BCOP assay closely models not only most of the initial stages of interaction of an eye irritant with the cornea, but also some of the more latter occurrences in eye irritation such as gross tissue changes in the corneal stroma. In our experience at the Institute for In Vitro Sciences, Inc. (IIVS), the opacity and permeability endpoints have generally reflected the epithelial and stromal changes associated with these types of damage. However, the prediction of ocular irritation from chemicals that react with nucleic acids, mitochondrial proteins, or other
cellular targets, that do not lead to immediate loss of cellular integrity (particularly in the epithelium) has proven more difficult using only the opacity and permeability endpoints, and the short time period that the cornea can be kept in organ culture limits the amount of recovery, if any, which may occur, prompting the investigation of histopathology as an additional predictive endpoint.

The BCOP assay may be ideally suited for histopathology since it uses ex vivo corneal tissue that can be maintained fully viable using the standard organ culture procedures of the BCOP protocol, and in fact can be maintained for at least 24 hours with repeated medium changes. The bovine corneas contain the three layers of interest in the cornea; the epithelium, stroma, and endothelium, requisite for differentiating among minimal, mild, moderate and severe ocular irritants. Using standard histology preparation techniques, cellular and architectural changes to the three layers of the cornea can be observed. Lastly, whereas initial injury after chemical exposure can be determined using the standard BCOP assay and complementary histopathology for most chemistries, the progression of nuclear and cellular changes from chemistries inducing delayed effects can be monitored for up to 20 hours after exposure using a modified extended post-exposure protocol.

2. Depth of Injury as a Predictor of Degree and Duration of Ocular Injury

Jester et al. (1998), Maurer et al. (1996, 2002) and others have shown for a range of chemical classes that depth of injury in the early hours after exposure can be predictive of the eventual degree and duration of the ocular lesions. Epithelial damage alone, in the rabbit cornea, is associated with expected recovery provided the basal lamina is intact. Deeper injury into the stroma has more serious consequences, while a full thickness injury including damage or loss of the endothelium would be predictive of a severe injury. With the addition of the histopathological assessment of depth of injury, the BCOP would seem to address most of the requirements proposed by Maurer and Jester. If the hypothesis of Jester, Maurer, and others that initial area and depth of injury is predictive of time to, and extent of recovery, then the measurements made by the BCOP assay may have a relationship to recovery as well.

Since test materials are applied topically on the outer corneal epithelium of the bovine cornea in the BCOP assay, a top-down evaluation follows the potential for lesions to occur dependent upon the penetration of the test chemical into the cornea, and the potential for toxic effects to be induced. Therefore, the evaluation of changes in the treated corneas would be performed starting superficially with the squamous epithelium at the site of test material exposure, and progressing deep into the cornea to the endothelium.

Redden et al. (2009) presented on an evaluation of the BCOP assay with corneal histopathology for predicting the eye irritation potential of a series of anti-microbial products with certain cleaning claims which had been previously classified in vivo, where the depth of injury model was fundamental to the in vitro classifications. The BCOP histopathology findings showed that anti-microbial cleaning products predicted in vivo to have an EPA category IV classification (approximately consistent with a Globally Harmonized System (GHS) No Label classification) generally induced cellular damage or corneal changes in the in vitro assay no deeper than midway through the epithelium. Furthermore, those products predicted in vivo to have an EPA category III classification (approximately consistent with a GHS 2B classification) generally induced cellular damage or corneal changes in vitro in the corneal epithelium and extending no deeper than the upper third of the stroma. Those products predicted in vivo to have an EPA category II classification (approximately consistent with a GHS 2A classification) generally induced corneal changes in vitro extending no deeper than two thirds of the stroma. Finally, those products predicted in vivo to have an EPA category I classification (approximately consistent with a GHS 1 classification) generally induced corneal changes in vitro extending into the lower third of the stroma.
3. Application of Histopathology to the Determination of Ocular Irritation Potential

Not all BCOP studies require histopathological evaluation. Where the mode of action of the active chemical(s) on the cornea is well understood, the opacity and permeability endpoints typically provide sufficient predictive capacity to determine ocular irritation potential. However, histopathology may be included in the BCOP study protocol for several reasons. For hazard assessments, histopathology is performed to determine whether any test material-induced changes in the treated corneas are evident, relative to the negative control-treated corneas, and in the presence of such changes, the depth and degree of these changes are reported. Histopathology can either complement the BCOP assay by elucidating the cellular and architectural changes associated with the increases in opacity and fluorescein permeability, or it could provide evidence of corneal injury not revealed by the BCOP endpoints alone. In product development and research settings, histopathology may be helpful to understand the types of lesions that a material might induce, or to elucidate modes of action.

Histopathology can either complement the BCOP assay by elucidating the cellular and architectural changes associated with the increases in opacity and fluorescein permeability, or it could provide evidence of corneal injury not revealed by the BCOP endpoints alone. In product development and research settings, histopathology may be helpful to understand the types of lesions that a material might induce, or to elucidate modes of action.

The inclusion of chemically-relevant concurrent benchmark formulations and chemistries may help facilitate interpretation of the study data. When formulations contain reactive chemicals (e.g., peroxides, bleaches, etc.) where immediate changes in corneal transparency or barrier function may not be evident, histopathology is highly recommended. Maurer et al. (2001) have shown that oxidizing agents induce a delayed toxicity in vivo and act more profoundly on the stromal keratocytes. Our experience has shown that peroxide-containing formulations require histopathological assessment to elucidate the full depth of injury (Swanson, White et al. 2003) since it is the cellular/nuclear changes observed histologically that are predictive of downstream corneal degeneration. Accordingly, as a rule, new chemistries where the mode of action cannot be predicted, or when “reactive chemistries” may be expected, may require including a modified extended post-exposure protocol and histopathology (Curren et al. 2000) to the standard BCOP protocol. Finally, positive and negative control corneas are always used (Cuellar et al. 2002). The positive controls provide a measure of reproducibility of the test system and assay execution, while the negative controls provide the baseline against which histological changes are compared.

4. Overview of the Histology Procedures Used at IIVS

4.1 Corneal Accession Numbers

During the normal course of a BCOP assay, each cornea is identified by the individual corneal holder number. For those corneas requiring histology, each cornea is further assigned a unique histology accession number, which relates the corneal holder number to the accession number, test treatment or control designation, exposure time, harvest date, and any relevant comments. The documentation is maintained in the study notebook and in the histology logbook.

4.2 Fixation of the Corneas

The corneas are fixed after the completion of the fluorescein penetration step of the BCOP assay to allow the histological evaluation to be performed on the same corneas from which the opacity and permeability values were taken. In-house evaluation has shown that the fluorescein exposure does not impact tissue morphology. Once the posterior chamber of the corneal holder has been sampled for fluorescein penetration, the remaining fluids are removed and the corneal holder is dismantled. Each cornea is placed into a tissue cassette that has been pre-labeled with its accession number, and which has been fitted with a “histology sponge” to help protect the endothelial surface. The cornea will be placed onto the sponge with the epithelium facing up. The tissue handling should be conducted carefully but expediently to prevent the cornea from drying during the transfer process. The cassette is closed and immersed in 10% neutral buffered formalin. It is important to assure that the tissue is fully submerged in
the formalin. Approximately 20 cassettes are fixed in a volume of 300 mL. Corneas should be fixed at room temperature for at least 24 hours before processing.

Whereas the use of a Davidson’s fixative is frequently recommended for the rapid fixation of whole globe eye tissue, in-house comparisons of excised bovine corneas fixed in Davidson’s fixative and 10% neutral buffered formalin have shown that the latter has provided a better fixation of the tissues.

4.3 Preparation of the Slides

Corneas are trimmed, embedded, sectioned and stained by a qualified histology laboratory. The following general guidance is provided to the histology laboratory:

The actual size of the cornea and the treatment area are shown below. The centre shows the area treated and the area of interest for histological examination.

The fixed corneas are transferred to the histology laboratory. Placement paperwork will be sent with the corneas. Upon receipt by the histology lab, the samples will be received into their tissue accession system.

The corneas may be trimmed to remove some of the excess scleral tissue outside of the outer crush zone if necessary; however, the cornea will be infiltrated whole. Before the corneas are placed on the tissue infiltration machine, a second sponge will be placed on the anterior (epithelial) surface of the cornea. This second sponge is intended to reduce the chances of tissue warping during infiltration. Corneas are always mounted in the cassette at IHVS with the anterior surface facing the upper lid. Elevated temperatures should not be used with the infiltrating solvents.

Once infiltrated with paraffin, the cornea will be bisected so that the two halves of the cornea can be embedded in the same block. The cornea will have some wrinkles and so it is often helpful to cut across the wrinkles (if they fall in a particular orientation) so that a good cross section can be obtained when the tissue is sectioned.

The microtome cuts must produce as close to true cross sections (anterior to posterior) of the cornea as possible. The true cross section allows us to better measure increases in the thickness of the corneas (expansion as a result of test material exposure) relative to the thickness of the negative control-treated corneas. Large, deep molds must be used and great care in orienting the tissue is required. The two halves of the cornea are placed with the cut side down in the mold and aligned vertically and with their long axis in parallel with the long axis of the mold.
If the tissue is too long to fit into the mold, the outer edges (shown as the dark outer area above) may be trimmed. Ideally, one would like to see some of the dark “crushed” tissue in the section so as to be assured that one is evaluating the whole cross section of the cornea. Having the two tissue strips oriented in parallel along the long axis of the slide (once they are cut) makes scoring much easier.

The tissues are sectioned to approximately 5 microns. Two tissue sections (one section from each half of a cornea) are mounted on a slide. Sectioning the tissue requires that the area damaged by the bisecting cut be trimmed away (with the microtome) so that the artefacts introduced by the cutting are not mistaken for changes associated with the test material exposure. The sections must include the full cross section of the cornea (epithelium, stroma, and endothelium). The corneal stroma is quite delicate and prone to artefacts from over-stretching of the sections on the water bath. In addition, over-stretching will induce breaks between the epithelium and stroma that might be mistaken for test material-induced damage. Finally, the tissue sections are stained with hematoxylin and eosin (H&E).

5. Evaluating the Corneal Histology

5.1 Evaluation of the Corneal Sections (Overview)

The goal of the histopathology is to determine whether any changes from the control corneas are evident, and to determine the nature, depth and degree of the observed histological changes within the treated corneas. The three tissue layers of the cornea are evaluated for histological changes. Typically, the evaluations are conducted top-down, starting with the upper epithelium and progressing through the epithelial layers, through the stroma, and down to the corneal endothelium. Since test materials are applied topically on the outer corneal epithelium, the top-down evaluation follows the potential for histologic changes to occur dependent upon the penetration of the test chemical into the cornea, and the potential for toxic effects to be induced.

In some cases, quite evident or notable changes are observed in the treated corneas. For example, gross changes or erosion of the corneal architecture, whether limited in depth of injury or as a full corneal thickness injury would be readily apparent. Other lesions may be a bit more subtle, and may simply be limited to changes in nuclear staining, perhaps as an apoptotic event. In such cases, these changes may be expected to result in downstream loss of corneal function, which may not be evident by the opacity and permeability endpoints in the standard short-term BCOP assay. While in general, the depth of observed changes in the bovine cornea can be reported, the degree and impact of many of the observed changes may not be fully assessed or known. For example, the observation of abnormal nuclear staining in stromal keratocytes is not readily described in terms of a scale or degree of abnormality. Rather, an attempt is made to present the relative frequency of such observed changes relative to the negative control corneas. As another example, stromal oedema may be presented in terms of the depth of the observed stromal expansion, but should be characterized by the relative degree of stromal expansion in the upper, mid and lower stroma. Furthermore, stromal oedema, resulting from loss of epithelial barrier function, in and of itself may not have the same consequences to corneal recovery as stromal oedema with loss of keratocytes, or stromal oedema occurring in concert with stromal protein precipitation. Therefore, the interpretation of the histopathology should allow for an integration of all of the observed changes, prior to the definitive assessment.

5.2 Evaluation of the Quality and Acceptability of the Corneal Sections

Negative control corneas were processed with the test article-treated corneas as a common histology batch process. The histology of the negative control corneas may thus be used to evaluate the quality/acceptability of the slides within the processing batch. Prior to conducting the evaluation
of test article-induced histopathology, the quality of the H&E stained corneal sections must be evaluated, so that the nature and degree of the artefacts of both the BCOP assay and the histology processing can be assessed. To this end, the negative control slides are used to detect artefacts at the batch level. They are also used to assess “normal” staining (degree of hematoxylin or eosin in each layer/cell type), tissue architecture and general thickness. Slides are normally stained with hematoxylin and eosin (H&E) although other stains may be requested. The following photographs are of negative control (tissue culture-grade deionized water) treated corneas.

Slides are thoroughly examined by microscopic evaluation. Each cross section of each cornea within a treatment group is observed first under low magnification for an overall assessment of the quality of the tissue sections for conducting the histopathology. Corneal sections are evaluated across the entire section from one crush zone to the other (the crush zone is the outer corneal perimeter where the cornea was mounted against an O-ring within the corneal chamber, and is readily apparent in the histology sections). It is not uncommon for areas within a tissue section to have aberrations or artefacts of processing which preclude those areas from being used in the histopathology. Furthermore, occasional processing artefacts may render an entire tissue section, or both sections from a cornea, unacceptable for use in the histopathology.

In the ideal, the corneal sections are prepared as true cross sections rather than tangential sections. However, some fraction of the sections (or portions of a section) will not be true cross sections and so the overall thickness and tissue architecture will be distorted from the ideal. There may also be some fields in a section that are tangential even when most of the section is a good cross section. In control or minimally damaged corneas, stromal thickness provides a good indication of how true the cross section is. In addition, the thickness of Descemet’s Membrane may provide a good measure of a true cross section. The Descemet’s Membrane in a good section of a control cornea can be used to compare with treated corneas. This measure can be especially helpful in sections of treated corneas where collagen matrix expansion and stromal swelling are evident.

![Bovine cornea treated with tissue culture grade deionized water cut on a tangent such that Descemet’s Membrane has two distinct sections.](image)

It is essential that all layers of the cornea be included in the section. Poorly trimmed blocks may produce sections where the full depth of the cornea is not present (e.g., the lower stroma and endothelium missing). It may be necessary to request re-cuts of such slides.
Bovine cornea treated with tissue culture grade deionized water with lower stroma and endothelium missing (left figure), and epithelium missing (right figure).

Slides are usually stained with an automated slide stainer. The intensity of staining depends on several factors and may vary slightly across studies. Decreased hematoxylin or eosin staining can markedly compromise interpretation and photography. Such slides should be returned for re-staining or re-cutting. Note that highly swollen stromal collagen will appear to be poorly stained but, in fact, there is a great deal of empty space between the fibers that is not stained.

Bovine cornea treated with tissue culture grade deionized water with hypoeosinophilic staining of the epithelium (left figure) and areas of hypereosinophilic staining of the stroma (right figure).

There are many other types of histological artefacts that are not presented here. Below is a selection of figures from tissue culture grade deionized water-treated bovine corneas which show histological artefacts which result in difficulty interpreting the test material-induced damage. These artefacts are, but not limited to, folding of the tissue, vibration of the blade, nick in the knife blade, and inadequate dehydration.
Folding of the tissue obscuring the epithelium and stroma

Microtomy artefacts (cuts in the endothelium, separation of the epithelium from the Anterior Limiting Lamina)

Vibration of the tissue specimen causing separation of the collagen fibers in the stroma.

Nick in the knife black causing separation throughout the entire tissue.

Microtomy artefact causing separation of the epithelium from Anterior Limiting Lamina and halo around the epithelium nuclei.

Inadequate dehydration of tissue causing artefacts appearing as bubbles.
5.3 Recording Observations

Observations of treated corneas are recorded. The data include the treatment group, slide (cornea accession) numbers, exposure time, post-exposure expression time, date of test material application, observations on each corneal tissue layer, and the related figure numbers (where appropriate). Once the observations are completed they are formalized in the Histology Report. The observations are typically peer reviewed, and upon consensus the Histology Report is signed and dated by both the Principle Investigator/Lead Histopathologist and the Peer Reviewer.

5.3.1 Evaluating the Negative Control-Treated Corneas

Negative control corneas are treated with sterile, deionized water or saline in parallel with the positive control and test material-treated corneas. The overall thickness of the bovine cornea is generally between 850-1000 µm.

Epithelium: The negative control-treated epithelium is composed of three layers. The basal cell layer is a well-formed, columnar-cell region directly attached to the basement membrane above the Anterior Limiting Lamina. The basal cells were always tightly attached to each other. Several layers of wing cells covered the columnar basal layer. In both of these layers, the cell nuclei showed diffuse chromatin without clear nucleoli. Rare mitotic figures were seen in the basal layer. The squamous layer was flattened with limited cytoplasm and highly condensed nuclei.

Stroma: The stromal elements begin with the Anterior Limiting Lamina and are composed of well-organized collagen matrix fibers with dispersed keratocytes. Keratocyte nuclei show a range of morphologies from moderate sized (smaller than the epithelial nuclei) with diffuse basophilic staining to narrow, elongated and condensed with dark basophilic staining. Cytoplasmic staining, when visible, is moderately basophilic. Rarely, cells with eosinophilic cytoplasmic staining may be observed. Collagen bundles are generally parallel and well ordered. The Descemet's Membrane is prominent and forms the bottom of the stroma. The overall thickness of the stroma is approximately one 20x field when a good cross section is obtained.

Endothelium: The endothelium is a single layer of flattened cells attached to the basal surface of the Descemet’s Membrane. Nuclei are elongated and flattened. In a cross section, little cytoplasm is visible. Generally, the cells are firmly attached to the Descemet’s Membrane but in some areas (or fields), they may be detached or lost through mechanical damage.

