ENVIRONMENT DIRECTORATE
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY

GUIDANCE DOCUMENT ON HISTOPATHOLOGY TECHNIQUES AND EVALUATION (PART 2)
FOR THE LARVAL AMPHIBIAN GROWTH AND DEVELOPMENT ASSAY (LAGDA)

Series on Testing & Assessment
No. 228

JT03386644

Complete document available on OLIS in its original format
This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.
Guidance Document on Histopathology Techniques and Evaluation (Part 2)
About the OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 34 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in ten different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; and Safety of Manufactured Nanomaterials. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (www.oecd.org/ehs/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This publication is available electronically, at no charge.

Also published in the Series on Testing and Assessment (link):

For this and many other Environment, Health and Safety publications, consult the OECD’s World Wide Web site (www.oecd.org/chemicalsafety/)

or contact:

OECD Environment Directorate, Environment, Health and Safety Division
2 rue André-Pascal
75775 Paris Cedex 16
France

Fax: (33-1) 44 30 61 80

E-mail: ehscont@oecd.org

© OECD 2015
Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, RIGHTS@oecd.org. OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France
FOREWORD

The project to develop a Larval draft Amphibian Growth and Development Assay (LAGDA) was initiated by Japan and the United States and included in the work plan of Test Guidelines Programme in 2009.

The Integrated Summary Report and first draft TG were submitted to the Working Group of the National Coordinators of the Test Guidelines Programme (WNT) in 2014, followed by subsequent commenting rounds in 2014. The draft guidance document on amphibian histopathology was prepared to accompany the draft Test Guideline and help users of the test become more proficient in applying tissue sampling and preparation techniques, evaluation techniques and in the interpretation of the slides.

The guidance document on amphibian histopathology techniques and evaluation was approved by the WNT at its 27th meeting in April 2015. The Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology agreed to the declassification of the guidance document on 10th July, 2015.

This document presents Part 2 of the guidance document which in total consists of three parts.

This document is published under the responsibility of the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology.
GUIDANCE DOCUMENT ON HISTOPATHOLOGY TECHNIQUES AND EVALUATION (PART 2)

FOR THE LARVAL AMPHIBIAN GROWTH AND DEVELOPMENT ASSAY (LAGDA)
Staging of the Testis. Stage numbers increase with increasing maturity of the testis. Control males 10 weeks post NF stage 62 (LAGDA termination) typically have Stage 4 or 5 testes.
Stage 4 Versus 5 Testes, Higher Magnification. Stage 4 testes can have elongating spermatids (arrow), but spermatocysts that contain spermatozoa are rare or not apparent. Conversely, spermatozoa (S) are abundant in Stage 5 testes. Bar = 25 microns.
Germinal Epithelium Thinning and Dilation. This finding is characterized by focal to diffuse attenuation of the testicular germinal epithelium (arrows), with expansion of the adjacent tubular lumen. Germ cell degeneration is also evident. In a previous report, similar changes were termed “dilated testis tubules” (Wolf et al., 2010). Bar = 100 microns.
Testis, Germ Cell Degeneration. This finding is characterized by the scattered presence of individual or clustered apoptotic germ cells (black arrows and inset), or germ cell syncytia (white arrow), within the germinal epithelium. Affected testes may also have increased numbers of exfoliated cells and cellular debris in tubular lumina. Bar = 25 microns (Grade 1), 50 microns (Grade 2).
Spermatogonia, Increased. This finding is characterized by a greater frequency of spermatogonia (arrows) in the testes of affected frogs as compared to those of the average control frog. Bar = 50 microns.
Mononuclear Cell Infiltrates. Mononuclear cell infiltrates (arrows), which appear to consist primarily of lymphocytes, are relatively common in the testes. Bar = 25 microns.
Germ Cell Vacuolation. This finding is characterized by increased amounts of clear cytoplasm in clusters of zygotene-phase primary spermatocytes. Bar = 25 microns.
Normal Ovaries, Oviducts and Wolffian Ducts. The ovaries (O) are attached to the peritoneal surface of the kidneys (K) by suspensory ligaments. The black arrows indicate the oviduct (Müllerian duct) remnants (Stage 2 oviducts in this case), whereas the white arrows indicate the Wolffian ducts. Bar = 500 microns.
Staging of the Ovary. Control females 10 weeks post NF stage 62 (LAGDA termination) typically have Stage 3 or 4 ovaries.
Mixed Sex Gonads. The gonads contain both testicular (T) and ovarian (arrows) components. Each of these gonads received a Phenotype Score of 2. Bar = 50 microns.
Complete Sex Reversal. This normal appearing ovary was a treatment-related phenotypic finding in a genetic male frog. This ovary would receive a Gonad Phenotype Score of 5. Bar = 50 microns.
Hermaphroditism. In addition to left and right testes (T), this animal had a small amount of ovarian tissue (arrow) within the abdominal mesentery. K = kidney. Bar = 250 microns.
Proteinaceous Fluid. Proteinaceous fluid (arrows) appears as homogenous dark pink material within the central and subcapsular regions of the ovarian interstitium. Bar = 100 microns (Grade 1), 50 microns (Grade 2).
Oocyte atresia. Spontaneous oocyte atresia appears to be relatively uncommon in the Stage 3 or 4 ovaries of most untreated control frogs. Bar = 50 microns.
Oocyte atresia, Additional Examples. A. In this example, early oocyte degeneration is characterized by a loss of nuclear detail and increased nuclear density. B. In this later stage of atresia, oocyte remnants are being scavenged by nests of macrophages (black arrows). The white arrow indicates what appear to be hypertrophic granulosa cells from an atretic follicle. Bar = 25 microns.