Impact of Climate Change on Lake Neusiedl and potential adaptation strategies

Herbert Formayer
Institute of Meteorology
University of Natural Resources and Applied Life Sciences, Vienna
Bases on the results of the research project financed by the “Landesregierung Burgenland” „Auswirkungen einer Klimaänderung auf den Wasserhaushalt des Neusiedler Sees“

O. Univ. Prof. Dr. Helga KROMP-KOLB
A.o. Prof. Dipl.Ing. Dr. Josef EITZINGER
Dipl. Ing. Gerhard KUBU
Mag. Dr. Herbert FORMAYER
Mag. Dr. Patrick HAAS
Dipl. Ing. Thomas GERERSDORFER

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Outline

- Motivation
- Methods
- Results
- Adaptation strategies
- Some Conclusions

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Motivation

- Lake Neusiedl is a shallow “Steppensee” which means, that he has no natural outflow.

- Observed low lake levels showed first negative effects on tourism (especially sailing) in 2003.

- Drying out of lake Neusiedl has been observed several times in the past (last time in 1860s).

- Tourism at Lake Neusiedl and surrounding is an important regional economic factor.

- This region is an important European bird breeding region.
Motivation

Observed lake level fluctuations

Die Ganglinie des Neusiedler Sees
1932-2003

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Method - Hydrology

Lake Catchment: 1.120 km²

Lake Area: ~ 315 km²

From this ~ 175 km² Reed

and 140 km² free water:

Lake depth: < 2m
Method - Hydrology

Water balance

Inflow:

Precipitation on the Lake 78 %
River discharge (manly the river Wulka) 20 %
Ground water inflow 2 %

Losses:

Evaporation 90 %
Channel (flood protection) 10 %
Lake evaporation:

Dalton approach with reed correction

\[E_w = f(v) \times (e_s(T_{wo}) - e) \]

- \(E_w \) = Evaporation
- \(e_s \) = saturation water vapour at water temperature
- \(e \) = water vapour in air
- \(f(v) \) = wind function (linear for lake Neusiedl)
Method - Hydrology

Lake temperature: Richter approach

Observed and simulated water temperature in 2003

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Method - Hydrology

Skills of the lake level model

Annual maximum and minimum Lake levels observed and modelled

Pegel [m ü.A.]

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Method - Climate

Observed climate

Temperature anomaly at the lake Neusiedl area

Datasource: ZAMG
Method - Climate

Observed climate

Precipitation anomaly in the Lake Neusiedl region

Datasource: ZAMG
Method - Climate

Scenario preparation:

- Based on ECHAM4 IS92a GHG only for 2000 - 2049.
- Statistical downscaling for temperature with analogue technique using relative topography 850-700 hPa as predictor field on daily base.
- Calibrating a weather generator (Lars Wgen) for periods 1961-1990 and 1991-2004 to Station Neusiedl.
- Run the weather generator for the periods 2010-2030 and 2030-2049 using only the temperature changes.
- Relative humidity is estimated from the Temperature diurnal range.
- Wind speed is set to observed monthly means.

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Method - Climate

Climate change signal:

Observed and scenario for Temperature change in the lake Neusiedl region compared to 1961-1990

Graph showing temperature changes from January to December for the years 1991-04, 1991 to 2004, and 2030 to 2050, with a trend indicating warming throughout the year.

Jahresmittel:
91-04: 0.7
10-30: 1.9
30-50: 2.5

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Method - Climate

Model set up:

- With the average climate of the periods 1961-1990, 1991-2004 and the temperature change for 2010-2030 and 2030-2049 the weather generator was run for 500 years.
- For the scenario periods the weather generator was rerun with modified precipitation from -20% to +20% in 5% steps.
- The Lake model was driven by the several 500 year weather data on daily base.
Results

Increase of Lake Neusiedl evaporation compared to 1961-1990 due to temperature increase.

<table>
<thead>
<tr>
<th>Periode</th>
<th>Änderung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-2004</td>
<td>9.6</td>
</tr>
<tr>
<td>2010-2030</td>
<td>18.3</td>
</tr>
<tr>
<td>2030-2050</td>
<td>23.3</td>
</tr>
</tbody>
</table>

Adaptation to Climatic Change in the European Alps

Wengen 2006 Workshop 04 - 06 October 2006
Results

Modelled frequency distribution of lake levels beyond a given threshold (no precipitation change).

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Results

Return periods for lake levels beyond 115.2 m for different periods and precipitation changes.
Results

Return periods for different lake levels for the different periods and precipitation as in 1991-2004.

Adaptation to Climatic Change in the European Alps
Wengen 2006 Workshop 04 - 06 October 2006
Adaptation strategies

Only possibility to stabilize the lake level is to bring in water -
Two options are discussed:

- Water from the ground water table (Uferfiltrat) of the Danube.
- Water from the river Raab from the Hungarian side.
Adaptation strategies

Problem is the large amount of water – to rise the lake level 1 mm ~ 300,000 m³ water are needed.

To bring the water from the Danube to lake Neusiedl it has to be bumped an altitude of more than 30 m – Very energy intensive.

When the water is needed most, the river Raab also has very low discharge.
Adaptation strategies

Additional problems:

The mixing of the salty lake water with the Danube water may cause a clearing of the water, leading to massive growth of water plants.

Large additional water inflow may decrease the salinity and accelerate the growth of reed.
Some Conclusions

- Lake Neusiedl is very sensitive to climate change.
- A warming of 2.5 K leads to an evaporation increase of more than 20%.
- To compensate the evaporation losses an precipitation increase of + 20% is needed, which is not very likely looking on state of the art regional scenarios.
- Critical lake levels for tourism as 150.0 m will change there return period from some 250 years in the past to less then 10 years within the next decades.
- Adaptation seems to be possible but may be expensive and include some possible negative biological reactions in the lake.
Thank you for your attention!