Searching for Success: Summarising a Mixed Methods Approach to Identifying Positive Outliers in Bribery Reduction

Dr. Caryn Peiffer, School for Policy Studies, University of Bristol, UK
Dr. Rosita Armytage, Department for International Development, University of Birmingham, UK

Caryn.Peiffer@bristol.ac.uk
R.Armytage@bham.ac.uk

1 This paper was produced as a part of Investigating Islands of Integrity: Using a ‘Positive Outlier’ Approach to Understand How Corruption is Controlled, a British Academy Global Challenges Research Fund Sustainable Development Program (GF160007) research project.

The authors wish to particularly thank Professor Heather Marquette and Dr. Dieter Zinnbauer who encouraged and supported us in this endeavour, participants in a workshop held at the British Academy used to discuss the statistical methodology and phase two plans, as well as Dr. Trevor Budhram at the University of South Africa (UNISA) and Mr. Pius Gumisiriza at the Ugandan Management Institute for their invaluable assistance in conducting the third phase of this research. Most importantly, we thank the many experts, researchers, journalists, government officials, police officers, and health care workers in South Africa and Uganda who shared their time, expertise, and experience in often challenging work environments.
Corruption researchers tend to focus a lot of attention on why systemically corrupt countries fail to improve, and why anticorruption efforts often fall flat. As such, the field has had a difficult time identifying and explaining how positive change happens, and inspiring new and effective anticorruption interventions. In contrast, our research project focuses on the opposite: potential success stories in anticorruption. Taking inspiration from a budding literature on ‘pockets of effectiveness’, which examines how specific institutions are surprisingly effective service providers, despite the poor governance environment they are situated in, this project identifies and examines how sectors within a country, like the health sector or the courts, have successfully reduced bribery in otherwise systemically corrupt countries. This paper presents our novel three stage methodology for identifying and examining positive outlier cases in bribery reduction. Our methodology is novel because, unlike the methodologies used in other ‘positive outlier’ or ‘pockets of effectiveness’ literature, ours is designed to uncover potentially ‘hidden’ cases of developmental progress, as well as those cases that have been recognised. The utility of the methodology is demonstrated through its use in uncovering two country cases studies in which surprising rates of bribery reduction occurred, though the methodology has much broader applicability. The advantage of the methodology is validated in the fact that the reductions in bribery that occurred in both cases were largely previously unrecognised.

Key words: Positive outlier, bribery, anticorruption, reduction, Uganda, South Africa.
The opinions expressed and arguments employed herein are solely those of the authors and do not necessarily reflect the official views of the OECD or of its member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

This paper was submitted as part of a competitive call for papers on integrity, anti-corruption and inclusive growth in the context of the 2018 OECD Global Anti-Corruption & Integrity Forum.
1. Introduction

A growing literature has aimed to learn from exceptional examples of positive change in development. Such examples have been called ‘positive outliers’, ‘positive deviants’, ‘pockets of productivity’, ‘pockets of effectiveness’, ‘islands of excellence’, and ‘islands of integrity’. In common, these cases buck the trend of their poor governance environment by doing better than the norm. These cases include successful public sector reforms in an otherwise poorly governed state (e.g. Andrews, 2013; 2015; Tendler, 1997), institutions that deliver goods and services much better than other organisations set in the same challenging governance environment (e.g. Roll, 2011; Naazneen, Huybens, & Vinuela, 2014); and surprisingly positive developmental outcomes, for instance, when the income of the poor outpaces expectations based on the trajectory of national wealth (Donaldson, 2008).

In common, studies researching these cases have sought to understand how it is that “some agents find better solutions to problems than their peers even though they have similar resources as their peers and face similar challenges and obstacles” (Andrews 2015: 198). According to Andrews (2015: 198), focusing on these surprising success cases has promoted “learning about the strategies adopted to find and fit effective solutions” and as such has “emerged as a way of identifying workable solutions to development’s toughest problems.”

