Extended producer responsibility and competition

Antonio Massarutto
DIES, University of Udine
antonio.massarutto@uniud.it

EPR in a nutshell

• Some essential features of EPR
 – Shifting responsibility away from waste management services and towards manufacturers and retailers, with the aim of fostering the achievement of SWM targets
 – usually: recycling and resource efficiency, but not necessarily
 – Transforming the financial basis of SWM: from end-of-pipe charges to advance disposal fees incorporated in product prices

• EPR variants
 – Degrees of industry involvement may vary
 – Scope of EPR schemes may vary (eg include business waste or not; include orphan waste or not)
 – May entail a vast range of policy instruments
 – Individual (company) vs. collective (sector, cluster of sectors)
EPR: a success story?

- Some expected outcomes of EPR
 - “Closing the loop” by incorporating waste-related externalities in the production process
 - Facilitate recycling via improved product design
 - Boost recycling industry via reverse logistics
- Empirical evidence
 - Impact on product design and upstream innovation lower than expected
 - Spectacular increase of separate collection and recycling rates, driven by reverse logistics and integration of recycling markets
 - Cost effectiveness: despite the critics, evidence shows EPR is cost-effective in the long run (no clear evidence that costs could be lower otherwise)

Why many economists do not like EPR

- Often associated with mandatory targets and take-back requirements; criticism against MT is extended to EPR (Pearce-Brisson; Dijkgraaf)
- Often associated with monopolistic organizations having strong market power and able therefore to distort market functioning
- Could be used to raise non-tariff barriers to trade
- Not effective for streamlining upstream innovation, while recycling could be attained with less distortive approaches (Kinnaman)
- Inefficient cost duplication (Porter)
What does evidence show?

- Evidence hard to deny; but empirical results also cannot:
 - Before the advent of EPR, only minor recycling rates were considered feasible
 - EPR has driven very quickly RR close to 100% for some materials (eg batteries, oil) and up to 70-80% for many others
 - EPR has generated a booming market for handling and processing materials along the reverse logistics value chain (Italy: 2,500 companies, 12,000 employees, 4,2 BC turnover)
 - Once cost comparison accounts for the full cost (and not only the share paid by producers via the PRS) cost-effectiveness results higher

- Walls (2004) points out that:
 - if the market works properly, EPR would be unnecessary;
 - a waste collection charge incorporating externalities (eg a landfill tax, tax on raw materials) would be equivalent
 - But are markets efficient? Probably not

- EPR as a second best policy aimed at solving market failures
 - ECJ (2000): a legal monopoly does not necessarily violate competition law, if it is the least restrictive way to achieve a mission of general economic interest

Market failures in the market of recycling

- Marginal cost perceived by market operators
- Social marginal cost
- Social marginal benefit
- Marginal benefit perceived by market operators

- Level of recycling spontaneously achieved on the market
- Socially optimal level of recycling
- Rate of Recycling %
Transactions costs

- Transactions costs in the SW recycling market
 - Ensure coherence of product design with post-consumption
 - Identification of destinations of waste-derived materials
 - “Market for lemons” due to costly quality assessment
 - Sunk costs (e.g., research about potential reuse; treatment facilities; adaptation of plants that receive waste-derived materials, logistics)
 - Risk of disruptive competition and wasteful double-investing in the early development of the recycling industry due to uncertainty

- **EPR allows to abate some of these costs and to provide a more effective structuration of the reversed logistics**

Secondary market price volatility

- Empirical evidence shows very high turbulence
 - Volatile secondary prices and related risk (face to the PSO of dealing with all waste) ⇔ exposed to the market power of buyers
 - Thin market ⇔ bilateral transactions (especially for “poor” materials, for which transport costs are significant)
 - From the point of view of SWM operators, planning of SWM capacity is more uncertain and leaves opportunity to freeride to those having access to the best contracts

