ENVIRONMENT DIRECTORATE
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY

GUIDANCE DOCUMENT FOR THE DERIVATION OF AN ACUTE REFERENCE
CONCENTRATION (ARFC)

Series on Testing and Assessment

No. 153
GUIDANCE DOCUMENT FOR THE DERIVATION OF AN ACUTE REFERENCE CONCENTRATION (ARFC)

IOMC

INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS

A cooperative agreement among FAO, ILO, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD

Environment Directorate

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Paris 2011
Also published in the Series on Testing and Assessment:

No. 9, Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides during Agricultural Application (1997)

No. 12, Detailed Review Document on Classification Systems for Germ Cell Mutagenicity in OECD Member Countries (1998)

No. 13, Detailed Review Document on Classification Systems for Sensitising Substances in OECD Member Countries 1998)

No. 15, Detailed Review Document on Classification Systems for Reproductive Toxicity in OECD Member Countries (1998)

No. 16, Detailed Review Document on Classification Systems for Skin Irritation/Corrosion in OECD Member Countries (1998)

No. 17, Environmental Exposure Assessment Strategies for Existing Industrial Chemicals in OECD Member Countries (1999)

No. 19, Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals used in Safety Evaluation (1999)

No. 25, Detailed Review Document on Hazard Classification Systems for Specifics Target Organ Systemic Toxicity Repeated Exposure in OECD Member Countries (2001)

No. 26, Revised Analysis of Responses Received from Member Countries to the Questionnaire on Regulatory Acute Toxicity Data Needs (2001)

No 27, Guidance Document on the Use of the Harmonised System for the Classification of Chemicals which are Hazardous for the Aquatic Environment (2001)

No 29, Guidance Document on Transformation/Dissolution of Metals and Metal Compounds in Aqueous Media (2001)

No 30, Detailed Review Document on Hazard Classification Systems for Mixtures (2001)

No. 32, Guidance Notes for Analysis and Evaluation of Repeat-Dose Toxicity Studies (2000)
No. 33, Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures (2001)

No. 35, Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies (2002)

No. 38, Detailed Background Review of the Uterotrophic Assay Summary of the Available Literature in Support of the Project of the OECD Task Force on Endocrine Disrupters Testing and Assessment (EDTA) to Standardise and Validate the Uterotrophic Assay (2003)

No. 39, Guidance Document on Acute Inhalation Toxicity Testing (in preparation)

No. 41, Detailed Review Document on Classification in OECD Member Countries of Substances and Mixtures which in Contact with Water Release Toxic Gases (2003)

No. 43, Guidance Document on Mammalian Reproductive Toxicity Testing and Assessment (2008)

No. 44, Description of Selected Key Generic Terms Used in Chemical Hazard/Risk Assessment (2003)

No. 48, New Chemical Assessment Comparisons and Implications for Work Sharing (2004)

No. 51, Approaches to Exposure Assessment in OECD Member Countries: Report from the Policy Dialogue on Exposure Assessment in June 2005 (2006)

No. 52, Comparison of emission estimation methods used in Pollutant Release and Transfer Registers (PRTRs) and Emission Scenario Documents (ESDs): Case study of pulp and paper and textile sectors (2006)

No. 57, Detailed Review Paper on Thyroid Hormone Disruption Assays (2006)

No. 60, Report of the Initial Work Towards the Validation of the 21-Day Fish Screening Assay for the Detection of Endocrine Active Substances (Phase 1A) (2006)

No. 61, Report of the Validation of the 21-Day Fish Screening Assay for the Detection of Endocrine Active Substances (Phase 1B) (2006)

No. 64, Guidance Document on Overview of Residue Chemistry Studies (2006)

No. 67, Additional data supporting the Test Guideline on the Uterotrophic Bioassay in rodents (2007)

No. 68, Summary Report of the Uterotrophic Bioassay Peer Review Panel, including Agreement of the Working Group of the National Coordinators of the Test Guidelines Programme on the follow up of this report (2006)

No. 70, Report on the Preparation of GHS Implementation by the OECD Countries (2007)

No. 71, Guidance Document on the Uterotrophic Bioassay - Procedure to Test for Antioestrogenicity (2007)

No. 79, Validation Report of the Full Life-cycle Test with the Harpacticoid Copepods Nitocra Spinipes and Amphiascus Tenuiremis and the Calanoid Copepod Acartia Tonsa - Phase 1 (2007)

No. 80, Guidance on Grouping of Chemicals (2007)

No. 82, Guidance Document on Amphibian Thyroid Histology (2007)

No. 84, Report on the Workshop on the Application of the GHS Classification Criteria to HPV Chemicals, 5-6 July Bern Switzerland (2007)

No. 88, Workshop on Integrated Approaches to Testing and Assessment (2008)

No. 89, Retrospective Performance Assessment of the Test Guideline 426 on Developmental Neurotoxicity (2008)
No. 90,

No. 91,

No. 92,

No. 93,

No. 94,

No. 95,

No. 96,

No. 97,

No. 98,

No. 99,
Comparison between OECD Test Guidelines and ISO Standards in the Areas of Ecotoxicology and Health Effects (2008)

No. 100,

No. 101,

No. 102,
Guidance Document for using the OECD (Q)SAR Application Toolbox to Develop Chemical Categories According to the OECD Guidance on Grouping of Chemicals (2009)

No. 103,
Detailed Review Paper on Transgenic Rodent Mutation Assays (2009)

No. 104,
Performance Assessment: Comparison of 403 and CxT Protocols via Simulation and for Selected Real Data Sets (2009)

No. 107. Preservative treated wood to the environment for wood held in storage after treatment and for wooden commodities that are not cover and are not in contact with ground. (2009)

No. 109. Literature review on the 21-Day Fish Assay and the Fish Short-Term Reproduction Assay (2009)

No. 110. Report of the validation peer review for the weanling Hershberger Bioassay and agreement of the working of national coordinators of the test guidelines programme on the follow-up of this report (2009)

No. 112. The 2007 OECD List of High Production Volume Chemicals (2009)

No. 119, Classification and Labelling of chemicals according to the UN Globally Harmonized System: Outcome of the Analysis of Classification of Selected Chemicals listed in Annex III of the Rotterdam Convention (2010)

No. 121, Detailed review paper (DRP) on Molluscs life-cycle Toxicity Testing (2010)

No. 122, Guidance Document on the determination of the Toxicity of a Test Chemical to the Dung Beetle Aphodius Constans (2010)

No. 123, Guidance Document on the Diagnosis of Endocrine-related Histopathology in Fish Gonads (2010)

No. 124, Guidance for the Derivation of an Acute Reference Dose (2010)

No. 125, Guidance Document on Histopathology for Inhalation Toxicity Studies, Supporting TG 412 (Subacute Inhalation Toxicity: 28-Day) and TG 413 (Subchronic Inhalation Toxicity: 90-Day) (2010)

No. 126, Short Guidance on the Threshold approach for Acute Fish Toxicity (2010)

No. 127, Peer review report of the validation of the 21-day androgenised female stickleback screening assay (2010)

No. 129, Guidance Document on using Cytotoxicity Tests to Estimate Starting Doses for Acute Oral Systemic Toxicity Tests

No. 133, Peer Review Report for the H295R Cell-Based Assay for Steroidogenesis (2010)

No. 137, Explanatory Background Document to the OECD Test Guideline On In Vitro Skin Irritation Testing (2010)

No. 141, Report of the Phase 1 of the Validation of the Fish Sexual Development Test for the Detection of Endocrine Active Substances (2011)

No. 142, Report of the Phase 2 of the Validation of the Fish Sexual Development Test for the Detection of Endocrine Active Substances (2011)

No. 143, Peer Review Report for the Validation of the Fish Sexual Development Test and Agreement of the Working Group of National Co-ordinators of the Test Guideline Programme on the Follow-up of the Peer Review (2011)

No. 144, Validation Report for the Acute Chironomid Assay (2011)

No. 148, Guidance Document on the Androgenised Female Stickleback Screen (2011)

No. 152, Case Study: Assessment of an Extended Chemical Category, the Short-chain Methacrylates, Targeted on Bioaccumulation (2011)

© OECD 2011

Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, RIGHTS@oecd.org. OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France
ABOUT THE OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 34 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in ten different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; and Safety of Manufactured Nanomaterials. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (www.oecd.org/ehs/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organisations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. UNDP is an observer. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This publication is available electronically, at no charge.

For this and many other Environment, Health and Safety publications, consult the OECD’s World Wide Web site (www.oecd.org/ehs/)

or contact:

OECD Environment Directorate,
Environment, Health and Safety Division
2 rue André-Pascal
75775 Paris Cedex 16
France

Fax: (33-1) 44 30 61 80 E-mail: ehscont@oecd.org

E-mail: ehscont@oecd.org
FOREWORD

This Guidance Document is a practical and usable guide through the specifics of developing an acute inhalation reference concentration (ARfC). The methodology described in this document should be viewed as a framework for developing ARfCs and not as stringent procedural requirements. Essentially, an ARfC is the quantitative exposure-response assessment for non-cancer effects after acute exposure to inhaled chemicals.

The primary purpose of this document is to orient the assessor to the challenges associated with deriving reference values for acute inhalation exposures to chemical agents in general and to provide a guide in managing those challenges. The focus for this ARfC Guidance Document is on non-cancer health effects, although there may be an overlap with potential adverse properties of the individual chemicals, such as flammability or explosive potential.

The OECD Guidance Document has been developed based on a 2006 US EPA "Preliminary Methodology for Assessment of Health Effects from Acute Inhalation Exposures". A first draft developed by a US led expert group was circulated for comments from the Working Group of National Coordinators of the Test Guidelines Programme (WNT) in August 2009. An Expert Meeting was held in January 2010, at the US EPA, Arlington, USA. The purpose of the meeting was to revise the August 2010 draft Guidance Document based on the comments received and on the expert meeting discussions. Comments were requested from the WNT on a second draft in August 2010. The revised document was approved at the 23rd Meeting of the WNT in April 2011.

This document is published under the responsibility of the Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology.
TABLE OF CONTENTS

FOREWORD .. 3

TABLE OF CONTENTS ... 18

1. INTRODUCTION AND OVERVIEW ... 27
 1.1 Purpose of This Document .. 27
 1.1.1 Comparison of Reference Values .. 28
 1.1.2 Development of this document ... 30
 1.2 Acute Reference Concentration: Definition and Application 31
 1.2.1 Relationship of ARFCs to Other Acute Inhalation Reference Values 33
 1.3 General Principles of Health Assessment for Non-cancerEndpoints 34
 1.4 Current Health Assessment Methods for Non-cancer Effects 35
 1.4.1 No-Observed-Adverse-Effect Level (NOAEL) Approach 35
 1.4.2 Benchmark Concentration Approach ... 36
 1.4.4 Categorical Regression Approach .. 36
 1.4.4 Other Approaches .. 37
 1.4.5 Approaches to Dose-Response Analysis .. 37
 1.5 Approaches to Duration Extrapolation .. 37

2. DEVELOPMENT OF AN ACUTE INHALATION EXPOSURE-RESPONSE ASSESSMENT 39
 2.1 Collection and Evaluation of Relevant Data .. 39
 2.2 Evaluation of Endpoints ... 40
 2.2.1 Adversity and Severity of Effects ... 42
 2.2.2 Generic Data Attributes for Exposure-Response Approaches 46
 2.3 Determining the Critical Endpoint(s) .. 48
 2.3.1 Evaluating Level of Detail for Study Data ... 48
 2.3.2 Duration Extrapolation Considerations .. 49
 2.3.3 Judging Data Adequacy ... 51
 2.4 Exposure-Response Analytical Approaches ... 52
 2.4.1 No-Observed-Adverse-Effect Level Approach ... 52
 2.4.2 Benchmark Concentration ... 52
 2.4.3 Categorical Regression .. 55
 2.5 Duration Extrapolation Determination .. 57
 2.6 ARFC Derivation .. 59
 2.6.1 Determination of the Point of Departure .. 59
 2.6.2 Dosimetry Adjustments .. 60
 2.6.3 Duration Extrapolations .. 63
 2.6.4 Application of Uncertainty Factors .. 64
 2.7 Animal Welfare Consideration ... 67
 2.8 Consideration of Human Data .. 67

3. REFERENCES ... 69

ANNEX ... 74
SUMMARY OF EXAMPLE ARFC ASSESSMENTS ..74

INTRODUCTION..74
EXAMPLE ARFC ASSESSMENTS ..74
Ethylene Oxide (EtO) ...74
Hexachlorocyclopentadiene (HCCPD) ...77
Phosgene ...83

SUMMARY AND LESSONS LEARNED FROM THE EXAMPLE ASSESSMENTS87
Lessons Learned ..87
 Endpoint-Specific Lessons ...87
 Duration Approach ..89
Closing Remarks ...90
GLOSSARY OF TERMS AND ASSOCIATED ACRONYMS

Acute exposure: A one-time or short-term exposure with a duration of less than or equal to 24 h (1).

Acute inhalation reference concentration (ARIC): An estimate of an inhalation exposure for an acute duration equal to or less than 24 h to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It is derived from a BMCL [lower confidence limit on a benchmark concentration], a NOAEL, a LOAEL, or other suitable POD, with uncertainty/variability factors applied to reflect limitations of the data used.

ACGIH: American Conference of Governmental Industrial Hygienists

Adverse effect: Change in the morphology, physiology, growth, development, reproduction or life span of an organism, system, or (sub) population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress, or an increase in susceptibility to other influences (2).

AEGL: Acute Exposure Guideline Levels (US)

AIHA: American Industrial Hygiene Association

Akaike’s information criteria (AIC): A statistical procedure that provides a measure of the goodness-of-fit of a dose-response model to a set of data. $\text{AIC} = -2 \times (LL - p)$, where LL is the log-likelihood at the maximum likelihood fit, and p is the degrees of freedom of the model (usually, the number of parameters estimated) (3).

ATSDR: Agency for Toxic Substances and Disease Registry (US)

Benchmark concentration (BMC): The concentration of a substance inhaled that is associated with a specified low incidence of risk, generally in the range of 1% to 10%, of a health effect; or the concentration associated with a specified measure or change of a biological effect (3).

Benchmark response (BMR): The response, generally expressed as in excess of background, at which a benchmark dose or concentration is desired (3).

BMCL: A lower one-sided confidence limit on the BMC (3).

CA-REL: Reference Exposure Level; a general public reference value developed by the OEHHA of the State of California (US).

Categorical data: Results obtained where observations or measurements on individuals or samples are stratified according to degree or severity of an effect, e.g., none, mild, moderate, or severe (3).

Categorical regression (CatReg): A model expressing the probabilities of different response categories as functions of explanatory variables (4).
Chronic exposure: Multiple exposures occurring over an extended period of time, or a significant fraction of the animal's or the individual's lifetime (5).

Chronic reference concentration (Chronic RfC): An estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It can be derived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors generally applied to reflect limitations of the data used. Generally used in EPA's non-cancer health assessments. [Durations include acute, short-term, subchronic, and chronic and are defined individually in this glossary] (6).

Concentration: The mass of test article per unit volume of air (e.g., mg/L, mg/m^3), or the unit volume of test article per unit volume of air (e.g., ppm, ppb) (7).

Confidence limit: An estimated value below (or above) which the true value of an estimated parameter is expected to lie for a specified percentage of such estimated limits (3).

Continuous data: Effects measured on a continuum, e.g., organ weight or enzyme concentration, as opposed to quantal or categorical data where effects are classified by assignment to a class (3).

COT: Committee on Toxicology of the National Academy of Sciences (US)

Critical effect: The first adverse effect, or its known precursor, that occurs as the dose rate increases. Designation is based on evaluation of overall database (5).

Dichotomous data: Quantal data where an effect for an individual may be classified by one of two possibilities, e.g., dead or alive, with or without a specific type of tumor (3).

DOE: Department of Energy (US)

Dose: Total amount of an agent administered to, taken up or absorbed by an organism, system or (sub)population (2).

Dose-response assessment: Analysis of the relationship between the total amount of an agent administered to, taken up or absorbed by an organism, system or (sub)population and the changes developed in that organism, system or (sub)population in reaction to that agent, and inferences derived from such an analysis with respect to the entire population. Dose-response assessment is the second of four steps in risk assessment (2).

Dose-response curve: Graphical presentation of a dose-response relationship (2).

Dose-Response model: A mathematical relationship (function) that relates (predicts) a measure of an effect to a dose (3).

Dose-response relationship: Relationship between the amount of an agent administered to, taken up or absorbed by an organism, system or (sub) population and the change developed in that organism, system or (sub) population in reaction to the agent (2).

Dosimetric adjustment factor (DAF): A multiplicative factor used to adjust observed experimental or epidemiological data to human equivalent concentration (HEC) for assumed ambient scenario (5).

DOT: Department of Transportation (US)
Duration: The length of time for an event under consideration. For example, the period of time during which the exposure to a chemical agent occurs in an inhalation toxicity test.

Duration extrapolation: A calculation to estimate the concentration at a desired duration other than what is supported by empirical observation. For example, an acute reference value for one hour is needed but all the study data come from observations at 4 hours. In such case, calculations are needed to estimate the concentration at the desired duration that would cause the same level of effect at the observed duration. Haber’s rule (C x t = k) or the ten Berge (8) relationship (C^n x t = k) can be used for time-based exposure adjustments. See definition of Haber’s rule.

Effect: Change in the state or dynamics of an organism, system or (sub) population caused by the exposure to an agent (2).

ERC: Extra Risk Concentration; a parameter determined in Categorical Regression analysis – See the CatReg Users Manual (http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=500572) for complete details.

ERC-T: An ERC estimated for a particular time (T).

Estimate: An approximation of a value for a parameter that was not available from empirical data.

EtO: Ethylene oxide; one of the compounds examined in the development of the ARfC Guidance Document.

Exposure: Concentration or amount of a particular agent that reaches a target organism, system or (sub) population in a specific frequency for a defined duration (2).

Exposure assessment: Evaluation of the exposure of an organism, system or (sub) population to an agent (and its derivatives). Exposure Assessment is the third step in the process of Risk Assessment (2).

Extra risk: \([P(d)-P(0)]/[1 - P(0)]\), where \(P(d)\) is the risk at a dose = d and \(P(0)\) is the background risk at zero dose (3).

Gas: The state of matter distinguished from the solid and liquid states by relatively low density and viscosity, relatively great expansion and contraction with changes in pressure and temperature, the ability to diffuse readily, and the spontaneous tendency to become distributed uniformly throughout any container (7).

GD: Guidance Document

Goodness-of-Fit: A statistic that measures the dispersion of data about a dose-response curve in order to provide a test for rejection of a model due to lack of an adequate fit, e.g., a \(P\)-value < 0.1 (3).

Haber’s rule: The relationship between concentration and time to response for any given chemical is a function of the physical and chemical properties of the test article and the unique toxicological and pharmacological properties of the individual test article. The relationship according to Haber is \(C \times t = k\), where \(C\) = actual exposure concentration, \(t\) = exposure duration (\(\geq t_{95}\) or the time in minutes to reach 95% atmospheric equilibrium), and \(k\) = a constant. This concept states that exposure concentration and exposure duration may be reciprocally adjusted to maintain a cumulative exposure constant \((k)\) and that this cumulative exposure constant will always reflect a specific quantitative and qualitative response. This
relationship can also be expressed by the equation \(C^n \times t = k \), where \(n \) represents a chemical-specific, and even a toxic endpoint specific, exponent. The relationship described by this equation is basically in the form of a linear regression analysis of the log-log transformation of a plot of \(C \) vs. \(t \). Ten Berge et al. (1986) found that the empirically derived value of \(n \) ranged from 0.8 to 3.5 among a group of chemicals examined (7).

Hazard assessment: A process designed to determine the possible adverse effects of an agent or situation to which an organism, system or (sub) population could be exposed. The process includes hazard identification and hazard characterization. The process focuses on the hazard in contrast to risk assessment where exposure assessment is a distinct additional step (2).

Hazard characterization: The qualitative and, wherever possible, quantitative description of the inherent properties of an agent or situation having the potential to cause adverse effects. This should, where possible, include a dose-response assessment and its attendant uncertainties (2).

Hazard identification: The identification of the type and nature of adverse effects that an agent has as inherent capacity to cause in an organism, system or (sub) population. Hazard identification is the first stage in hazard assessment and the first step in the process of Risk Assessment (2).

HCCPD: Hexachlorocyclopentadiene; one of the compounds examined in the development of the ARfC Guidance Document.

\(\text{H}_2\text{S} \): Hydrogen sulfide; one of the compounds examined in the development of the ARfC Guidance Document.

Human equivalent concentration (HEC): The human concentration (for inhalation exposure) of an agent that is believed to induce the same magnitude of toxic effect as the experimental animal species concentration. This adjustment may incorporate toxicokinetic information on the particular agent, if available, or use a default procedure (9).

Incidence: Proportion or probability of individuals or animals exhibiting an effect, that varies from zero to one, sometimes expressed as a percent from 0% to 100% (3).

Inhalation exposure: Exposure to a test article by normal respiration. The entire respiratory tract can be exposed (7).

Internal dose: The amount of a substance penetrating the absorption barriers (e.g. skin, lung tissue, gastrointestinal tract) of an organism through either physical or biological processes (10).

Inhalation reference concentration: An inhalation reference concentration (RfC) is defined as an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer health effects during a lifetime.

Interspecies uncertainty factor: See definition of **Uncertainty factor**.

Intraspecies uncertainty factor: See definition of **Uncertainty factor**.

