Using Educational Research and Innovation to Address Inequality and Achievement Gaps in Education
Migrant children, their and our future
- high-quality education as the best practice for both refugees and the society

Nihad Bunar
Professor, PhD
Department of Child and Youth Studies
Stockholm University
nihad.bunar@buv.su.se
Swedish as a country of immigration

- 10 million inhabitants, about 17% foreign-born, 26% (250,000) of all children in Swedish elementary schools are of immigrant origin.
- During the last five years asylum-seekers have mainly come from Syria, Somalia, Afghanistan, Iraq and Eritrea (in total 163,000 in 2015, 71,000 of whom were children).
- In 2015 Sweden received the highest number of unaccompanied minors in the EU (ca. 35,000). The majority are from Afghanistan and Syria.
- The average age at the time of migration today is around 10 years for children born in Asia and Africa (the largest groups).
- Welfare and wealthy society but marred by segregation in housing and schools.
Swedish education system – a brief overview

• Early-childhood education (age 1-5)
• Pre-school class (age 6, mandatory from 2018)
• Elementary school (age 7-15, mandatory), all children have equal rights irrespective of migration status
• Upper-secondary (age 16-19, non-compulsory). Language introduction program specially designed for newly arrived children without proficiency in Swedish language
• Higher education – undergraduate and postgraduate, free of charge
• Adult education system – open only for migrants with permanent residence status
Needs, obstacles, rights and beyond

• Educational needs cannot be solely reduced to a linguistic issue of majority language acquisition.

• The obstacles cannot be solely located in inadequate and interrupted schooling, the age at a time of migration, real or imagined cultural differences, parents’ socio-economic background and educational attainment.

• The rights cannot remain solely ideological declarations on equity and discourses on “color blindness” (everybody is the same). Newly arrived students bear experiences and a set of previous knowledge that must be recognized and taken as a starting point for their further education.
Approaches to education of newly arrived children – Policy level

- Individual approach
- System flexibility in order to accommodate individual needs
- Clear dissemination of responsibility. Frequent audits by National School Inspectorate
- National policy framework (separate classes, redistribution of teaching hours from other subjects to Swedish as a second language)
- Additional measures and interventions from national government
- In other words: There is a growing interest in and dedication to support newly arrived children on their path to school success
Promising practices for educational success of newly arrived students

- Recognition of young refugees as knowledgeable subjects with resources for learning and development (ambitions, resilience, mother tongue)
- Formalized assessment of previous school and life experiences
- The vital role of multilingual classroom assistants
- The vital role of academic advisors, in particular for students at upper-secondary level
- Professional development of teachers in the area of language development and working in multicultural settings
Promising practices for educational success of newly arrived students

- Close cooperation based on mutual trust and respectful communication between teachers and parents
- Attendance to refugee students’ health issues – dealing with stress and trauma
- Providing spaces of inclusion, in schools and in contexts outside of schools, we need to make any effort possible to avoid school segregation
Where is new research needed?

- The voices of young refugees and their families have to be heard more often
- Evaluation of different programs for newly arrived within schools and in relation to student achievement over time is needed
- More cross-national comparisons
- More research-informed policy making. Researchers need to take an active part in teachers’ professional development and public debate
- This is a theoretically underdeveloped area
Roma students in the public education
The case of Hungary
What works at system policy level to reduce the impact of their disadvantage?

Gábor Kertesi
Institute of Economics, Hungarian Academy of Sciences (MTA KRTK KTI)

OECD-IES seminar
Using educational research and innovation to address inequality and achievement gaps in education

Washington, DC
December 11-12, 2017
Why immigrants? Why Roma?

- Roma: one of the largest and poorest ethnic minorities in Europe
- Why in common section in this conference?
- Similarities: immigrants in WE – Roma in CEE
 - strongly rejected by the majority, prejudice
 - no matter they may have born in WE (2nd, 3rd generation)
 - no matter they have been living in CEE for centuries
- Representative survey of Hungarian adolescents (≈18 year old), 2009
 („agree” + „strongly agree” responses to standard prejudice questions, HLCS 4th wave)

- „There is an inclination for criminality in their blood.” 69%
- „Their increasing share in population poses a danger to society.” 76%
- „They cannot coexist with majority. Must be segregated.” 43%
Geography

11 million people

Why Hungary? Why not other CEE countries?