5.3.2 Evaluating the Corneal Histological Changes

The goal in scoring the corneal damage and changes is to record the nature, degree and depth of the changes in each tissue layer. In most cases, the individual corneas in a treatment group will not be reported separately but rather they will be “averaged” to highlight the predominant lesions. The opacity and permeability values should be reviewed before scoring the slides. If there are wide variations among the corneas in either the indirect measures or histological changes, it may be necessary to report on some individual corneas within the treatment group.
Epithelium: Characteristic histological changes observed in the epithelium are cell loss, cell coagulation (especially in the squamous epithelial layer), nuclear vacuolization (swelling), nuclear condensation (pyknosis or precipitation of nuclear proteins and/or DNA), cytoplasmic vacuolization, cytoplasmic precipitation (leaving only the cytoskeleton), and separation of the cells from the Anterior Limiting Lamina. The degree of the changes may be somewhat subjective. It may be the fraction of the cells showing a histological change or the magnitude of the histological change within the cells or cell layer (e.g., degree of cytoplasmic vacuolization). The depth of the histological change relates to the number of cell layers impacted. Damage to or loss of the Anterior Limiting Lamina will be reported with the epithelium.

Stroma: The histological changes of the stroma are reported in two parts; those of the extracellular collagen matrix and those of the keratocytes. The predominant histological changes seen in the extracellular collagen matrix are expansion (loss of the normal ordered array of the fibers), and stromal coagulation or denaturation. Stromal swelling may be detected by the presence of expansion “holes” in the organized collagen matrix. Their appearance suggests that liquid has entered the matrix, expanding space between the fibers. The depth (see below) and degree of expansion are reported. The degree refers to the relative frequency and size of the expanded “holes” in the matrix. As the degree and/or depth of expansion increases, the overall thickness of the stroma would be expected to increase. Stromal coagulation appears frequently as areas with tightly bound collagen fibers with hypereosinophilic staining. The tightly bound collagen fibers may be interspersed between areas of stromal swelling or expansion.

Since depth of injury (both extracellular and cellular) to the stroma is important in the analysis, a means to describe the depth of injury is necessary as part of this analysis. Determining the depth is not always a straight-forward process. Because of the topical application of the test material to the epithelium, one would expect that exposure to the stroma would progress from the area just under Anterior Limiting Lamina down through the stroma to Descemet's Membrane. There is no external inflammatory process in the isolated corneas, so one might also expect the progression of damage to follow the progression of exposure. That means that damage to the stroma should first appear close to Anterior Limiting Lamina. As the damage to the stroma increases, deeper layers might be involved. This implies that one would want to express damage as progressing from the anterior (Anterior Limiting Lamina) to the posterior (Descemet's Membrane) and express it as a fraction of the total stromal depth involved. However, collagen matrix expansion can increase stromal thickness. Thus, measurements of the depth of a stromal lesion can be complicated by the change in overall stromal thickness. Depth of stromal damage is reported as the percentage of the normal corneal depth (cross section) involved, starting from the anterior border (Anterior Limiting Lamina). However, to account for stromal swelling or expansion, this depth is actually estimated from the percentage of the stromal cross section that remained undamaged (starting at the posterior border). For example, a cornea reported to show collagen matrix expansion to 30% depth would mean that 70% of the cross section of that cornea (starting at Descemet’s Layer) did not show expansion.

An exception to the anterior to posterior progression of stromal expansion is caused by the loss of the endothelial cell layer. Since the endothelium is responsible for maintaining balanced hydration in the lower stroma, its loss (either through mechanical damage or test material toxicity) can lead to appreciable deep stromal swelling. It is important to differentiate between endothelial damage and expansion.
caused by the test material exposure and damage from other sources (e.g., mechanical). In the case of mechanical damage, the deep swelling can occur in the absence of expansion in the anterior stroma. **Test material-induced damage should progress through the cornea and be manifested in both the anterior and posterior stroma.** Sections or portions of sections where the endothelium is lost and posterior stromal swelling (collagen matrix expansion) is observed without similar anterior stromal swelling are likely the result of mechanical damage to the endothelium that occurred early in the assay (incubation). An effort should be made to score corneal sections that do not show such damage.

Histological changes in the keratocytes are manifested in both the **cytoplasm and nucleus**. Rapid necrotic cell degeneration, as might follow exposure to a strong alkaline, organic solvent or surfactant, is quite apparent because the cellular components rapidly breakdown. Oxidative damage or DNA alkylation might produce more subtle damage (initially) but could also lead to cell death (delayed) and release of inflammatory mediators. **Nuclear changes** (pyknosis or karyorrhexis) are signs of this process. Progressive nuclear pyknosis or complete destruction are also signs of this process. **Cytoplasmic changes** include vacuole formation or loss of basic elements (mRNA for example) that are also indicative of the beginning of the degenerative process. The cell cytoplasm normally stains with both basophilic (hematoxylin) and acidophilic (eosin) stains. When the basic elements are lost, eosinophilic staining predominates. This change is termed **keratocyte eosinophilia**.

Endothelium: Histological changes in this layer include cell loss and cytoplasmic degeneration (vacuolization). Since this layer is only one cell thick, mechanical damage has the potential to confound the evaluation. Where there is endothelial cell loss, it is important to evaluate surrounding fields for the presence of normal endothelium. Since the whole corneal surface is treated, a lack of a uniform changes to most of the endothelium would suggest mechanical damage to isolated patches rather than test material-induced damage. When mechanical damage occurs late in the assay or after fixation (e.g., during processing), little or no deep stromal swelling or expansion is expected.

5.4 Preparation of the Photomicrographs

Photomicrographs of the histological changes are made to be “representative” of the observations and the degree of damage at the indicated depth observed in the treatment group. They are not intended to document damage, or be considered raw data. Images are prepared using a Spot Insight Digital Camera and Spot 4.0.8 software (Diagnostic Instruments, Inc., Sterling Heights, MI). The colour balance of the images is sometimes corrected to better represent the colours that would be seen through the microscope. Each photomicrograph is documented in a study-associated digital image log. Once finalized, the image log for the study is printed, signed and dated by the scientist responsible. The finalized copy is placed into the study notebook. The photomicrographs are “pasted” electronically into the Histology Report.

6. A Short Compendium of Micrographs to Illustrate Negative Control-Treated (Normal) and Select Histological Changes in Bovine Corneal Tissue

The following series of photomicrographs are intended to illustrate normal bovine corneal morphology and provide examples of the types of histological changes that might be observed in the epithelium, stroma, and endothelium. It is by no means a complete listing of all histological changes, but is
intended to illustrate the types of changes mentioned in the discussion of corneal lesions. In some figures, the chemical and exposure are provided. When photomicrographs have been taken from unpublished client studies, test material information is omitted.

6.1 Negative Control Corneas
(see separate annex for full photo BCOP histopathology manual)

6.2 Epithelial Damage
(see separate annex for full photo BCOP histopathology manual)

6.3 Stromal Histological changes
(see separate annex for full photo BCOP histopathology manual)

6.4 Endothelial Cell Histological changes
(see separate annex for full photo BCOP histopathology manual)

7. References

This protocol represents the technical procedures recommended by Triskelion, the developer of the Isolated Chicken Eye Test (Prinsen and Koeter 1993; DB-ALM 1994; Prinsen 1996). It was used as a basis for the validation studies undertaken on the Isolated Chicken Eye test, and of the test method evaluation conducted by the Interagency Coordinating Committee on the Validation of Alternative Methods (Balls et al. 1995; Chamberlain et al. 1997; ICCVAM 2010), in conjunction with the European Centre for the Validation of Alternative Methods and the Japanese Center for the Validation of Alternative Methods, which included an international independent scientific peer review of the validation status and scientific validity of the ICE test method.

1 Principle

The test chemical is applied onto the cornea of at least three eyes in one single dose, for an exposure period of 10 seconds. Prior to dosing, each test eye provides its own baseline values for the assessment of corneal effects. One untreated eye serves as a control of the experimental conditions. The reactions of the corneas are examined at regular intervals up to 4 hrs after treatment. Based on the mean scores for corneal swelling, corneal opacity, and fluorescein retention, an assessment of the eye irritation potential of the test chemical, ranging from non to severely irritating, can be made. Microscopically, the “depth-of-injury” may be assessed by examination and recording of the lesions of the cornea.

2 Experimental design

2.1 Requisites

Collection of heads:
- Containers for transportation of the heads (for instance in plastic boxes with lids)
- Slaughter knife
- Proper clothing (as required by the slaughterhouse)
- Rubber boots or plastic coverall for shoes
- Surgical gloves and protective glove, if considered necessary

Enucleation of eyes:
- Surgical forceps
- Anatomical forceps (bent)
- Scissors; at least one with blunt bent tips
- Underpads
- Eye clamps
- Fluorescein sodium 2% w/v (Minims® or equivalent)
- Physiological saline (also used during other phases of the study)
For maintaining enucleated eyes:
- superfusion apparatus
- Peristaltic pump with the appropriate number of channels

- Waterbath with suitable range (for instance 30-60°C)

Examination of eyes:
- Slit-lamp microscope (slit-lamp BP 900, Haag-Streit AG, Liebefeld-Bern, Switzerland). Alternatively the slit-lamp BQ900 from Haag-Streit may be used as long as it can be mounted with the depth measuring device and a slit width of 0.095 can be applied.
- Depth Measuring Attachment no. 1

Administration of the test chemical:
- Analytical balance
- Weighing paper
- Mortar and pestle or coffee grinder (for solids)
- Micropipette with positive displacement suitable for 30 µL delivery
- Test chemical(s)
- Repeater pipette (range 1-10 ml) with matching 500-600 mL flask

Scoring of all effects at all time points:
- Suitable scoring form.
2.2 Settings and general directions

Superfusion apparatus: No special settings are needed.

