The calculation of Lower Extremity Amputation Rates in Diabetes

Results from the HCQI data collection 2015

Fabrizio Carinci
Professor of Health Systems and Policy
School of Health Sciences, University of Surrey, UK

1st Annual Meeting 2015 of the Health Care Quality Indicators Project
OECD Headquarters, Paris, France, 21-22nd 2015
In 2014, the HCQI Expert Group agreed to conduct a specific R&D activity aimed at improving the data collection for this indicator, based on different sets of definitions.

The following was agreed:

- Major and minor amputations to be collected separately
- Additional estimates of diabetes prevalence to be collected to test usage of people with diabetes at denominator
- Further exclusion criteria to be applied (eg tumour-related amputations)
- All age groups to be collected
The 2015 HCQI data spreadsheet allowed 6 different indicators:

Admission-based:
- Number of Major amputations in diabetes on the Total population
 - N=19 countries
- Number of Minor amputations in diabetes on the Total population
 - N=14 countries
- Number of Major amputations among people with diabetes
 - N=9 countries
- Number of Minor amputations among people with diabetes
 - N=9 countries

Patient-based:
- Percentage of total population experiencing a major amputation
 - N=6 countries
- Percentage of people with diabetes experiencing a major amputation
 - N=5 countries

Age below 15 did not seem relevant and was excluded from analysis.
Results of HCQI data collection 2015 (1)

Dispersion plots

- Major over the Total Population - OECD 2000 - 2013
- Minor over the Total Population - OECD 2000 - 2013
- Major among People with Diabetes - OECD 2000 - 2013
- Minor among People with Diabetes - OECD 2000 - 2013
- Major Patient-based among People with Diabetes - OECD 2000 - 2013
As expected, different algorithms showed a different ability to discriminate between trends over time and differences between countries.

By far, using major amputations in a patient-based fashion showed the most marked reduction of amputation rates over time.

The total number of major amputations among people with diabetes also show a consistent decrease.

Measures over the total population show a steady state after 2006, which can indicate a “masking effect” of diabetes prevalence, i.e. countries where it increased continued to be successful in reducing the number of amputations.

Results are reinforced by a separate examination of the algorithms.
Results of HCQI data collection 2015 (2)
Trend of average values and coefficient of variation using alternative definitions
Despite the additional difficulty, a substantial number of countries responded favourably to the R&D.

Few countries (N=8) were able to deliver patient-based results that required stratified figures for diabetes prevalence by sex, age.

The output seems to indicate valid avenues for a finally refined version of this indicator that can be used for international comparisons of quality of care.
Results of HCQI data collection 2015 (3)
Ranking according to alternative definitions
Conclusions

- Our results seem relevant both from a methodological and an epidemiological perspective.
- Improving the measure of amputation rates may definitely help increasing our ability to draw inferences on quality of care and health systems performance.
- An increased ability to discriminate between major and minor amputations, coupled by a clearer definition of individual pathways, will help highlighting successful practices for in OECD countries.
- The publication of lower extremity amputation rates in diabetes in “Health at a Glance” may be extremely important to raise the attention of policy makers on a matter of utter importance for public health and safety.