Lowest observed adverse effect level (LOAEL): The lowest exposure level at which there are statistically and/or biologically significant changes in frequency or severity of adverse effects between the
exposed population and its appropriate control group (definition from U.S. EPA, 2009 (5) was slightly modified).

Meta-analysis: The analysis of data from multiple studies to determine overall trends and increase power (4).

Mode of action (MOA): A less-detailed description of the mechanism of action in which some but not all of the sequence of biological events leading to a toxic effect are known. The mechanism of action refers to the complete sequence of biological events that must occur to produce the toxic effect (9).

NAC: National Advisory Committee (US)

NIOSH: National Institute for Occupational Safety and Health (US)

No observed adverse effect level (NOAEL): An exposure level at which there are no statistically and/or biologically significant changes in the frequency or severity of adverse effects between the exposed population and its appropriate control. Some effects may be produced at this level, but they are not considered as adverse, nor immediate precursors to specific adverse effects. In an experiment with several NOAELs, the assessment focus is primarily on the highest one for a given critical effect, leading to the common usage of the term NOAEL as the highest exposure without adverse effect (definition was slightly modified) (5).

OECD: Organisation for Economic Cooperation and Development

OEHHA: Office of Environmental Health Hazard Assessment (US, State of California)

OSHA: Occupational Safety and Health Administration (US)

Particulate Matter (PM): A mixture of solid particles and liquid droplets found in the air generally characterized by particle size and aerodynamic diameter (5).

Pharmacologically-based pharmacokinetic (PBPK) modeling: A mathematical modeling technique for predicting the absorption, distribution, metabolism and excretion of a compound in humans and other animal species. PBPK models strive to be mechanistic by mathematically transcribing anatomical, physiological, physical, and chemical descriptions of the phenomena involved in complex pharmacokinetic processes. These models have an extended domain of applicability compared to that of classical, empirical function based, compartmental pharmacokinetic models (5).

Parameter: A value used to numerically describe a population of values, e.g., the mean and standard deviation; or a value used to describe a dose-response curve, e.g., the intercept and the slope of a linear dose-response (3).

PEL: Permissible Exposure Limit; an occupational reference value developed by the US OSHA.

Point of Departure (POD): The point on a concentration-response curve established from experimental inhalation data, e.g., the benchmark concentration, generally corresponding to an estimated low effect level (e.g., 1% to 10% incidence of an effect). Depending on the mode of action and available data, some form of extrapolation below the POD may be employed for low-concentration risk assessment or the POD may be divided by a series of uncertainty factors to arrive at a reference concentration (definition was slightly modified) (3).
Portal-of-entry effect: A local effect produced at the tissue or organ of first contact between the toxicant and a biological system. For the inhalation route, the portal-of-entry can be any part of the respiratory tract from the nose to the terminal alveoli of the lung (7).

Probability: The proportion (on a scale of 0 to 1) of cases for which a particular event occurs. Zero indicates the event never occurs and one indicates the event always occurs (3).

P-value: In testing a hypothesis, the probability of a type I error (false positive). The probability that the sample (experimental) results are compatible with a specific hypothesis (3).

Regression analysis: A statistical process that produces a mathematical function (regression equation) that relates a dependent variable (biological effect) to independent variable, e.g., dose rate, duration of exposure, age (3).

REL: Recommended Exposure Limit; an occupational reference value developed by the US NIOSH.

Response: Change developed in the state or dynamics of an organism, system or (sub) population in reaction to exposure to an agent (2).

Risk: The probability of an adverse effect in an organism, system or (sub) population caused under specified circumstances by exposure to an agent (2).

Risk assessment: A process intended to calculate or estimate the risk to a given target organism, system or (sub) population, including the identification of attendant uncertainties, following exposure to a particular agent, taking into account the inherent characteristics of the agent of concern as well as the characteristics of the specific target system. The Risk Assessment process includes four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization (2).

Risk characterization: The qualitative and, wherever possible, quantitative determination, including attendant uncertainties, of the probability of occurrence of known and potential adverse effects of an agent in a given organism, system or (sub)population, under defined exposure conditions. Risk Characterization is the fourth step in the Risk Assessment process (2).

STEL: Short-term Exposure Limit; an occupational reference value designed to limit peak exposure levels for short durations.

Standard Deviation (SD): The most commonly used measure of spread or variability in a dataset. It is the square root of the variance (see separate definition for variance).

Standard Error (SE): Often used interchangeably with standard deviation, there is no established "correct" usage. SE often refers to an estimate of the standard deviation around another estimated value; for example, the standard error of a mean is an estimate of the standard deviation of the arithmetic mean of n mutually uncorrelated random variables with a common standard deviation and is derived by dividing the sample standard deviation by the square root of n. Standard errors are most useful for characterizing the uncertainty of an estimate when the estimate is likely to be approximately normally distributed

Threshold: Dose or exposure concentration of an agent below which a stated effect is not observed or expected to occur (2).

TLV: Threshold Limit Value; an occupational reference value developed by ACGIH.
Toxicity: Inherent property of an agent to cause an adverse biological effect (2).

TWA: Time-weighted Average

Uncertainty: Imperfect knowledge concerning the present or future state of an organism, system or (sub) population under consideration (2).

Uncertainty/variability factor (UF): Reductive factor used as a divisor of a NOAEL, LOAEL or a benchmark concentration to calculate a criterion or standard that is considered safe or without appreciable risk. UFs are intended to account for:
- the uncertainty in extrapolating from mammalian laboratory animal data to humans, i.e., interspecies uncertainty factor;
- the variability in sensitivity among the members of the human population, i.e., intraspecies uncertainty factor;
- the uncertainty in extrapolating from effects observed in a short-term study to potential effects from a longer exposure, i.e., subchronic-to-chronic uncertainty factor;
- the uncertainty associated with using a study in which health effects were found at all doses tested, i.e., LOAEL-to-NOAEL uncertainty factor; and
- the uncertainty associated with deficiencies in available data, i.e., database uncertainty factor.

Vapor: The gaseous phase of a chemical that is normally liquid at room temperature. For the purposes of this document, vapors are treated the same as gases.

Variability: Observable diversity in biological sensitivity or response, and in exposure parameters (such as breathing rates, food consumption, etc.). These differences can be better understood, but generally not reduced by further research (3).

Variance: Sample variance is estimated by squaring the differences of each of n values from their mean, summing them up, and dividing the sum by n-1.
1. INTRODUCTION AND OVERVIEW

1.1 Purpose of This Document

1. This Guidance Document (GD) is intended to be a practical and usable guide through the specifics of developing an acute inhalation reference concentration (ARfC). A methodology developed independent of concrete examples or case studies will likely result in unanticipated situations that severely restrict or prevent the application of the method, and this situation has occurred with methods previously developed. It is to minimize such unanticipated problems that a stepwise approach using real chemical examples is being utilized in the effort to develop an ARfC methodology.

2. The methodology described in this GD should be viewed as a framework for developing ARfCs and not as stringent procedural requirements.

3. The basis for most chemical risk assessment is the publication of the landmark 1994 document by the United States National Research Council, Science and Judgment in Risk Assessment (11). The NRC document and its 1983 predecessor (12) established the risk assessment paradigm upon which assessments have been based. That paradigm consists of four steps: [1] Hazard Identification, where the toxic potential for an agent is determined; [2] Dose-Response Assessment, where the quantitative relationship between the dose and the toxic response is determined; [3] Exposure Assessment, where the potential routes of exposure and the magnitude, duration and timing of exposures are determined; and [4] Risk Characterization, where the integration from the previous three steps is performed to formulate a recommendation that can be used by the risk manager in determining acceptable risk. This paradigm is applied in deriving the ARfC, which represents the dose-response step.

4. Essentially, an ARfC is the quantitative exposure-response assessment for non-cancer effects after acute exposure to inhaled chemicals. For the purpose of this document, acute exposure is defined as a continuous or near-continuous exposure for 24-h or less. Acute exposure to toxic chemicals can occur as a result of accidental, as well as routine releases. The ARfC is intended to be used as a tool in health risk assessment for both of these exposure scenarios, and is subject to limitations also discussed in this Guidance Document.

5. The primary purpose of this document, however, is to orient the assessor to the challenges associated with deriving reference values for acute inhalation exposures to chemical agents in general and to provide a guide in managing those challenges.

6. Included in this introductory chapter are summary comparisons to a number of existing acute reference value systems. The methods used in deriving many of those acute reference values have been applied in order to develop the four example acute assessments discussed in this document (ethylene oxide [EtO], hexachlorocyclopentadiene [HCCPD], hydrogen sulfide [H2S], and phosgene) and have helped inform the development of this Guidance Document and are included in an annex to this volume.

7. "Acute" in the context of this discussion refers to the length of exposure and not necessarily the type of effect. Acute exposure to a chemical may result in chronic health effects as well as immediate, acute effects. In this Guidance Document, acute exposures are defined as "a continuous or near-continuous
exposure for 24-h or less”; however, considerable variability exists in how different organizations define the length of time comprising an acute exposure.

8. The focus for this ARfC Guidance Document is on non-cancer health effects, although there may be an overlap with other potential adverse properties of the individual chemicals, such as flammability or explosive potential.

1.1.1 Comparison of Reference Values

9. Occupationally based reference values for acute exposures were initially developed in the first half of the twentieth century, much earlier than other types of acute reference values. Community-based acute reference values are more recent developments, and much of the impetus to develop those acute effect levels can be traced to the incident in Bhopal, India, in 1984. In the years following that event, initiatives were enacted in many countries to better control chemical hazards and to inform the populace on the potential risks from chemical exposures in their communities. This included listing of chemicals that are considered hazardous and pose a potential risk for catastrophic accidental release or that have the potential to create a risk of explosion. Most emergency response values were developed to meet the potential risks from catastrophic releases such as the Bhopal incident.

10. Reference values for health protection of the general public that are not based on emergency response are even more recent. Short-term excursions may occur more routinely than catastrophic accidental releases, and the reference values for accidental releases may not be appropriate for these “more routine” exposure scenarios.

11. Table 1-1 presents some definitions of terms and comparisons among many of the various reference value systems that are in use in the United States which are examined more fully here, and in the review by Woodall (13).

Occupational Reference Values

12. Occupational reference values usually assume a “healthy worker” population (e.g., 20- to 65-year-old workers healthy enough to work a full day), with any susceptible individuals self-selected out of that line of work (i.e., if the work conditions are unbearable for a susceptible person, they usually find other work). The exposure scenario assumes an average workday and workweek (8- to 10-h per day and 40-h per week, respectively) with the potential for some short-term peaks occurring during those averaging periods, and hence the occupational values vary somewhat from a strictly acute exposure scenario. The basis for occupational reference value derivation can also vary by chemical. Some reference values weigh the technical feasibility and/or monitoring cost for acceptable exposure levels against potential adverse health effects. For certain chemicals, reference values may be based on the lowest concentration that can be measured accurately, although lower exposure levels may be preferable, based on health-effects considerations. Examples of occupational reference values include the Recommended Exposure Limits (RELs) and Short-term Exposure Limits (STELs) developed by the National Institute for Occupational Safety and Health (NIOSH); the Permissible Exposure Limits (PELs), which is usually based on an 8-h time-weighted average (PEL-TWA); and ceiling values for 15-min exposure periods [PEL-TWA and Ceiling values were both developed as enforceable workplace limits by the Occupational Safety and Health Administration (OSHA)]; and the Threshold Limit Values (TLVs) developed by the American Conference of Governmental Industrial Hygienists (ACGIH). Other similar types of values have been generated in other countries (e.g., the MAC in the Netherlands and MAK in Germany that both emulate the TLV-TWA values).
Emergency Response Reference Values

13. Emergency response reference values are designed for the general population but not necessarily for the “most susceptible” subgroups within that population (i.e., hyper-susceptible individuals). They are designed for rare, short-term exposures (so-called once-in-a-lifetime events) and do not have the same “margin of safety,” and are therefore usually at higher levels than the more protective public health reference values (described below). The reason for this relatively higher health-effect threshold is to avoid the possibility for creating panic, and the ensuing risk to life and safety, that may be caused by evacuation in a potentially affected area and of having incidents occur too frequently for these supposedly “rare” events. Some other differences between the emergency response and public health reference values are discussed more fully in later sections of this document. Examples of emergency response reference values in Table 1-1 include the Acute Exposure Guideline Levels (AEGLs), Emergency Response Planning Guidelines (ERPGs), and Temporary Emergency Exposure Levels (TEELs). Particularly useful to first responders in determining evacuation zones are the Emergency Response Guidebook (ERG) values, which are developed by the combined efforts of the U.S. Department of Transportation (U.S. DOT, 2008) and their Mexican and Canadian counterparts, and updated every four years.

Table 1-1. Reference Value Definitions, Examples from the United States, adapted from Woodall, 2005 (13)

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>Organisation</th>
<th>Type Value</th>
<th>Exposure Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEL: Permissible Exposure Limit</td>
<td>OSHA</td>
<td>Occupational</td>
<td>8-h (TWA)</td>
</tr>
<tr>
<td>Ceiling</td>
<td>OSHA</td>
<td>Occupational</td>
<td>Up to 10-min</td>
</tr>
<tr>
<td>REL: Recommended Exposure Limit</td>
<td>NIOSH</td>
<td>Occupational</td>
<td>8-h (TWA)</td>
</tr>
<tr>
<td>IDLH: Immediately Dangerous to Life and Health</td>
<td>NIOSH</td>
<td>Occupational</td>
<td>Up to 30-min</td>
</tr>
<tr>
<td>STEL: Short-Term Exposure Limit</td>
<td>NIOSH</td>
<td>Occupational</td>
<td>15-min (TWA)</td>
</tr>
<tr>
<td>TLV: Threshold Limit Value</td>
<td>ACGIH</td>
<td>Occupational</td>
<td>8-h (TWA)</td>
</tr>
<tr>
<td>TLV-STEL: TLV Short-Term Exposure Limit</td>
<td>ACGIH</td>
<td>Occupational</td>
<td>15-min (TWA)</td>
</tr>
<tr>
<td>AEGL: Acute Exposure Guideline Level</td>
<td>NAC/AEGL; COT/AEGL</td>
<td>Emergency Response</td>
<td>10- & 30-min; 1-, 4- & 8-h</td>
</tr>
<tr>
<td>ERPG: Emergency Response Planning Guideline</td>
<td>AIHA</td>
<td>Emergency Response</td>
<td>1-h</td>
</tr>
<tr>
<td>TEEL: Temporary Emergency Exposure Level</td>
<td>DOE</td>
<td>Emergency Response</td>
<td>1-h</td>
</tr>
<tr>
<td>ERG: Emergency Response Guidebook</td>
<td>DOT</td>
<td>Emergency Response</td>
<td>Specialised application to determine evacuation zones</td>
</tr>
<tr>
<td>MRL: Minimal Risk Level</td>
<td>ATSDR</td>
<td>Public Health</td>
<td>1-14 days (acute); 15-364 days (intermediate); >365 d (chronic)</td>
</tr>
<tr>
<td>CA-REL: Reference Exposure Level</td>
<td>OEHHA</td>
<td>Public Health</td>
<td>1-h, 8-h, and chronic</td>
</tr>
<tr>
<td>ARfC: Acute Reference Concentration</td>
<td>OECD GD</td>
<td>Public Health</td>
<td>Less than 24-h</td>
</tr>
</tbody>
</table>
Public health protective reference values are generally more health protective than either occupational or emergency response values and attempt to include most susceptible individuals, but not always the hypersusceptible. They are designed for more routine, potentially repeated exposures, in contrast to the emergency response reference values that are designed for rare, “once-in-a-lifetime” types of events. Examples of these types of values include the acute Reference Exposure Levels, developed by the California EPA Office of Environmental Health and Hazard Assessment (OEHHA) (14), and the ARfC described in this document.

1.1.2 Development of this document

The development of non-cancer risk assessment has been primarily characterized by reliance on standard methods with default options that have been incrementally updated to incorporate recent advances in the science of toxicology. For non-cancer risk assessment, examples of incremental addition of more sophisticated and relevant methods to the default approaches include the incorporation of dosimetry, pharmacokinetics, quantitative exposure-response analysis, and mechanistically based dose-response models. The utilization of quantitative dose-response models in the form of curve fitting techniques (i.e., benchmark concentration [BMC] methods(15)) into the derivation of reference values has lead to a similar improvement of the standard approach. The methodology described in this document and in the accompanying example assessments combines these developments with recent advances in categorical regression (CatReg) analysis(16) and other meta-analytical approaches to dose-response assessment.

In very general terms, the ARfC is derived by identifying a point of departure (POD) and dividing by uncertainty factors (UFs). The most appropriate approach (e.g., No-Observed-Adverse-Effect Level [NOAEL], BMC, CatReg) for identifying a POD is determined by the amount and type of available toxicity data. If supported by sufficient data, the preferred approach is to use a mathematical dose-response model to estimate the lower bound on the exposure/concentration predicted to result in a specified response (BMC) or severity (categorical regression). This lower bound is used as the POD for development of the ARfC. If the database will not support the use of a dose-response model, the NOAEL and/or Lowest-Observed-Adverse-Effect Level (LOAEL) can be directly identified from the literature and used as the POD. Once the POD is identified from either the lower bound of mathematical models or the experimental NOAEL/LOAEL, it is typically adjusted to a human equivalent concentration (HEC) via dosimetric procedures and then divided by UFs as needed to account for recognized data gaps and resulting uncertainties in the extrapolation from the experimental conditions to the human exposure scenario. (Each of these approaches is demonstrated in the example assessments included in the annexes.)
1.2 Acute Reference Concentration: Definition and Application

17. Acute RfCs are designed to provide guidance for intermittent increases in exposure to chemicals for short durations (from several minutes up to 24 hours). These exposures may occur rarely (e.g., as an accidental result of a chemical release) or more frequently, and this document seeks to provide guidance on an acceptable frequency for such exposure levels. ARfCs are not intended to be analogous to time-weighted average occupational exposure limits where exposures could be frequent (e.g., daily). Chemical half-lives can vary from a few minutes, as is typical for highly volatile insoluble materials such as fluorocarbons (17, 18); to several days as might occur with lindane (19), or for much longer periods of time, possibly several years as is seen with DDT (20). In order to apply an acute RfC to a situation where repeat exposures are possible, it is important to have an estimate of the biological half-life in humans. It is also critical to know if the toxicity is readily reversible or cumulative. This information will provide guidance of when the chemical is cleared from the body and any effects have been reversed and thus protect from the possibility of additive effects resulting from multiple exposures. If the half-life is short and the effects are readily reversible, exposures at the Acute RfC could occur frequently. If the chemical is slowly cleared and/or the effects are only slowly reversed, a much longer time would be needed for exposures at the Acute RfC to assure that one would not see cumulative effects. “Intermittent” implies sufficient time between exposures such that one exposure has no effect on the health outcome produced by the next exposure. Although clear guidance is not currently available to determine an adequate “recovery period” for a subsequent acute exposure, toxicokinetics (time to steady-state, biological half-life, etc.) and other related aspects have been reviewed by Rhomberg (21) and may prove useful to such considerations. In addition, acute exposures are assumed to occur at levels at least 10-fold higher than average low level “background” exposures. If these conditions are not met, a complex exposure pattern exists that is not amenable to assessment using these methods. These assumptions are made to allow individual exposures to be treated as if they are independent of each other and independent of lower-level long-term exposures. Acute exposures should be evaluated with respect to what is known about the time course of development and repair of the health effects and the persistence of the chemical in the body.

18. **ARfC Definition:** This Guidance Document proposes to adopt the following definition for the ARfC:

"An estimate of an inhalation exposure for an acute duration equal to or less than 24-h to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It is derived from a BMCL [lower confidence limit on a benchmark concentration], a NOAEL, a LOAEL, or other suitable POD, with uncertainty/variability factors applied to reflect limitations of the data used."

19. The ARfC is best regarded as a ceiling value which should not be exceeded during any interval of time for the designated duration. It is NOT to be interpreted as a time-weighted average. Adequate information should be provided in a chemical-specific assessment support document for an ARfC to derive appropriate values for durations other than those provided in the assessment, if necessary to do so.

20. As already discussed, another aspect to consider in developing and utilizing an ARfC is that an individual should not be exposed to another “concentration-above-background” for the subject chemical until after an adequate recovery period. ARfCs should be considered health protective for intermittent exposures equal to or less than 24-h; if the duration exceeds that limitation and/or an adequate time for recovery cannot be met, a longer duration reference value (i.e., Short-term, Subchronic, or a Chronic RfC) should be applied.
21. In the example assessments (EtO, HCCPD, H2S, and phosgene) included in Annexes to this Guidance Document, values are developed for 1-, 4-, 8-, and 24-h durations, when possible. The ARfC, however, may be derived for other durations of less than 24-h (within limitations of the available data). As noted in the example assessment for HCCPD, limitations in the available data may limit the durations for which values can be derived.

22. A causal relationship, or at least an association between exposure concentration and response, needs to be reasonably established before such information can be considered as dose-response information and utilized as such. The range of exposure-related effects include immediate changes (such as decreases in breathing rates – reflex bradypnea – in response to increasing chamber concentrations of a toxicant), effects not immediately apparent (such as pathological changes becoming manifest after the single exposure), or alterations that may be considered delayed or latent (such as neurotoxicity when the effect is not observed until several days after the exposure). Thus, information on delayed effects from acute inhalation exposures should be incorporated when it is available. In addition, potential confounding should be evaluated to ensure that any observed effects are not in part attributable to reflex bradypnea in the test subjects. All portal-of-entry physiological responses may alter test article uptake due to hyper- or hypoventilation and metabolism. This can result in greater or lesser toxicity and an increase in inter-animal variability. For additional guidance, please refer to GD-39 (7).