However, many positive outlier studies suffer from a serious and unacknowledged limitation, which may cause researchers to overlook the most surprising cases of developmental improvement. Most studies examining positive outliers have relied on ‘experts’ to identify the success cases that are scrutinised. By relying only on already established reputations researchers risk overlooking ‘surprising’ cases—cases where developmental improvement has occurred but has not already been recognised, or which, at times, have been dismissed by political opposition parties as pro-government or agency propaganda. Without identifying, and examining, these hidden cases, the effort to understand positive outliers misses valuable sources of data, and potentially some of the most surprising – and revealing – cases of successful reforms.

This paper presents a novel methodology for identifying positive outliers that overcomes the pitfalls associated with the aforementioned reputational approach. We developed and used a three-stage methodology for both identifying and analysing positive outliers in bribery reduction. The methodology

2 This paper uses the term ‘positive outlier’ because the statistical methodology used to identify cases of surprising success, relies on statistically significant outlying observations.
combines quantitative statistical methods and qualitative research drawn from extensive interviews with both service providers and users, and other in-country stakeholders. In the first stage, potential positive outlying cases are identified statistically using simple regression analyses based on cross-national individual level bribery data. Potential positive outliers are sectors in which the respective sectoral bribery rate had reduced far more than expected, given the rate of change in bribery experienced by other sectors in the same country over the same period of time.

In a second phase, potential positive outliers are vetted through a review of the literature and preliminary consultations with in-country experts. This step is important because measurement errors in the quantitative data may cause statistical tests to identify false-positives as positive outlying cases. In our study, we vetted five cases.

The third phase is used, as far as possible, conclusively confirm or refute the remaining potential positive outlier cases, and to assess why and how positive developmental change occurred. This is done through a rigorous qualitative appraisal, as potential cases are investigated through in-country fieldwork. We conducted fieldwork in two cases—Uganda, examining a reduction in health-related bribery, and South Africa, examining a reduction in police-related bribery. It is hoped that the lessons learned at this stage will help scholars and policy makers better understand how positive developmental change happens.

This three-phase methodology represents a way forward for researchers and policy makers who are interested in learning from positive outliers, but are also keen to avoid the pitfall associated with identifying positive outlying cases based on reputations alone. In both of the cases, we identified, most close observers familiar with the cases were unaware that the sectoral bribery rate had significantly reduced, and as such, neither case had been subject to previous research related to the potential reduction in bribery. The relatively unacknowledged nature of both cases demonstrates that the methodology can be used to identify positive outliers that are relatively ‘hidden’. To the best of our knowledge, ours is the first application of the positive outlier approach to be applied to investigations of corruption reduction.

2. Literature review: How positive outliers are selected

Almost all positive outlier research has been conducted in two phases. Using an identifying methodology, a case or cases are chosen as potential outliers to examine, and qualitative research methods are used to examine how and why actors, institutions, or reforms within the exceptional case perform so well (Pascale, Sternin, & Sternin, 2010: 7). Policy lessons are then drawn from what was learned. However,
the lessons one can hope to eventually learn are dependent on the selection of cases and therefore, the means through they are identified. This is because the identifying methodology dictates the extent to which potential biases inform case selection, and such biases inherently shape what one might hope to learn from the cases themselves.

Despite the importance of the identification methodology, little attention is paid to the comparative benefits and limitations of the different methodologies used to identify the cases that are eventually lauded. In 2008, Leonard boldly attempted to inventory and review the positive outlier and related literatures and in that attempt, little mention was made of the methodologies used. Seminal pieces in this field that have followed Leonard’s (2008) review, each offering their own reviews of the literature, have also failed to critically review or even summarise the methodologies used in the literature (e.g. Roll 2013; Andrews 2015). In the most recent published critical review of the literature by Herrington and van de Fliert (2017), the criteria upon which cases are selected is not discussed at all. More surprisingly, our own review of the literature found that many of the works fail to describe the methodology used for identifying the case(s) examined (see Tendler, 1997; Roll 2011; Strauss, 2014; Willis, 2014; Pogoson & Roll, 2014; Simbine, Attoh, & Oladeji, 2014; Hout, 2014; Hertog, 2014).

