Innovation in education by category

- **Primary**: 33
- **Secondary**: 26
- **Maths**: 34
- **Science**: 30
- **Reading**: 30

Innovation in education by type of practice

- **Teachers’ peer learning**
 - 51
 - 0
 - 50.7
 - 42

- **Homework**
 - 47
 - 0
 - 41.1
 - 36

- **Active learning practices in science**
 - 33
 - 0
 - 33
 - 28

- **School learning resources**
 - 29
 - 0
 - 20.3
 - 19.9

- **Fostering higher order skills**
 - 23
 - -3.1
 - 19.9
 - 24

- **Formal teacher training**
 - 23
 - -18.5
 - 6.3
 - 24

- **Assessment**
 - 22
 - -6.9
 - 14.6
 - 26

- **Other practices**
 - 28
 - -1
 - 27.3
 - 21

- **School external relations and HRM**
 - 20
 - -14.3
 - 5.1
 - 21

ICT Innovation

- **Computer availability**
 - 37.2
 - -26.7
 - 10.4
 - 39

- **Use of ICT in schools**
 - 29
 - -3.2
 - 25.6
 - 33

Lithuania

Between 2006 and 2016, Lithuania experienced a moderate level of innovation in education, on par with the average level in an OECD system. Primary educational practices changed much more than secondary practices. At the disciplinary level, there was a lot more change in mathematics education practices than in science and reading, but reading practices changed more than the OECD average (while maths practices changed less). Innovation related to technology followed the OECD pattern, with a drop in access to computers, and an increase in the use of ICT in class. Innovation in the system mainly lay in the diffusion of teacher peer learning practices and in changes in homework practices.

Some trends in educational outcomes

- **Academic outcome in primary science**
- **Academic outcome in primary reading**
- **Student satisfaction in primary and secondary education**
- **Student engagement in primary and secondary science lessons**

- **Academic outcome in secondary science**
- **Academic outcome in primary and secondary maths**
- **Teachers’ collective ambition for their students in primary and secondary education**
- **Teachers’ collective self-efficacy in primary and secondary education**
- **Equity of academic outcomes in primary reading**
- **Equity of academic outcomes in primary and secondary science**
- **Equity of academic outcomes in secondary maths**
- **Equity of academic outcomes in primary maths**

Practices that changed the most

Primary

- 40 more students in 100 frequently practiced maths skills and procedures on computers, reaching a 42% coverage
- 40 more students in 100 frequently used computers to look up for ideas and information in maths, reaching a 45% coverage
- 30 more students in 100 had their teachers visiting another classroom to learn more about teaching, reaching a 40% coverage

Secondary

- 70 more students in 100 in maths and 57 more in science systematically discussed homework in class, reaching an 80% and 68% coverage respectively
- 30 more students in 100 had portable laptops or notebooks available for use at school, reaching a 48% coverage
- 28 more students in 100 had their teachers discussing how to teach a particular topic in science, reaching a 44% coverage

The indices indicate innovation intensity from small (below 20) to large (over 40). When displayed, positive and negative values show how much of the index corresponds to a expansion or contraction of the covered practices between 2006 and 2016. Authors’ calculations based on the PIRLS, PISA and TIMSS databases.
Lithuania
Measuring Innovation in Education 2019
What has changed in the classroom?

Measuring innovation in education and understanding its process is essential to improve the quality of the education sector. We need to examine whether, and how, practices are changing within classrooms and educational organisations and how students use learning resources. We should know much more about how teachers change their professional development practices, how schools change their ways to relate to parents, and, more generally, to what extent change and innovation are linked to better educational outcomes. This would help policy makers to better target interventions and resources, better understand where they need to get better evidence, and get quick feedback on whether reforms do change educational practices as expected. This would also enable us to better understand the role of innovation in education.

Key findings for OECD education systems

- On average, there has been a moderate level of innovation in OECD education systems, perhaps more than one would often acknowledge, but probably less than what would be needed to really improve education systems.
- Many education systems have experienced high levels of technology-related innovation, with a slight decrease in access to computers and a significant increase of the use of ICT in pedagogical practices. Furthermore, on average, access to laptops increased by 17% points between 2009 and 2015.
- In many countries, peer learning has spread as a teacher professional development practice – increasing by 40% points for the OECD on average.
- While many policy debates have focused on “21st century skills” in the past decade, rote learning practices have spread to a similar extent as active learning practices, increasing by 28 and 26% points respectively.
- While in some practices there have been similar patterns across education systems, in most of them there does not seem to be an international convergence on pedagogical and educational practices.
- Innovation is not an end in itself, and some changes have not always translated into improvements in educational outcomes.

Methodology

The book examines the diffusion or contraction of about 150 educational practices from 2006 to 2016 by analysing data from three international education datasets – Trends in International Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study (PIRLS), and the Programme on International Student Assessment (PISA). Beyond identifying the areas in which each education system has demonstrated emerging or changing organisational and pedagogical practices over a decade, the book synthesises education systems’ intensity of innovation by computing composite indices for countries for which enough information is available. Based on effects sizes (multiplied by 100), the education innovation indices propose a continuum, with innovation intensity being considered as relatively small when below 20, moderate between 20 and 40, and large above 40. More details on the methodology can be found in the report.