- Ethnically homogenous majority + significant Roma minority
- Good admin data, researcher-friendly data environment only in Hungary
 - e.g.: Hungarian Census 2011: good ethnic markers, multiple identity
 - safe data matching allowed across admin data & censuses | surveys
 - researchers have access to individual admin data
 - other CEE: no good ethnic markers, limited access
- High quality survey data with good ethnic markers only in Hungary
 - e.g.: HLCS 2006-2012: NLSY-type panel for 8th grade students in 2006
- Harmonized data across countries exist but not really useful
 - FRA-UNDP, 2011, 2016: cross-country comparisons: 11 European countries
 - focus on segregated areas, integrated Roma not in the sampling frame
 - not enough variability in the middle and upper range of social indicators
History: narrowing the gap, mostly at lowest levels

Sources:
- Censuses 2001, 2011
- National representative Roma survey 1993
- HLCS 2006-2012
History: education matters most where gap remains large

Source:
• national representative Wage Surveys, National Employment Office, 1992-2012
Roma - non-Roma social gaps*, Hungary

<table>
<thead>
<tr>
<th></th>
<th>Roma</th>
<th>Non Roma</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low birth weight (< 2500 gr)(^a)</td>
<td>14%</td>
<td>6%</td>
<td>+ 8%</td>
</tr>
<tr>
<td>Tests scores (Reading, Math), 8th grade, age 14-15(^b)</td>
<td>.</td>
<td>.</td>
<td>-1 SD-unit</td>
</tr>
<tr>
<td>PRIMARY: dropped / started(^c)</td>
<td>7%</td>
<td>2%</td>
<td>+ 5%</td>
</tr>
<tr>
<td>SECONDARY: dropped / started(^d)</td>
<td>48%</td>
<td>9%</td>
<td>+ 39%</td>
</tr>
<tr>
<td>COLLEGE: enrolled / started SECOND.(^e)</td>
<td>5%</td>
<td>35%</td>
<td>- 30%</td>
</tr>
<tr>
<td>Has permanent job, age 25-39(^c)</td>
<td>25%</td>
<td>72%</td>
<td>- 47%</td>
</tr>
</tbody>
</table>

\(^a\) National Vital Statistics 2008-2010 - Census 2011 matched files, in the % of all live births, ethnic markers from Census.

\(^b\) End of Hungarian Primary: 8th grade, NABC 2006 – HLCS 2006-2012 matched files, Census 2011, ethnic markers exist.

\(^c\) Secondary: any type (vocational or academic track), by the age of 20-21; HLCS 2006-2012,

\(^d,e\) NABC: National Assessment of Basic Competences (full cohort admin data, 6th, 8th, 10th grades);

\(^e\) HLCS: Hungarian Life Course Survey (NLSY-type panel survey; national representative sample of 8th grade students in 2006; N ≈ 10.000, 2006-2012; ethnic markers exist)
Empirical studies: results in nutshell

- **Test score gaps at 8th grade: -1 SD unit**
 - mainly due to parental poverty and social disadvantages
 - fully mediated by 3 transmission mechanisms, in order of importance
 - lack of cognitively stimulating home environment
 - inferior school environment: school segregation
 - adverse birth outcome and poor health
 - ethnic residual is small: Roma, non Roma with similar social background perform in school similarly
Empirical studies: results in nutshell, cont.

- Gap in secondary dropout rate: ≈ +40%
- Gap in college enrollment: -30 %
- If conditioned on 8th grade test results, GPA, class FE
 - 40 percent of the secondary gap disappears
 - 80 percent of the college gap disappears
 - large part of the gaps comes from age 0-14
Lessons from the study of Roma students in Hungary

- Future research in other CEE: How they relate to Hungarian results
 - data (role of OECD, EU, WB)
- Low educational performance of Roma: a large part a problem of poverty and exclusion
 - has little to do with ethnicity *per se*
- Intergenerational transmission of poverty
 - mediated by well known factors from educational & social policy literature
 - interventions can use worldwide accumulated standard knowledge
- What if the public school system cannot improve performance of the poor?
 - supporting evidence from cross-country comparisons, PISA 2015
How well social disadvantage predicts PISA scores?