2.1. Selecting cases based on reputation

In the few works that have described their case selection criteria in detail, the most common methodology, by far, used to identify cases of surprising success is reputational, in which cases are selected because they are reputed to be successful performers (Owusu, 2006; Grindle, 1997; Naazneen, Huybens, & Vinuela, 2014; Leonard, 1991; Andrews, 2013; 2015; Roll, 2011; Melo, Ng’ethe & Manor, 2012). For example, Naazneen, Huybens, and Vinuela (2014) asked World Bank Staff in ‘fragile states’ to point out successful institutions. And, Leonard (1991: 11) selected his cases of four developmental leaders based on the recommendation of ‘many well-informed observers.’

Using a reputational approach to identify outliers, however, can be limiting and may be problematic. When the universe of cases considered include only those already thought to be successful—as with Naazneen, Huybens, & Vinuela (2014) and Andrews (2015), for example—exceptionally performing cases that have not yet been identified are overlooked. Put differently, other, and potentially more exceptional, cases—particularly those related to the experience of predominantly poor or marginalised populations—may fly under the radar of a reputational identification methodology.
2.2. New method, new insights

In these hidden, and perhaps highly unexpected cases, developmental change may have not been recorded, or the records of such changes may have not received the same amount of publicity as cases more readily identified by observers, government actors, or academics. A hidden positive outlier, for instance, may emerge in the performance of a highly specialised institution that the public (including observers trusted to give an assessment) are not equipped to assess. In other instances, it may be against the interest of certain influential groups to give credence to specific success stories. Reluctance to acknowledge positive change may stem from a fear that a ‘success’ story will benefit political opponents, or from a fear that an acknowledgement of some progress may weaken the political commitments needed to encourage further progress.

Instances of developmental improvements that tend to go unacknowledged or be suppressed, may have different drivers, characteristics, and/or unintended consequences than those that are more easily identified. Without recognising and understanding the achievements made in under-observed cases, we miss the opportunity to learn what has gone right in these surprising outliers, in what circumstances, and at what costs.

To our knowledge, only Donaldson (2008) has avoided using a reputational identification methodology. Donaldson (2008) identified ‘positive’ and ‘negative’ outlier cases by first regressing the relationship between the change in the national incomes of the poor and GDP growth. He focused on the 27 country-periods wherein income growth of the poor was significantly lower than the regression predicted—‘negative outliers’—or significantly higher than what the regression predicted—‘positive outliers.’ By relying on the hypothesized relationship between GDP growth and income growth among the poor to identify outlying cases, Donaldson (2008)’s study purposefully limited itself to focus on why these 27 cases bucked this specific trend.

In our exercise of the methodology, we similarly use regression analyses to identify our pool of potential positive outliers. However, we focus only on sector-specific bribery data rather than on any other variables hypothesized to influence bribery or broader corruption patterns. This element of our methodology builds upon the contribution that Donaldson (2008) made to the field. By not initially relying on reputations or on a hypothesized relationship for why success may or may not be achieved, the identification methodology presented here promises to have the most potential for uncovering truly
surprising successful cases: those which have not yet received acclaim and those that do not necessarily adhere to preconceived ideas of explaining why success may or may not occur in the first place.

3. Statistically identifying potential positive outliers in bribery reduction

3.1. Data and Measurements

Our aim in executing the first phase of the methodology is to statistically identify potential positive outliers in bribery reduction. Our analyses identified sectors where the bribery rate for sectoral services had decreased far more than what would be expected given how the bribery rates to other sectors, in the same country, and over the same period, had changed.