23. A fundamental property of any methodology is flexibility such that it can be used as a general approach for a large number of chemicals with a wide range in the quantity and quality of toxicity data. The method for derivation of the ARfC employs several different approaches to quantitative assessment, with the choice of approach for any chemical being determined by the extent and quality of data for that chemical to maximize the use of all available data. This document attempts to search out and accommodate flexibility through the performance of example applications for four chemicals: EtO, HCCPD, H2S, and phosgene. All four of these acute assessments are discussed in general in this document. The general discussions in this document will highlight available dose-response approaches (e.g., BMC, categorical regression, NOAEL/NOAEL) as they are appropriate for the existing database. The detailed assessments (Annexes to this volume) include summaries of relevant toxicological studies, displays of data, choices of dose-response methods, and calculation/characterization of the POD for use in calculating an ARfC. As the application of uncertainty or adjustment factors may be limited based on individual regulatory organization dictums, the final calculation of ARfC values is not included in the examples shown in the Annexes.
24. In most cases, the ARfC will be derived based on animal toxicity; however, it is preferable to use human clinical experiments performed under controlled conditions (a single exposure to an otherwise unexposed subject) when such information is available. With the exception of rare events, such as spills or accidents, actual exposures will differ from the experimental exposures in two important ways. First, real-world short-duration exposures may occur on an intermittent basis, rather than as rare events. This ambient scenario introduces the possibility of cumulative effects, which would not be predicted by the single-exposure experimental protocol. Second, a single exposure below the exposure evoking an adverse effect could result in changes that increase the susceptibility to subsequent exposures (e.g., depletion of some protective mechanism). It is theoretically necessary for such changes to be resolved, and the dose completely cleared, prior to a subsequent exposure in order to assure that the response to the subsequent exposures is not increased, or otherwise influenced, by the previous exposure. These differences could introduce constraints on the applicability of the ARfC to some human exposure scenarios. Very few, if any, chemicals will have adequate data to allow a confident determination of the “safe” periodicity of an acute exposure, so the basis is limited for generalization about the appropriate application of the term “intermittent” in the definition of the ARfC.

25. Frequency of Exposures: ARfCs are designed to provide guidance for occasional increases in exposure to chemicals for short durations (from several minutes up to 24 hours). These exposures may occur very rarely (e.g., an accidental chemical release) or on a more frequent but intermittent basis. It is important to note that ARfCs are NOT intended to be analogous to time-weighted average occupational exposure limits where exposures could be frequent (e.g., daily). Although this document does not provide guidance on an acceptable frequency for such exposure, notations should be made when there are indications that a chemical has a long half-life once absorbed, or there is a potential for effects needing a prolonged time for recovery prior to a subsequent similar exposure.

26. The intent of this document is to provide approaches for developing benchmarks that produce no adverse health effects. In some cases, however, estimating levels of exposure for thresholds of an adverse effect has value. The development of chemical emergency planning guidelines usually yields three different exposure levels, which are defined by the severity of the predicted effect (i.e., mild, severe, or life-threatening) (22-24). Exposure levels expected to produce adverse effects could require greater intervals between exposures to prevent cumulative effects than would exposures producing no effects. The ARfC method is amenable to these applications, given adequate data.

1.2.1 Relationship of ARfCs to Other Acute Inhalation Reference Values

27. The procedures described within this document are intended to estimate exposure levels that produce no adverse effects in sensitive humans so that those levels may be used to determine the non-cancer health risks (by the hazard quotient/hazard index methodology) of acute (≤24-h) inhalation exposures. Other nationally and internationally recognized methods to develop acute inhalation exposure limits for the general population are focused on developing levels for screening purposes, or for chemical emergency planning uses.

28. Minimal Risk Levels (MRLs), developed by the Agency for Toxic Substances and Disease Registry (ATSDR), are used as screening levels to identify contaminants and potential health effects that may be of concern at hazardous waste sites (25). MRLs, which are intended to protect the general population, including sensitive humans, are estimates of daily human exposure likely to be without appreciable risk of non-cancer health effects for a specified duration of exposure. For development of MRLs, an acute duration is defined to be 1 to 14 days. MRLs are used as a screening tool by public health professionals to help decide where to look more closely and to identify those hazardous waste sites not expected to cause adverse health effects. In contrast, ARfCs are associated with more narrowly defined,
single, continuous exposures and are intended for use in estimating non-cancer risks to acute inhalation exposures (equal to or less than 24-h).

29. Other acute inhalation exposure limits that protect the general population include certain chemical emergency planning values. The American Industrial Hygiene Association, which established a committee to develop ERPGs, pioneered the concept of developing three different airborne concentrations for each chemical, defined by the severity of the predicted effect (24). Other groups (22-24) working in the area of emergency response planning have used similar three-level schemes, because the action taken in response to an emergency varies depending on whether a mild, severe, or life-threatening effect is predicted. One of the most active developers of chemical emergency planning guidelines, the NAC/AEGL, uses Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances (23) and the Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals (26), as guidance for AEGL development. The procedures within this document are intended to be amenable to these applications, given adequate data. However, the intent of the procedures described in this document differs from that of emergency planning, and more health-protective benchmarks are likely to result from these procedures. Toxicity benchmarks for emergency planning tend to be less protective than those for health risk assessment, because although they must be low enough to protect most of the potentially exposed population, they must also be high enough to minimize false alarms and over-reactions in response (23, 27).

1.3 General Principles of Health Assessment for Non-cancer Endpoints

30. The general principles of inhalation non-cancer toxicity have been reviewed by the U.S. EPA (1) and OECD (7) and will not be discussed in detail here. A few points relevant to acute inhalation non-cancer toxicity are mentioned briefly.

31. Most toxicants cause effects in several organs, although one effect might predominate. It should be kept in mind that the major target organ (or the most sensitive target organ) can differ between species, as well as between individuals within a species, and with different exposure scenarios. Thus, the study that uses a species having mechanisms most similar to humans and is most similar to the exposure scenario of interest would ideally be used to develop the ARfC.

32. Exposure is not the same as dose. Although this important principle has been receiving more attention in the contexts of chronic cancer and non-cancer risk assessment, its importance in evaluating acute exposures cannot be overemphasized. For chemicals that equilibrate with the body during exposure, the most rapid changes in internal concentration and internal dose in a given species occur in the first minutes to hours of exposure. Thus, any potential interspecies or interindividual differences are most apparent when the exposure duration of interest is near or shorter than the time required for the exposure environment to reach equilibrium with the internal environment. Allometric relationships based on body weight for the various determinants of dose among species are predictive of such situations. For example, the species relationship for ventilation rates, a major determinant of dose, is that smaller animals will have higher breathing rates than larger animals such that for a given air concentration of an agent, equilibrium will be attained in the smaller before it is achieved in the larger animal.

33. The most important concept related to non-cancer assessment is the assumption of the existence of a threshold. For the purpose of this document, the threshold exposure is defined as the exposure below which an adverse effect is not expected. As will be discussed, the definition of threshold can also be applied to various categories of effect (e.g., the threshold for mild adverse, moderate/severe effects, or lethality). Estimation of the threshold, or sub threshold, exposure becomes the object of the dose-response assessment. Thus, the definition of the threshold, either as a general concept or as a specific level of exposure for a particular chemical or endpoint, assumes a high level of importance in any non-cancer
assessments. The definition of threshold is complicated because it includes elements of the end use of the assessment (e.g., legislative mandates and implementation policy) as well as elements of data interpretation (e.g., power of a given study to detect an effect, adverse or otherwise; individual versus population thresholds) and science policy (e.g., questions of adversity, severity, and biological versus statistical significance). Also, the range over which extrapolations are performed is affected by the assumption of a threshold when the location or even existence of the threshold is more often not known.

1.4 Current Health Assessment Methods for Non-cancer Effects

34. A principal and vital contrast between the chronic RfC and the ARfC is that of duration. As the chronic RfC is clearly stated to involve lifetime continuous exposure, considerations for duration are not relevant, its only accommodation for duration being the “subchronic to chronic” extrapolation UF. In the acute exposure scenario (i.e., ≤24-h), duration of exposure is a major and critical determinant of response. This criticality has long been recognized and applied through Haber’s relationship (often referred to as “Haber’s Rule”), where the concentration of an agent (C) multiplied by the time/duration of exposure (t) equals a constant (k): C × t = k. More recently, ten Berge et al. (8) have offered a more adaptable variation on that equation by placing an exponent (n) on the concentration term to yield the formula C^n × t = k. As ARfCs for different durations (e.g., 1-, 4-, 8-, and 24-h) are principal outcomes of this document, major portions of this Guidance Document are dedicated to examining and demonstrating the use of various approaches to duration extrapolation.

35. ARfCs may beanticipated to be higher in absolute values (actually air concentrations) than the corresponding Chronic RfCs, as the ≤24-h exposure duration for acute exposure are greatly reduced compared to lifetime continuous exposure. Further, due to the range of possible exposure durations that may fit within the ARfC definition, from 1- up to 24-h (with possible calculation to shorter durations, depending on need), ARfCs require definition in terms of both concentration and specific duration, a situation not at all applicable to the Chronic RfC. Sections 2.1.1 and 2.3.2 will provide more information and analysis on the importance of exposure duration.

1.4.1 No-Observed-Adverse-Effect Level (NOAEL) Approach

36. This approach is primarily based on the selection of the appropriate experimental exposure at which no adverse effect is observed. Ideally a NOAEL (or if one is not available, the corresponding LOAEL) is chosen from an array of dose-response information (usually for a single duration) such that the most sensitive NOAEL can be recognized and chosen. The adverse effect associated with the lowest NOAEL is regarded as the critical effect (i.e., that which occurs at the lowest exposure concentration and, in the case of the ARfC, with consideration of duration). The NOAEL for the critical effect may be regarded as the POD and used further in the quantitative assessment. Dosimetric adjustment procedures may then be applied to the POD to convert the exposure concentration of the NOAEL in laboratory animals to a human equivalent concentration (HEC) to derive a NOAEL_{HEC}. UFs are then applied to the NOAEL_{HEC} to derive the ARfC. If a NOAEL is not available, the lowest LOAEL_{HEC} is utilized, with the addition of a UF for extrapolation from an effect level to a NOAEL. UFs may be applied for a number of other extrapolations including animal to human (a residual uncertainty from derivation of an HEC), intrahuman variability, and residual “database” uncertainties (for “extrapolation” to a complete database). This approach (referred to in this document as the NOAEL approach) is also used to derive the RfD for chronic oral exposure, and 1-, 10-, and 90-day health advisories for drinking water (28) for shorter duration oral exposures. A major criticism of the NOAEL approach is that its reliance on a single data point as the basis of the derivation does not allow for explicit consideration of the shape of the dose-response curve, the number of animals in the group, or the statistical variation in the response and its measurement. That the NOAEL is chosen from an array of all available data serves to offset this criticism somewhat.
1.4.2 Benchmark Concentration Approach

37. Mathematical concentration-response modeling can be used to predict a response level that will serve as the initial basis of a health assessment. Since Crump proposed the “benchmark dose,” or BMD, method in 1984 (29), there has been a great deal of interest and an increasing level of activity to develop guidelines for use of BMD (30, 31), and the development of U.S. EPA software for implementing the aforementioned approach. The approach for the inhalation scenario, termed the benchmark concentration, or BMC, refers to fitting a mathematical model to a dataset containing multiple concentration levels (with each set nearly always limited to a single duration) and selecting a predetermined response (or level of risk) as the benchmark risk (BMR). The lower bound on the concentration (the BMCL) predicted by the model to cause the defined response, or risk, is then divided by UFs. Compared to the NOAEL approach, the BMC method has the advantages that it does not require application of a UF when a NOAEL does not exist, it directly and quantitatively utilizes more information from the concentration-response curve (e.g., slope), is less influenced by experimental design (e.g., dose spacing), and is sensitive to the influence of sample size. In addition, the BMC can consider the variability of the response in the experimental population when a continuous variable (e.g., respiratory rate) is modelled (29, 32, 33). Three advantages of the BMC approach are that [1] it is less sensitive to dose spacing than the NOAEL approach, [2] it is more sensitive to group size than the NOAEL approach, and [3] it does not require the application of a UF when a NOAEL does not exist.

1.4.4 Categorical Regression Approach

38. Conceptually distinct from the NOAEL and BMC methods for evaluating exposure-response data are approaches for analysis of categorical or ordinal data. One approach is regression analysis of response data categorized by severity (16). For this approach, effect data from the toxicological literature are assigned to severity categories (e.g., no effect, mild effect, and severe effect) based on evaluation of the reported information and consideration of biological and statistical significance. This categorization allows incorporation of both dichotomous and continuous data, as well as variables that are reported qualitatively, into the analysis. When the data are in this form can be analyzed in multiple ways: for single studies; for combinations of studies based on a particular designation (e.g., species, sex); for all studies for a particular chemical simultaneously; or most importantly; to generate a concentration-duration relationship. The three major advantages of categorical regression in comparison to the other two methods are [1] continuous, dichotomous, and descriptive data can be used simultaneously; [2] data from many studies can be combined; and [3] a quantitative concentration-duration relationship is developed. Disadvantages of categorical regression include the loss of quantitative information, which occurs when response data are categorized into severity categories as well as the inherently subjective judgment of severity categorization.

39. The application of a categorical regression method (34) to risk assessment was first proposed by Hertzberg and Miller (35) and further defined by Hertzberg (36) as a way to empirically derive an interspecies extrapolation factor. Subsequently, this approach was suggested as a method for chronic exposure-response assessment that would allow a general description of the exposure-severity relationship, as well as estimation of the risk of adverse effects at exposures above the RfD, but below the range of doses that have been studied experimentally (37, 38). It was noted in the initial papers describing this application that the inclusion of other independent variables, such as exposure duration, would be possible using this model. The severity-based approach and the CatReg software (16) developed for this purpose has been applied to exposure-response analysis for acute inhalation exposure, and to examination of the role of concentration and duration of exposure (39-42) in producing adverse effects.
1.4.4 Other Approaches

40. In addition to categorical regression, several other approaches to combining quantitative data, from multiple studies have been developed. In most cases, these approaches combine results from similar studies (meta-analysis), although in certain cases dissimilar studies also have been combined. These approaches also rely on the availability of information reported at the individual subject level, because they are combining estimates of the effect or parameter of interest and the variance of the effect or parameter.

41. Meta-analytical approaches may also lead to a POD for deriving RfCs for any duration. The example assessment for ethylene oxide (short-term) demonstrates how results from BMC analysis on several studies for a single critical endpoint may be combined to derive the POD.

42. A Bayesian approach has been proposed to use the concentration-response curve of individual studies, while incorporating variability in the response measure and combining response data from individual studies (43, 44). In this approach, a level of response for a particular health effect is specified and the probability distribution of the health effect as a function of concentration is derived. This part of the analysis is analogous to deriving the confidence envelope around the BMC estimate. The distribution is then combined with other information, such as the distribution obtained from a second study (termed “priors” or prior information) using Bayesian statistics to obtain a “posterior” or combined, distribution. This process can be repeated until all relevant studies are incorporated. Like the BMC approach, this approach requires quantitative data and is not amenable, in its present form, to analysis of categorical data. At this time, the approach is still under development and, therefore, has not been adopted for use in the development of ARfCs.

1.4.5 Approaches to Dose-Response Analysis

43. There is an inherent need to evaluate acute effects for as many chemicals of interest as practicable within the limits of the available data. Conversely, there has to be some minimum dataset below which evaluation cannot be attempted; however, it is not appropriate to restrict the level of any analysis too narrowly. Based on these considerations, this ARfC GD includes several methods (e.g., NOAEL, BMC, categorical regression) each with different data requirements. As discussed above, the approach used should be matched to, and dictated by, the data available for a particular chemical so as to optimize as much of the available data as practical. The selection of the most appropriate approach in a given situation cannot be clearly defined a priori and will depend on a number of factors that are discussed in Section 2.

44. The three approaches recommended for ARfC development are NOAEL, BMC and categorical regression. The methods making use of mathematical dose-response models, BMC and categorical regression, are preferred when the toxicological data are sufficient to support these methods. Dose-response models are preferred to the NOAEL approach, because they use information from the entire dose-response curve rather than from a single experimental point. Both BMC and NOAEL approaches use only one primary study to develop the ARfC, and a toxicity benchmark for only one of the durations is identified. The NOAEL approach, which is the most commonly used method to develop toxicity benchmarks for non-cancer effects, is recommended for use as a default method for ARfC development when the available acute toxicity data will not support the use of a dose-response model.

1.5 Approaches to Duration Extrapolation

45. Both exposure concentration and exposure duration are principal determinants of the toxic response under the acute exposure scenarios this Guidance Document is intended to address. The criticality of the exposure duration relationship under acute scenario conditions is exemplified by considering an
example of direct application of Haber’s relationship, \(C \times t \), to durations under consideration for reporting as ARfCs (e.g., at 1-, 4-, 8-, and 24-h). For a given toxic agent, a 1-h ARFC at 100 ppm would be extrapolated to 25 ppm at 4-h, 12.5 ppm at 8-h, and 4.2 ppm at 24-h. Such marked differences in ARFC values for the same toxic agent require careful and thorough consideration by whatever means available to the assessor.

46. As the internal dose is the ultimate determinant of risk, factors indicative of the internal dose at the target site (i.e., exposure concentration and exposure duration) become equally critical. The dose at the target tissue will depend not only upon the amount deposited or absorbed but also on the clearance rate or rate of activation/inactivation, depending on the mode of action (MOA). Because they can provide a correlation of the internal dose to the response under these conditions, physiologically based pharmacokinetic (PBPK) models can be used for establishing the exposure concentration-duration relationship and this Guidance Document endorses the use of properly parameterized PBPK models for such purposes.

47. Although more PBPK models are now becoming available, there are relatively few compared to the vast number of toxic agents that will be under consideration for RfC development. In lieu of such models, exposure-duration \(C \times t \) relationships have been most often characterized by mathematical constructs from empirical observations. Historically, the most commonly used relationship has been Haber’s relationship which suggests that the product of these determinants is a constant, \(C \times t = k \). Haber’s relationship is often viewed as a special case of the more generalized relationship empirically derived by ten Berge et al. (8) wherein the concentration/duration-time model is expressed as \(C^n \times t^b = k \), with \(n \) and \(b \) being empirically derived. The relationship has most commonly been simplified by removing the exponent \(b \) on the \(t \) term to the equation \(C^n \times t = k \). It should also be noted that the majority of data that has been utilized in these analyses is chemical-specific mortality data. This Guidance Document recognizes these options for determining the concentration-duration relationship.

48. In addition, this Guidance Document presents and provides examples in the use of categorical regression as an alternate option of determining the concentration-duration relationship using chemical-specific information that may not be mortality data. The capacity of categorical regression (CatReg) to provide concentration-severity relationships has been expanded within the CatReg program (16) to provide quantitative concentration-severity relationships over duration/time of exposure. Further, these relationships may be defined from chemical-specific information for severities other than the highest (i.e., mortality). From inputs of information on different severity levels, exposure concentrations, and durations, CatReg outputs can be made to assume the form of concentration-duration relationships for individual severity levels. Concentrations associated with specific severity levels at specific durations can then be obtained from these concentration-duration plots. Alternatively, the parameters defining the shape or slope of the concentration-duration plots may be applied to an independently derived POD, such as a BMC estimate.
2. DEVELOPMENT OF AN ACUTE INHALATION EXPOSURE-RESPONSE ASSESSMENT

49. This chapter of the Guidance Document focuses on the various steps necessary to develop an acute inhalation exposure-response assessment, and will delve into the detailed considerations needed to perform each of those steps. Specific aspects of the process will be illustrated by the examples performed in support of the acute inhalation method development process for four example compounds (EtO, HCCPD, H₂S, and phosgene). Figure 2-1 provides a stepwise decision tree that is designed to guide a risk assessment professional through the process of developing an assessment of health risk from acute inhalation exposures. Each step along the way in this graphic depiction of this process also refers to a section in this chapter that provides greater detail on that particular step of the process.

2.1 Collection and Evaluation of Relevant Data

50. Health assessments must be based on a complete review of the toxicological literature. The available inhalation data will vary for individual chemicals, exhibiting a wide range in the number of studies, the number of exposure levels and durations studied, and the range of endpoints examined. In general, there tend to be many more studies using acute or short-term durations than using subchronic to chronic exposure durations. In many cases, however, acute inhalation studies focus on mechanisms, pathogenesis, or pharmacokinetics without evaluating exposure-response relationships. In these cases, information on the effects that might have been observed is not necessarily critical to the main point of the study and may not be reported in detail, making it important to judge whether, and in what way, the information is useful. Information from these types of studies may be relevant and useful even if they are not focused on exposure-response relationships. Another consideration is that quite a few studies may focus on a single effect (e.g., lethality) or on a few organ systems and miss effects on other potentially sensitive organs.

51. There is also a range of exposure-response data types found in acute inhalation studies. Dichotomous (incidence), continuous (measurements on a continuum), and categorical (descriptive) variables are commonly reported. Categorical effect measures are frequently encountered in the toxicological literature as histological observations, and in some cases the effect information is limited to relative severity.