Percentage of variation in performance explained by students’ and schools’ socio-economic profile
The socio-economic status is measured by the PISA index of economic, social and cultural status (ESCS).
Countries and economies are ranked in ascending order of how well socio-economic status predicts performance in collaborative problem solving.
Source: OECD, PISA 2015 Database, Table V.4.13f.
Lessons from the study of Roma students in Hungary, cont.

- Two components of social disadvantage in the PISA chart
 - Childrens’ SES + sorting poor children into segregated schools

- Segregated schools and classes
 - Deprives them of motivating peers
 - Creates school environments in which teaching is difficult
 - Segregation of Roma 8th graders (HLCS 2006)
 - Classes difficult to teach: poor reading skills of the majority of classmates
 - Roma - non-Roma gap in attending such classes: 40% = 58% - 18%
 - Even within small commuting distances (with place of residence FE): gap is still 28%

- Universal free school choice (introduced in 1993 in Hungary) may play a role
 - OECD (2012, p.65): “If not well designed, school choice programmes can increase segregation and inequalities.”
 - Next slide: rules of game of universal free school choice in Hungary
Universal free school choice for 1-8th grade students

- Regular primary track (primary: 1-8th grades), 90% of 8th graders
 - geographical assignment for all students
 - district school cannot refuse
 - students can apply for any out-of-district school
 - if admitted public funding follows the student
 - schools can refuse out-of-district students (only in lack of places, no admission exam)
 - If applications exceed number of places?
 - Priorities for disadvantaged students? No.
 - Then what? Anything the school principal decides.

- Advanced academic track (starting from 5th|7th grade), 10% of 8th graders
 - extra channel for “gifted” students: 6 or 8 year long academic high schools
 - if admitted public funding follows the student
 - admission rules
 - mandatory: national standardized written exam
 - may use prior GPA or non-standardized oral exam
Universal free school choice in Hungary, cont.

- Social background affects school choice very selectively
 - with college educated mother: 50% go to out-of-district school
 - with not higher than vocational HS (lower half of the society): only 20%
 - raw gap: 30%; bulk of the gap preserves within small commuting distances
 - not only composition effect, with place of residence FE gap is still 20%
 - arbitrariness of admission rules; school are interested in easy-to-teach students
 - commuting costs, poor information, lack of preparation in advance may play a role

- Flanders experienced similar problems with unregulated school choice until 2003. (Musset 2012: 21-22)
 - rules were changed afterwards

- How to reduce the impact of disadvantage in school choice? 2 classes of options
 - changing the rules of game (as in Flanders)
 - compensatory interventions, endless list, some examples:
 - using incentives to enhance school choice among the poor
 - mixing students within schools, dismantling within-school segregation => IEP in Hungary
Integrated Educational Program, (IEP), Hungary 2005-2007

A well designed Roma integration program: 2nd=>4th, 6th=>8th grades
- 30-30 treated-control schools matched, altogether ≈ 4,000 students
- mixing students of previously segregated classes, extra funding conditioned on mixing
- combined with quality educational elements in the treatment group
- impact evaluation? Yes, but only the impact of the whole package
- cannot separate the impacts of different program elements

Some impacts (6th through 8th grade), diff-in-diff results (Kézdi-Surányi, 2009)

<table>
<thead>
<tr>
<th>Cognitive / non-cognitive skills</th>
<th>Roma</th>
<th>Non Roma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading test</td>
<td>+ns</td>
<td>+ns</td>
</tr>
<tr>
<td>Control over life events (Rotter)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coping with difficulties (Lazarus-Folkman)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Positive self esteem (Harter)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acceptance of the OTHER ethnic group</td>
<td>-ns</td>
<td>+</td>
</tr>
<tr>
<td>School cont. after 8th grade in academic HS track</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- Additional results
 - The program demonstrates positive results of modern
 - student-centered teaching methods and
 - school management