For our analyses, country-level sectoral bribery rates were computed using data from Transparency International’s GCB. Comparatively, the GCB dataset contains the largest geographic and temporal reach of household responses to questions probing people’s experiences with bribery, across multiple sectors (Peiffer, 2012). Individual responses to questions about whether a bribe had been paid to specific sectors were aggregated at the national level, using the provided survey weights. This aggregation allowed us to calculate a nationally representative country-level sector-specific bribery rate for all sectors included in a wave of the GCB.³

Our dataset included responses from the 2009, 2010/11, 2013 and 2015 GCB survey waves. In each of these waves, questions were asked about bribes made to the medical, education, police, courts, utilities, and permit (building and business permits) sectors. In all but the 2015 wave, questions were also asked about bribes made to the tax and land sectors. We chose to exclude data from GCB waves prior to 2009 because there was little information available on the quality of the samples and many samples appeared too small to be trusted as being reliable representations of the population (N below 500). As statistical outliers can arise due to errors in the data, a sincere effort was made to exclude questionable samples from the waves considered.

Given our interest in identifying surprising cases of bribery reduction (i.e. a change in bribery over time), we necessarily focused our attention on those country-samples that were asked about their bribery

³ We restricted our analyses to only those country samples that were reported by TI to be nationally representative.
patterns over at least two survey waves. Table 1 shows the number of countries surveyed in different combinations of survey periods or wave pairs.

Table 1: Number of countries surveyed in at least 2 waves of GCB

<table>
<thead>
<tr>
<th></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 & 2013</td>
<td>58</td>
</tr>
<tr>
<td>2015 & 2010/11</td>
<td>52</td>
</tr>
<tr>
<td>2015 & 2009</td>
<td>36</td>
</tr>
<tr>
<td>2013 & 2010/11</td>
<td>51</td>
</tr>
<tr>
<td>2013 & 2009</td>
<td>35</td>
</tr>
</tbody>
</table>

3.2. Structuring Predictive models

For us, positive outliers were identified as the sectors within a country where there has been a reduction in bribery, when stagnation or an increase in bribery was predicted. Predictions are based on how the rate of bribery had changed in other sectors in the same country, over the same period. Five OLS regressions served as our predictive analyses, each representing one of the five pairs of GCB waves (Table 1). The dependent variables for the regressions are the changes in sector specific bribery rates from the earlier wave to the latest wave of data considered. All sectors are treated together in the analyses, which is to say that if there were 6 different sectors of data for a pair of GCB waves available, the dataset was structured so that 6 different dependent variables for each country were specified. The independent variables of the regressions include three components. First, an index was included that reflected the rate of change in bribery rates for all other sectors, over the same period of time, other than the sector that inhabits the dependent variable position. Principle component factor analysis (PCFA)—a statistical technique used to reduce a large number of variables into one or a few indices—was used to create these indices.4

Also controlled for, in all of the regression models, is the bribery rate for the sector inhabiting the dependent variable position at the start of the period scrutinised. This is a ‘convergence’ term; it is important to the model because it accounts for the fact potential improvement is a function of where a sector’s bribery rate started. Finally, sector specific dummy variables were also included in each analysis, which accounted for what the dependent variable sector was (i.e. police, courts, health, permits, education, utilities, or land). By including these variables, the models acknowledged that patterns in bribery changes may have sector specific characteristics.

4 All factor analyses performed produced one factor with an eigen value over 1.00.
The resulting regressions therefore use changes in bribery rates of all other sectors in the country to predict the change in bribery in the sector inhabiting the dependent variable position, while controlling for both the type of sector the dependent variable rate reflects and the bribery rate for the dependent variable sector at the start of the period scrutinised.

3.3. Identifying Potential Positive Outliers

Potential positive outliers were determined by computing residuals, which is the distance between the regression line and each data point, and calculating the probability that the distance is due to random variation. Data points that are far away from the regression line—outliers—show that the regression model is less likely to explain its position.

To calculate the residuals, we subtracted the change in sector specific bribery rates predicted by the model (column 4 in Table 2 below) from the value reported by the data (column 3). We record this residual value in column 5. Column 6 (labeled “outlier”) records the probability that the position of each case’s corresponding value for its sectoral level bribery rate is caused by random variation. This is estimated by calculating the P-values of the residual’s Z-scores to determine the chance that the point’s distance from the regression line is caused by random factors. As outliers exist along a continuum for how surprising they are, we flag observations as being outliers when there is an estimated 5% or less chance of occurring.