- **EPR allows to pool the risk associated to price volatility and to allocate it on the subject that is in the best position for managing it; SWM operators can concentrate on the core business of organizing collection**
Market power and economic margins

- The pre-condition of market trades:
 - Someone is willing to pay X
 - Someone is willing to accept Y
 - $X > Y$
 - $Y - X$ is the economic margin, and can be allocated to both according to the relative market power
 - In a competitive market, the economic margin, $Y - X$, tends to zero
- In the WM industry, a similar mechanism operates, but there are some specific features
 - The economic margin, $Y - X$, is negative (unless the avoided cost for alternative disposal solutions are considered among the benefits)
 - Municipalities are willing to pay X for getting rid of materials ($X = CUC + CTD$)
 - Recyclers are ready to pay $Y = PR$ for receiving them
 - If $(Y - X) > (CSC + CPR)$ recycling is socially convenient
- **EPR as a way to re-equilibrate market power and ensure fair sharing of the value-added**

A Copernican Revolution

- Recycling yesterday and today
 - Recycling has ever existed spontaneously, and still does in developing economies wherever a positive value can be exploited
 - Diminishing returns + “Baumol disease” ⇔ cheaper to dispose of waste rather than engage in recycling
 - The turning point: emergence of social costs + scarcity costs of disposal (not immediately incorporated in market prices)
- Fundamental difference between today’s and yesterday’s recycling:
 - Previously recycling was driven by market forces ⇔ residual waste = independent variable (issue of security of supply)
 - Economic rationale for recycling is mostly driven by the high and rising cost of traditional disposal
 - Nowadays, the “zero-landfill” target justifies increasingly demanding targets for recycling ⇔ achieving these targets implies a “general interest” that goes beyond the market value of recovered materials
- **EPR as a “strict liability” principle ⇔ industry as the “cheapest cost avoider” (not necessarily “producer”)**
The Strange case of Dr. Recycl and Mr. Hide

• Achieving recycling targets implies a systemic effort and cannot rely simply on WM operators
 – Higher recycling rates imply long value chains: opportunities for reuse are far from the original material, either in an industrial or geographical sense
 – Economies of scale ↖ geographical size of the recycling market is increasingly global, not easy to cope with for SWM operators
 – Economies of scope ↖ integration of flows of different origin
 – Recycling opportunities require industrial innovation and entail significant gains from trade

• An often neglected issue: illicit WM
 – Long value chains, create the case for illicit arbitrage
 – Estimates in Italy: 22 Mt/yr (20% of total) simply “disappear”
 – This is particularly the case when trade opportunities involve developing countries ↖ “capture of control” and asymmetric regulation

• EPR as a way to strengthen social control in order to prevent illicit destination “dressed up” as recycling

Household and business waste: yesterday

- Legal monopoly
- Free market (subject to env regulation)
- Assimilated

Households

<table>
<thead>
<tr>
<th>Undifferentiated collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal waste</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Disposal of MW</td>
</tr>
</tbody>
</table>

Business waste

<table>
<thead>
<tr>
<th>Recyclable waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal of SW</td>
</tr>
</tbody>
</table>

Market for secondary materials & energy
Household and business waste: today (and tomorrow)

Pros and cons of EPR

• EPR-based organizations help reducing market failures and improve performance of recycling markets
 – Market creation \(\Rightarrow \) creating a more predictable market setting that reduces risks associated to sunk cost and protects specific investments
 – EPR allows to implement waste management strategies oriented at landfill minimization \(\Rightarrow \) public service obligation = guarantee achievement of recycling targets
 – EPR allows to establish social control over waste flows
 – Allow to allocate costs on a subject that is in the best position to pass the incentive throughout the value chain \(\Leftrightarrow \) better social acceptance
• However, they also create risk of new and more subtle market failures arising from market power PROs acquire with respect to:
 – Municipalities and municipal operators \(\Leftrightarrow \) easy to exploit since obliged to provide solutions anyway given the high social cost of waste management failure
 – Recycling industry \(\Leftrightarrow \) “cannibalization” of independent operators
 – Participants to the scheme \(\Leftrightarrow \) “cost-plus” finance; discrimination
 – Distortion of secondary markets for raw materials
 – Weak incentive to upstream innovation \(\Leftrightarrow \) trade-off between upstream and downstream effectiveness
 – Cost is “hidden” \(\Leftrightarrow \) risk of engaging in excessively high recycling targets
• Institutional design is important for reducing these risks
Competition among PRS