Peristaltic pump:
- set the speed at a rate that results in 3-4 drops of saline per minute.

NOTE. Maximum rinsing is applied to rinse off the fluorescein application at the t = 30 min observation.

Temperature-controlled water pump:
The water pump is connected to the superfusion apparatus by plastic tubing. One tube is attached to the outlet of the water pump and to the inlet of the superfusion apparatus (right-hand bottom). Another tube is connected to the outlet of the superfusion apparatus (left-hand top) and returns to the water reservoir of the pump. The temperature of 32 ± 1.5°C in the chambers of the superfusion apparatus is maintained by using the appropriate temperature setting which is established beforehand. Once determined this checking can be used for a longer period (an annual check is considered sufficient).

NOTE. It is sufficient to once establish the temperature range of 32 ±1.5°C in the superfusion apparatus. Only if temperature settings are changed an additional check is performed.

Slit-lamp microscope (Haag-Streit 900 BP):
First check both ocular settings. Once the correct setting is determined it can be used for all tests.
- set the general magnification of the slit-lamp (10, 16 or 25) at 16 (see figure below).

For the "whole eye" observation, necessary for the assessment of corneal opacity and fluorescein retention, the settings are:

Opacity:
- set light intensity knob at ½ (see figure below).
Observe the cornea as follows:
- Focus the light beam on the surface of the cornea (saline film) by using the movement control knob (joystick) on the mounting table, until a sharp image of the corneal surface is obtained.
- Perform the observation.

Fluorescein:
- set light intensity knob at ½.

<table>
<thead>
<tr>
<th>slit length</th>
<th>full length</th>
<th>upper handle (1) of the light column: on green symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>slit width</td>
<td>fully open</td>
<td>ribbed turn knob (2) at top of the light column: position 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>position lower ribbed knob (3); position on indefinite</td>
</tr>
</tbody>
</table>

Observe the cornea as follows:
- Apply one drop of the fluorescein solution onto the cornea (eye remains in the chamber) and rinse with saline by increasing the saline drip to its maximum. Return the drip rate to normal after the observation.
- Focus the light beam on the surface the cornea (saline film) by using the movement control knob (joystick) on the mounting table, until a sharp image of the corneal surface is obtained.
- Perform the observation.

<table>
<thead>
<tr>
<th>slit length</th>
<th>full length</th>
<th>upper handle (1) of the light column: on green symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>slit width</td>
<td>fully open</td>
<td>ribbed turn knob (2) at top of the light column: position 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>position lower ribbed knob (3) exactly in between 9 and 10 (9½)</td>
</tr>
</tbody>
</table>

For the corneal thickness measurement, the settings are:
- set light intensity knob at 2 (see figure page 7).

To determine the thickness of the cornea the following directions are followed, which for the Haag-Streit slit-lamp microscope with the Depth Measuring Attachment no. 1 are:
- Mount the device on the slit-lamp.
- Change the right ocular with the depth measuring ocular with the “I 16x” upwards.

- Assure that the light beam of the slit-lamp is passing the slit of the depth measuring device, otherwise adjust.
- Focus the light beam on the centre of the cornea.
- Determine the exact thickness of the cornea in instrument units by turning the dial on the device, while looking through the right ocular only, until the upper and lower half of the slit light beam are in the right position (see figure below).
- Read the value on the scale, once the correct position is reached.
NOTE. The best results are obtained by first turning the halves completely apart and then turning them back to the correct position.

Micropipette:
- No calibration is required since the 30 µl is considered an over-dose and the application is open.
- Put the syringe in place.
- Set the volume adjustment dial at 30 µl.
- Fill syringe and remove air.
- Place tip above the centre of the cornea of the eye, which is placed in an open, plastic box or on a layer of tissue.
- Expel 30 µl onto the cornea by pressing thumb knob once until stop.

NOTE. If the drop(s) of the test chemical bounces off or if the cornea is not properly exposed an additional volume may be applied to obtain an adequate exposure. The approximate volume applied is noted.

Seripettor:
- Fill the flask with physiological saline.
- Set the volume adjustment knob at ca 5 ml.
- Apply a 5 ml volume of saline by pulling the handle to its highest position and then by pushing it down to its lowest position at a rate of approximately 3-4 sec per 5 mL (gently).
- For rinsing after administration of the test chemical the above procedure is carried out 4 times (total of 20 ml).
- For powders, it is advised to apply the first 5 ml of saline as drops and not as a beam.
- If the upper-arm of the clamp does not fit the eye-ball entirely, make sure that additional rinsing is applied to the area on top of the upper-arm to remove any residue. This need not to be recorded separately because it does not concern the cornea.

NOTE. If remains of the test chemical are still present on the cornea sufficient rinsing is applied to fully remove the test chemical. The approximate volume applied is noted. If remains cannot be removed by additional rinsing, this is also noted.

2.3 Collection of chicken eyes
On the day of testing, in the morning, chicken heads (normally chickens of ca 2 kg) are collected at a poultry slaughterhouse nearest to the laboratory (ideally within 45 min driving distance). If chickens of a different weight are used, data should be generated to demonstrate the validity of the use of chickens of a different weight.

The collection procedure is the following:

At the slaughterhouse
- Cut off the heads of the animals at the bleeding location (after sedation and incision of the neck for bleeding), and before they reach the hot water scrub station (next station of the process line).

_ NOTE. The eyes should not be touched in anyway, while cutting the head off!_

- Place each head in the container box.
- Immediately transport the boxes with the heads to the testing facility at ambient temperature (during winter the boxes should be in the driver’s compartment of the car (not in the trunk). The arrival at the test facility, the name of the slaughterhouse and the approximate time of kill is noted in the log.

2.4 Enucleation of the eyes

Carefully dissect the eyes within a maximum interval of 2 hours after kill. The eyes are enucleated and placed in the superfusion apparatus using the following procedure:
- Cut away the eye-lids as far as possible of one eye of the head.
- Apply one small drop of fluorescein onto the centre of the cornea
- Immediately rinse-off with ca 5 ml saline (ambient).
- Examine the cornea in situ with the microscope (see "whole eye" observation) for possible staining of damaged epithelial cells.

_ NOTE. Only corneas without staining should be used (some minor single cell staining, maximum score 0.5 is still acceptable for testing). Corneal opacity or other abnormalities should also be absent before further dissection may be carried out, otherwise repeat the above steps with another eye._

- Pull the eye ball from the orbit by holding the nictitating membrane with a surgical forceps, while cutting the eye muscles with bent scissors.

_ NOTE. Avoid too much pressure, because corneal opacity may result._

- Once removed from the orbit, place the eye on the underpad and cut away the nictitating membrane and other connective tissue around the cornea taking great care to avoid any contact with the cornea. In case of doubt, it is advisable to reassess corneas by means of fluorescein assessment.

- Clamp the eye in the holder with the cornea.

_ NOTE. Again avoid too much pressure on the eye by the clamp. Because of the relatively firm sclera of the chicken eye-ball, only slight pressure is needed to fix the eye properly._
- If there is any doubt that the cornea is still undamaged, again use fluorescein to detect possible damage.
- This fluorescein determination or the one before is taken as score t = 0 and noted on the recording form.
- Place the holder with the eye in one of the chambers of the superfusion apparatus.
- Supply the cornea with the saline drip (see settings).
- Repeat the above procedure until enough eyes are available for testing.
- Measure the corneal thickness of the eyes (see settings) and record the values on recording form at t = - 45 min. Note the actual time in the time column and in the log. Optional: Note the expected times of the time points in the time column. The actual times are noted in the log when performed.
- Allow the eyes to acclimatize in the superfusion apparatus for 45-60 min.

2.5 Base-line assessments

At the end of the acclimatization period usually 5 minutes before the start of the exposure (t=0), the base-line determinations for corneal swelling, corneal opacity, and fluorescein retention are made as follows:
- Observe each cornea for corneal opacity or other abnormalities.
- Measure the thickness of each cornea and record the values at t=0.
- Do not change the setting of the lower ribbed knob of 9½ until the t = 30 min thickness assessment has been completed.

NOTE. The corneal thickness of the eyes should not have increased by more than 5-7% (or 3 instrument units). Slight thinning (up to 7%) may also be observed, but is considered normal when maintaining enucleated eyes. Corneal opacity should not be observed in any of the eyes. However, very faint opacity is acceptable, provided it is not observed in all of the eyes.

2.6 Administration of the test chemical

After the baseline assessments, the test chemical is applied in one single dose to each of the test eyes. The control eye is left untreated, but is otherwise similarly handled.

Liquids

Liquids are applied with a micropipette in a standard dosing-volume of 30 µl. Other volumes may be appropriate and, if so, noted on the recording form.
Pastes may be softened by means of a warm water (ca 70°C), collected with the micropipette and applied after cooling down to lukewarm temperature, unless other handling procedures are specified. This procedure is also applicable when dealing with highly viscous liquids, if they cannot be handled properly at room temperature. The procedure followed is noted on the recording form. Optional: Prior or during testing, the hydrophobicity or hydrophilicity of the liquid test chemicals can be established. This can easily be checked during application on the cornea or done by putting some of the test chemical in a beaker with water and observing whether or not the test chemical mixes with the water.