<table>
<thead>
<tr>
<th>Country</th>
<th>Sector</th>
<th>Δ</th>
<th>Predicted Δ</th>
<th>Residual</th>
<th>Outlier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009 to 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uganda</td>
<td>Health</td>
<td>-5.0</td>
<td>11.2</td>
<td>16.2</td>
<td><0.01%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Health</td>
<td>-2.3</td>
<td>4.4</td>
<td>6.7</td>
<td>0.37%</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Land</td>
<td>-2.2</td>
<td>4.1</td>
<td>6.3</td>
<td>0.71%</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Police</td>
<td>-6.5</td>
<td>0.0</td>
<td>6.5</td>
<td>0.74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010/11 to 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>Police</td>
<td>-18.5</td>
<td>-1.5</td>
<td>17</td>
<td><0.01%</td>
</tr>
<tr>
<td>Uganda</td>
<td>Health</td>
<td>-17.3</td>
<td>-7.0</td>
<td>10.3</td>
<td>0.01%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Health</td>
<td>-2.7</td>
<td>5.0</td>
<td>7.7</td>
<td>0.32%</td>
</tr>
<tr>
<td>Thailand</td>
<td>Health</td>
<td>-7.1</td>
<td>0.0</td>
<td>7.1</td>
<td>0.39%</td>
</tr>
<tr>
<td>Hungary</td>
<td>Health</td>
<td>-7.4</td>
<td>-1.0</td>
<td>6.4</td>
<td>1.00%</td>
</tr>
</tbody>
</table>
For instance, as seen in Table 2, based on how bribery had changed in all other sectors measured, the model predicted that bribery to the healthcare sector in Uganda during the 2009 and 2013 period (first case listed) should have increased by 11.2%, the actual change over this period, according to the GCB, was a reduction of 5%, a difference of 16.2 percentage points. Since the likelihood that this data point can be explained by random error is less than 0.01% Uganda’s healthcare sector is considered a potential positive outlier in bribery reduction.

While in some cases the reduction in bribery, according to the GCB, may seem small, the data suggests that these potential positive outliers are far from trivial. If we focus on just those 4 positive outliers identified from a comparison of the 2009 and 2013 waves of the GCB, the analyses suggest that 4.6 million fewer people were asked to pay a bribe to receive the basic services specified in Table 2 than what the model predicted.

4. Stage Two: Triangulating Statistical Data

The second step in the identifying methodology is to vet potential positive outliers with the primary aim of assessing whether the positive developmental change recorded statistically is negated, and demonstrably proven to be inaccurate, by those with a deep familiarity with the identified case. Cases are only excluded in this stage when evidence is presented to strongly suggest that the statistical data on the case was wrong. This is because, especially in the cases of ‘hidden’ or unacknowledged positive outliers, evidence confirming that positive developmental change occurred may be disproportionately difficult to
come by or suppressed for various reasons. This stage is particularly important to the identification methodology because measurement errors in quantitative data may cause the statistical tests to identify false-positives as outlying cases—cases where a positive developmental trend was recorded statistically, but did not occur in reality.

In our examination of cases of potential bribery reduction, five of the eighteen statistically identified potential positive outliers were selected for further examination and vetting in Stage Two (Table 3). The selection of the five cases chosen reflected additional criteria—specific to our project—including whether the country was ODA eligible (a stipulation of our research grant), and whether conducting further research in these countries was feasible given how difficult, expensive, and/or potentially unsafe it may be to eventually conduct fieldwork in each potential case.