- Arrangements in the EU vary
 - Monopolistic scheme with mandatory adhesion and compulsory fee (Italy) + independent market operators
 - Competitive systems with little-no autonomy over contracting patterns with local authorities (eg Germany)
 - Competitive systems with one of them having a public service obligation for a last-resort umbrella contract (France)
 - Competitive system (UK)
- Trade-off: making public service obligation sustainable, without creating market distortions
 - Monopolistic schemes are consistent with advance disposal fees ⇔ equivalent to “funded” retirement schemes
 - Market schemes do not guarantee automatically final result
 - Choice depends on how much the system can “afford” to miss recycling targets (are alternative options available? For how long?)
 - The more concentrated the product (and retail) market, the less need for a monopolistic PRS?

Determinants of cost allocation

- Sources of contractual power for the municipality
 - The higher the target posed onto EPR
 - Competition among different EPR schemes / possibility to bypass the EPR scheme
 - Relative efficiency in separate collection / sorting
 - How easy it is to shift cost onto consumers
- Sources of contractual power for the PRS
 - Possibility to achieve target from other waste flows (eg commercial waste) ⇔ cross subsidies
 - Higher disposal price ⇔ higher WTP of municipalities for SC
 - Small municipalities
 - Differences along the country
Allocation of costs in practice

- Who pays for recycling?
 - If the cost is born by the entity in charge for WM, it ends up in the waste charge or in the municipal budget
 - If paid by EPR schemes, it ends up in the market price of goods
- Patterns of cost allocation between EPR systems and municipalities may vary (and hamper comparisons)
 - Full-cost base:
 • the EPR bears directly the cost of separate collection
 • Municipality saves entirely the cost of managing waste
 - Additional cost base:
 • the EPR pays the difference between the cost of separate collection and the alternative
 • The average municipality is indifferent whether to engage in separate collection or not
 • The relatively efficient municipality has the incentive to maximize efforts

“Terms of trade” vary from country to country

- Figure (next slide) shows very high differences among countries with respect to the amount of prices paid by PRS to WM collectors
- If we adjust the figures taking into account the share of the total cost that rests on the SWM budget, most differences disappear.
- The full cost per ton collected/recovered is
 - 260/369 €/t in Portugal (Ferreira et al., 2012),
 - 200-250 € in Italy (Massarutto, 2010)
 - 207/225 €/t in Austria (EEA, 2005a).
Contributions paid by packaging waste EPR systems for sorted urban waste

![Graph showing contributions paid by packaging waste EPR systems for sorted urban waste.](image-url)
Some policy lessons

• Arguments in favour of legal barriers protecting PROs are still relevant (but probably fading)
 – “Infant industry” ⇒ protect investments involving sunk costs
 – Risk of free riding ⇒ ensure that all producers participate
 – Enforcement of “public service obligations” that implicitly arise from the centrality assumed by recycling in the SWM system

• Causes of success revisited
 – CCO vs PPP
 – Emphasis on producers vs. on industry

• Optimal balance cannot be assessed once forever
 – As any second best optimum, involves some trade-off
 – Conditions may change according to geography, internal market characteristics, history etc
 – Careful micro-institutional analysis needed ⇒ no easy answer

• Need to ensure a resilient policy design
 – Requirements change ⇒ avoid lock-in
 – Avoid “resting on laurels” on good results achieved

References