NOTE. Pipettes using air pressure should not be used, because such small volumes cannot be handled adequately (especially viscous liquids). Pipettes using direct pressure by means of a piston are recommended.

Solids

Solids, ground to a fine powder, if necessary, are applied by powdering the surface of the cornea with a standard amount of 30 mg placed on a weighing paper.

NOTE. In some cases with strongly hygroscopic powders (such as NaOH) or with very tough pastes, a spatula or the tip of the dosing syringe is needed to keep the test chemical in place on the cornea. Very tough pastes or dough may need to be applied as a moulded piece of material placed directly onto the
cornea. In those cases the exact weight of the dose is not considered to be relevant. Priority is given to a
good contact of the test chemical with the cornea.

The administration procedure for each eye is as follows:

Test eyes
- Take the first eye out of its chamber and place it on a layer of tissue or in a plastic box with the cornea
 facing upwards.
- Apply the test chemical onto the centre of the cornea, according to the directions already given in this
 paragraph. Record any unusual findings, such as sliding down of the test chemical as with hydrophobic
 test chemicals, or immediate corneal opacity. Also if distribution of the test chemical over the cornea is
 non-homogeneous this should be recorded.
- Leave the test chemical on the cornea for a period of 10 seconds, which starts after completion of the
 administration.
- Next, rinse the cornea thoroughly, but carefully with 20 ml of isotonic saline of ambient temperature
 from the seripettor (in 4 doses of 5 mL each). Record any unusual findings, such as adherence of the test
 chemical to the cornea or precipitation of the test chemical on the cornea.
- Return the clamp and eye to its chamber
- Repeat this procedure for each test eye.

Control eye
- Take the control eye out of its chamber and place it on a layer of tissue with the cornea facing upwards
 or in a plastic box.
- Rinse the cornea carefully with 20 ml of isotonic saline of ambient temperature.
- Return the clamp and eye to its chamber.

2.7 Observation and assessment of corneal effects

The control eye and test eyes are examined, using the criteria and scoring system given in OECD TG 438
at approximately 30, 75, 120, 180, and 240 minutes (± 10 min for all time points except 30 minutes) after
 treatment. All examinations are carried out with the slit-lamp microscope.
30-min interval:
- First observe each eye for corneal thickness (using the setting of t = 0 min) and record the findings.
- observe each eye for corneal opacity.
- If some test chemical is observed to remain on the cornea, try to remove it by gentle rinsing with saline
 and note the effect.
- Next, apply one drop of the fluorescein solution to the cornea of each eye (three eyes can be handled at
 the same time).
- Immediately rinse the corneas by turning up the saline drip.
- Immediately observe and record the findings.

Other time intervals:
- Repeat the procedure described above and record the findings at the respective intervals. However, fluor
 easein retention is no longer determined.

NOTE. In case of test chemicals that have adhered to the cornea, fluorescein retention should also be
determined whenever the test chemical can be removed. When determining the corneal thickness, a
confirmation of fluorescein retention can be also obtained by observing the extent of penetration of
fluorescein into or through the cornea (severe fluorescein retention will result in considerable
penetration). Also corneal opacity can be confirmed by observing the cross-section of the cornea during the thickness measurement. Mixed effects on the cornea such as a general slight opacity and focal spots with severe opacity can be noted on the scoring form as 1(3). This applies also to the scoring of fluorescein retention. The most severe score is used for calculation of the maximum mean score (3 in this case).

2.8 Sampling and fixation of the corneas

After the final examination the test and control eyes are preserved in a neutral aqueous phosphate-buffered 4 per cent solution of formaldehyde for histopathological examination. For that purpose, the eyes are first almost cut in half with a scalpel just behind the level of the lens and through the vitreous body (not through the cornea!). The cut end in half is placed in a container with approximately 20 ml of formalin. After fixation for at least 24 hours, the half with the cornea and lens tissue is trimmed with scissors in such a way that a thin piece containing the entire cornea without the lens is available for further processing.

Precise directions are given in Annex II of the OECD GD 160.

3 References

ANNEX V: DETAILED PROTOCOL FOR STUDIES USING THE BOVINE CORNEAL OPACITY AND PERMEABILITY TEST METHOD

Preface

This protocol is based on a comprehensive test method evaluation process conducted by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM; ICCVAM 2010), in conjunction with the European Centre for the Validation of Alternative Methods and the Japanese Centre for the Validation of Alternative Methods, which included an international independent scientific peer review of the validation status and scientific validity of the BCOP test method. The protocol is based on information obtained from (1) the Institute for In Vitro Sciences, Inc. (IIVS), a non-profit foundation that has performed the BCOP test method since 1997 in a Good Laboratory Practice (GLP)-compliant testing facility and (2) DB-ALM Protocol 124 (1999), which represents the protocol used for the European Community sponsored prevalidation study of the BCOP test method conducted in 1997–1998. Both of these protocols are based on the BCOP test method first reported by Gautheron et al. (1992). Future studies using the BCOP test method could include further characterization of the usefulness or limitations of the BCOP test method in a weight-of-evidence approach for regulatory decision-making. Users should be aware that the proposed test method protocol could be revised based on any additional optimization and/or validation studies that are conducted in the future. ICCVAM recommends that test method users consult the NICEATM–ICCVAM website (http://iccvam.niehs.nih.gov/) to ensure use of the most current test method protocol.

1.0 PURPOSE AND APPLICABILITY

The purpose of this protocol is to describe the procedures used to evaluate the potential ocular hazard of a test chemical as measured by its ability to induce opacity and increase permeability in an isolated bovine cornea. Effects are measured by (1) decreased light transmission through the cornea (opacity); (2) increased passage of sodium fluorescein dye through the cornea (permeability); and (3) evaluation of fixed and sectioned tissue at the light microscopic level, if applicable. The opacity and permeability assessments of the cornea following exposure to a test chemical are considered individually and also combined to derive an in vitro irritancy score (IVIS), which is used to classify the irritancy level of the test chemical. Histological evaluation of the corneas can be useful for identifying damage in tissue layers that might not produce significant opacity or permeability changes. Furthermore, histopathology may be useful to identify the depth and degree of damage within the corneal layers to aid in predicting the likelihood for corneal recovery.

The focus of this protocol is on the use of the BCOP test method for the detection of serious eye damage as defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS Category 1) (UN 2015), and to identify chemicals that do not require classification for eye irritation or serious eye damage, as defined by the GHS (GHS No Category). The BCOP test method is currently not considered to be adequately validated to identify test chemicals other than UN GHS Category 1 and UN GHS No Category (e.g. UN GHS Category 2 or UN GHS Categories 2A and 2B) (UN 2015), although these have been tested using this protocol. If such results are obtained with the BCOP test method, the obtained result may still be useful within an IATA approach using e.g. a weight-of-evidence approach.
analyses in conjunction with other testing and/or non-testing data, to further evaluate potential eye hazard including moderate and mild irritants (i.e., UN GHS Category 2/2A and 2B).

2.0 SAFETY AND OPERATING PRECAUTIONS

All procedures with bovine eyes and bovine corneas should follow the institution’s applicable regulations and procedures for handling animal substances, which include, but are not limited to, tissues and tissue fluids. Universal laboratory precautions are recommended, including the use of laboratory coats, eye protection, and gloves. If available, additional precautions required for specific study substances should be identified in the Material Safety Data Sheet for that substance.

3.0 MATERIALS, EQUIPMENT, AND SUPPLIES

3.1 Source of Bovine Eyes

Eyes from cattle are obtained from an abattoir located within close proximity of the testing facility. The cattle type (breed not specified) can be cows, heifers, steers, or bulls. Because cattle have a wide range of weights depending on breed, age, and sex, there is no recommended weight for the animal at the time of sacrifice.

Eyes from very old cattle are not recommended because the corneas tend to have a greater horizontal corneal diameter and vertical corneal thickness that could affect assay performance (Doughty et al. 1995; Harbell J, personal communication). Additionally, eyes from calves are not recommended since their corneal thickness and corneal diameter are considerably less than that of eyes from adult cattle. Accordingly, eyes from cattle between 12 and 60 months old are typically used, although, the use of corneas from young animals (i.e., 6 to 12 months old) is permissible provided that it can be demonstrated that the test results obtained from the negative and positive controls routinely fall within the established acceptance ranges.

3.2 Equipment and Supplies

- Corneal holders
- Dissection equipment (scissors, scalpels, forceps)
- Electric screwdriver
- Conical centrifuge tubes (50 mL)
- Incubator or water bath
- Low-residue detergent-based cleaning solution designed for cleaning healthcare and laboratory instruments (for example Alconox Liquinox®)
- Microplate reader or UV/VIS spectrophotometer
- Micropipettors and pipette tips
- Opacitometer
- Petri dishes
- Plastic containers for collection and transport of eyes
- Sample tubes (5 mL, glass) for permeability determination
- Spatula
- Specialized window-locking ring screwdriver
- Standard tissue culture and laboratory equipment
- Sterile deionised water
- Syringes (10 mL) and blunt tip needles (19 Gauge)
- Vacuum pump
- 96 well plates (polystyrene) or cuvettes of an appropriate size for UV/VIS spectrophotometer

3.3 Chemicals

- Ethanol (200 proof, absolute, anhydrous, ACS/USP grade)
- Dimethylformamide
- Imidazole
- Penicillin
- Sodium chloride
- Sodium fluorescein
- Streptomycin

3.4 Solutions

Follow the manufacturer’s recommendations with regard to storage temperature and shelf life of stock solutions.