<table>
<thead>
<tr>
<th>Country</th>
<th>Sector</th>
<th>Outlier time period(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uganda</td>
<td>Health</td>
<td>2009 to 2013 & 2010/11 to 2013</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Health</td>
<td>2010/11 to 2013</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Land</td>
<td>2009 to 2013</td>
</tr>
<tr>
<td>South Africa</td>
<td>Police</td>
<td>2013 to 2015</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>Education</td>
<td>2009 to 2015</td>
</tr>
</tbody>
</table>

4.1. Vetting methodologies

Both statistical and qualitative methods were used to vet the 5 cases. First, an effort was made to triangulate the sector-specific bribery rates that were computed from GCB data. Three of the 5 cases are African, and so, as we consulted Afrobarometer sector specific bribery data to see how estimates from the two surveys compared. In all three African cases, a comparison with Afrobarometer data similarly suggested that the sector identified as a potential positive outlier had experienced a considerable reduction in bribery over a similar time frame. Unfortunately, we were not aware of a similar dataset that could be used as a comparison for the Mongolia and Indonesia cases.

Second, experts familiar with the country sector were consulted. These experts were identified using a snowball sampling technique that started with contacts drawn from the larger research teams’ personal
networks of colleagues, academic contacts and friends, as well as emails to scholars in prominent area studies peer-review journals that have published academic research on the cases. In total, we consulted with 50 identified experts, across the 5 cases. The experts represented a cross section of academics, development practitioners, government employees in the country identified, officials in foreign aid agencies, and NGO officers.

Correspondence with experts centred around whether they were aware of either supporting or countervailing evidence to suggest that bribery had reduced in the sector (or indeed whether it had appeared to remain constant or to increase), and whether their experience within the sector indicated that a reduction in bribery may or may not have occurred. Gauging perceptions at this stage, rather than initially, ensured that reputational data alone was not used to qualify or disqualify a case from being considered as a potential positive outlier.

In our examination of potential bribery reduction, all five cases vetted in Phase 2 passed Phase 2’s test, which is to say that we did not uncover any evidence to demonstrably prove that the underlying data, showing that bribery reduced, was wrong. Our research budget required that we select only two of the five cases vetted in Phase 2 for the fieldwork of Phase 3. We selected Uganda and South Africa to research their health and police sectors, respectively, because our research team had generated a large network of relevant informants and we were confident that our research budget would support fieldwork in each case.

5. Stage Three: In-Country Case Study Fieldwork

The third and final stage of the methodology involves in-depth qualitative fieldwork. Two aims drive Stage 3. The first is to further vet the cases using data unearthed in the field. This is important to do because evidence only accessible in the field may support or undermine the quantitative data analysed in the first phase. The second aim of Stage 3 is to assess why and how positive developmental change occurred. It is hoped that the lessons learned at this stage will help scholars and policy makers better understand how positive developmental change happens, and the various positive and negative knock on effects such improvements may generate as a result. In both Uganda and South Africa, we conducted 5-6 weeks of fieldwork.

5.1. South Africa
The GCB data on South Africa indicated a dramatic and unexpected reduction in bribery to the South African Police Service between 2013 and 2015 (Table 2), while Afrobarometer data suggested that the police-bribery rate started to decline in 2011. Moreover, our additional analysis of Afrobarometer data, identifying the region of each respondent, showed that the decrease was likely most dramatic in one of the nation’s rural provinces, Limpopo.

As this paper’s aim is to demonstrate the strengths and weaknesses of the methodology presented, the findings related to why bribery had reduced in each case are only briefly summarised. Our research in South Africa led us to develop two hypotheses for why bribery to the police may have reduced. First, during the period scrutinised a transformative policing technology—the Automated Vehicle Location system—was introduced, which provided a new means to monitor the activities of road police. Fearful of getting caught, in light of the new system, our data indicates that after the implementation of this new technology road police may initially have shown greater reluctance to request bribes. Second, in Limpopo, where the bribery statistics noted the most significant reduction, a large-scale government crackdown targeting high level corruption in the provincial government apparatus coincided with the period identified by the statistical data. During the crackdown, the province, most notably the capital of Polokwane, received an influx of high level corruption investigators from Pretoria. The high visibility of these forces in the capital and across the province may have unintentionally reduced the extent to which ordinary police were willing to break the rules, and ask for bribes, during this extraordinary period for the province (see forthcoming case-study paper).