- History of the program after 2007: declining phase
 - scaled up to several hundred primary schools
 - but in a discouraging way
 - interethnic mixing of students no longer a condition of funding
 - incentive for schools / school providers to preserve existing segregation
 - no longer central expertise in implementation
 - no longer quality control
 - no follow up of students, no measurement
 - program still exist this way
Summary

Some general advice for future planners of educational interventions that aim at helping Roma students in Europe

- Adapt what’s known to work for disadvantaged children in general.
- Don’t try reinventing the wheel by searching „good practices” for the Roma in particular.
- Compensatory programs can really help some.
- But addressing systemic problems can be more relevant. They are better solved by systemic means.
 - School choice - discussed here
 - Teacher selection, teacher education - in lack of time not discussed here
References

 https://www.oecd.org/education/school/50293148.pdf
Income Inequality and Educational Inequality: What are the links?

Greg J. Duncan
University of California, Irvine
Outline

• Evidence on income inequality and educational inequality in recent decades

• Mechanisms by which income matters for child outcomes

• Some promising and unpromising approaches to supporting low-income families to promote children’s attainments
Inequality in family income and education over the past 40 years
Growing apart
Change in real household incomes between 1985 and 2011, OECD average*

*Unweighted average of 17 countries:

Top 10% incomes

Bottom 10% incomes

Source: OECD Income Distribution Database http://oee.cdf/idd

OECD
Top minus Bottom Income Quintile Differences in US Family Income

Source: Duncan et al. (2017), based on data from the Panel Study of Income Dynamics
Top minus Bottom Income Quintile Differences in US Children’s College Completion at age 25

Source: Duncan et al. (2017), based on data from the Panel Study of Income Dynamics
Did increasing income inequality *cause* increasing educational inequality?

- Growth in family income inequality accounts for most of the growth in education inequality
- Income more predictive of increasing gaps than family structure, maternal schooling, etc. (Duncan et al., 2017)
Did increasing income inequality cause increasing educational inequality?

• What about the causal evidence? Draw from:
 • Random-assignment experiments that provided larger cash payments to some families than others or provided more financial work rewards
 • “Natural experiments” that take advantage of policy changes or, e.g., casino payments
Did increasing income inequality cause increasing educational inequality?

More general conclusions from the literature on income effects (Duncan et al. 2014):

• Causal impacts are more selective than correlational evidence would suggest (We need more RCTs!)

• *Achievement* is most sensitive to income in middle childhood

• *Attainment* is most sensitive to income in adolescence

• Very little evidence on income effects early in life
Mechanisms linking income and child outcomes

- Attainment
- Socioemotional behavior
- Health
Mechanisms linking income and child outcomes

What money can buy
- Cognitive stimulation in the home
- Type and quality of child care
- Quality of schools and neighborhood

Child/adolescent/adult well-being:
- Attainment
- Socioemotional behavior
- Health
US family enrichment expenditures

Annual spending per child

<table>
<thead>
<tr>
<th>Age turned 14</th>
<th>1972-3</th>
<th>2005-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top quintile</td>
<td>$3,740</td>
<td>$9,384</td>
</tr>
<tr>
<td>Bottom quintile</td>
<td>$883</td>
<td>$1,391</td>
</tr>
</tbody>
</table>

Source: Duncan and Murnane (2011), based on data from the Consumer Expenditure Surveys
Mechanisms linking income and child outcomes

What money can buy
- Cognitive stimulation in the home
- Type and quality of child care
- Quality of schools and neighborhood

Family processes
- Maternal mental health
- Parenting
- Parent cognitive “bandwidth”

Child/adolescent/adult well-being:
- Attainment
- Socioemotional behavior
- Health
Evidence linking income to family processes

- Increased EITC linked to lower maternal stress and mental health (Garthwaite and Evans, 2010)

- Quasi-experimental evidence linking income to “bandwidth” (Mani et al., 2013)
Mechanisms linking income and child outcomes