- 0.9% (w/v) NaCl in sterile deionised water (saline).
- 1X Hanks’ Balanced Salt Solution with Ca\(^{++}\) and Mg\(^{++}\) (HBSS) containing 100 IU/mL penicillin and 100 µg/mL streptomycin.
- Dulbecco’s Phosphate Buffered Saline (DPBS).
- Eagle’s Minimum Essential Medium without phenol red, warmed to 32°C.
- Eagle’s Minimum Essential Medium with phenol red (used only for rinsing test chemicals), warmed to 32°C.
- Sodium fluorescein (Na-fluorescein) diluted in DPBS to 4 mg/mL for liquid test articles or 5 mg/mL for solid test articles.

4.0 TEST CHEMICAL PREPARATION

Ideally, all test chemical solutions should be prepared fresh on the day of use.

4.1 Non-surfactant Liquid Test Chemicals

Liquid test chemicals are tested undiluted. However, if prescribed, dilutions of aqueous soluble test chemicals should be prepared in 0.9% sodium chloride solution, distilled water, or other solvent that has been demonstrated to have no adverse effects on the test system.

4.2 Non-surfactant Solid Test Chemicals

Non-surfactant solid test chemicals should typically be prepared as 20% (w/v) solutions or suspensions in 0.9% sodium chloride solution, distilled water, or other solvent that has been demonstrated to have no adverse effects on the test system.

4.3 Surfactants

Solid and concentrated liquid surfactants should be prepared and tested as a 10% (w/v, v/v) dilution or suspension in 0.9% sodium chloride solution, distilled water, or other solvent that has been demonstrated to have no adverse effects on the test system. Alternate concentrations of liquid surfactant concentrates may be tested with justification.

4.4 Surfactant Preparations
Surfactant-based preparations (e.g. product formulations) are usually tested neat, or can be diluted in 0.9% sodium chloride solution, distilled water, or other solvent that has been demonstrated to have no adverse effects on the test system, with justification of the selected dilution. For examples, surfactant-based cleaning solutions at end-user concentrations are usually tested neat, whilst highly concentrated liquid soaps, shampoos, and cleaning gels may be diluted to model end user concentrations, or to model an optimum surfactant activity.

5.0 CONTROLS

5.1 Negative Control
During routine testing, a concurrent negative control (e.g. deionized or distilled water, or 0.9% sodium chloride) is included to detect nonspecific changes in the test system, as well as to provide a baseline for the assay endpoints. It ensures that the assay conditions do not inappropriately result in an abnormal response.

5.2 Solvent/Vehicle Control
When testing a diluted test chemical, a concurrent solvent/vehicle control is included to detect nonspecific changes in the test system, as well as to provide a baseline for the assay endpoints. Only a solvent/vehicle that has been demonstrated to have no adverse effects on the test system can be used. Therefore, it is recommended to test the negative control concurrently with the solvent control to evaluate for potential solvent-induced changes.

5.3 Positive Control
A substance known to induce a positive response is included as a concurrent positive control in each experiment to verify the integrity of the test system and its correct conduct. However, to ensure that variability in the positive control response across time can be assessed, the magnitude of the positive response should not be at either extreme.

Examples of positive controls for liquid test chemicals are 100% ethanol or 100% dimethylformamide. An example of a positive control for solid test chemicals substances is a 20% (w/v) dilution of imidazole prepared in 0.9% sodium chloride.

5.4 Benchmark Substances (if appropriate)
Benchmark substances are useful for evaluating the ocular irritancy potential of unknown chemicals of a specific chemical or product class, or for evaluating the relative irritancy potential of an ocular irritant within a specific range of irritant responses. Appropriate benchmark substances should have the following properties:

- A consistent and reliable source(s)
- Structural and functional similarity to the class of the substance being tested
- Known physical/chemical characteristics
- Supporting data on known effects in vivo
- Known potency in the range of the desired response

6.0 EXPERIMENTAL DESIGN

6.1 Collection and Transport Conditions of Bovine Eyes
Bovine eyes are typically obtained from a local abattoir, where the eyes should be excised as soon as possible after sacrifice. Care should be taken to avoid damaging the cornea during the enucleation procedure. Eyes should be immersed completely in HBSS in a suitably sized container, and transported to the laboratory in such a manner as to minimize deterioration and/or bacterial contamination. Because the
eyes are collected during the slaughter process, they might be exposed to blood and other biological substances, including bacteria and other microorganisms. Therefore, it is important to ensure that the risk of contamination is minimized (e.g. by keeping the container containing the eyes on wet ice, by adding antibiotics to the HBSS used to store the eyes during transport [e.g. penicillin at 100 IU/mL and streptomycin at 100 μg/mL]). If yeast contamination is likely, the HBSS may be supplemented with fungizone. The time interval between collection of the eyes and use of corneas should be minimized (typically collected and used on the same day) and should be demonstrated to not compromise the assay results.

6.2 Preparation of Corneas

Since the whole globe enucleated eyeballs received for this assay are provided en masse as a raw material by an abattoir, typically a large number of eyes are disqualified for use in the assay by the Testing Facility due to a number of quality concerns. Multiple acceptance evaluations are performed throughout the cornea preparation procedures, from initial receipt of the whole globe enucleated eyeballs, to the final objective measurement of corneal opacity. Only those corneas which have been mounted in corneal holders and meet all of the quality criteria throughout the cornea qualification process are qualified to be defined as a BCOP Test System.

a. Carefully examine all whole globe enucleated eyes macroscopically. Those exhibiting unacceptable defects, such as opacity, scratches, pigmentation, and neovascularization are rejected.

b. For those eyes where no defects are initially detected, carefully remove the cornea from each selected eye by making an incision with a scalpel 2 to 3 mm outside the cornea, then by cutting around the cornea with dissection scissors, leaving a rim of sclera to facilitate handling. Carefully peel off the iris and lens, ensuring no fragments of these tissues are remaining on the cornea. Take care to avoid damaging the corneal epithelium and endothelium during dissection.

c. Place the isolated corneas in a petri dish containing HBSS until they are mounted in the corneal holders. The isolated corneas are examined again for defects immediately prior to mounting the corneas in the corneal holders. If any previously unrecognized defects are observed at this point, those defective corneas are also discarded. Only those corneas which pass the initial qualification evaluations are mounted in corneal holders. Since each corneal holder is identified by a unique number the mounting of corneas into the corneal holders provides an initial opportunity to identify and track the disposition of individual corneas from this point forward.

d. Mount the corneas in holders (one cornea per holder) by placing the endothelial side of the cornea against the O-ring of the posterior chamber. Place the anterior chamber over the cornea and join the chambers together by tightening the chamber screws. Care should be taken not to shift the two chambers to avoid damaging the cornea.

e. Fill both chambers with fresh complete MEM (about 5 mL), always filling the posterior chamber first to return the cornea to its natural curvature. Care should be taken when adding or removing liquid from the posterior chamber to avoid the formation of bubbles and to minimize shear forces on the corneal endothelium.

f. Seal each chamber with plugs provided with the holders.

g. Incubate the corneal holders in a vertical position at 32 ± 1°C for at least 60 minutes to allow the corneas to equilibrate with the medium and to achieve normal metabolic activity.
At the end of the initial 1-hour incubation period, examine each cornea for defects, such as tears or wrinkling. Discard corneas with any observed defects.

6.3 Control Cornea Selection and Opacity Reading

The final step in the qualification of the corneas for use in a study is an objective evaluation of the corneal opacity; namely, only corneas with initial opacity values ≤7 opacity units (as measured with a calibrated corneal opacitometer) are acceptable for use in a study.

- After the 1-hour incubation period, remove the medium from both chambers of each holder (anterior chamber first) and replace with fresh complete MEM.
- Take and record an initial opacity reading for each cornea, using an opacitometer or equivalent instrument that has been appropriately calibrated according to the manufacturer’s specifications. This initial opacity reading will be used to calculate the final opacity value for each cornea. The testing facility should ensure the opacitometer is functioning properly each day it is used.
- Any corneas that show macroscopic tissue damage or an opacity >7 opacity units are discarded.
- Calculate the mean opacity value for all corneas.
- Select a minimum of three corneas with opacity values close to the mean value for all corneas as negative (or solvent/vehicle) control corneas. The remaining corneas are then distributed into treatment and positive control groups. The disposition of any unused corneas should be accounted for.

6.4 Treatment Groups

A minimum of three corneas is treated with each test chemical solution or suspension. In addition, a minimum of three corneas per assay are treated with the positive control and a minimum of three corneas per assay are treated with the negative control. If a benchmark substance is used the day of testing, a minimum of three corneas should be treated with the benchmark.

Different treatment methods are used depending on the physical nature and chemical characteristics (liquid or surfactant versus non-surfactant solid) of the test chemical. A closed chamber method is typically used for non-viscous to slightly viscous liquid test chemicals, while an open chamber method is typically used for semi-viscous and viscous liquid test chemicals and for neat solids. The open chamber method allows direct access to the anterior side of the corneas to dose and rinse materials that cannot readily be pipetted.

