Dealing with climate-change impacts on glacier and permafrost hazards: adaptation strategies in mountain regions

Christian Huggel
Luzia Fischer, Wilfried Haeberli, Stephan Gruber, Jeannette Nötzli
For anticipation, and essentially the management, of natural hazards in the future, we need to know:

- location of events
- magnitude of events
- frequency of events

=> Important basis for future adaptation and mitigation actions
Content

• Effects of climate change, and related understanding and hazards:
 • glaciers
 • permafrost
 • interactions between surface and subsurface ice

• Adaptation strategies

• Mitigation options
Effects on glaciers

Retreating and decaying glaciers and lake formation and growth
=> Glacial lake outburst and floods
Effects on glaciers

Debuttressing/unloading effect due to glacier retreat
=> rock-/landslides

Findelen Glacier, Valais
Effects on glaciers

Retreating glaciers and uncovering of unconsolidated sediment => Debris flows

Kaltwasserpass, Valais

Guttannen, Bernese Alps, 2005
Effects on permafrost

Permafrost degradation and hydro-geologic implications in debris accumulations
=> Changes in debris flow activity
Effects on permafrost

Large rock avalanches from permafrost-affected rock walls: e.g. north-south exposed ridges

Brenva/Mt. Blanc 1997, Italy

Thurwieser 2004, Italy

Regione Lombardia
Effects on permafrost – glacier interactions

Permafrost and steep glacier interactions: glacierized high-mountain walls => large slope instabilities

Kolka-Karmadon Rock-ice avalanche, Caucasus 2002

I. Galushkin
Adaptation strategies

Comparatively well understood processes and developed tools

Glacial lakes

Monitoring

Understanding

Anticipation

active/passive adaptation and mitigation measures

Important gaps and uncertainties

Permafrost-affected rock walls
Adaptation strategies: glacial lakes - science

Monitoring
Understanding
Anticipation

1999

2000

2001

2003

Glacier lake detection, Cordillera Blanca, Peru

Trift glacier Lake: Satellite remote sensing: Landsat-TM, IKONOS, ASTER
Adaptation strategies: glacial lakes - science

Glacier retreat and glacial lake evolution

Monitoring
Understanding
Anticipation
Adaptation strategies: glacial lakes - science

Glacier retreat and lake outburst flood modeling and assessment

Monitoring
Understanding
Anticipation

Image processing & glacier outlines: F. Paul
Permafrost distribution: S. Gruber
Lake outburst modelling: C. Huggel
Rockfall avalanche: J. Noetzli
Adaptation strategies: permafrost-affected rock walls - science

Rock wall temperature measurements

Monitoring

Understanding

Anticipation
Adaptation strategies: permafrost-affected rock walls - science

Findings from centrifuge modeling on rock failure in permafrost conditions

Factor of safety
< 1 with T < 1.5°C
But:
FoS > 1 without ice

M. Davies, University of Dundee
Adaptation strategies: permafrost-affected rock walls - science

3D temperature distribution modeling for conditions in depth

Thurwieser, Italy

[Graph showing temperature distribution in permafrost-affected rock walls with North (N) and South (S) orientations and elevation in meters above sea level (m a.s.l.)]
Adaptation strategies: permafrost-affected rock walls - science

Projected temperature change in depth of a North-South ridge situation (i.e. similar to Thurwieser, Brenva)
Adaptation and mitigation strategies: decision-makers

- Land-use planning
- Structural protection measures
- Warning systems
- Vulnerability and risk assessments
- Preparedness (emergency plans etc.)
- Relocation

Saas Almagell, Valais, 1953
Saas Almagell, Valais, 1980
Täsch, Valais, protection dam
Adaptation strategies: decision-makers

Land-use planning

Structural protection measures

Warning systems

Vulnerability and risk assessments

Preparedness (emergency plans etc.)

Relocation

Cordillera Blanca, Peru
Adaptation strategies: decision-makers

Cordillera Blanca, Peru

Huascarán, 1970

Relocation
Adaptation strategies: decision-makers

Colombia: Relocation? – Alternatives?

Nevado del Ruíz/Armero, 1985

Ibagué/Combeima, June/July 2006

Relocation

Janda, USGS

Cruz Roja Colombiana
Conclusions

• Climate change strongly affects cryospheric systems on the surface and thus directly observable in the sub-surface and often only indirectly observable in coupled systems (glacier-permafrost) all having potentially severe impacts in terms of hazards.

• Methods and tools for hazard monitoring and assessment have been developed for much longer time in relation with glaciers than with (mountain) permafrost.

• Monitoring, understanding, modeling and anticipation/prediction can be viewed as an integrative part of adaptation efforts, and has to be considered for taking further measures.

• The choice of adaptation and mitigation measures is often limited by economic, social or cultural conditions of a region/country. In general, a shift from high-cost to low-cost measures may be necessary.
Thanks for your attention!

Studies presented here were partly funded by the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation.