Developing a Classification of Higher Education Institutions in Europe

Frans van Vught
Overview:

- Context: knowledge production and knowledge utilisation in Europe
- Classifying higher education institutions
- A European classification system
Knowledge Production in Europe

- EU’s R&D intensity vis-à-vis US and Japan is stagnating (EU 1.93% GDP; US 2.59%; Japan 3.15%; China 1.31%)
- The 3% research intensity target only met in Sweden (4.27%) and Finland (3.5%)
- Soon China will spend same percentage GDP as the EU (prediction: 2.2% in 2010)
- Number of researchers per 1,000 labour force in EU is lagging behind (EU 5.4; US 9.0; Japan 10.1)
Knowledge Production in Europe (2)

- EU’s investments in higher education are limited (EU 1.28% GDP; US 3.25%)
Knowledge Utilisation in Europe

• EU’s share in registered triadic patents is small (EU 12%; US 52%; Japan 35%)
• EU universities hardly have patents (EU 0.10 per 100,000 population; US 2.02; China 0.50)
• European interfaces industry/academia are weak (hardly any open innovation)
• European academic incentive schemes primarily based on publications
Knowledge Utilisation in Europe (2)

- Knowledge transfer of EU universities under-developed and fragmented (primarily regional; no patent pools)
- Venture capital lacking in pre-seed phase
Better Knowledge Production in Europe

• Hold on to 3% GDP target for R&D expenditure
• Accept 2% GDP target for higher education expenditure
• Stimulate private investments in higher education and R&D
• Develop ‘typology’ of European universities (diversity of university profiles)
Better Knowledge Production in Europe (2)

• Increase competition between universities with similar missions; stimulate multiple ranking

• Concentrate R&D funding in limited number of European ‘research universities’

• Develop European Research Council (ERC)

• Increase number of researchers in private sector
Better Knowledge Utilisation in Europe

- A European ‘Bayh-Dole Act’: make ‘research universities’ patent research results and license to business & industry (especially SMEs)
- Harmonise European IPR-systems and ensure legal certainty
- Create European Community Patent
- Professionalize knowledge transfer in European ‘research universities’ (introduce patent pooling)
Better Knowledge Utilisation in Europe (2)

- Develop European Institute of Technology (EIT) with a strong emphasis on technology transfer
- Stimulate clusters/innovation poles of industry & academia, especially joint facilities and infra-structure (incubators, accelerators, joint research labs)
- Encourage incentives in European universities for exploitation of research results
Classifying Higher Education Institutions

- 1973: Carnegie Classification (US) developed as a sampling device in higher education research
- 1976: five categories (doctoral granting u’s, comprehensive u’s and colleges, liberal arts colleges, two-year colleges, professional schools and other specialised institutions)
- 1994: ten categories, based on four criteria (research and teaching objectives, degrees offered, size, comprehensiveness)
- 2006: new classification developed: multiple dimensions
Classifying Higher Education Institutions

• Both stability and (some) dynamics during post-binary period
Classifying Higher Education Institutions

• Tool for research
• Transparency instrument (various stakeholders)
• Base for governmental policy-making
• Instrument for university profiling
• Used for ranking
Classifying Higher Education Institutions
methodological issues:

• A priori or a posteriori classification?
• Mono or multi dimensional?
• Hierarchical or non hierarchical?
• Reliability of data (subjective or objective)?
• Eligibility of institutions (relationship with accreditation and quality assurance)?
A European Classification System
the first phase (2004-2005):

• A stakeholders approach
• Exploration and iterative discussions
• Result: a set of schemes as a basis for a classification
A European Classification System

basic principles:

• Inclusive for all European higher education institutions
• A tool for developing institutional profiles
• Multi-dimensional and flexible
• Not prescriptive or rigid
• Ownership to rest with higher education institutions
A European Classification System design principles:

- A posteriori
- Multi dimensional
- Non hierarchical
- Objective and judgmental data
- Related to European Register of Quality Assurance Agencies
A European Classification System
the schemes:

Education
- Types of degrees offered
- Range of subjects offered
- Orientation of degrees
- European educational profile
A European Classification System
the schemes:

Research and Innovation
• Research intensiveness
• Innovation intensiveness
• European research profile

Student and Staff Profile
• International orientation
• Involvement in life long learning
A European Classification System
the schemes:

* Institutional Characteristics
 - Size
 - Mode of delivery
 - Community services
 - Public/private character
 - Legal status
A European Classification System

the schemes:

• Each scheme offers a description of certain characteristics
• Each characteristic is described by one or more indicators
• Each indicator consists of several categories
A European Classification System
the next phase:

• Testing the schemes
• Enhancing the legitimacy of a classification
• Drafting a classification
A European Classification System
the next phase:

• Analysing existing European data sources
• Surveying one hundred European higher education institutions
• In-depth-case studies
• Stakeholders meetings
• International consultations
• Conferences
• Drafting the classification
A European Classification System
the result

An internationally applicable, multi
dimensional, inclusive, descriptive and reliable tool:
• That makes the diversity of European higher
education transparent
• That offers relevant information to
stakeholders
• That allows for institutional profiling and
strategy development
• And that can contribute to the international
competitiveness of European higher
education in knowledge production and
knowledge utilisation