6.5 Treatment of Corneas and Opacity Measurements

6.5.1 Closed chamber method for non-viscous to slightly viscous liquid test chemical and surfactant preparations

- Record the initial opacity readings and label each chamber with the appropriate control or test chemical identification. Just prior to treatment, remove the medium from the anterior chamber through the dosing holes using an appropriate aspiration technique (e.g. blunt needle attached to a large syringe, or alternatively to a vacuum pump).
- Add 0.75 mL of the control or test chemical (or enough test chemical to completely cover the cornea) to the anterior chamber through the dosing holes using a micropipet. The dosing holes are then resealed with the chamber plugs.
- Rotate the holders such that the corneas are in a horizontal position. The holders should be gently tilted back and forth to ensure a uniform application of the control or test chemical over the entire cornea.
d. Incubate the holders in a horizontal position at 32 ± 1°C for 10 ± 1 minutes. If other exposure times are used, justification must be provided.

e. Remove the control or test chemical from the anterior chamber through the dosing holes and rinse the epithelium at least three times (or until no visual evidence of test chemical is observed) with approximately 2 to 3 mL of fresh complete MEM (containing phenol red as an indicator of the effectiveness of rinsing acidic or alkaline materials). Perform one final rinse of the epithelium using fresh complete MEM (without phenol red to ensure its removal prior to the opacity measurement). If it is not possible to remove all visible signs of the test chemical, this should be documented. Refill the anterior chamber with fresh complete MEM (without phenol red).

f. Perform a post-treatment opacity reading for each cornea and record the results. Observe each cornea visually and, if applicable, record pertinent observations (e.g. dissimilar opacity patterns, tissue peeling or residual test article).

g. Incubate the holders in a vertical (anterior chamber facing forward) position at 32 ± 1°C for 120 ± 10 minutes. If other post-exposure incubation times are used, justification should be provided.

h. Record a post-incubation opacity reading for each cornea, which will be used to calculate the final corneal opacity value. Observe each cornea visually and record pertinent observations. Special attention is taken to observe dissimilar opacity patterns, tissue peeling or residual test chemical, etc.

6.5.2 Open chamber method for semi-viscous and viscous liquid test chemicals and surfactant preparations

a. Record the initial opacity readings and label each chamber with the appropriate control or test article identification. Just prior to treatment, remove the medium from the anterior chamber through the dosing holes.

b. Remove the window-locking ring and glass window from all appropriate anterior chambers and place the holders into a horizontal position (anterior chamber facing up).

c. Add test chemical to each chamber successively at a constant rate of 15 to 30 seconds between each chamber. Apply approximately 0.75 mL of the control or test chemical (or enough test chemical to completely cover the cornea) directly to the epithelial surface of the cornea using a micropipet or other appropriate device, such as a spatula. Maintain the holders in a horizontal position (anterior chamber up).

d. If necessary, to aid in filling the pipette with substances that are viscous, the test article may first be transferred to a syringe. Insert the pipette tip of the positive displacement pipette into the dispensing tip of the syringe, so that the substance can be loaded into the displacement tip under pressure. Simultaneously, depress the syringe plunger as the pipette piston is drawn upwards. If air bubbles appear in the pipette tip, the test article should be expelled and the process repeated until the tip is filled without air bubbles. This method should be used for any substances that cannot be easily drawn into the pipette (e.g. gels, toothpastes, and face creams).

e. If necessary, immediately upon dosing, slightly tilt the holders to achieve a uniform application of the test article over the entire cornea.

f. After all of the chambers are dosed, replace the glass windows and window-locking rings.

g. Incubate the holders in a horizontal position at 32 ± 1°C for 10 ± 1 minutes. If other exposure incubation times are used, justification should be provided.
h. Prior to the end of the exposure period, remove the window-locking ring and glass window from each appropriate chamber.

i. At the completion of the exposure period, successively rinse each cornea at least three times (or until no visual evidence of test chemical is observed) according to the intervals that they were dosed. Using a syringe, add fresh complete MEM with phenol red to the inside wall of the anterior chamber creating a “whirlpool or vortex effect”, which causes the test article to be rinsed off the cornea. Take special care not to spray the medium directly onto the cornea. Residual test article that cannot be removed from the cornea by the “whirlpool method” is removed by placing a layer of medium over the cornea (added to the inside wall of the chamber). Spray a gentle stream of medium through the medium layer, directing it towards the residual test article. Perform one final rinse of the epithelium using fresh complete MEM (without phenol red). If after several tries the test article cannot be removed, document this, and proceed to the next step.

j. Once each cornea is completely rinsed of test article, replace the glass window and window-locking ring. Continue rinsing as stated previously for the “closed chamber method” (see Section 6.5.1, step e).

k. Perform a post-treatment opacity reading for each cornea and record the results. Observe each cornea visually and, if applicable, record pertinent observations (e.g. dissimilar opacity patterns, tissue peeling or residual test article).

l. Incubate the holders in a vertical (anterior chamber facing forward) position at 32 ± 1°C for 120 ± 10 minutes. If other post-exposure incubation times are used, justification should be provided.

m. Record a post-incubation opacity reading for each cornea, which will be used to calculate the final corneal opacity value. Observe each cornea visually and record pertinent observations. Special attention is taken to observe dissimilar opacity patterns, tissue peeling or residual test chemical, etc.

6.5.3 Solid non-surfactant test chemicals
Solid non-surfactant test chemicals are administered following one of the previously described procedures, with a few exceptions, which are noted below:

- Solid test chemicals are tested on the cornea as a 20% (w/v) solution or suspension prepared in an appropriate solvent/vehicle (e.g. sterile deionised water).
- Solid test chemicals are incubated at 32 ± 1°C for 240 ± 10 minutes.
- There is no post-treatment incubation period. Thus, immediately following the rinsing process, both chambers are refilled (posterior chamber first) with fresh complete MEM, and the post-treatment opacity readings are taken. During the post-treatment opacity reading, visual observations are performed for each cornea and, if necessary, are these are recorded. Special attention is taken to observe dissimilar opacity patterns, tissue peeling or residual test article, etc. Immediately following these opacity readings and visual observations, the permeability experiment is performed.

6.6 Application of Sodium Fluorescein
Following the final opacity measurement, permeability of the cornea to Na-fluorescein is evaluated. The Na-fluorescein solution is applied to the cornea by one of two methods, depending on the nature of the test chemical:

Liquid and surfactant test chemicals and surfactant preparations:
a. Remove the medium from both chambers (anterior chamber first).

b. Fill the posterior chamber with fresh complete MEM, and add 1 mL of a 4 mg/mL Na-fluorescein solution to the anterior chamber using a micropipettor.

c. Reseal the dosing holes in the top of both chambers with the chamber plugs.

Solid non-surfactant test chemicals:

a. Remove the medium from the anterior chamber only and replace with 1 mL of a 5 mg/mL Na-fluorescein solution.

b. Reseal the dosing holes in the top of both chambers with the chamber plugs.

6.7 Permeability Determinations

a. After adding the Na-fluorescein to the anterior chamber and sealing the chambers, rotate the holders into a horizontal position with the anterior chamber facing up. Tilt the holders slightly, if necessary, to achieve a uniform application of the Na-fluorescein over the entire cornea. Incubate the holders in a horizontal position for 90 ± 5 minutes at 32 ± 1°C.

b. After the 90-minute incubation period, remove the medium in the posterior chamber of each holder and place into sample tubes pre-labelled according to holder number. It is important to remove most of the medium from the posterior chamber and mix it in the tube so that a representative sample can be obtained for the OD\textsubscript{490} determination.

c. After completing the Na-fluorescein penetration steps, the corneas should be fixed in an appropriate fixative (e.g. 10% neutral buffered formalin) at room temperature for at least 24 hours, so that the tissues are available if histology is necessary or requested at a later time. It is important that the corneas not be allowed to dry between transfer from the holders and fixation (submersion in the fixative) (see paragraph 13, GD 160).

d. If using a microplate reader to measure optical density, transfer 360 µL of the medium from each sample tube into its designated well on a 96-well plate. The standard plate map provides two wells for each cornea. The first well receives an undiluted sample from each cornea tested. When all of the media samples have been transferred onto the plate, measure and record their OD\textsubscript{490}. Any OD\textsubscript{490} value (of a control or test chemical sample) that is above the linear range of absorbance must be diluted to bring the OD\textsubscript{490} into the acceptable range. [Note: The linear range of absorbance of different microplate readers can vary. Thus, each laboratory must determine the upper limit of absorbance (in the linear range) for the microplate reader used in its facility. IIVS has determined that OD\textsubscript{490} values greater than 1.500 may not be within the linear range of absorbance for their model plate reader, and thus must be diluted to bring the OD\textsubscript{490} into the acceptable range.] A dilution of 1:5 is generally sufficient but higher dilutions may be required. Prepare the dilution from the original sample of medium and transfer 360 µL into the second well designated for that cornea. Reread the plate and record the data from both the undiluted and diluted OD\textsubscript{490} values. Use the values from this second reading in all calculations. The OD\textsubscript{490} values of less than 1.500 will be used in the permeability calculation.

e. If using a UV/VIS spectrophotometer to measure optical density, adjust the spectrophotometer to read at OD\textsubscript{600}, and zero the spectrophotometer on a sample of complete MEM. Prior to reading samples from the BCOP test method, prepare and read two quality control samples of Na-fluorescein solution to ensure the Na-fluorescein calibration
curve (see note below) conducted for the spectrophotometer is still acceptable. If the average of the quality control samples does not fall within the accepted range of the Na-fluorescein calibration curve, then prepare a Na-fluorescein calibration curve prior to running samples from the BCOP test method. If the average of the quality control samples falls within the accepted range of the calibration curve, then proceed to read samples from the BCOP test method. Transfer an aliquot of the mixed medium from the posterior chamber of the BCOP holder into a cuvette, then take and record an absorbance reading using the spectrophotometer. Any solutions giving an OD$_{490}$ beyond the linear range of the spectrophotometer must be diluted in complete MEM, and another reading taken, repeating these steps until the OD$_{490}$ is within the linear range of the spectrophotometer. Repeat these procedures for each sample from the BCOP test method, rinsing the cuvette(s) thoroughly between each sample, until all samples have been read and results recorded.