53. All available literature describing health studies having acute exposures should be reviewed with the goal of including all studies in the analysis with clearly defined exposure concentrations, exposure
durations, and responses. Whereas it is perennially true that more information is better, the ARfC approaches proposed in this Guidance Document have basic data requirements for deriving meaningful exposure-response-duration relationships from even a minimal acute toxicity dataset. The quantity of information available is pivotal in deciding which of the approaches (e.g., NOAEL, BMC, or categorical regression) should be used for quantitative analysis. To help distinguish the NOAEL, BMC and categorical regression approaches, Table 2-1 characterizes the data requirements for each. The data requirements are divided between their computational and interpretational requirements. Data required for computational purposes are those necessary to compute a numerical POD. Conversely, data required for interpretational purposes are those required to interpret the POD, and to then apply it in the subsequent steps of an ARfC derivation.

54. Of the three approaches, only categorical regression explicitly uses exposure duration for computational purposes. The NOAEL and BMC approaches, however, require exposure duration (as in X mg/m3 at Y-h) for proper interpretation and use. How this information is then used is discussed in Section 2.6.3.

55. Severity data are required for computation during categorical regression analysis, but is most infrequently specified in the literature directly. Histopathology data frequently have severity scores or lesion grades accompanying the lesion description. Most often, however, the severity category has to be considered and assigned by the assessor through analyzing and making judgments on the continuous or incidence data available. Decisions made on severity should be clearly identified, reasonable, defensible, and in line with the general guidance given in Table 2-1. For judgment on a continuous parameter such as decreases in nerve conduction velocity, for example, consultation with neurotoxicologists may be necessary for professional opinions on what level of decrease is within the background levels or is marginally or clearly adverse. The outcome of such a consultation would form the basis for determining ordinal severity (i.e., the conversion of continuous data into categorical data) and should thus be carefully and clearly documented.

56. In general, data should be captured for every experimental exposure concentration tested (including controls – either concurrent [preferred] or historical), along with details of the duration of exposure, measurements of the response levels for each parameter measured (i.e., there may be more than one measure for a single endpoint and/or more than one endpoint measured), and any other pertinent details related to exposure conditions. The example assessments illustrate the widely varying and assorted types of information, and level of detail amenable to analysis.

2.2 Evaluation of Endpoints

57. Once it is determined that a study is of adequate quality for inclusion in the assessment (e.g., the methods are appropriate to the endpoint, dose-response and duration information is provided in a format amenable to analysis, the informed opinion of the assessor), it is necessary to determine the relevance of the specific endpoints. For example, acute exposures are often used to evaluate mechanisms of toxicity or pharmacokinetics, rather than exposure-response-relationships. Such studies are very useful in interpreting the available data, but they are ineligible for dose-response assessment purposes if the endpoints examined cannot be clearly related to a toxic effect. A few endpoints have been determined to be qualitatively irrelevant to human health assessment, because they act through mechanisms that do not exist in humans, for example, male rat kidney lesions caused by chemicals that increase production of alpha$_{2u}$-globulin (49).

58. The quantitative derivation of ARfCs by the BMC and NOAEL approaches should focus on sensitive endpoints (i.e., toxic effects that occur at relatively low exposures). Insensitive endpoints such as lethality should be used during ARfC development if only to assure that the exposures required to produce
Sensitive endpoints are sufficiently less than exposures needed to cause insensitive endpoints to assure adequate safety. In other words, it is important to note how near a mild effect is to lethality, in terms of exposure levels and duration.

59. In categorical regression analyses, however, data for all endpoints (sensitive and insensitive) are used to determine the intercepts of the exposure-response-duration probability curves for all severity categories and, in some models, to assist in determining the slope of the curves. Since categorical regression identifies the probability of a particular severity occurring over a range of exposure concentrations and durations, all available responses (including the least and most severe) must be included to complete the spectrum of severities that could occur. For example, in calculating the probability of rolling a three on a six-sided die, it would be inaccurate to assume the die only had five sides. Likewise, in calculating the probability of the occurrence of mild adverse effects, it would be improper to assume there were no severe adverse effects (i.e., that severe effects were impossible). In fact, output from categorical regression is given in terms of probabilities of both observing a given severity and not observing the next higher severity.

60. Regardless of the final method to be used in deriving an ARfC, a complete cataloguing and evaluation of the dose-response-duration data are useful, and a graphical representation of the collected data available for a particular chemical, as shown in the example assessments, may prove invaluable in such an evaluation. Figure 2-2 provides some samples of the basic information that may be included in an Exposure-Response array, including identifying the NOAEL, LOAEL and upper and lower concentrations tested. A graphical depiction of the information included in a database has proven to be quite useful in the example assessments. Each of the example assessments (except HCCPD) includes an Exposure-Response array generated using Microsoft Excel® to manipulate the exposure-response data stored in a Microsoft Access® database (42).

61. For most chemicals, the data considered for derivation of the ARfC will be limited to studies of acute inhalation exposure. However, the ARfC method allows inclusion of developmental toxicity studies for the inhalation route. Adverse developmental effects in the fetus following chemical exposure are considered to be related to the unique susceptibility of the fetus at discrete times during gestation. The observed fetal effects result from the exposure of the pregnant dam during that particular time of fetal susceptibility. Test data having the most direct application for the ARfC method would be from studies in which maternal exposure occurred only during discrete periods of gestation (e.g., only gestational day 12, only gestational days 11 to 12). These single day or consecutive day studies would have the strongest linkage between a single (acute) exposure and any observed adverse effects. Where such data are available, it can easily be used in the acute evaluation. Depending on the physical and chemical properties of the chemical, some cumulative effects could occur from longer periods of repeated exposure. However, with the high potential for developmental toxicity to occur from a single exposure, it is reasonable to assume that the adverse fetal effects observed in a developmental toxicity study that includes exposures across multiple days of embryonic or fetal development, or even throughout gestation, could have occurred as the result of exposure on a single day of the study. For example, a study that includes exposures of 6-h/day on gestational days 6 through 15 will be treated for ARfC purposes as a single 6-h exposure to address the critical outcomes associated with developmental toxicity. This approach will, of course, always be subject to proper scientific evaluation, especially when additional information is available on pharmacokinetics or the conditions of the study that improve the understanding of the dose-response relationship. Some of the issues related to the use of repeated exposure developmental studies and how well they compare to similar single exposure developmental studies are reviewed by van Raaij et al. (50) and by Davis et al. (51).
2.2.1 Adversity and Severity of Effects

62. The interpretation of the adversity of non-cancer effects is one of the most difficult aspects of non-cancer risk assessment. For the purposes of this document, adverse effects are defined to be “functional impairments or pathological lesions that may affect the performance of the whole organism or that reduce an organism’s ability to respond to an additional challenge”. In large part, the difficulty in the determination of adversity stems from the need to interpret specific biochemical, anatomical, or functional changes in terms of their importance to a higher level of organization, the whole animal. The use of increasingly sophisticated methods to detect subtle changes (e.g., upstream effects) makes the determination of adverse/not adverse an ever-increasing challenge.
Figure 2-1. Decision tree for performing an acute non-cancer inhalation exposure-response assessment

Table 2-1. Acute Reference Exposure Computational (C) and Interpretational (I) Data Requirements

Figure 2-1. Decision tree for performing an acute non-cancer inhalation exposure-response assessment
Severity has been defined as the extent to which an effect impairs the functional capacity of an organism (U.S. EPA, 1989), i.e., the degree of adversity. This definition reflects the fact that almost all toxicity is expressed and observed as a graded series of changes, with severity, in some cases, used to describe the general location on the continuum of response. This continuum is a composite of many variables, including amount, magnitude, location, incidence, reversibility, measurability, and other factors that give an indication of the severity. If severity is seen as the continuum of biological response, then adverse responses are defined as that point on the continuum where the criteria for adversity are met. Based on the definition cited in the previous paragraph, the criteria for adversity are that the “performance of the whole organism” or the “ability of the organism to respond to additional challenges” is diminished.

64. The key variables that define severity were characterized as “type” of effect and "magnitude" of effect (U.S. EPA, 1989), reflecting the common distinction between qualitative and quantitative aspects of toxicity. Qualitatively, effects can be ranked in terms of their severity. For example, necrosis of nerve cells in the brain is more severe than necrosis of liver cells, because liver cells can regenerate more readily, but liver necrosis is more severe than fatty changes in the liver. The magnitude can be considered separately, in that all toxic effects are assumed to increase in magnitude as a function of dose. However, the aspects of type and magnitude of effect cannot be completely separated, because widespread occurrence of a qualitatively less severe effect could be of more public health concern than focal occurrence of a more severe effect. Additionally, an increase in magnitude with increasing dose is often accompanied by a qualitative progression in the nature of the effect.

65. Ranking or scaling of effect severity is a critical component of the categorical regression approach. It is, however, not discussed in detail in this Guidance Document. The interested reader is directed to the discussion of this topic in the CatReg User’s Manual (U.S. EPA, 2000d), and additionally can refer to the current example acute assessments in which CatReg is utilized, namely phosgene and hydrogen sulfide.
Defining Adversity for an Endpoint

The determination of whether a response is adverse for a particular endpoint is the most important judgment for the use of that endpoint in non-cancer risk assessment and can be the most controversial. The designation of reported effects as adverse or not adverse requires a judgment as to the magnitude or severity of effect that is adverse for the endpoint under consideration. Although these endpoints are not determined in the absence of other information, it is reasonable to assume in most cases that the criteria for adversity are target-organ specific and chemical independent. These criteria are rarely made explicit, with a few exceptions, such as the informal use of a 10% lower body weight or 2% decrease in brain weight in exposed groups as a determinant for adversity in a chronic study. If it is possible to determine adversity, then it is possible to state the minimum level of response that is adverse. For derivation of the ARfC, the level of response that is considered adverse must be explicitly documented and may or may not correspond to what was reported by the study authors.

Figure 2-2. Introductory description of an Exposure-Response Array and the graphic depiction of the level of detail for individual study data
Statistical versus Biological Significance

67. Adversity of effects has previously been defined based on biologically and statistically significant changes compared to controls. This language reflects the understanding that it is possible to observe statistically significant changes that are biologically unimportant, and conversely, to observe biologically important effects that are not statistically significant.

68. In practice, statistical significance plays a major role in determining adversity, especially when there is a limited basis in biology for a judgment. This practice introduces complexity into the decision on adversity, because the same magnitude of response could be considered statistically significant or non-significant, depending on the number of subjects in the groups, variability in response, and other design elements such as the statistical test and p-value used to define significance. If a study is scientifically sound from all aspects, statistical significance in exposure-response motivates considering biological relevance. Final decisions on these issues will rest with the informed assessor. Depending on the analytical approach being taken in any particular assessment (e.g., BMC or categorical regression), additional guidance may be available from the technical guidance and/or user’s manual.

Designation of Adverse Effect Levels

69. For the NOAEL and categorical regression approaches, the designation of severity categories for health effect data proceeds as part of the quantitative analysis. The determinations made are based on comparison of the reported effects with the magnitude of effect consistent with the onset of adversity, although in the NOAEL approach this magnitude of effect has not been routinely identified. The BMC approach requires that a response level be explicitly defined and used to determine the BMCL. The 10% response (BMCL_{10}), relative to measures in a control population, has been adopted as a default BMR for dichotomous data. In the derivation of the ARfC, the estimates for the onset of adversity for both a BMCL_{10} and a NOAEL are defined as being identical, and therefore, the model results can be interpreted as analogous. To ensure consistency, the magnitude of effect for the onset of adversity should be defined and explicitly stated, and included in the documentation of the ARfC.

70. For the purposes of the derivation of the ARfC, a major and critical assumption is that a group of reasonable scientists can make judgments about this issue that are reasonably consistent across studies in a database consisting of acute toxicity studies. These judgments should be based on an understanding of the MOA and pathophysiologic continuum and outcome of the endpoints studied.

2.2.2 Generic Data Attributes for Exposure-Response Approaches

71. Although the three approaches for exposure-response analysis recommended for ARfC development (experimental NOAEL, BMC, and categorical regression) require different types and quantities of toxicological data, certain aspects of data evaluation are common to all three approaches. The following paragraphs discuss some aspects of toxicological data that vary when examining all available literature for a given chemical and that are relevant to quantitative exposure-response modeling. A variety of types of data are encountered that differ due to the inherent nature of the endpoint or the way the information is reported. Table 2-2 shows the types of data most often reported in the toxicological literature. Both the inherent data type, and the quality of reporting determine the applicable type of exposure-response approach if additional information or raw data are not available.

72. Dichotomous data are normally reported at the individual level (e.g., 2/10 animals showed the effect). Occasionally a dichotomous endpoint will be reported as aggregate data (i.e., the incidence cannot be determined). This usually occurs when the incidence of the endpoint reported is ancillary to the focus of the report and are, therefore, not reported in detail. In this case, it may simply be stated that an effect was
observed in a treatment group, with no mention of the number of animals showing the effect. Dichotomous data are amenable to analysis by the NOAEL, BMC, and categorical regression approaches. For all three approaches, it must be determined whether the presence of the effect is adverse; and in the case of the categorical regression approach, the severity of effect (i.e., the degree of adversity) must also be designated.

Table 2-2. Types of Data and Reporting Most Common in Toxicological Literature

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Aggregate Reporting</th>
<th>Individual Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichotomous (e.g., dead/alive)</td>
<td>Presence or absence in group (no incidence)</td>
<td>Incidence</td>
</tr>
<tr>
<td>Continuous (e.g., body wt.)</td>
<td>Mean</td>
<td>Individual or group values — or — Mean and measure of variability</td>
</tr>
<tr>
<td>Categorical (ordinal) (e.g., descriptors such as mild/moderate/severe)</td>
<td>Category for the group</td>
<td>Incidence for each category</td>
</tr>
</tbody>
</table>

73. Continuous data are measurements of effects, which occur on a continuum such as airway resistance or enzyme activity. A continuous data type might be reported in several different ways, including actual measurement, absolute change from control, or relative change from control. These data may or may not be reported with an appropriate measure of variability; commonly reported values include either standard deviation (SD) or standard error (SE). When a measure of variability is reported, information is conveyed about the distribution of the associated parameter in the group, which is a reflection of the individual values. This is included in Table 2-2 as a continuous variable reported at the individual level, although it is not truly individual information. Models and technical support for application of the BMC approach to continuous data are available (U.S. EPA, 1995, 2000b,c). For the BMC and categorical regression analysis, it is necessary to define the level of effect or change for the endpoint that is considered to be adverse. The specified level of effect is used to determine the corresponding BMC and to determine severity categories for categorical regression. The level of effect so designated must be consistent with the form in which the study results are presented (e.g., absolute or relative change).

74. The measure of variability (SD/E) for a continuous variable is needed in order to use the BMC approach when the individual animal datasets are not available. The SD/E is also useful in helping to assign severity categories for categorical regression. In some cases in which the SD/E is not presented, the results of statistical analysis are discussed, so the inclusion of the SD/E might be considered to be conceptually redundant. Nevertheless, the lack of a SD/E for a continuous variable precludes the use of the BMC, unless partial information is presented (e.g., SD for control group only) and some assumptions are made. If neither SD/E nor statistical results are reported, then care must be exercised in assigning severity categories for NOAEL or categorical regression. The reporting of measures of variability should be noted and documented during the review of literature for the ARfC derivation.

75. Categorical data exist when more than one severity category can be defined in addition to the no-effect category. The treatment groups may be characterized in terms of the severity of effect (e.g., mild, moderate, or severe histopathological change). Dichotomous data can be viewed as a special case of categorical data in which there are only two categories (i.e., effect or no effect). Information might also be treated as categorical in cases where an endpoint is inherently a dichotomous or continuous variable, but is
reported only descriptively, and cannot be treated quantitatively (e.g., “respiratory rate was mildly depressed in the high-dose group”).

76. Health effect data may be reported for an entire treatment group in terms of severity category (aggregate reporting), or reported as the number of animals (incidence) from each group in each severity category (individual reporting). The reporting of individual versus aggregate information is a key determinant of the modeling approaches for both the BMC approach and categorical regression. While dichotomous data are normally reported at the individual level, continuous data are usually reported as a mean, with or without SD/E. BMC analysis requires individual data or aggregate data with SD/E. A categorical regression analysis can use these types of data and aggregate data without SD/E. However, datasets for individuals are preferred, and aggregate data with SD/E can be transformed to individual data using a procedure described in Appendix A of the CatReg Software User Manual (U.S. EPA, 2000d). For aggregate data without SD/E, the treatment group must be the unit of analysis. This is described further in Section 3 of the CatReg Software User Manual.

2.3 Determining the Critical Endpoint(s)

77. Once all of the dose-response data for all of the endpoints with known adverse effects from acute exposures have been collected and displayed in an exposure-response array, an appropriate critical endpoint must be selected. Attention must be taken in order to address the issues presented in the previous discussions on adversity and severity of effects. In most cases, the endpoint chosen will be one with a study or studies showing adverse effects at the lowest exposure concentration. The assumption is that protection from those low-concentration effects will also be protective for any other adverse effects occurring at higher concentrations.

78. In making the determination of a critical endpoint, the assessors must assure themselves that the candidate endpoint can be manifested by a single exposure. For most endpoints this may seem to be a redundant consideration; however, effects from repeated exposure studies for endpoints such as developmental, reproductive, immunological, and others may require additional scrutiny, as was mentioned briefly in Section 2.2. The MOA that explains how these adverse effects manifest themselves will need to be examined to ensure that it is plausible for the effect to be triggered through a single exposure event.

2.3.1 Evaluating Level of Detail for Study Data

79. Another aspect of the analysis of data for a potentially critical endpoint is the level of detail provided to examine both the exposure concentration versus response, as well as the duration of those exposures. The preferable situation would be to have a single study design with data from multiple durations of exposure, and three or more exposure concentrations at each duration. Additionally, it is preferable to have objective clinical measurements as the response data. In the case of occupational or epidemiological studies, the response measures will often be well-characterized and target-species(human)-specific, but exposure concentrations and durations are often less well known. Conversely, in many other studies, the adverse effect may be for a subjective measure (e.g., headache). It is often difficult to represent a subjective effect as a quantitative value in order to supply an objective measure in a study. This is true even in the case of accurate exposure characterization. In fact in this instance the data may not be apt for incorporation into an analysis.

80. The level of detail available for the critical endpoint(s) will determine what types of approaches may be available to analyze a particular data set. The exposure-response array should assist in identifying the relevant studies for each endpoint with adverse health effects. The assessor should note the following for each endpoint: whether one study or a set of studies with similar study designs is available for that endpoint, and whether multiple exposure concentrations and/or multiple exposure durations are available.
If either is the case for one or more endpoints (but especially for duration), the assessor should then attempt to determine if there is enough adequately detailed data with which to proceed with a categorical regression analysis (described more fully below).

2.3.2 Duration Extrapolation Considerations

81. This discussion of duration extrapolation is provided to assist the assessor in judging endpoint-specific data regarding duration. The magnitude of response to a toxic chemical exposure by inhalation is often dependent on both the concentration and the duration of the exposure. It may be that both the exposure concentration and duration actually determine the internal dose of a chemical at the target tissue and, thus, the magnitude of the response. This implies that the dose at the target tissue may depend not only upon the amount deposited or absorbed, but also on the clearance rate, rate of activation or inactivation, or some other time-dependent process related to the MOA. Thus, it is essential to consider all the mechanistic and pharmacokinetic information available for a chemical and to use that information to predict the dependence or non-dependence of the chemical’s toxicity on duration. This type of information can best be used by its incorporation into a PBPK model. The use of PBPK models is more scientifically defensible and desirable than default approaches, because they can provide a correlation of the internal measure of dose to the effect. Thus, for a chemical for which sufficient pharmacokinetic information is available, use of a PBPK model is the preferred method for duration extrapolation. Once a measure of dose (e.g., blood concentration) associated with the critical effect/response is defined, a PBPK model can be used to predict this dose metric at any exposure duration of interest.

82. Before the advent of PBPK models, response was often related to the product of concentration (C) and duration of exposure or time (t). Haber’s relationship would suggest that this product is a constant, \(C \times t = k \). Although widely viewed as an overgeneralization, this assumption is regularly used as a default assumption.

83. A more general version of this model advanced by ten Berge et al (1986) is expressed as \(C^n \times t^b = k \), with \(n \) and \(b \) being empirically derived. Haber’s relationship is actually a special case of the ten Berge model where the exponents of concentration (\(n \)) and time (\(b \)) are both unity (i.e., \(C^1 \times t^1 \)).

84. Empirically derived values for the concentration exponent \(n \) in the ten Berge model have been determined for a series of chemicals with values ranging from 0.8 to 3.5 (Figure 2-3) (ten Berge et al., 1986). The endpoint typically examined to establish this relationship (specifically so in the ten Berge citation) is lethality from relatively high levels of acute exposures. Lethality and other severe consequences from exposures at the high ends of the exposure/duration spectra would likely be from phenomena and mechanisms related to overwhelming homeostatic mechanisms, and as such would be accommodated and best described by this range of \(n \). However, a typical POD as discussed in this document is (ideally) concerned with mildly adverse effects that are reasonably assumed to be near or within range of most homeostatic controls. It is, therefore, likely that the interposition of phenomena such as homeostasis between these extremes in severity would result in different duration-scaling relationships. It is conceivable, for example, that as the exposure (in concentration and duration) approaches the level at which the body can effectively process the chemical, the duration curve would flatten out (i.e., \(n \) would become larger than 3.5 and eventually approach infinity, indicating no relationship to duration).

85. Thus, in an acute exposure protocol, it is possible to observe both time-dependence (where \(n \) is relatively small) and time-independence (where \(n \) is relatively large) depending upon the chemical of interest and the nature of the internal dose underlying the response. Given the potential wide range of possible duration-dependence, a simple default such as Haber’s relationship is unlikely to work well over a range of exposures to different chemicals. It is, therefore, preferable to determine the duration dependence in the exposure range of interest on a chemical-specific and endpoint-specific basis. However, for most
chemicals, information on duration-dependence is largely unavailable for exposures resulting in sublethal endpoints and is sometimes unavailable even for exposures resulting in lethality.