- What money can buy
 - Cognitive stimulation in the home
 - Type and quality of child care
 - Quality of schools and neighborhood

- Family processes
 - Maternal mental health
 - Parenting
 - Parent “bandwidth”

- Early stress fetal/child

- Child stress and immune function

- Child/adolescent/adult well-being:
 - Attainment
 - Socioemotional behavior
 - Adult Health
Some strategies for reducing income and attainment gaps

- Direct cash transfers (e.g., child allowances)
- In-kind transfers (e.g., US food stamp program)
- Conditional cash transfers
Some strategies for reducing income and attainment gaps

- Direct cash transfers (e.g., child allowances)
- In-kind transfers (e.g., US food stamp program)
- Conditional cash transfers
Conditional cash transfers

• Successes in a number of countries (Fiszbein and Schady 2009)...

• But less so in New York’s CCT program (Miller et al. 2016)....
Conditional Cash Transfer Experiment I
“Family Rewards 2.0”

- Two locations: Bronx, New York and Memphis, TN
- ~1,200 families in each city; half offered the program and the other half served as controls
- Cash rewards for:
 - School attendance, grades and test scores for adolescents
 - Medical and dental visits
 - Sustained work and educational credentials for adults
Conditional Cash Transfer Experiment I
“Family Rewards 2.0”

Results

• $2,000/year cash payments reduced poverty and increased happiness

• Increased medical and dental visits

BUT...

• Reduced employment and earnings

• No effect on school performance or health of children
Conditional cash transfers II “New Hope”

- The New Hope demonstration was a different kind of conditional transfer
- It provided a set of family supports to families committing to full-time work
- Random assignment experiment in Milwaukee (Huston et al. 2003)
Conditional cash transfers II “New Hope”

• What New Hope required:
 – Proof of 30+ hours of work per week

• What New Hope provided:
 – Earnings supplement
 – Child care subsidy
 – Health insurance subsidy
 – If needed, a temporary community-service job

• Who was eligible:
 – All adult men and women with low family incomes
New Hope Participants at Baseline:

• n=1,362
• All lived in two very poor Milwaukee neighborhoods
• 30% employed full time
• 72% female; 28% male
• 71% had children in household

Impacts:

– Increased income and work
– But also benefited children...
Impacts on Children

<table>
<thead>
<tr>
<th>% of standard deviation</th>
<th>Achievement- all</th>
<th>Behavior- boys</th>
<th>Behavior- girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1</td>
<td>0.25**</td>
<td>0.38**</td>
<td>-0.04ns</td>
</tr>
</tbody>
</table>
Unconditional cash transfers for infants and toddlers

• Little causal evidence on income effects very early in life

• “Perfect storm” of risks
 • Brain architecture is being established
 • Family is all-important
 • Family income is lowest

• Consistent correlational evidence of growing gaps in brain structure and function
Correlational Brain Science

Total Gray Matter

Source: Hanson et al. 2013
But does income inequality *cause* these different brain trajectories?

- Correlational evidence doesn’t tell you
- Random assignment of cash payments to some mothers with newborns provides a much better test
Design for the first RCT of income support for poor families with infants and toddlers

<table>
<thead>
<tr>
<th>National Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>1000 poor mothers; ~250 per site (Sites: NYC, New Orleans, Omaha, St. Paul/MN)</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>$333/month for 40 months ($4000/year)</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>$20/month for 40 months ($240/year)</td>
</tr>
<tr>
<td>Payment</td>
</tr>
<tr>
<td>Monthly reload on debit card; no restrictions on spending</td>
</tr>
<tr>
<td>Data Collection</td>
</tr>
<tr>
<td>Birth, age 1, 2 and 3</td>
</tr>
<tr>
<td>Outcomes of interest</td>
</tr>
<tr>
<td>Household economic circumstances, work, child care; Family functioning, parenting</td>
</tr>
<tr>
<td>Children’s developmental outcomes: Cognitive, emotional and brain development</td>
</tr>
</tbody>
</table>
Unconditional cash transfers for infants and toddlers

- Recruiting starts April 1, 2018
- Wish us luck!
Greg J. Duncan

gduncan@uci.edu
Asset Building Programs: A viable policy option to curb social inequality in education?