Note: If conducting this assay for the first time, a calibration curve for the spectrophotometer must be performed, using a series of dilutions of Na-fluorescein solution in complete MEM. A calibration curve should be prepared and used to determine the linear range of the spectrophotometer and thus determine the upper limit of the linear range of absorbance.

6.8 Histopathology

Histological evaluation of the corneas can be useful for identifying damage in tissue layers that might not produce significant opacity or permeability changes, or when the standard BCOP endpoints produce borderline results. Furthermore, histopathology may be useful to identify the depth and degree of damage within the corneal layers to aid in predicting the likelihood for corneal recovery. Jester (1998), Maurer (1996, 2002) and others have shown for a range of chemical classes that depth of injury in the early hours after exposure can be predictive of the eventual degree and duration of the ocular lesions. Epithelial damage alone, in the rabbit cornea, is associated with expected recovery provided the basal lamina is intact. Deeper injury into the stroma has more serious consequences, while a full thickness injury including damage or loss of the endothelium would be predictive of a severe injury. Similar observations were presented relating the depth of histopathologic changes in corneas treated with a series of anti-microbial products with cleaning claims (which had been previously classified in vivo) in the BCOP assay (Redden, 2009). Kolle et al. (2015) reported that histopathology of the corneas used in the BCOP assay, using a depth of injury concept, improved the sensitivity for identifying severe ocular irritant agrochemical formulations over the IVIS alone, although they concluded that for agrochemical formulations the sensitivity for identifying severe ocular irritants was not sufficient. A standardized scoring scheme using the formal language of pathology to describe any effects should be used.

a. Corneal sections will be examined for the presence of changes in the corneal epithelium, stroma, and endothelium. Particular emphasis will be placed on assessment of the depth and degree of injury into the stromal elements. Treated tissues will be compared to the negative control tissues.

b. Negative and Positive control corneas from the BCOP assay will have been processed with the relevant test article-treated corneas as a common histology batch process. The histology of the negative control corneas may thus be used to evaluate the quality/acceptability of the slides within the processing batch. Prior to conducting the evaluation of test article-induced histopathology, the quality of the stained corneal sections will be evaluated, so that the nature and degree of the artefacts of both the BCOP assay and the histology processing can be assessed. To this end, the negative control slides are used to detect artefacts at the batch level. They are also used to assess “normal” staining (degree of hematoxylin or eosin in each layer/cell type), tissue architecture and general thickness.
c. Slides will be thoroughly examined by microscopic evaluation. Each cross section of each cornea within a treatment group should be observed first under low magnification for an overall assessment of the quality of the tissue sections for conducting the histopathology. Corneal sections are evaluated across the entire section from one crush zone to the other (the crush zone is the outer corneal perimeter where the cornea was mounted against an O-ring within the corneal chamber in the BCOP assay, and is readily apparent in the histology sections). Occasional processing artefacts may render sections of tissues unacceptable for use in the histopathology.

d. The test chemical and positive control-treated corneas will be evaluated for changes in cellular morphology and tissue architecture. Since test chemicals are applied topically on the outer corneal epithelium in the BCOP assay, any changes or toxic effects would be expected to be observed in the corneal epithelium, and dependent upon the penetration of the test chemical into the cornea, may be observed deeper into the cornea. Therefore, the evaluation of changes in the treated corneas will be performed starting superficially with the squamous epithelium at the site of test chemical exposure, and progressing into the cornea to the endothelium. Gross changes or erosion of the corneal architecture would be readily apparent, while other changes such as cellular or nuclear staining may be a bit more subtle. In general, the depth of observed changes in the bovine cornea will be reported. However, the degree of many of the observed changes may not be fully assessed, and thus the relative frequency of such observed changes relative to the negative control corneas might be presented. The interpretation of the histopathology should allow for an integration of all of the observed changes, prior to the definitive assessment.

e. Representative fields may be photographed and presented in the report solely to be illustrative of the cited changes.

6.9 Maintenance of the Corneal Holders

Following completion of the assay, clean the disassembled parts of each holder as follows:

a. Soak the posterior and anterior chambers with a low-residue detergent-based laboratory cleaning solution (e.g., Liquinox®).

b. Soak the chamber plugs, O-rings, and handle screws in 70% ethanol. Rinse the chamber plugs, O-rings, and handle screws thoroughly in hot tap water, and air dry prior to reassembling the chambers.

c. Clean the interior and exterior surfaces of each pre-soaked posterior and anterior chamber by using a scrubbing sponge. Rinse each posterior and anterior chamber thoroughly in warm tap water and air dry prior to reassembling the chambers.

d. Match up each numbered posterior chamber with its corresponding anterior chamber; insert an O-ring into the appropriate place; attach a chamber handle screw to the anterior chamber; and finally insert the chamber screws into the anterior chamber.

7.0 EVALUATION OF TEST RESULTS

Results from the two test method endpoints, opacity and permeability, should be combined in an empirically derived formula that generates an *in vitro* irritancy score for each test chemical.
7.1 Opacity

a. Calculate the change in opacity for each individual cornea (including the negative control) by subtracting the initial opacity reading from the final post-treatment opacity reading. Then calculate the average change in opacity for the negative control corneas.

b. Calculate a corrected opacity value for each treated cornea, positive control, and solvent/vehicle control (if applicable) by subtracting the average change in opacity of the negative control corneas from the change in opacity of each treated, positive control, or solvent/vehicle control cornea.

c. Calculate the mean opacity value of each treatment group by averaging the corrected opacity values of the treated corneas for each treatment group.

7.2 Permeability

Microplate Reader Method

a. Calculate the mean OD_{490} for the blank wells (plate blanks). Subtract the mean blank OD_{490} from the raw OD_{490} of each well (blank corrected OD_{490}).

b. If a dilution has been performed, correct the OD_{490} for the plate blank before the dilution factor is applied to the reading. Multiply each blank corrected OD_{490} by the dilution factor (e.g. a factor of 5 for a 1:5 dilution).

c. Calculate the final corrected OD_{490} value for each cornea by subtracting the mean OD_{490} value for the negative control corneas from the OD_{490} value of each treated cornea.

Final Corrected OD_{490} = (raw OD_{490} – mean blank OD_{490}) - mean blank corrected negative control OD_{490}

d. Calculate the mean OD_{490} value for each treatment group by averaging the final corrected OD_{490} values of the treated corneas for a particular treatment group.

UV/VIS Spectrophotometer Method

a. Calculate the corrected OD_{490} value of each treated, positive control, or solvent/vehicle control cornea by subtracting the average value of the negative control corneas from the original OD_{490} value for each cornea.

Final Corrected OD_{490} = raw OD_{490} - mean blank corrected negative control OD_{490}

b. Calculate the mean OD_{490} value for each treatment group by averaging the final corrected OD_{490} values of the treated corneas for a particular treatment group.

7.3 In Vitro Irritancy Score

Use the mean opacity and mean permeability values (OD_{490}) for each treatment group to calculate an in vitro irritancy score for each treatment group:

In Vitro Irritancy Score = mean opacity value + (15 x mean OD_{490} value)
8.0 CRITERIA FOR AN ACCEPTABLE TEST

A test is acceptable if the positive control gives an in vitro irritancy score that falls within two SDs of the current historical mean, which is to be updated at least every three months, or each time an acceptable test is conducted in laboratories where tests are conducted infrequently (i.e. less than once a month). In the BCOP, 20% (w/v) imidazole induces a severe response (in vitro score = 69.7-136.2 at IIVS [n=125]; mean = 103, SD = 16.6). The negative or solvent/vehicle control responses should result in opacity and permeability values that are less than the established upper limits for background opacity and permeability values for bovine corneas treated with the respective negative or solvent/vehicle control.

9.0 REFERENCES

EPA (2003b), Good Laboratory Practice Standards. 40 CFR 792.

EPA (2003c), Good Laboratory Practice Standards. 40 CFR 160.

FDA (2003), Good Laboratory Practice for Nonclinical Laboratory Studies. 21 CFR 58.

Maurer, JK and Parker, RD. (1996) Light microscopic comparison of surfactant-induced eye irritation in rabbits and rats at three hours and recovery/day 35. Toxicologic Pathology 24(4):403-411.