86. Figure 2-3 shows example plots of the form $C^n \times t = k$ for various exponents based on a severe endpoint (lethality). Increased values of the exponent indicate reduced time-dependence. A value of 1 for the exponent indicates that the Haber’s relationship holds and that the response is related to total inhaled dose, because exposure duration is linearly related to inhaled volume.

87. From Figure 2-3, it can be seen that $C^n \times t = k$ extrapolation from a 4-h exposure to a 1-h exposure on the basis of $n = 1$ can result in a considerably higher estimate than obtained by $n = 3$. A reasonable default is to assume a high value of n in order to extrapolate to shorter durations (e.g., $n = 3$) such that the extrapolation would yield estimates more similar to the originally observed value.

Figure 2-3. Concentration by duration plot showing the effect of the exponent in the formula $C^n \times t = k$ on extrapolation across duration (52).

88. Extrapolating to longer durations should require a careful consideration of all available information including the severity of the endpoint and the extent of the duration extrapolation. The analysis by ten Berge et al. (1986) based on lethality data indicates that few chemicals would be expected to show a value of $n < 1$, suggesting that at least for severe effects (i.e., those overwhelming homeostatic mechanisms as discussed above) a value of $n = 1$ would be a reasonable default for time frames longer than the observed data. It is realized from the above discussion regarding effects of lesser severity and the role of homeostatic processes that the value of n for time frames longer than the observed data may be much greater than 1 and even approach infinity. Nevertheless, in the absence of chemical-specific duration data or other scientifically defensible rationale for doing so, a value of $n = 1$ is recommended as a default for time frames longer than the observed data, regardless of the severity of the endpoint. With the realization that application of this default procedure to longer and longer durations may result in unreasonably low values, it is further recommended that extrapolations to longer times be performed with caution. In the context of this document, this means that the range of extrapolation may be limited to less than 24 hours. In fact the derivation of a 24-h acute reference exposure value may be problematic, especially in the absence of data near this duration.
2.3.3 Judging Data Adequacy

89. Determining whether study data for any endpoint are adequate for inclusion into an exposure-response analysis will be based on the following criteria: [1] level of detail and specificity provided for the response measures, exposure concentrations, and exposure durations; [2] type of response measure; [3] adversity and severity of the endpoint; and [4] availability of adequate related and/or supporting data for other endpoints. In this discussion, each of these criteria will be considered in a stepwise fashion. The adequacy of the total database, rooted in these criteria, will also help to inform the choice of which exposure-response analytical approach(es) might be available and appropriate.

90. The process for determining adequacy begins with amassing the individual study data and judging the merits for inclusion into the analytical database. This is accomplished using the level of detail and type of response criteria described below. The next step is to judge the combined study data for a single endpoint based first on the criteria for the adversity and severity for the endpoint, and then again for related and supporting endpoint data. The assessor should perform this analysis on the entire database amassed from the literature review. If the database is lacking and none of the three basic approaches to exposure-response analysis are tenable, then the assessor should report that data are inadequate to perform an acute inhalation assessment and document what is known from the qualitative and limited quantitative data as potential guidance for further research directions.

Level of Detail

91. The question of adequate level of detail for response measurements for the purpose of subsequent exposure-response analysis will vary somewhat based on the endpoint under consideration. The assessor will need to make an informed judgment on response measure adequacy based on experience, precedence, and/or expert opinion. Also, see the discussion below on Type of Response Measure.

92. In general, the level of detail given in the study will guide its use in any subsequent analysis. Those studies limited to qualitative reporting of data may be limited in their usefulness to areas such as hazard identification. It is also generally true that the more quantitative information available in a study, the more useful it is for formal quantitative analysis. The decision as to where a study lies within this spectrum of usefulness for qualitative or quantitative purposes depends on the judgment and experience of the assessor.

Type of Response Measure

93. As mentioned earlier, there are three general classifications for response measures: continuous, incidence, or categorical. For continuous data, both the numeric values and units for the measure must be specified, and for BMC analysis to be used, some measure of variability has to be reported or generated. Furthermore, incidence data must clearly identify the nature of the endpoint and the indicator of adversity and/or severity that places a measure into an "effect" or "no-effect" status. This will be accomplished with either an enumeration of individuals within the exposure concentration-duration group in each status, or an indication of the status for each individual subject. The criteria for inclusion of categorical data are the most restrictive. All of the criteria for incidence data also apply to categorical data, with the additional requirement that each severity category must include detailed documentation. This documentation should be on the basis for inclusion of groups or individuals into a specific category. Lack of appropriate level of specificity for the particular type of data will result in rejection from the final analytical database.

Adversity and Severity of the Endpoint

94. This criterion is not study-specific, but will need to be assessed on all study data for a particular endpoint. The basis for determining which response level is adverse or the severity category for that
response level needs to be applied rationally and consistently across all studies. This may necessitate the assessor assigning adversity levels that differ from those applied by the study(ies) author(s). Again, decision on the appropriate designation of adversity and/or severity category should be based on the available data, experience, precedence, and expert opinion.

Related or Supporting Endpoint Data

95. This criterion is most applicable to consideration of whether categorical regression or some other meta-analytical approach is viable. For categorical regression to be an option, either for exposure-response or for concentration-duration analysis, the full spectrum of severity across related effects must be part of the database. For meta-analytical approaches, multiple studies for a single endpoint must be available with a similar study design for all included studies, in order to be comparable.

2.4 Exposure-Response Analytical Approaches

96. Although each of the three analytical approaches for analyzing exposure-response relationships are presented separately here, the prudent assessor may wish to perform multiple analyses (both within each approach and between approaches) for comparative purposes. Additionally, analyses on more than one endpoint may be advisable on the basis of either providing supporting evidence for the choice of critical endpoint or to provide a ready alternative. The decision on the approach(es) to take will be based mostly on the level of detail for specific endpoint data.

2.4.1 No-Observed-Adverse-Effect Level Approach

97. For the development of the ARfC, the NOAEL approach will be used as the default approach. It is to be used when the quantity and quality of data available are insufficient to support the use of the BMC or categorical regression approaches. While the categorical regression approach requires multiple studies, the NOAEL approach requires a single acute inhalation study from which a sensitive adverse effect can be identified to occur at a particular concentration and duration of exposure. The NOAEL approach is suitable when the available acute inhalation toxicity data for a sensitive endpoint does not show a dose-response relationship adequate for modeling via the BMC approach. For example, a data set that shows no response at the low dose, 70% response at the middle dose, and 70% response at the high dose is not suitable for the BMC approach, but it is appropriate for the NOAEL approach.

98. The NOAEL approach involves examining the existing acute toxicity database for a particular chemical to identify the critical toxic effect. The critical toxic effect is an effect pertinent to the chemical’s key MOA so that if the critical effect is prevented, all other effects will also be prevented. Thus, the critical effect is a sensitive endpoint. Lethality is not considered a sensitive endpoint and is inappropriate for ARfC derivation using the NOAEL approach. If the critical effect is identified in animal studies, it must also be relevant to humans. Relevance to humans is assumed in the absence of evidence to the contrary. Once a good quality study that measures the occurrence of the critical toxic effect is identified, the NOAEL is chosen as the highest concentration tested at which the critical effect is not observed. A LOAEL may be used if a NOAEL cannot be identified, with modification by an appropriate UF. The NOAEL or LOAEL then serves as the POD to derive the ARfC by the subsequent application of dosimetric adjustments and UFs as necessary to derive a concentration protective of sensitive human subpopulations. Any POD based on a NOAEL/LOAEL or BMC will be for a specified duration such that duration extrapolation will need to be undertaken for estimation of other pertinent durations.

2.4.2 Benchmark Concentration

99. The Use of the Benchmark Dose Approach in Health Risk Assessment (53) was published to identify the methodological choices and issues in using these methods to replace the NOAEL approach;
guidance on the use of BMD/C methods is pending. To ease the implementation of BMC methods, Benchmark Dose Software was developed and can be obtained without cost (15).

100. The BMC may be used as the basis for derivation of the ARfC when good quality quantitative information is available from at least one study when multiple studies (for a number of exposure durations) required by the categorical regression approach are unavailable or are otherwise unsuitable. As with the NOAEL approach, only a single good quality inhalation study is required for BMC analysis, but the dose-response data should show a steadily increasing (monotonic) response with increasing exposure concentration. The BMC software (version 2.1.1 and later) also has the ten Berge C x t model which could be useful in deriving ARfCs.

101. The BMCL is a lower statistical confidence limit on the dose corresponding to a specific level of risk, the Benchmark Response (BMR) (see Figure 2-4). Thus, before calculating a BMCL, the BMR must first be specified. Several considerations may influence the selection of a BMR. The first consideration is that, when used for determining the ARfC, the BMCL is used as a POD like the NOAEL. This suggests that the BMR should be selected near the low end of the range of increased risks or observed data that can be detected in a bioassay of typical size. Comparison of the BMCL with the NOAEL for a large number of developmental toxicity data sets indicated a BMR in the range of 5 to 10% resulted in a BMCL that was, on average, similar to the NOAEL (54-56). Although not applicable to developing an ARfC, examples of inhalation studies for both low level chronic exposures (57) and short-term lethality (58) show that a BMR in the range of 5 to 10% yields BMCLs similar to NOAELs. For dichotomous data, a single probability of effect may be selected as the basis of the BMCL. This approach is only reasonable if the dichotomous endpoints to which the single probability of effect would be applied are all of similar toxicologic adversity. However, definitive application of a single probability of effect to the BMC approach awaits systematic investigation of data for various target endpoints in relation to oral and inhalation exposures. In the interim, the 10% response may be adopted as the default BMR for dichotomous data.
Several approaches can be used to determine the BMCL for continuous data. One approach is to define a magnitude of change (i.e., the BMR) considered to be an adverse effect and then use the BMCL predicted for this BMR as the POD. Another approach is to convert continuous data to dichotomous data by using the defined magnitude of change to mark the upper limit of the no-effect response. Then, all individual responses equal to and below that limit are counted as no-effect responses, and all individual responses above that limit are counted as adverse responses. A third approach is a statistical method that calculates quantal responses from continuous data.

For dichotomous data, it is recommended to use “extra risk” as the default procedure for the manner in which the BMR for dichotomous data is calculated. In the case where background risk is zero, the response would be equal to the absolute value of the designated response (e.g., 10%). When background values are present, the designated response would have to be increased to offset this value such that the change would be in the population that is not already affected at the designated response value.

All continuous effects require an accompanying biological rationale as to the level that is adverse. The application of the benchmark approach to continuous data therefore requires that the BMR be set specifically for each endpoint and expression of results. Because of this difference in data and modeling...
attributes, it is not unreasonable to use different approaches for continuous and dichotomous data. BMR choices for continuous models are discussed in detail in the BMD software guidance document (15).

105. In general, BMC analysis makes maximal use of the quantitative data available from an individual study, regardless of whether it is continuous or dichotomous. This attribute of BMC has to be kept in mind when evaluating the various approaches to be employed for exposure-response analysis. With categorical regression, for example, a significant loss of quantitative response information from a study can result when detailed continuous information is converted to ordinal categorical designations.

Standard Procedures

106. For ARfC development, the BMC and the BMCL should be calculated for each effect, showing sensitive effects in the acute duration range. Estimates from several different BMC models should be calculated, and the results should include both graphical and tabular display of the data and model estimates as well as goodness-of-fit tests. Based on this analysis, a preferred BMCL should be selected based on a documented rationale that should include a description of endpoint, model choice, and any additional manipulation of data. Criteria for model choice in BMC analysis must be regarded as a work in progress; simple set procedures holding for all situations are not likely to be developed. In general, however, such factors as Akaike's Information Criterion (AIC) values, chi-square residuals, consistency in output among models and visual judgment all need to be called into consideration in making the model choice.

107. The BMCL then serves as the POD to derive the ARfC by the subsequent application of dosimetric adjustments and UFs as necessary to derive a concentration that is protective of sensitive human subpopulations. If the chosen study uses an exposure duration other than the duration of interest for ARfC derivation, a duration adjustment must also be made using the duration extrapolation analysis utilized in the assessment.

108. Little attempt has been made to define the minimum data set required to perform a BMC calculation. U.S. EPA (31) recommends that the minimal study have at least two groups with responses above controls. For the purpose of the ARfC, the minimum data set recommended for benchmark modeling consists of at least two dose levels with greater than zero but less than maximal (100%) response and with at least three dose levels overall.

2.4.3 Categorical Regression

109. The use of categorical regression is an approach suitable for purposes of dose-response analysis and, more importantly for acute assessments, for estimation of the concentration-duration relationship. Categorical regression becomes an option for these purposes when there are multiple acute inhalation studies for a variety of exposure durations for the chemical of interest. Good quality studies that report exposure concentration, duration, and effect data can be used. The categorical regression approach can accommodate several types of response data (i.e., descriptive data, continuous data, dichotomous data, and a variety of toxic endpoints and species as well as gender) as long as the responses can be classified into severity categories. The use of a number of studies at various exposure durations allows effect severity to be predicted across both exposure duration and concentration continua.

110. Categorical regression uses response data, classified by severity category, and the associated exposure data (concentration and duration) to estimate the probability, or likelihood, that an effect of a certain severity will occur at various concentrations and durations of an inhaled chemical exposure (i.e., to estimate the proportion of a new group of animals that will experience the effect at a given concentration and duration combination). Classifying response data by severity allows the technique to be applied to
many studies and to any number of species. For example, many different descriptive or quantitative measurements made in a variety of species may be judged as a "mild adverse effect".

111. The software developed for this purpose, CatReg (60), uses general logistic regression methods to develop models of the relationship between severity of response, exposure concentration, and exposure duration. With the inputs of exposure concentration and duration for each response (categorized by severity level), the models estimate parameters relating these inputs to a probability regarding response in each severity category. Once data are entered, CatReg has the capability to estimate these parameters from any aspect of the data as stipulated by the assessor such that certain aspects of the database are displayed (e.g., the concentration-duration relationships for a certain species or for all species combined). Further, with CatReg it is possible to specify and examine different subsets of the data (e.g., two different species) and determine statistically outputs such as the concentration-time confidence bounds on the central regression estimate. Additional details are available from the CatReg User’s Manual (16).

112. Figure 2-5 is a representative concentration-duration plot from a CatReg analysis. The downward sloping solid curve is the regression line generated by CatReg for the 10% probability of occurrence of an effect of "adverse" severity. The flanking dashed curves are the 95% confidence bounds on the central regression estimate. Other curves and bounding estimates can be generated for different probability estimates and severity categories. The curves are generated from input data on exposure duration, exposure concentrations, and effect severity. As described elsewhere, these data can be for a variety of endpoints (with the requirements that they can be categorized as to severity). Alternatively, the data can be stratified (analyzed separately) by endpoint or any other distinguishing feature of the database (e.g., species) such that the intercept, concentration and/or time parameters of the CatReg model are optimized separately for the given endpoint/feature.

113. The curves are relatively distant from the “adverse” data they are estimating as they are not the actual maximum likelihood estimate, but rather the lower 10% probability of observing an "adverse" effect. These data-driven curves define the concentration-duration relationship for this particular severity effect. The concentration and corresponding duration estimated to give this 10% probability of observing this severity effect may be read directly from these curves.

Minimum Data Requirements

114. CatReg uses duration as an independent variable and requires data for more than one duration to generate concentration-duration plots. Limited study of the minimum data requirements for this method has been performed. A provisional minimum database requirement is for the studies combined for analysis to have data for at least two durations separated by a minimum of 3 hours and at least no-observed adverse effect (NOAE) and adverse effect (AE) severity categories at each of those durations. Since the ARfC methodology focuses on identifying toxicity benchmarks for sensitive effects, the focus of the categorical regression approach is on mild adverse responses. Until more analysis is performed in this area, it is recommended that a balance be struck between reliance placed on information for more severe endpoints (e.g., lethality) and for mild adverse effects.

Standard Procedures

115. For the categorical regression approach, dosimetric adjustments must be applied to the data prior to the categorical regression analysis. To be consistent with benchmark dose methods, the 95% lower confidence limit of the effective concentration-time for a 10% probability (LERC-T_{10}) of effects at the designated severity level (typically not-adverse to mild-adverse) is recommended as the POD (actually a "line" of departure) for ARfC development. The rationale for assigning severity categories for each study should be completely documented. Documentation of categorical regression results should include model
options, goodness-of-fit parameters, ERC-T_{10} and LERC-T_{10} estimates for durations of interest, and a graphical display of the data and regression lines. Based on analyses varying model options and data sets, a preferred model should be selected based on a documented rationale that should include a description of model choices and any additional manipulation of data. To derive the ARfC, the PODs derived from the concentration-duration line are adjusted by the application of UF{s} as necessary to derive a concentration that is protective of sensitive human subpopulations.

![Figure 2-5](image.png)

Figure 2-5. A CatReg concentration-duration plot for a specified severity category.

2.5 Duration Extrapolation Determination

The concepts for performing duration extrapolations were introduced in Section 2.3.2. For the purposes of performing an acute inhalation assessment, the steps for this aspect of the process of

\[^{1}\text{Symbols indicate simulated toxicity data of different severities (from “No effect” to “Severe”). The solid line is the estimate for the 10% probability of occurrence of an effect of “adverse” severity, the ERC-T}_{10}. The dashed lines are the 90% two-sided (95% one-sided) confidence bounds for the ERC-T}_{10}, with the lower bound being designated the LERC-T}_{10}.\]
developing an ARfC are illustrated in Figure 2-6. Duration extrapolation is not necessary for a POD calculated by categorical regression.

117. As shown in Figure 2-6, if adequate data are available it may be possible to derive an endpoint-specific duration slope factor (value of \(n \) from the \(C^n \times t \) equation). The example assessment for phosgene is a case in point where sufficient data on both endpoint and durations are available, allowing for a chemical- and endpoint-specific value of \(n \). The work of ten Berge et al. (8) provides the method for deriving a value of \(n \) based on dichotomous data, and software has been developed (61) to allow calculation of this value. These capabilities are also incorporated into the more recent version of the Benchmark Dose Software (62).

![Decision Tree for Determining Duration Slope Factor](image)

Figure 2-6. Decision tree for determining duration slope factor (value of \(n \))

118. Another chemical-specific option for a value of \(n \) may be to use a previously calculated value for lethality or to derive one from reported lethality data using the ten Berge (2000) software. As has been discussed earlier in Section 2.3.2, however, this option may have considerable limitations. Such a value of \(n \) is likely derived from high-level exposure studies in which homeostatic defense mechanisms are overwhelmed, a situation where the target organ(s) may differ or may not be discernable from those of lower-exposure studies in which homeostatic mechanisms are operating and the chemical is being handled by these systems.
119. Use of lethality slope factors, however, are tenable only if the MOA for lethality is similar or may be linked to the MOA for the sensitive endpoint used as the ARfC POD. Examples of calculated values of n for 20 chemicals based on lethality data are provided in ten Berge et al. (8).

120. The acute assessment of HCCPD is an example of the use of this option. A value of n was developed from available lethality data of different concentration-duration combinations and used to extrapolate for occurrence of a less-than-lethal endpoint, pulmonary toxicity. In the case of HCCPD, however, information was available indicating that the target organ (lung) at the high-level exposure studies was the same as in the lower-exposure studies.

121. The default approach for a value of n, when all other options are unavailable, is to use values of $n = 3$ for durations shorter than the observed POD(s) and $n = 1$ for longer durations. As can be judged from Figure 2-3, values of n of 3 or greater have little slope and this property restricts extrapolating to higher exposure concentrations where data may not be available for durations shorter than observed in the key study(ies). Conversely, a value of n equal to 1 applied to longer durations imparts a pronounced downward slope such that extrapolation results in proportionately smaller concentrations. This is also in keeping with the National Research Council’s recommendations (23) that are currently used by the NAC/AEGL for developing AEGL values and are reflected in their current AEGL Standing Operating Procedures (SOPs) (26).

2.6 ARfC Derivation

122. Following the use of one or more of the exposure-response analytical approaches described in Section 2.4, an appropriate POD will be selected. The POD is then subjected to additional adjustments for dosimetry and duration as necessary, and finally relevant UFs are applied to arrive at the final ARfC values.

2.6.1 Determination of the Point of Departure

123. The approach proposed for the health assessment of acute inhalation exposure is the development of an estimate of a predetermined effect level (POD, e.g., BMCL$_{10}$, or ERC-T$_{10}$) based on the best available exposure-response model and the application of UFs for various extrapolations and data gaps. The exposure-response model used to determine the POD would be determined largely by the availability of data. As suggested and demonstrated in the preceding sections, results from the categorical regression approach, the BMC approach, as well as the NOAEL approach should all be considered as the potential POD. Each approach has certain strengths and weaknesses and, depending on the data that are available, one or more could be applicable. In general, a preference would be given to models that use more exposure-response information (e.g., categorical regression and BMC), but this is a decision based on the nature of the studies, amount of data applicable to the models, the agreement between the results of the models, and the size of the confidence bounds for the applicable models. When data permit, a comparative analysis among these approaches may be undertaken and is recommended to aid in the quantitative analysis of uncertainty.