Experimental evidence from Italy

Davide Azzolini (FBK-IRVAPP) & Antonio Schizzerotto (FBK-IRVAPP)

OECD-US Meeting Using educational research and innovation to address inequality and achievement gaps in education

Washington DC, 11-12 December 2017
Asset building programs

What they are and what we know so far
Individual Development Accounts

What are they?

• Asset-building programs - also known as Individual Development Accounts (IDAs) - are a type of Conditional Cash Transfer policies;

• Traditionally, implemented in developing countries (Cornell 2003);

• More recently, also in advanced societies to face growing socioeconomic vulnerability, squeezed public budgets; and to sustain family investments in higher education;

• GOAL: helping low-income households’ exit poverty by incentivizing savings aimed at specific investments, such as a first home, business capitalization, or higher education and training (Sherraden 1991).
Individual Development Accounts
How do they work?

1) The eligible household/individual enrolls in the programme.

2) The household/individual saves money on a regular basis.

3) The program matches the saved money with a given multiplier (e.g. 4:1).

4) The household/individual can spend the matched money for allowed expenses; typically: education, housing, small business.
Individual Development Accounts

Applications and evidence

Counterfactual evaluation studies:

- **American Dream Demonstration**, US (Harris 2012; Grinstein-Weiss et al. 2013);
- **Asset For Independence**, US (Mills et al. 2016);
- **Learn$ave Demonstration**, Canada (Leckie et al 2010).

- ✓ Good potential to enhance educational investments;
- ✓ **Cost-effectiveness** concerns;
- ✓ Need to be well-targeted (e.g., addressing youths in need) and have strong conditionality in the use of the matched savings.
Affording College With the Help of Asset Building
The ACHAB policy experimentation

- **Aim**: Testing the effectiveness of asset-building program («Percorsi») aimed at facilitating access to post-secondary education among high school students from low-income families
- **Where**: Metropolitan area of Turin, North-West Italy
- **When**: 2014-2017
- **Who**: Around 700 high-school students
- **How**: Randomized Controlled Trial

Funding: The ACHAB experiment has been made possible by a EU grant

Partners: Ufficio Pio, ASVAPP, FBK-IRVAPP, USR Piemonte, Istituto Pinifarina.

Web: www.achabproject.com
Key features of *Percorsi*

- **Beneficiaries:** low-income families with children enrolled in the last two years of high school;

- Families save between €5 and €50 a month, with a tolerance of one skipped month;

- The savings are supplemented by a 2:1 multiplier for high-school expenses and 4:1 multiplier for university expenses, up to a maximum of €8,000 (enough to cover direct costs of University in Italy);

- **Strong conditionality** of the matched savings: usable exclusively for education related expenses;

- **Active role of the family** as compared to traditional forms of financial (+ financial education course).
Why we thought it could work

The causal channels

- Asset building
- Reduction of liquidity constraints
- University enrolment

Direct effects:

- Family involvement
- Financial planning
- Student motivation

Indirect effects:
Targeting the “right” population

- Students who will not enrol, independently of any economic incentive (*never-enrolees*)
- Students who will enrol, independently of any economic incentive (*always-enrolees*)
- Students at risk of giving up their university enrolment decisions because of financial constraints (*marginal students*)

NB: On the first two sub-populations the impact of the program would be zero by definition.
Targeting the “right” population

- We rely on a **model of university enrolment** from data on students in Trento;
- We predict each applicant’s **probability of university enrolment**;
- We **rank applicants in ascending order**;
- We admit applications **starting from the bottom**, up to the program’s capacity;
- We exclude applicants with highest probability of university enrolment.