5.2. Uganda

In Uganda, the GCB revealed a significant reduction health related bribery between 2010 and 2015 (Table 2). In brief, the findings of the fieldwork conducted over the course of five weeks enabled us to confidently conclude that bribery for health services had indeed been reduced during the period noted. Our research revealed that a government-led initiative to reduce bribery and corruption within the sector, the Health Monitoring Unit, generated a marked change in the behaviour of health sector workers (see forthcoming case study paper). The Unit’s success in fighting corruption stems from the unusually high level of support it has received from President Museveni, and its efficient use of highly publicised surprise health raids, which have made many health workers less willing to ask for bribes.

6. Promise realised: uncovering hidden ‘positive outliers’
In our examinations of healthcare in Uganda and the police in South Africa we uncovered surprising instances of bribery reduction (and potential bribery reduction), that had previously received little to no attention from academics or donors, and little attention from policy makers and the media beyond those bureaucrats directly involved in the design and implementation of the programs which likely contributed to the noted reduction.

In the South African policing case, the statistical reductions identified in police-related bribery were neither reported in the provincial or national media, nor publicised by the South African chapter of Transparency International. Neither was any research or previous studies identified at any of South Africa’s excellent centres for crime and policing research.

Two main factors account for why we think that this case had not been previously acknowledged. First, one of the interventions may have contributed to a reduction bribery only unintentionally. The government intervention into corruption in Limpopo was targeted at high level corruption within the provincial government, and not on members of the SAPS. Therefore, any impact the intervention had on bribery rates among the police were neither intended, nor monitored. Second, there was a culture of criticism among actors and observers familiar with the case. The SAPS routinely receives a high degree of public criticism due to major failings in performance and management, and many of those that we interviewed—policing researchers and commentators, as well as the police themselves—were predisposed to critiquing the police, and both unaccustomed, and reluctant, to investigate potential improvements in performance.

The reduction of bribery we uncovered in Uganda’s healthcare system was less contested, but also largely unacknowledged. The statistical reduction in the health-related bribery rate was similarly not publicised or acknowledged by the local Transparency International chapter. As noted earlier, we found that the activities of the President’s HMU likely influenced bribery patterns; however, organisations involved in monitoring and supporting public health were unaware of the impact of the unit in reducing the willingness of health care providers to request bribes. Further, while the activities of the HMU received a great deal of domestic media coverage, to our knowledge, no rigorous assessment of its affect on the behaviours of health workers has been undertaken.

A variety of factors specific to the Ugandan healthcare case contributed to preventing the reduction in bribery from being recognised. First, government and media sources covering the successes of the HMU focused primarily on the unit’s success in reducing drugs theft, rather than bribes requested at the point of
service. The impact it was having on reducing bribery simply did not take centre stage. Second, the HMU is highly politicised. Consequently, claims of policy success tend to be dismissed by many citizens as government propaganda. Finally, it is our assessment that health care service delivery has not improved as a result of or alongside the reduction in bribery. The health sector in Uganda continues to suffer from many severe issues, like having a very low doctor to patient ratio, low investments in the health sector, drug shortages, poor quality facilities and equipment, and very low salaries for health workers. The persistence and severity of these failures are likely to have eclipsed the noted reduction in bribes paid for health services, ensuring bribery within the health sector has remained a marginal issue.

7. Conclusion

The methodology presented in this paper promises to identify both types of positive outliers—those that have received recognition as well as those that have not. The cases identified through this method, and briefly examined in this paper, suggest that developmental ‘success’ stories often escape simple detection when their ‘success’ is (a) the unintended result of a policy intervention, (b) when the policy arena is highly politicised and/or subject to a culture of criticism, and/or (c) when improvements in one area are not echoed by improvements in other areas. The lessons these ‘hidden’ cases have to teach us, however, are just as valuable to our understanding of how developmental progress occurs, as the lessons we learn from more obvious cases of developmental progress.

5 See our forthcoming paper
Works Cited