124. For the BMC approach, the critical decision is the designation of a specific adverse effect level. The BMCL, the POD for the BMC approach, is the 95% lower confidence bound on the concentration corresponding to the BMR. The BMCL is used like the NOAEL and implies that the effect level in the BMC approach is close to the onset of an adverse effect. Presuming it to be a minimum adverse effect, this interpretation is consistent with the interpretation of the onset of adversity for categorical regression. Because both methods adopt the same approach for analysis of continuous data, the designation of an adverse effect level based on statistical and biological considerations, the BMC and categorical regression approaches are consistent in their use of continuous data.
125. That the BMCL for dichotomous data is based on a percent response determined without consideration of severity (e.g., 10%) could be regarded as an inconsistency if the defined limit for adversity used in categorical regression is different from the BMR (i.e., greater or less than 10%). This is likely to be rare, however, because the 10% incidence likely to be adopted as a BMR would most likely be for effects judged mild to moderate in severity. The ERC-T\textsubscript{10} and LERC-T\textsubscript{10} derived from the categorical regression analysis will be interpreted as equivalent to the BMC for a 10% incidence of a dichotomous effect or an effect equal to the specified effect level for continuous data, despite the possibility of inconsistency discussed above. Likewise, the 95% lower confidence bound on the ERC-T\textsubscript{10} from categorical regression (i.e., LERC-T\textsubscript{10}) will be interpreted in the same way as the BMCL\textsubscript{10} and the NOAEL and is thus the POD for the categorical regression approach for dichotomous data.

126. The selection of the POD to be used as the basis for the health assessment will result from a review of the candidate POD values, if permitted by the available data. These candidate values may include the results from a categorical analysis that is determined to produce the best description of the available data, the BMC results on individual data sets, and the NOAELs.

2.6.2 Dosimetry Adjustments

127. The approach taken in this document is to recommend a hierarchy of procedures (from default to optimal, based on data availability) for performing dosimetry adjustments on study results from acute inhalation exposures in laboratory animals to derive exposure concentrations that are relevant to humans. This adjustment to a Human Equivalent Concentration (HEC) can be determined for all exposures to inhaled agents, both gases (in this document, the term gases also applies to vapors) and particulate matter (PM), through the use of available valid models. [For particles whose geometric size or aerodynamic diameter is < 0.5 µm, the main deposition mechanism is diffusion resulting from Brownian motion similar to a gas.]

128. Due to certain temporal aspects and uncertainty regarding internal dose, many aspects of the chronic inhalation dosimetry (45) are not directly applicable to acute scenarios. Nevertheless, many of the underlying concepts and most of the terminology are harmonious with the acute inhalation dosimetry recommended in this section. The application of these relevant concepts to acute dosimetry is the focus of this Guidance Document.

129. To accommodate species differences in inhaled dose, dosimetric adjustments are made to exposure concentrations used in experimental animal studies to yield an HEC. The intention of dosimetric adjustment is to provide an estimate of internal dose at the target tissue (or area of effect) in the test species produced by a given external concentration; the corresponding external concentration for humans that produces that same internal dose is the HEC.

130. The general equation for the calculation of an HEC is through application of a dosimetric adjustment factor (DAF) to the exposure concentration of an animal inhalation exposure, as shown below in Equation 2-1.

\[
\text{Exposure Concentration in animals (mg/m}^3\text{)} \times \text{DAF} = \text{HEC}
\]

Defined procedures are available for estimating HECs under a variety of conditions for both gases and PM and for a wide range of data availability (45). Procedures are included to account for responses by the entire respiratory tract, for any of its regions, or for the whole body (referred to as systemic or extra-respiratory) to a reactive/water soluble gas, an insoluble/nonreactive gas, a gas of intermediate reactivity/solubility, and PM. The procedures are intended to be applied in a hierarchy as indicated in Table 2-3, ranging from optimal to default procedures; optimal application is defined as ideal information integrated
into an ideal interpretative structure. An example of an optimized instance would be where sufficient dosimetry data are available and have been integrated into a useful PBPK model to estimate an HEC from any given exposure of any laboratory species. However, for the cases most often encountered (i.e., where the dosimetric information and data available are limited), default procedures for estimating an HEC are employed.

131. Based upon the rationale already presented, the recommended default procedure for determining the HEC for all acute-duration gas exposures in laboratory animals is application of a DAF of 1. Support for this type of approach is documented in a report analyzing the current default procedures used to develop chronic RfCs for portal-of-entry effects (46).

Table 2-3. hierarchy of model structures for calculation of a Dosimetric Adjustment Factor (DAF) for interspecies extrapolation (adapted from the RfC Methods document)

<table>
<thead>
<tr>
<th>Optimal model structure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Uses description of all significant mechanistic determinants of chemical disposition, toxicant-target interaction, and tissue response</td>
</tr>
<tr>
<td>(b) Uses chemical-specific and species-specific parameters</td>
</tr>
<tr>
<td>(c) Dose metric described at level of detail commensurate to data available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default model structure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Uses limited or default description of mechanistic determinants of chemical disposition, toxicant-target interaction, and tissue response</td>
</tr>
<tr>
<td>(b) Uses categorical or default values for chemical and species parameters</td>
</tr>
</tbody>
</table>

132. The intent of dosimetry adjustment in this guidance document is for interspecies adjustment of an externally applied inhalation exposure to achieve the same internal concentration, the ultimate and most appropriate determinant of risk. As pointed out above, the procedures for accomplishing this adjustment are intended for chronic exposure scenarios (1). A more in-depth examination of these procedures, however, indicates a harmonious manner in which these procedures may be applied to the acute exposures scenarios described in this document.

133. In scenarios in which humans and laboratory animals are exposed to systemically distributed gases (i.e., gases that are delivered to the target tissue otherwise unaltered), experimental evidence indicates that the values of the partition coefficients (H_{bg}) are identical in humans and laboratory animals. This leads to the logical prediction that, at steady state, the systemic concentration of the gas would be the same or be very similar for both species.

134. In considering this example, it would be apparent and logical that species differences would likely exist prior to achieving steady-state. For the example of an inhaled unaltered gas, a principal influence of determining when steady-state is achieved is a time-related process including the rate at which the gas is delivered to the air:gas interface (i.e., the alveolar ventilation rate). Alveolar ventilation rates scale according to the body weight raised to the 3/4 power – $BW^{3/4}$ (63-65). This scaling relationship indicates that smaller species will (and in fact do) have alveolar ventilation rates proportional to body weight that are greater than the larger animal. For example, an alveolar ventilation rate of 4200 mL/min for
a 70-kg human yields a ratio of 60 mL/kg, whereas the BW^{1/4}-scaled alveolar ventilation rate for a 0.3 kg rat of 70 mL/min yields a ratio of 230 mL/kg, a value nearly 4-fold higher compared to humans.

135. A consequence of this relative difference in alveolar ventilation rates between species would be the more rapid delivery of inhaled agent into the rat relative to the human, thereby resulting in a more rapid and steep rise to an internal steady-state concentration in the rat. A more rapid and steeper rise to steady-state with the rat would mean that at any given time prior to achieving steady-state, the internal concentration in the rat will be higher than in the human for the same external concentration. As these conditions would occur during the initial phases of an exposure, they would have special application to acute exposure scenarios.

136. The differences actually existing between laboratory animals and humans at these early exposure times could theoretically be addressed by adjusting the inhaled external concentration, i.e., to offset the lower dose-rate in humans by breathing a higher external concentration. For those gases that are distributed and have manifest toxic effects systemically, available data show that the absolute values for animals (H_{bg}^{\lambda}) is greater than human (H_{bg}^{H}) for nearly all known cases (66, 67).

137. Rather than attempt any such adjustment, it would be reasonable to just assume that the corresponding human dose rate would be at least equal to the animal dose rate such that the DAF = 1. When applied to the external exposure airborne concentration, this practice would assume no differences in dose rates to exist between laboratory animals and humans at the same external concentration of a given agent. This interspecies dose relationship has also been demonstrated for a number of gases that produce portal-of-entry nasal effects (5). The primary conclusion from this analysis was that the animal to human tissue doses relative to external exposure concentration are close to or greater than 1.

138. The foregoing arguments may also be considered to apply to inhaled gases manifesting effects in portal-of-entry tissues (respiratory tract), as the interspecies relationship of surface area is also related to a function of body weight (1).

139. Therefore, certain aspects of the default procedures used in the chronic dosimetry document procedures apply to acute exposures to gases, whereas other aspects do not. In recognition of the interspecies relationship described above with gases regarding temporal aspects of internal dose, of the uncertainty inherent in these procedures, and of the original intent of use for chronic scenarios, the default procedures for chronic exposures of interspecies gas dosimetry are not considered directly applicable in this Guidance Document on acute exposures.

140. As noted above in Equation 2-1, the recommended default adjustment of an animal exposure to an HEC for all gases is 1. A DAF of 1 is also recommended in the case where either the animal or human H_{bg} is unknown for the purpose of consistency.

141. Also, results from advanced modeling procedures have found actual values for the adjustment factor between rats and humans to approximate unity or greater for a variety of gases (5, 68).

The DAF for Acute Exposures to PM

142. Most procedures and models available for particle dosimetry may be considered to have at least some application to acute exposure scenarios as the underlying and supporting information (e.g., upper airway fractional deposition patterns for PM are based on short-term exposures that fit within this document’s definition of acute).
143. Consequently, for calculation of the DAF for an acute exposure to PM involving rats, it is recommended that the most recent version of the Multiple Pass Particle Dosimetry Model (69) and other articles on the use and adaptation of this model be considered (70, 71).

2.6.3 **Duration Extrapolations**

144. Since categorical regression analysis can predict an effective concentration for a duration of interest even if there are no data for that exposure duration, no duration extrapolation is necessary. Additionally, where appropriate, the slope of the CatReg regression line may be applied to define the concentration-duration relationship with a single duration POD, either a NOAEL or BMCL.

145. When ARfCs are derived from a single duration estimate (i.e., the NOAEL or the BMCL), however, there may be a need to extrapolate to other acute durations in order to estimate risks at additional exposure durations of interest. No UF for duration adjustment will be used. The following general discussion provides information relevant to duration extrapolation, as well as interpolation between two or more single-duration ARfCs.

146. For a chemical for which there is sufficient pharmacokinetic information available, use of a PBPK model is the preferred method for duration extrapolation. Once the proper dose metric is determined, the PBPK model may be used to calculate the dose level that is associated with the critical effect. The PBPK model can then be used to estimate the effective dose associated with any concentration and duration of interest.

147. In the absence of sufficient pharmacokinetic information, conservative default adjustments are recommended. A reasonable approach is to assume a relationship in the form $C^n \times t = k$ with $n = 1$ to extrapolate from the longest duration model result to longer durations of interest and to use $n = 3$ to extrapolate from the shortest duration model result to shorter durations of interest. This is likely to be health protective because evidence available on a number of systemically acting chemicals show that their values are prone to fall in the range of $0.8 < n < 3.5$ (8).

148. If adequate data are not available for the critical endpoint but do exist for some other endpoint (usually lethality) such that a slope factor (value of n) can be derived, and the MOA is assumed to be similar, then that alternate n value may be used with the critical effect POD. In ten Berge et al. (8), n values were determined for 20 chemicals along with a discussion of the method used to determine those values.

149. A worst case alternative for extrapolation to shorter durations is to assume a horizontal line from the shortest duration modeling result to the duration of interest (i.e., "flat-lining"). This assumes a strictly concentration-related effect, and it is recognized that this approach could be extremely health protective at very short durations but avoids extrapolating to higher and higher concentrations in the absence of supporting data. However, because it is clear that some agents do show concentration dependence with very little effect of duration, and because the typical upward slope of the response curve at short time periods would extrapolate values to higher and higher concentrations, it may be prudent to assume this pattern if there is no evidence of a $C^n \times t$ type of relationship (e.g., for irritation effects that are usually concentration dependent).

150. A possible alternate approach for extrapolation to durations longer than the longest experimental result includes use of studies with from two to several days of exposure to interpolate to the duration of interest.

151. Interpolation might also be necessary if the best available approach in deriving duration-specific estimates resulted in more than one result, but concentration-duration-response modeling (e.g. BMC/ten Berge or CatReg could not be used to derive a reliable value of “n” exponent in the $C^n \times t$
relationship) was not possible because of inadequate data. In this case, the approach will be to interpolate linearly on a log-log scale between the lower bounds on the estimates at the available durations to arrive at the ARfC for the duration of interest.

2.6.4 Application of Uncertainty Factors

152. Uncertainty factors (UFs) are numerical factors applied to the NOAEL, LOAEL or benchmark concentration for a particular critical effect when deriving the ARfC to address data gaps or data uncertainties that cannot be accounted for by data or modeling analysis. These factors may be default values (i.e. 10) used in the absence of specific information on a chemical and may be modified whenever sufficient data are available. The uncertainty factors may be revised or even eliminated during future revisions to the ARfC derivations if additional information becomes available. Individual countries may select UFs depending on their specific regulatory requirements or national legislation.

153. In the next sections, the areas of uncertainty that are generally considered in the derivation of the acute RfC will be discussed. The selection of the UF values for the various areas of uncertainty should be supplemented with a clear explanation of the derivation of the factor. The overall UF will be the product of the individual factors, e.g. total UF = (LOAEL-NOAEL UF) x (interspecies UF) x (intraspecies UF) x (database UF).

LOAEL to NOAEL Uncertainty Factor

154. Exposure-response modeling approaches, such as the BMC and categorical regression approaches will identify a 95% lower bound on the concentration predicted by the best available model. Because this value is assumed to be equivalent to a NOAEL, no UF for LOAEL to NOAEL is recommended. If data are inadequate for mathematical modeling, the NOAEL approach will be used to derive the ARfC. However, in some cases only a LOAEL is available. A UF of 10 is recommended as a default for LOAEL to NOAEL extrapolation, but data regarding the steepness of the dose-response curve may be used to depart from the suggested default.

Interspecies Uncertainty Factor

155. The interspecies uncertainty factor is intended to account for the uncertainty in extrapolating animal data to humans. When no adequate human data are available, a UF for interspecies variability will be applied to the result of the best available exposure-response assessment in animals, regardless of whether it is a categorical regression analysis, a BMC analysis, or a LOAEL or NOAEL at a single duration.

156. The interspecies UF is thought to be composed of toxicokinetic and toxicodynamic uncertainties. Current risk assessment practices may divide the traditional default value of 10 into pharmacokinetic and pharmacodynamic components. For instance, IPCS has published guidance on data-derived UFs recommending “default sub-factors”, i.e. 4-fold and 2.5-fold for inter-species toxicokinetic and toxicodynamic differences, respectively (72). OECD countries may have their own frameworks to account for toxicodynamic and toxicokinetic differences in the interspecies extrapolation (i.e. other default sub-factors). When using this approach, the dosimetry adjustments recommended in Section 2.6.2 would account for the pharmacokinetic component of interspecies uncertainty and obviate the need for the default sub-factor for pharmacokinetic uncertainty, but still the default sub-factor for pharmacodynamic uncertainty would be retained. Physiologically-based pharmacokinetic (PBPK) modeling can also be employed to replace the toxicokinetic component of the traditional 10-fold interspecies uncertainty factor. If any human data on sensitive endpoints are available, attempts will be made to use them directly, in which case this UF is not needed.
Intraspecies Uncertainty Factor

157. The intraspecies uncertainty factor is intended to account for the variability in sensitivity among humans. Information on sensitive human populations is extremely rare. Sensitive human subpopulations may include the very young (infants and children), the elderly, or those individuals with a chronic disease condition (e.g., asthma, chronic obstructive lung diseases). Special consideration should be given to the relative sensitivity of children and adults. A default UF of 10 is recommended when information on sensitive subpopulations is inadequate. An ARfC derived from sensitive subpopulations may motivate reduction of this UF to a value lower than 10.

158. The intraspecies UF is also thought to be composed of toxicokinetic and toxicodynamic uncertainties. For example, IPCS has published guidance on data-derived UFs recommending “default sub factors”, i.e. 3.16 for each of human inter-individual toxicokinetic and toxicodynamic differences (72). Some reduction of the default sub-factor of 3.16 for human toxicokinetic differences may be justified based on metabolic considerations and the severity of the effect (27, 73, 74). In other cases, an increase of the 3.16 value may be justified since children have much higher ventilation rates than adults (75), neonates and infants often have lower elimination rates (longer half-lives) for chemicals than adults (76), and children have different and immature xenobiotic metabolizing capability, e.g., less and different P450 in first year of life (14, 77, 78). OECD countries may have their own frameworks to account for toxicodynamic and toxicokinetic differences among humans, especially policies regarding the protection of children.

Database Uncertainty Factor

159. The ARfC, by the definition given in this GD, is intended to cover only short-term exposures that would likely not be inclusive of any specific life-stage already accommodated by the intra-human variability factor. In the instance of other data indicating a potential for an effect that may have relevance at short duration of exposure (e.g., developmental effects), it may be prudent to evoke at least a partial UF for missing data of acute exposure duration. Any further consideration for database uncertainties may be informed by referring to other toxicological data for the agent (e.g., results from sub-chronic or chronic studies).

160. Table 2-4 provides some useful considerations when assessing the quality of the database, as well as for assessing individual studies. The value for any partial UF should be guided by precedents to capture the rationale already in use in the risk assessment community. In general, factors for missing aspects of the database are proposed to be values of either 3 or 10, but other values may be selected to adjust for database deficiencies. Additionally, if chemical-specific data are inadequate to justify data-derived UFs, consider if there is any information that would indicate reduced or increased uncertainty (e.g., QSAR, mode of action) from closely related compounds (79).
Combining Multiple Uncertainty Factors

When the available data for the endpoint under consideration are not from the population of interest (e.g. a different species, a different exposure period or from a healthy population), multiple factors may be applied. The procedure of combining uncertainty factors by multiplication of the values may increase the overall protective nature of the final result. As previously discussed, default uncertainty factors are designed to include (as appropriate): (a) sensitive members of the human population, (b) an assumption that humans are the most sensitive species, (c) an assumption that a factor of 10 will cover differences between the LOAEL and NOAEL, and (d) that information is available for the most sensitive effect. These individual factors are designed to be protective of human health, and in combination the protective nature of the aggregate is likely to increase, while the precision of the result will tend to decrease (80). The effect of combining UFs has also been discussed elsewhere (81, 82).

The application of data-derived adjustment factors instead of default UFs is preferable, leading to a more accurate and precise ARfC with greater credibility and less likelihood of being either over or under protective. Additionally, several organizations have limited the total combined adjustments applied in deriving a reference value before declaring that not enough information is available to develop a value; for example, the US EPA has adopted a limit of 3000 for deriving chronic RfCs (52).

If a value is being developed for emergency response situations, the selection of uncertainty factors should be made with caution. Unnecessarily large factors may impede adequate emergency response. For example, the combined uncertainty factors used for development of AEGLs are in most cases limited to 10-30 (see recommendations in NRC 2001, section 2.5.3.). As noted earlier in this Guidance

Table 2-4. Determination of Database Adequacy

<table>
<thead>
<tr>
<th>Database Characteristic</th>
<th>Minimal</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration Data</td>
<td>NOAEL/LOAEL</td>
<td>Multiple exposure concentrations with at least 2 at or above an effect level but below maximal response</td>
</tr>
<tr>
<td>Duration</td>
<td>Duration noted (some studies lack this information)</td>
<td>Multiple durations (e.g., 1-h, 4-h, 8-h), for multiple exposure concentrations</td>
</tr>
<tr>
<td>Response Data</td>
<td>Incidence</td>
<td>Status by group</td>
</tr>
<tr>
<td></td>
<td>Categorical</td>
<td>Category by group</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td>Means and standard deviation by group</td>
</tr>
</tbody>
</table>

*Individual refers to an experimental unit, which can be an individual animal or litter in developmental studies.
Document (Paragraph 18), ARfC values are designed as levels likely to be without an appreciable risk of deleterious effects during a lifetime. Although the methods described within this Guidance Document may also be useful for developing emergency response values, values developed for emergency response should be named something other than an ARfC, in keeping with the definition of the term ARfC.

2.7 Animal Welfare Consideration

164. For reasons of animal welfare, the generation of additional animal data in a single inhalation exposure study should be justified in each particular case. It is recommended that such studies should NOT be performed in the situations below:

- If acute toxicity studies enable an adequate evaluation of relevant effects.
- If repeat dose studies enable an adequate evaluation of critical acute effects observed early in the dosing period,
- If adequate developmental toxicity studies are available that indicate embryo/feto toxic effects in rats or rabbits are the most sensitive endpoints and it is NOT necessary to refine the ARfC for the general population.

165. For these and all other considerations, such a study should take advantage of the OECD Guidance Document 39 on Acute Inhalation Studies (7) and heed the advice presented there on appropriate choice for a study design.

2.8 Consideration of Human Data

166. Individual countries have different regulatory environments regarding the use of human data. Therefore, appropriate use of human data is entirely dependent on the specific data and the regulatory situation in an OECD member country. Individual countries will select appropriate values dependent on their specific regulatory requirements or risk management policies.

167. Therefore, only considerations with regard to the scientific aspect of human information are given in this guidance. Human data may be available from accidental or deliberate poisonings, biomarker monitoring studies, epidemiology studies, and volunteer clinical studies. Human information on the same or structurally-similar compounds may provide useful data to help establish ARfCs.

168. The use of human volunteer data in chemical risk assessment is a controversial issue, with a range of views and specific regulatory requirements held by different OECD member countries. Therefore, the portion of ARfC values derived from human studies varies in a wide range among different authorities. In a retrospective analysis of EU ARfDs, only 0.5% of the values were derived from human studies, and in an older retrospective analysis not restricted to Europe approximately 10% of the ARfD values were derived from human studies (79). It is recognised that the use of human data may reduce the level of uncertainty inherent in extrapolating from animal models. There needs to be adequate consideration of both scientific and ethical issues. The JMPR has considered human data at many of its meetings. The JMPR reaffirmed the principle that endpoints from existing human volunteer studies could be very useful for setting health intake standards if the studies had been conducted in accordance with relevant ethical and scientific guidelines (83).