Source: ACHAB survey

Note: The vertical line indicates the cut-off (0.675).
Randomization

<table>
<thead>
<tr>
<th>Treatment</th>
<th>High School Track</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Academic</td>
<td>Technical</td>
</tr>
<tr>
<td>Control</td>
<td>208</td>
<td>153</td>
</tr>
<tr>
<td>Treated</td>
<td>139</td>
<td>104</td>
</tr>
<tr>
<td>Total</td>
<td>347</td>
<td>257</td>
</tr>
</tbody>
</table>

Integrity of the experiment
- Statistical equivalence of the groups ✓
- Overall attrition (7.4%) ✓
- Differential attrition (1.4 pp) ✓
Summary of the main results

- University enrolment: +8.6**
- At least 1 exam (first semester): +9.0**
- At least 2 exams (second semester): +12.9**
- Enrolment (second year): +11.7**
Summary of the main results

- University enrolment: +8.6**
- At least 1 exam (first semester): +9.0**
- At least 2 exams (second semester): +12.9**
- Enrolment (second year): +11.7**
What if...we included ‘always enrolees’

<table>
<thead>
<tr>
<th>Estimated effect (excluding always enrolees)</th>
<th>Simulated effect (including always enrolees, 10 simulations)</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion
Discussion points

- Further (comparative) research and replication studies are needed
 - Counterfactual evaluations of IDAs are still too few

- Early vs late interventions
 - Cost-effectiveness arguments in favor of the former, but there are no «one-size-fits-all» solutions: social inequality is a multidimensional and persistent phenomenon which requires a mix of solutions

- Conditionality vs unconditionality of the benefits
 - Unconditional benefits could fail if preferences and information are not equally distributed in the population

- Targeting vs universalism
 - Universalistic policies useful to redistribute resources
 - Targeted measures more effective, but there are practical feasibility concerns
Thank you for your attention!

azzolini@fbk.eu
Income support strategies to reduce inequalities: Insights from France

Arthur.heim@strategie.gouv.fr
Context: French welfare system

- Rather generous direct transfers to low income families
- Supplemented with fiscal spending (tax credit on early childhood care spending)
- Better incentives but still some potential distortive effects and “Matthew effects”
- Anti poverty policy not aimed at tackling educational inequalities
Context: French welfare system
Recent innovations

• More and more experiments with high quality research designs.
 • « Garantie jeune » : training and conditional cash transfers to young NEETs (Not in education, employment or training).
 • Basic income experiment to be set in at least 11 departments
 • Toward a more simplified welfare system (unified mean-tested allowance)
Improving college access: the case of a large need-base grant program (Grenet and Fack, JAE (2014))

• Context
 • University fees in France are very low compared to the USA (€ 184/year in bachelor, € 256/year in master)
 • Students from low-income families still have little access to tertiary education
 • Cash transfers to alleviate costs of tertiary education
 • Parents’ income
 • Distance to their parent’s home
 • Number of siblings in tertiary education
Improving college access: the case of a large need-base grant program (Grenet and Fack, JAE (2014))

• Context
 • Mean-tested scholarship for students from low-income families for tertiary education
 • Lowest grant: ± € 1500/year vs. University fees exemptions only.
 • Evaluation based on exhaustive administrative data from 2008-2010
 • Quasi experimental impact evaluation: regression discontinuity design
Quick word on regression discontinuity design

• There exists an arbitrary rule base on a quantitative variable (income, age, test marks etc.) that determine eligibility to a public policy

• People cannot manipulate their position above and below the threshold

• ”As if” people were randomly allocated in an appropriate bandwidth around the cutoff
Improving college access: the case of a large need-base grant program (Grenet and Fack, JAE (2014))
Improving college access: the case of a large need-base grant program (Grenet and Fack, JAE (2014))

• Strong impact (5 to 7 pp) on enrolment rates
• Positive impact on persistence and degree completion

• Substantial returns to a college degree in France (50 to 200 000 discounted € 2015)
• How to explain that so many students decide not to enroll in college because they were not eligible for such a small funding?
Improving college access: the case of a large need-base grant program (Grenet and Fack, JAE (2014))

• Credit constraint ?
• Individual heterogeneity ?
• Psychological factors ?
• ?
Tuesday, December 12, 2017

Concluding remarks and wrap-up

Organisation for Economic Co-operation and Development
THE NCES ED TECH EQUITY INITIATIVE: PURPOSE