169. Due to the ethical implications of studies in humans, they should be conducted in accordance with principles such as those expressed in the Declaration of Helsinki (84) or equivalent statements prepared for use by national and/or multinational authorities (85).
170. For existing studies, both current standards and the standards pertaining at the time the study was performed should be taken into account.

171. The results of ethically and scientifically acceptable tests involving humans may be used, dependent on the regulatory position regarding the use of such data in an OECD member country, to derive reference values, including ARfCs, particularly in situations in which lower reference values would be derived when using these data.

172. The use of data from existing scientifically valid studies that are not compliant with ethical principles may be used, dependent on the regulatory position regarding the use of such data in an OECD member country, in the protection of human health if the findings indicate that human risk would be underestimated without the use of these findings.

173. If an acceptable risk assessment based on animal data cannot be achieved, alternative sources of information including mode of action should be considered. This information could be used to support a modification to the default safety factor applied to the POD in an animal study according to the IPCS guidelines on setting Chemical Specific Assessment Factors (72). One alternative approach, might be to allow the use of data from scientifically valid human studies in setting reference values where the study was observational rather than experimental in design, or where the study investigated ADME at low levels of exposure in humans, and the results enabled the derivation of a chemical-specific adjustment factor (79). For example,

i. If the critical effect is mediated via receptor binding then in vitro work using human and animal derived material could be used to determine relative receptor binding affinities;

ii. If the critical effects are mediated via a metabolite, the relative rates and amounts of metabolite production can be determined in animal and human in vitro systems;

iii. Existing human data on the active substance or related molecules could be used to build a case (86);

iv. If sufficient information is available, a PBPK assessment could be performed.
3. REFERENCES

(57) Gift, JS (1996) Deriving reference concentrations when adverse effects are reported in all exposure groups - uncertainty factor and benchmark dose approaches for inhalation toxicants [slide presentation]. Research Triangle Park, NC.

ANNEX

SUMMARY OF EXAMPLE ARFC ASSESSMENTS

INTRODUCTION

1. This annex to the Acute RfC Guidance Document provides a brief explanation of how the steps and procedures described in the GD have been used in developing example ARFC assessments for four chemicals: ethylene oxide (EtO), hexa-chloro-cyclopentadiene (HCCPD), hydrogen sulfide (H₂S), and phosgene. Each of the discussions for the four example acute assessments includes at least the following six elements: (1) identification of the critical endpoint(s); (2) discussion of the MOA; (3) the approach used in the dose/exposure-response analysis; (4) the approach used in the analysis of the duration relationship; (5) description of the database and identification of data gaps; and (6) confidence in the assessment, including individual elements of the assessment. All of these examples are for illustrative purposes only, were developed for the purpose of this document only by the OECD Expert Group, and have undergone no peer review. There may be differing views on several choices made in the development of these examples, including those listed here: (1) critical endpoint; (2) study data to use in analysis; (3) the methods of analysis used in development of the basis for a POD; and (4) application of uncertainty factors.

EXAMPLE ARFC ASSESSMENTS

Ethylene Oxide (EtO)

2. The exposure-response array for EtO, depicted in Figure 1, shows the entire dose range included in the study (with the exception of non-exposed controls). The upper and lower limits on the bars represent the high and low concentrations, respectively. If a NOAEL and/or LOAEL were identified in the study, they are represented by a triangle or diamond shape, respectively. In many cases, only a single concentration is shown. The results are arranged by duration, as defined across the upper horizontal axis, with exposure durations ranging from less than 10 minutes to 6 hours. Within each duration category the results are secondarily ordered on the severity of the effect (e.g., lethal effects are all at the right side of each duration category, if there are any, and are delineated by shaded boxes). Finally, the results are ordered by the lowest to highest “low” concentration within the severity category. Table 1 provides additional details regarding the studies and is cross-referenced to Figure 1 by the letter key code used to discriminate between study report citations.

3. The endpoint chosen for the example acute assessment of EtO was neurological effects, notably, the presence of effects in both of the Functional Operational Battery (FOB) measures "low response" and “approach response - no reaction” in male rats, as noted in the study of Mandella (1997). This study is an unpublished laboratory report submitted in support of a pesticide application. The study report includes summary information as well as detailed data from individual animals as described in the appendices to that report. The detailed data were critical to the analyses that were performed in this assessment, allowing the determination of the number of individual animals that were affected by showing adverse responses to
both of the critical measures. BMC analysis of this data rendered 77 ppm as the BMCL (95% lower confidence limit of a BMR = 20%).

4. Support for this finding is found in the analysis of the results from activity counts, performed in the same animals (Mandella, 1997). In this measure of neurological effects, the number of times a laser beam is broken was counted during 5-min intervals over the course of the first hour after exposure. A concentration-related reduction in activity counts with increasing concentrations was observed (BMCL = 162 ppm, BMR = 1 SD). Additionally, a supporting study of developmental effects in mice demonstrated that both fetal weight and fetal malformations were discernable from a single exposure (Weller et al., 1999), but these occurred at higher concentration levels (BMCL = 373 ppm, BMR = 0.5 SD) than were seen in either of the two analyses of neurological effects.

2 A BMR of 20% was used after consultation with neurotoxicologists on the appropriate level for adversity using this combined set of neurological endpoints. BMR levels of 10% or 5% are more typical for most endpoints, depending on size of the data set and characteristics of the dose-response relationship.
5. The MOA for the chosen endpoint for the EtO assessment includes several elements, the first of which is its ready transport into the bloodstream from inhaled air, which allows transport of the parent compound to all parts of the body, including likely penetration of the blood-brain barrier. The evidence presented in Mandella (1997) indicates a rapid clearing of the neurological effects with cessation of exposure, with no lasting irreversible effects at the tested concentrations. The detailed data from the Weller et al. (1999) study on developmental effects from a single exposure also provided data on lethality that could allow a derivation of a value of n to be used in the ten Berge (1986) $C^n \times t$ calculation. Previously, a calculation using three studies in rats (a less sensitive species) of two different strains in tests performed in two different labs at only two durations yielded a value of $n = 1.2$. In Weller et al. (1999), the same strain of mouse was exposed in the same lab at nearly the same time, for a total of five durations. When analyzed, this resulted in a value of $n = 1.7$.

Table 1. Acute and short-term duration ethyle oxide studies with exposure-response data

<table>
<thead>
<tr>
<th>Key</th>
<th>Citation</th>
<th>Species</th>
<th>Duration</th>
<th>Critical Effect(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dow (1982); Snellings et al. (1982b)</td>
<td>Rat</td>
<td>Short-term</td>
<td>Fetal weight and malformations</td>
</tr>
<tr>
<td>B</td>
<td>Embree et al. (1977)</td>
<td>Rat</td>
<td>Acute</td>
<td>Reproductive effects - Dominant lethal</td>
</tr>
<tr>
<td>C</td>
<td>Generoso et al. (1986)</td>
<td>Mouse</td>
<td>Short-term</td>
<td>Fetal death & malformations, Dominant lethal</td>
</tr>
<tr>
<td>D</td>
<td>Generoso et al. (1987)</td>
<td>Mouse</td>
<td>Short-term</td>
<td>Fetal death and malformations</td>
</tr>
<tr>
<td>E</td>
<td>Hackett et al. (1982); Hardin et al. (1983)</td>
<td>Rat, rabbit</td>
<td>Short-term</td>
<td>Fetal weight and crown-to-rump length</td>
</tr>
<tr>
<td>F</td>
<td>Jacobson et al. (1956)</td>
<td>Dog, mouse, rat</td>
<td>Acute</td>
<td>Lethality</td>
</tr>
<tr>
<td>G</td>
<td>Katoh et al. (1990)</td>
<td>Rat</td>
<td>Acute</td>
<td>Liver biochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short-term</td>
<td>Liver biochemistry, effects on GSH in CNS</td>
</tr>
<tr>
<td>H</td>
<td>Mandella (1997a)</td>
<td>Rat</td>
<td>Acute</td>
<td>Neurobehavioural, CNS depression</td>
</tr>
<tr>
<td>I</td>
<td>Nachreiner et al. (1992)</td>
<td>Rat</td>
<td>Acute</td>
<td>Tremors, lung histopathology, death</td>
</tr>
<tr>
<td>J</td>
<td>National Toxicology Program (1987)</td>
<td>Mouse</td>
<td>Acute</td>
<td>Lethality, dyspnea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short-term</td>
<td>Lethality</td>
</tr>
<tr>
<td>K</td>
<td>Neeper-Bradley and Kubena (1993)*</td>
<td>Rat</td>
<td>Short-term</td>
<td>Fetal weight and malformations</td>
</tr>
<tr>
<td>L</td>
<td>Ribiero et al. (1987)</td>
<td>Mouse</td>
<td>Short-term</td>
<td>Testes histopathology</td>
</tr>
<tr>
<td>M</td>
<td>Saillenfait et al. (1996)</td>
<td>Rat</td>
<td>Short-term</td>
<td>Fetal weight and malformations</td>
</tr>
<tr>
<td>N</td>
<td>Sega et al. (1988)</td>
<td>Mouse</td>
<td>Acute</td>
<td>Reproductive - Sperm DNA</td>
</tr>
<tr>
<td>O</td>
<td>Sega et al. (1991)</td>
<td>Mouse</td>
<td>Acute</td>
<td>Reproductive Sperm DNA, hematology</td>
</tr>
<tr>
<td>P</td>
<td>Walker and Greeson (1932)</td>
<td>Human, mouse, rat, guinea pig, rabbit</td>
<td>Acute</td>
<td>Respiratory irritation, toxicity, lethality</td>
</tr>
<tr>
<td>Q</td>
<td>Weller et al. (1999)</td>
<td>Mouse</td>
<td>Acute</td>
<td>Fetal weight, malformations, & death; CNS effects & death in nonpregnant females</td>
</tr>
</tbody>
</table>

*Also referred to as BRRC (Bushy Run Research Center) study elsewhere in this document.

6. The values derived for each of the acute durations being derived for this example ARfC for EtO (1-, 4-, 8-, and 24-h) were calculated using a rearrangement of the ten Berge (1986) equation to yield the concentration (C) related to the appropriate duration (t):
\[C^n \times t = k \]
\[C = (k/t)^{1/n} \]

By way of substitution, the concentration values for each of the relevant ARfC durations can be calculated as shown below:

- 1-hour value = \((77 \text{ ppm} \times 360\text{-min}/60\text{-min})^{(1/1.7)} = 220 \text{ ppm}\)
- 4-hour value = \((77 \text{ ppm} \times 360\text{-min}/240\text{-min})^{(1/1.7)} = 98 \text{ ppm}\)
- 8-hour value = \((77 \text{ ppm} \times 360\text{-min}/480\text{-min})^{(1/1.7)} = 65 \text{ ppm}\)
- 24-hour value = \((77 \text{ ppm} \times 360\text{-min}/1440\text{-min})^{(1/1.7)} = 34 \text{ ppm}\)

7. Uncertainty factors were applied to the POD following the duration extrapolations used to derive the example ARfC values. A factor of 10 was applied for interindividual variability (UF_{HI}). Because no appreciable differences in blood concentrations of ethylene oxide or ethylene glycol have been demonstrated between mice, rats and humans in physiologically-based pharmacokinetic (PBPK) modeling at exposure levels below 200 ppm, a factor of 3 was applied for interspecies differences (UF_{AI}) for potential pharmacodynamic differences. The database for ethylene oxide is large and diverse, with acute toxicity, developmental and reproductive toxicity, genetic toxicity (both somatic and germ cells), carcinogenicity, and pharmacokinetics and metabolism information from human and experimental animal studies available, therefore, no additional database uncertainty factor was applied. This yields a composite UF of 30 (UF_{HI} = 10; UF_{AI} = 3). The resulting example ARfCs for ethylene oxide are presented in Table 2.

<table>
<thead>
<tr>
<th>Table 2. Example acute RfC values for ethylene oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
</tr>
<tr>
<td>Derived POD Values (ppm)</td>
</tr>
<tr>
<td>Units Conversion (mg/m³)</td>
</tr>
<tr>
<td>HEC Conversion Factor</td>
</tr>
<tr>
<td>HEC (mg/m³)</td>
</tr>
<tr>
<td>Total Uncertainty Factor*</td>
</tr>
<tr>
<td>Acute RfC (mg/m³)*</td>
</tr>
</tbody>
</table>

* Note: These values are for the purpose of example only and do not reflect any values that have been adopted or proposed by any OECD Member Country.

8. The database for EtO is fairly large in comparison to many other chemicals; however, to improve this assessment, the greatest need is in defining the relationship of neurological and developmental effects seen in rodents to possible outcomes in humans. The comparison of neurological and developmental effects between species is often difficult to discern.

9. There is high confidence in the values derived in this assessment based on the size of the database and the availability of good supporting data for more than one endpoint (additional neurological measures and developmental effects).

Hexachlorocyclopentadiene (HCCPD)

10. The endpoint chosen for the example acute assessment of hexachlorocyclopentadiene (HCCPD) was pulmonary effects in both male and female rats. The study by Ulrich and Hagan (1978) reported significant pulmonary effects that increased in severity with dose. These effects were described as
consisting of red focal or diffuse consolidation, progressing to severe generalized hemorrhage and hepatization.

11. The MOA for the chosen endpoint for HCCPD was portal-of-entry effects in the respiratory tract. This has been shown to be the case in both animals and humans and is consistent with the knowledge that HCCPD is a dense, oily liquid from which a corrosive gas can be generated. Tissue damage produced by such a corrosive agent is relatively nonselective, both to the site and to the species exposed.

12. Dose/exposure response analysis for HCCPD was based on the study by Ulrich and Hagan (1978). The NOAEL/LOAEL approach was used because of the lack of quantitative data for dose-response modeling of nonlethal effects. The 4 h LOAEL for pulmonary effects was 3.2 mg/m3.

13. Duration extrapolation was performed using the ten Berge modification of $C^n \times t$. A slope value n, as described in ten Berge et al. (1986), was derived for HCCPD using lethality data from Treon et al. (1955). The duration extrapolation for HCCPD was based on mortality instead of on pulmonary portal-of-entry effects, because the mechanism for the two processes is believed to be the same. This is supported by the qualitative description of lung injury found at necropsy and described in clinical findings, in both the animals that died from exposure to higher concentrations and in those that survived exposure to lower concentrations (Treon et al., 1955; Ulrich and Hagan, 1978). The pulmonary pathology noted in both studies suggests that the pulmonary damage observed following acute exposure is part of the pathway leading to mortality. This association provides a basis for using the relationship between mortality and exposure duration for extrapolation of data for the less severe endpoint.

14. A total UF of 1000 was used in this example ARfC assessment for HCCPD. A factor of 10 was applied for use of a LOAEL instead of a NOAEL ($U_{F_{L}}$). An additional factor of 10 was applied to account for inter-human variability ($U_{F_{H}}$). Additional factors of $3 (10^{1/2})$ were applied for extrapolation between species ($U_{F_{A}}$) and for database uncertainties ($U_{F_{D}}$).

15. The database for acute inhalation toxicity of HCCPD consists mostly of lethality information with qualitative descriptions of pulmonary injury. The database lacks reproductive/developmental studies in animals following inhalation exposure to HCCPD.

16. There is medium confidence in the ARfC values derived in this assessment based upon the limited database of information on one hand, and the availability of data from several exposure durations (1-, 3.5-, and 7-h) on the other hand, allowing the generation of an endpoint-specific value of n for use in the duration extrapolation. The 1-, 4-, and 8-h values are reported in Table 3 and are reliable, based on the exposure duration data that is available. The 24-h value was not derived because of a lack of data to support this extrapolation.

Table 3. Example ARfC values for HCCPD

<table>
<thead>
<tr>
<th>Exposure Duration</th>
<th>Acute RfC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td>0.007 mg/m3</td>
</tr>
<tr>
<td>4 hours</td>
<td>0.003 mg/m3</td>
</tr>
<tr>
<td>8 hours</td>
<td>0.002 mg/m3</td>
</tr>
<tr>
<td>24 hours</td>
<td>(not supported)</td>
</tr>
</tbody>
</table>

* Note: These values are for the purpose of example only and do not reflect any values that have been adopted or proposed by any OECD Member Country. Hydrogen Sulfide (H$_2$S).

17. As shown in Figure 2, the available studies indicate that the respiratory tract is a primary target organ system of hydrogen sulfide (H$_2$S) toxicity. Respiratory tract endpoints examined ranged from
clinical signs to biochemical (e.g., cytochrome oxidase inhibition) and pathological changes in respiratory tract tissue. Among systemic endpoints, metabolic and cardiac effects were also noted. Taken together, the results from the majority of these studies suggest that H$_2$S-induced inhibition of aerobic metabolism may be a common MOA underlying the endpoints investigated. Table 4 presents includes the numerical key to the studies included in Figure 2 and from which the data were obtained.

![Exposure Response Array for Acute Duration (<24 hour) Inhalation Exposures to Hydrogen Sulfide](image)

Figure 2. Exposure-response array for studies with acute duration exposures to hydrogen sulfide

18. Categorical regression was chosen for both the exposure response and duration analysis of H$_2$S because of the multiple studies available. For inhalation scenarios, categorical regression uses response data (classified by severity category) and the associated exposure data (concentration and duration) to estimate the probability, or likelihood, that an effect of a certain severity will occur at various concentrations and durations of an inhaled chemical.

19. For comparative purposes, a BMC analysis was also performed on the nasal lesion incidence data from the Brenneman et al. (2002) study. Unlike the categorical regression approach, which provides reference values of various severity effects for differing durations, the BMC approach provides a reference value based on actual (instead of severity-transformed) dose-response data (either incidence or continuous) but only for that duration (in this case, 3 h) of the study used to derive the POD.
Table 4 - Key for the hydrogen sulphide exposure-response array (Figure 2)

<table>
<thead>
<tr>
<th>Array (#)</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human</td>
<td>Bhambhani and Singh, 1991</td>
</tr>
<tr>
<td>2</td>
<td>Human</td>
<td>Bhambhani et al. 1994</td>
</tr>
<tr>
<td>3</td>
<td>Human</td>
<td>Bhambhani et al. 1996a</td>
</tr>
<tr>
<td>4</td>
<td>Human</td>
<td>Bhambhani et al. 1996b</td>
</tr>
<tr>
<td>5</td>
<td>Human</td>
<td>Bhambhani et al. 1997</td>
</tr>
<tr>
<td>6</td>
<td>Rat</td>
<td>Bremneman et al. 2002</td>
</tr>
<tr>
<td>7</td>
<td>Rat</td>
<td>Dorman et al. 2002</td>
</tr>
<tr>
<td>8</td>
<td>Mouse</td>
<td>Elovarra et al. 1978</td>
</tr>
<tr>
<td>9</td>
<td>Rat</td>
<td>Green et al. 1991</td>
</tr>
<tr>
<td>10</td>
<td>Human</td>
<td>Jappinen et al. 1990</td>
</tr>
<tr>
<td>11</td>
<td>Rat</td>
<td>Khan et al. 1990</td>
</tr>
<tr>
<td>12</td>
<td>Rat</td>
<td>Lopez et al. 1987</td>
</tr>
<tr>
<td>13</td>
<td>Rat</td>
<td>Lopez et al. 1988a</td>
</tr>
<tr>
<td>14</td>
<td>Rat</td>
<td>Lopez et al. 1988b</td>
</tr>
<tr>
<td>15</td>
<td>Rat</td>
<td>Lopez et al. 1989</td>
</tr>
<tr>
<td>16</td>
<td>Rat and Mouse</td>
<td>MacEwan et al. 1972</td>
</tr>
<tr>
<td>17</td>
<td>Rat</td>
<td>Prior et al. 1988</td>
</tr>
<tr>
<td>18</td>
<td>Rat</td>
<td>Tansy et al. 1981</td>
</tr>
<tr>
<td>19</td>
<td>Rat and Mouse</td>
<td>Weedon et al. 1940</td>
</tr>
<tr>
<td>20</td>
<td>Rat and Mouse</td>
<td>Zwart et al. 1990</td>
</tr>
</tbody>
</table>

20. Data from 6 human and 14 animal studies were used for the quantitative analysis. Categorical regression analysis provided information on species sensitivity and also provided concentration-duration relationships to calculate the points-of-departure (the one-sided 95% lower confidence limit for mild adverse effects) for differing time points (1, 4, 8, and 24 h). The results shown in Figure 4 are based on the cumulative odds model with stratified species-specific intercept and common (species-aggregate)
concentration-duration parameters. Each symbol represents an exposure group (not a severity category) from a study of a given concentration (y-axis) and duration (x-axis). The regression lines calculated by the analysis represent the designated severity level of interest for each species based on the severity input. The one-side 95% LCL of the human ECT10 was used as the point of departure in derivation of the Acute RfCs.

Figure 4. Categorical regression results for H₂S worst-case scenario showing the ECT10/ERC10 (10% probability of response for mild adverse effects: SEV1) lines for humans (HU), mice (MU), and rats (RT).

A total UF of 10 to account for within-species variation was applied to each of these values to derive the example ARfC values presented in Table 3-3. The application of additional UFs was not warranted because of the number of studies used in the analysis, the use of model analysis to calculate points-of-departure, and the use of human data (as the most sensitive species) in the model analysis. The calculation of the example ARfC values for hydrogen sulphide are shown in Table 5.

Table 5. Derivation of ARfC Values for Hydrogen Sulfide from Categorical Regression Results

<table>
<thead>
<tr>
<th>Exposure Duration (hours)</th>
<th>Human EC-T10 (mg/m³)</th>
<th>95% LCL (mg/m³)</th>
<th>UF</th>
<th>ARfC* (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.02</td>
<td>2.99</td>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>3.01</td>
<td>1.75</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>2.33</td>
<td>1.33</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>24</td>
<td>1.55</td>
<td>0.85</td>
<td>10</td>
<td>0.09</td>
</tr>
</tbody>
</table>
* NOTE: These values are for the purpose of example only and do not reflect any values that have been adopted or proposed by any OECD Member Country.

22. The acute toxicity data set for H₂S is quite robust. Data from 21 references (6 human and 15 animal studies) with adequate information on number of subjects, exposure concentration, duration, and response were available for analysis. Overall, the database could be improved by the addition of studies that would provide further MOA information examining the role between impaired aerobic metabolism (inhibition of cytochrome oxidase) and H₂S-induced effects.

23. The overall confidence in the values derived in the H₂S assessment is high. Confidence in the database is high because numerous studies in several species were used in the quantitative analysis and because the database includes studies for relatively mild effects in humans. Collectively these studies provide useful dose-response characterization sufficient for evaluation not only of the dose-response relationship but also of the duration-response relationships. In addition, the ARfC values derived form the categorical regression analysis were found to be concordant with both the AEGL-1 interim values for similar durations, and the 3-h value calculated from the BMC analysis of the Brenneman et al. (2002) study, as shown in Figure 4.

24. Thus, there is a degree of consistency among values derived from different analyses. Consequently, confidence that the Acute Reference Concentrations protect against mild adverse effects in humans is high.

![Comparative Values for Hydrogen Sulfide](image)

Figure 5. Comparison of example ARfC for hydrogen sulfide with other existing reference values, and to the BMC results from analysis of the Brenneman et al. (2002) study.

82
Phosgene

25. The exposure-response array for phosgene shown in Figure 6 displays the low and high exposure concentration used in the individual studies, and if identified, the BMCL, NOAEL, and LOAEL (y-axis) identified from the respective study categorized by endpoint and species (x-axis). The x array illustrates the extensive information available on the adverse effects of phosgene on the respiratory tract, affirming the respiratory tract as a major target organ of inhaled phosgene across species. Immunotoxicological effects are also presented within the array. Concentration-duration relationships resulting in lethality are shown for comparative purposes. Additional details, including the coded key to the studies shown in Figure 6, are presented in Table 6.

![Figure 6. Exposure-response array for studies with acute duration exposures to phosgene](image)

26. The endpoint chosen for the acute assessment of phosgene was respiratory effects in rodents. The pathologic progression of effects and toxicological events documented in the lower respiratory tract that follow from acute lethal exposures to phosgene (i.e., through various stages and degrees of pulmonary edema) appears to be parallel across species. Net deficiencies in respiratory tract immunological response has also been noted following phosgene exposures to similar concentration levels in both rats and mice. However, a lack of information on the MOA for these immunotoxic effects engenders considerable uncertainty in areas critical to dose-response assessment.

27. The MOA for the chosen endpoint for phosgene is thought to involve the acylating properties of this chemical, although HCl production may play a minor role (U.S. EPA, 1986). At the subcellular level, biochemical mechanisms may include alterations in various respiratory tract enzyme systems (e.g., cytochrome oxidase, ATPase, and LDH) or changes in mitochondrial oxygen uptake or respiratory activity that compromise cellular integrity. The underlying MOA of phosgene’s immunotoxicology is less known than, and probably unrelated to, its edematogenic effects.
The dose/exposure response analysis for phosgene was based on a categorical regression of all respiratory effects observed in either rats, mice, or guinea pigs using CatReg software. NOAEL/LOAEL and BMD analyses were also performed, and they substantially support the CatReg analysis.

Table 6: NOAELs and LOAELs from Phosgene Inhalation Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Reference</th>
<th>Species</th>
<th>Duration (Hours)</th>
<th>NOAEL (mg/m³)</th>
<th>LOAEL (mg/m³)</th>
<th>Endpoint(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56871</td>
<td>Ghio and Hatch (1996)</td>
<td>Rat</td>
<td>0.5</td>
<td>--</td>
<td>8</td>
<td>Incr. BAL protein, cells; permeability, death</td>
</tr>
<tr>
<td>57826</td>
<td>Yang et al. (1995)</td>
<td>Rat</td>
<td>6</td>
<td>0.4</td>
<td>0.8</td>
<td>Incr. susceptibility to Strep model, incr. % PMNs in BAL, decr. macrophage function</td>
</tr>
<tr>
<td>59275</td>
<td>Box and Collumbine, 1947</td>
<td>Rat</td>
<td>0.17</td>
<td>--</td>
<td>151</td>
<td>Death</td>
</tr>
<tr>
<td>59289</td>
<td>Currie et al. (1985)</td>
<td>Rat</td>
<td>4</td>
<td>--</td>
<td>4</td>
<td>Incr. lung weight, mitochondrial activity, ATP concentration, Na-K-ATPase activity</td>
</tr>
<tr>
<td>59296</td>
<td>Diller et al. (1985)</td>
<td>Rat</td>
<td>0.17</td>
<td>0.33</td>
<td>20</td>
<td>Incr. BAL protein, Histology, incr. BAL protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Histology, incr. BAL protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Histology, incr. BAL protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
<td>Incr. BAL protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
<td>Incr. BAL protein</td>
</tr>
<tr>
<td>59299</td>
<td>Durlacher et al., 1947</td>
<td>Dog</td>
<td>0.5</td>
<td>--</td>
<td>290</td>
<td>Death</td>
</tr>
<tr>
<td>59371</td>
<td>Underhill et al., 1920</td>
<td>Dog</td>
<td>0.5</td>
<td>--</td>
<td>164</td>
<td>Death</td>
</tr>
<tr>
<td>59399</td>
<td>Currie et al. (1987)</td>
<td>Rat</td>
<td>4 hr</td>
<td>--</td>
<td>2.0</td>
<td>Incr. lung weight, lavage protein, cells</td>
</tr>
<tr>
<td>59404</td>
<td>Franch and Hatch (1986)</td>
<td>Rat</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>Incr. lung weight, glucose-6-phosphate dehydrogenase, nonprotein sulfhydryls</td>
</tr>
<tr>
<td>59463</td>
<td>Ehrlich et al. (1989)</td>
<td>Rat</td>
<td>4</td>
<td>--</td>
<td>4</td>
<td>Incr. lung wt, total cells, macrophages, lymphocytes and neutrophils in lung cell pop., incr. cytotoxic T-lymphocyte activity</td>
</tr>
<tr>
<td>59465</td>
<td>Slade et al. (1989)</td>
<td>Guinea pig</td>
<td>4</td>
<td>--</td>
<td>1</td>
<td>Incr. BAL protein</td>
</tr>
<tr>
<td>59467</td>
<td>Burleson and Keyes (1989)</td>
<td>Rat</td>
<td>4</td>
<td>0.4</td>
<td>2.0</td>
<td>Decr. pulmonary natural killer cell activity</td>
</tr>
<tr>
<td>59479</td>
<td>Madden et al. (1991)</td>
<td>Rat</td>
<td>4</td>
<td>4</td>
<td>--</td>
<td>Incr. lavage cells, decr. viability, incr. prostaglandins, leukotrienes</td>
</tr>
<tr>
<td>59487</td>
<td>Jaskot et al. (1991)</td>
<td>Rat</td>
<td>4</td>
<td>--</td>
<td>2.0</td>
<td>Incr. lung weight, nonprotein sulfhydryls, glutathione enzymes</td>
</tr>
<tr>
<td>59491</td>
<td>Ghio and Hatch (1992)</td>
<td>Rat</td>
<td>1</td>
<td>--</td>
<td>2</td>
<td>Incr. BAL protein, cells; permeability</td>
</tr>
<tr>
<td>59492</td>
<td>Ghio et al. (1991)</td>
<td>Rat</td>
<td>1</td>
<td>--</td>
<td>2</td>
<td>Incr. BAL protein, cells, leukotrienes, death</td>
</tr>
<tr>
<td>61917</td>
<td>Long and Hatch (1961)</td>
<td>Rat</td>
<td>.5</td>
<td>--</td>
<td>4</td>
<td>Decr. CO uptake, O₂ consumption, resp. rate</td>
</tr>
<tr>
<td>61920</td>
<td>Selgrade et al. (1989)</td>
<td>Mouse</td>
<td>4</td>
<td>0.04</td>
<td>0.1</td>
<td>Incr. susceptibility to Strep. infectivity model; % mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>--</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>64634</td>
<td>Price et. al. (1979)</td>
<td>Rat</td>
<td>0.5</td>
<td>5.7</td>
<td>64.2</td>
<td>Death</td>
</tr>
</tbody>
</table>
29. Duration extrapolation was based on the CatReg analysis of respiratory tract effects in rats, mice, and guinea pigs. The results indicate that for up to 8-h of exposure, respiratory tract effects seem to follow Haber’s relationship (effects vary with $C^n \times t$, $n = 1$). Only two time points for mice were available (4- and 8-h), but the data for a respiratory immunotoxicity endpoint (death following bacterial infection) from phosgene exposure to mice follow a similar $C \times t$ relationship.

30. In general, UFs are applied to the point of departure to account for uncertainties in extrapolation from LOAEL to NOAEL, extrapolation from rodent bioassay data to human exposure conditions, for unknown variability in human sensitivities, and for data deficiencies. Current practice includes use of partial UF such as $10^{1/2}$ under conditions where toxicokinetics and mechanistic information are available and/or data are available on the nature and extent of variability in human susceptibility. The default UF for interspecies extrapolation and within-species variability are each 10. Half of that factor, $10^{1/2}$, or 3, reflects the pharmacokinetic component of uncertainty and half represents the pharmacodynamic component of uncertainty. The use of a dosimetric adjustment factor accounts for the pharmacokinetic component of interspecies uncertainty and justifies the use of $10^{1/2}$ or 3 to account for the pharmacodynamic component of interspecies uncertainty. Since there are no data documenting the nature and extent of variability in human susceptibility for phosgene, the default UF of 10 is used for within-species variation. Thus, a total UF of 30 (3 for pharmacodynamic differences × 10 for intraspecies variability) was applied to the PODs to derive ARfCs for 1, 4 and 8 h (Table 7).

<table>
<thead>
<tr>
<th>Exposure Duration (hours)</th>
<th>POD (mg/m3)</th>
<th>UF</th>
<th>Acute RfC* (mg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.16</td>
<td>30</td>
<td>5×10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>30</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>8</td>
<td>0.02</td>
<td>30</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>Insufficient data exists for the derivation of a 24-hour ERC-T10.</td>
</tr>
</tbody>
</table>

* NOTE: These values are for the purpose of example only and do not reflect any values that have been adopted or proposed by any OECD Member Country.

31. Table 8 shows the comparisons between reference values for phosgene. It should be noted that an AEGL-1 value for phosgene could not be developed. Comparison of the AEGL-2 values to the ARfC values for phosgene at 1, 4, and 8 h shows that these values differ by just over three orders of magnitude. The ARfC values are lower, which is consistent with their intention to represent a safe exposure level that is not likely to cause adverse effects in a human population, including sensitive subgroups, whereas exposure of these same human populations to an AEGL-2 may result in irreversible, long-lasting effects or effects which impair the ability to escape. The IRIS chronic inhalation RfC (3 × 10^{-4} mg/m3) is lower than the ARfC at 8 h by approximately only a factor of 20, which is consistent with phosgene’s acute toxicity and the fact that immunological and respiratory effects associated with very low level acute exposures do not appear to progress or regress significantly following extended or repeat exposures.

32. The database for acute inhalation toxicity of phosgene is extensive, but consists mostly of studies describing effects associated with lethal exposures. Information on immunotoxic effects of sublethal exposures exist from studies of rats and mice, but little is known about the MOA for these effects. This engenders considerable uncertainty in areas critical to dose-response assessment, such as relevancy to humans (including potential susceptible populations and lifestages), and in the character of dose-response at relevant concentrations and durations. Studies that would help elucidate these areas of uncertainty would be helpful.
Table 8. Comparison of Derived ARfC Values for Phosgene with AEGL Values and with the Chronic RfC

<table>
<thead>
<tr>
<th>Exposure Duration</th>
<th>AEGL-3 (mg/m³)</th>
<th>AEGL-2 (mg/m³)</th>
<th>AEGL-1 (mg/m³)</th>
<th>ARfC (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>14.4</td>
<td>2.4</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>30 minutes</td>
<td>6.0</td>
<td>2.4</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>60 minutes</td>
<td>3.0</td>
<td>1.2</td>
<td>NR</td>
<td>0.005</td>
</tr>
<tr>
<td>4 hours</td>
<td>0.8</td>
<td>0.32</td>
<td>NR</td>
<td>0.001</td>
</tr>
<tr>
<td>8 hours</td>
<td>0.36</td>
<td>0.16</td>
<td>NR</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Chronic RfC (mg/m³), U.S. EPA, IRIS 3×10^{-4} (0.0003)

33. The otherwise extensive nature of the database and the fact that observations and measured responses are both qualitatively consistent across a variety of species and experimental designs and quantitatively consistent across three different approaches (NOAEL, LOAEL, BMD, and CatReg) allows this assessment to be evaluated as having a medium to high confidence level. Data that could address key areas of uncertainty would be information relating to pharmacodynamics for such a direct-acting agent that would allow cross-species examination of the similarity or divergence in portal-of-entry tissues under conditions of identical target-tissue doses. Resolution of matters and issues regarding the qualitative and quantitative evaluation of immunotoxic endpoints (e.g., BMD analysis procedures) would also reduce the uncertainty inherent in the assessment of the toxicity of this agent.

Figure 7. Comparison of the ARfC for phosgene with other existing reference values
SUMMARY AND LESSONS LEARNED FROM THE EXAMPLE ASSESSMENTS

34. This section of the Guidance Document seeks to provide an overview of what has been gained (i.e., lessons learned) from the development of the four example ARfC assessments. This includes a discussion of the types of effects that have been addressed in these assessments in comparison to the many effects that are reasonably expected to be encountered from acute exposure scenarios with various chemical agents.

35. A summary of many of the potential endpoints that might be considered in acute assessments is presented in Table 9, along with the concentration-response and duration approaches that are available for such an analysis. Table 9 includes those endpoints for which test guidelines have been developed and other endpoints typically considered in assessment activities, and although thorough, it should not be seen as exhaustive.

36. The principal focus of Table 9, however, is the role of the four sample assessments in this document in demonstrating the use of procedures and approaches described in the ARfC GD and the manner in which the various endpoints are identified, analyzed, and evaluated within the context of an acute scenario.

37. The intent of Table 9 is to provide a pointer to potentially useful examples for an investigator intending to cover similar aspects for a different chemical. This summary may also help guide decisions on which additional chemicals might be included in additional rounds of developing acute inhalation example assessments, as will be discussed further.

Lessons Learned

38. Much has been covered in the development of the example assessments. There are still many types of endpoints, however, that were not addressed.

Endpoint-Specific Lessons

39. Respiratory effects (portal-of-entry effects) were a major consideration for three of the four example assessments and were used as the POD for derivation of ARfC. Portal-of-entry effects are often the concern for acute exposure scenarios, and they are often manifested shortly after the exposure event.

40. Although neurological effects were chosen as the critical effect for acute exposures to EtO, the consideration of the potential for developmental effects from a single exposure posed a number of challenges. These challenges included constructing a rationale for use of an endpoint in which protocols typically involve multiple-day repeated exposures. As noted in the GD, most developmental studies employ repeated exposures over the course of a number of days, which may or may not be applicable to a single exposure scenario; therefore, MOAs for the developmental effects need to be considered before use in an acute assessment. In the case of EtO, there is both an MOA argument (EtO is a DNA-reactive chemical) and empirical evidence (the study of Weller et al., 1999, which demonstrated developmental effects from a single exposure) to support the use of a developmental endpoint in an acute setting. However, when the detailed data from the Weller et al. (1999) study was analyzed using a BMC approach, the resulting BMCL values (373 ppm at 3 h) were over 3-fold higher than the NOAEL for neurological effects (100 ppm at 6 h). Although this analysis resulted in developmental effects not being adopted in the acute assessment for EtO, it served to demonstrate that this type of effect may be used for an acute assessment. Additionally, the previously published analyses using BMC analysis of developmental effects were used to establish the appropriate parameters (e.g., BMR) for similar analyses.
Table 9. Summary of Non-cancer Endpoints and Analytical Options Covered by the Example Acute Assessments

<table>
<thead>
<tr>
<th>Target Organ/System Endpoint</th>
<th>Ethylene Oxide</th>
<th>HCCPD</th>
<th>Hydrogen Sulfide</th>
<th>Phosgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>▲▲</td>
<td>▲▲</td>
<td>▲▲</td>
<td>▲▲</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td>▲</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Hematological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal-urinary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunological</td>
<td></td>
<td></td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Reproductive</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmental</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td>▲▲</td>
<td></td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Endocrine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic poison</td>
<td>♦</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lethality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concentration-Response Approach

<table>
<thead>
<tr>
<th></th>
<th>Ethylene Oxide</th>
<th>HCCPD</th>
<th>Hydrogen Sulfide</th>
<th>Phosgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAEL</td>
<td>▲</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>BMC</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Categorical regression</td>
<td>▲▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-analysis</td>
<td>▲▲</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duration Approach

<table>
<thead>
<tr>
<th></th>
<th>Ethylene Oxide</th>
<th>HCCPD</th>
<th>Hydrogen Sulfide</th>
<th>Phosgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on lethality slope</td>
<td>▲▲</td>
<td>▲▲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endpoint-specific</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categorical regression</td>
<td>▲▲</td>
<td>▲▲</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

▲ This Endpoint/Option was also investigated and reported upon.
▲▲ The Critical Endpoint or Chosen Option for the subject assessment.
♦ Endpoints used in the Categorical Regression analysis.
* The default value of $n = 3$ for extrapolations to shorter durations and $n = 1$ for longer durations than the observed data points.
41. The ARfC for HCCPD was based on frank effects on the tissues of the lung. The data set for HCCPD was limited, and therefore, consideration of effects on other endpoints was not possible.

42. \(\text{H}_2\text{S} \) has effects on the upper respiratory tract (nasal tissues) at low concentrations, on lung tissues at higher concentrations, and on the CNS at yet higher concentrations. Based on the available information suggesting that inhibition of cytochrome oxidase is likely to be the common MOA underlying effects seen at low concentration, including cardiorespiratory, cardiac, and metabolic effects, all were included in the CatReg analysis for this chemical.

43. In the case of phosgene, quick-acting effects on lung tissues made this agent a potent chemical warfare agent. A strength of this acute assessment on phosgene is construction of an ordered evaluation of the extensive information available on the progression of the pulmonary pathology. Immunological effects within the lungs have also been noted for phosgene, although the data set for this endpoint is not robust and the understanding of the MOA for immunological effects is not well characterized. The lessons learned from the assessment of the acute effects for phosgene included highlighting the lack of understanding of acute chemical exposures on the immune system. Effects from acute inhalation exposure to phosgene as well as dermal exposures to EtO have shown that an acute exposure can result in an immunological effect.

\textit{Concentration-Response Approaches}

44. The analysis of EtO was centered on the use of the BMC approach to determine the POD for both an acute and short-term assessment. Additionally, a meta-analytical approach was used in a deriving the POD for the Short-term RfC.

45. HCCPD demonstrated how a sparse data set, if it contains the proper information, can be used in the derivation of an ARfC. This assessment was limited to the use of the NOAEL approach because of those data limitations.

46. \(\text{H}_2\text{S} \) was an example of the use of categorical regression in development of an ARfC using multiple related endpoints with varying severity to inform the analysis. Comparison of the results from the categorical regression analysis to an assessment of both the BMC and NOAEL approaches was also performed, lending support to the POD determination with CatReg and highlighting the benefits of performing as many exposure-response analytical approaches as possible.

47. Phosgene was another example of the use of categorical regression, but in this instance, using the analysis of a single endpoint across species to help inform the derivation of a final POD value. As with \(\text{H}_2\text{S} \), the application of another approach (i.e., BMC) to this data set helped support the final POD derivation.

\textit{Duration Approach}

48. None of the example assessments used the default duration approach, as described in the GD.

49. Both EtO and HCCPD utilized a duration slope factor that was derived from available lethality data. Calculation was by the method described by ten Berge et al. (1986).

50. Both phosgene and \(\text{H}_2\text{S} \) used the categorical regression approach wherein both a duration- and exposure-response analysis were provided. For \(\text{H}_2\text{S} \), PODs for 1, 4, and 8 h were determined directly from the concentration-duration slope generated by the CatReg analysis. In the case of phosgene, however, the application of the duration slope factor derived from the categorical regression analysis was applied to the results from the BMC and NOAEL approaches for duration extrapolation, (i.e., the slope of the concentration-duration curve was made to intercept the POD concentration and duration obtained from BMC analysis). PODs for 1, 4, and 8 h were then obtained from this line and intercept.
Closing Remarks

51. These example assessments were provided for the purpose of demonstrating the principles discussed in the ARfC GD. These values have NOT undergone a rigorous review for use in any risk assessment, and were developed by the OECD Expert Group for illustrative purposes only.