GUIDANCE DOCUMENT ON THE DETERMINATION OF THE TOXICITY OF A TEST CHEMICAL TO DUNG BEETLES

Environment Directorate

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Paris

March 2008
Table of contents:

PART A:
BACKGROUND INFORMATION ON THE TEST SPECIES, THE EXPOSURE SITUATION AND THE IDENTIFICATION OF THE MOST APPROPRIATE METHOD
A.1. Introduction 3
A.2. Biology and Ecology of Dung Beetles 5
A.3. Brief compilation of existing studies (laboratory) 8
A.4. Short Description of the most promising methods 10
A.5. References 12

PART B:
DESCRIPTION OF A TEST USING THE SPECIES APHODIUS CONSTANS
B.1. Introduction 16
B.2. Principle of the test 16
B.3. Information on the test substance 17
B.4. Reference substance 17
B.5. Validity of the test 18
B.6. Description of the test 18
B.7. Test procedure 20
B.8. Statistical evaluation 23
B.9. Test report 24
B.10 References 25
Annex 1: Definitions 28
Annex 2: Determination of dung properties 28
Annex 3: Culturing of the dung beetles 29
Annex 4: Testing of dung collected from livestock treated with veterinary pharmaceuticals 30

PART C:
DESCRIPTION OF A TEST USING THE SPECIES ONTHOPHAGUS TAURUS
TO BE ADDED
PART A:
BACKGROUND INFORMATION ON THE TEST SPECIES, THE EXPOSURE SITUATION AND THE IDENTIFICATION OF THE MOST APPROPRIATE METHOD

1. Introduction
For more than two decades the environmental risk of chemicals in general and pesticides in particular are assessed before these products can be marketed in the European Union. At about the same time when this assessment was codified in guidelines [1], the discussion about environmental impacts of pharmaceuticals just began within the scientific community [2]. Due to increasing evidence of potential side effects of pharmaceuticals in the environment, the European Union developed respective guidelines in the mid-nineties [3]. The focus on veterinary pharmaceuticals and especially parasiticides is caused by their direct entry into the environment, the relative high quantities in which they are used and their biocidal mode-of-action [4]. Cattle, sheep, pigs, and horses are treated regularly (metaphylactically as well as therapeutically) with veterinary pharmaceuticals used against endo- and ectoparasites, which often have a nematicidal or insecticidal mode-of-action [5]. In addition, these pharmaceuticals can also impact ecosystem functions in the field, in particular the decomposition of dung [6, 7]. However, such side effects are not always detected [8, 9], which at least partly may be the result of using different and non-standardized methods.

Dung beetles (Family Scarabaeidae) are among the most abundant and speciose organisms associated with fresh dung [2]. In close interaction with micro-organisms and other fauna (e.g., fly maggots, nematodes, oligochaetes) feeding, shredding, and burying of the pat by dung beetles accelerates its decomposition [10]. This facilitates the return of nutrients contained in the dung back into the soil to promote growth of the plants. It also limits the area of the pasture with undecomposed dung, near which cattle will avoid grazing (an effect known as “pasture fouling”; e.g., [11]). To identify potential adverse effects of veterinary pharmaceuticals on the dung organism community, data on the effects of these substances on dung flies and dung beetles are required by the responsible agencies in the European Union, North America and Japan (International Cooperation on Harmonization of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) Guidance Paper [12]).
A guideline to test for adverse effects of pharmaceuticals on dung flies recently was submitted to OECD. Validated with an international ring test [13] organised by the Society for Environmental Toxicity and Chemistry (SETAC) advisory group DOTTs (Dung Organism Toxicity Test Standardization), finalisation of this guideline is expected in 2008 [14]. However, no comparable guideline exists for dung beetles. The DOTTs group currently is working to develop standardised test methods for two species of dung beetles representing different geographic regions and life histories. *Onthophagus taurus* is a Mediterranean/temperate species that develops in dung buried beneath the pat. *Aphodius constans* is a temperate species that develops within the dung pat (http://www.dottsgroup.org). Methods for *O. taurus* derive mainly from Australia research [15, 16], while methods for *A. constans* were developed in research supported by the German Federal Environment Agency (UBA, Dessau, Germany) [17, 18, 19].

Preparation of test guidelines for dung beetles for formal submission to OECD currently is not possible. Partly this is due to unanswered questions concerning methods for *O. taurus* and *A. constans*, and partly because methods developed thus far have not been validated with a ring test. Nevertheless, guidance is needed in cases for which tests on dung beetles are required for environmental risk assessments of parasiticides. This document provides such guidance with the presentation of ‘state-of-the-art’ information in three parts:

Part A: Background information on the biology and ecotoxicology of dung beetles including an overview of existing methods as well as a proposal for further research

Part B: Description of a test using the species *Aphodius constans*

Part C: Description of a test using the species *Onthophagus taurus*

The approach and test methods described in this document mainly derive from studies in Europe, Australia and Canada. The tests are required in Phase II, Tier A of the VICH regulations [12, 20] as adopted by the USA, the European Union and Japan. It is recognized that other OECD member countries may have different regulatory requirements for veterinary pharmaceuticals, in particular parasiticides. However, the methods identified in this document, and specifically those provided in Part B and C, add important tools to a battery of existing standardized protocols for assessing chemical impacts on the dung organism community.
2. **Biology and Ecology of Dung Beetles**

Livestock dung is colonized by diverse organisms that form a very complex food web [21, 22, 23] (Figure 1). Most of these organisms are insects, of which dung beetles are among the most abundant and speciose. Other members of the community include mites, nematodes and annelids.

Together, the community of dung organisms fulfil the following ecological services [21, 22, 24]:
- remove dung from the pasture surface that would otherwise remove area from grazing;
- recycle organic matter, nitrogen and other nutrients by incorporating dung back into soil (the nitrogen would otherwise be lost to the atmosphere);
- reduce the suitability of dung pats as breeding sites for parasites (e.g. helminths) and pest flies (e.g., bush fly – *Musca vetustissima*; horn fly – *Haematobia irritans*) affecting livestock and humans;
- improve soil aeration and water retention by tunnelling in the soil to bury dung in which to rear offspring.

![Food web diagram](image_url)

Fig. 1: Schematic food web of a cattle dung pat, showing the most important groups of the dung community (from [56]).
The value of these activities has been estimated to exceed $2 billion / yr in North America [25]. In Northern Australia, the benefits of dung beetles (in particular the reduction of pests like bush flies) are considered to be worth $13 million per annum (John Feehan, Hackett, ACT, Australia; pers. comm.). Comparable numbers have been reported from the Netherlands [22]. It is emphasized that very few species of insects breeding in dung are considered pests; e.g., bush fly, horn fly. Actually, several dung beetle species, originally from South Africa or Mediterranean Europe, were introduced deliberately in Australia since the native dung beetle species did not use cattle dung as food, meaning that vast areas of Australian grassland became devastated [26, 27].

Species of organisms associated with dung typically differ in their periods of seasonal activity (e.g., occurring only in spring or autumn), number of generations per year, and time of arrival at fresh dung. Under temperate conditions, fresh dung is colonized almost immediate by adult flies (e.g., Muscidae, Scatopsidae, Sepsidae, Sphaeroceridae) [21]. Dung beetles (Scarabaeidae) arrive shortly after to feed and oviposit, with peak colonization finished by the end of the first week after deposition. Parasitic wasps (e.g., Braconidae, Ichneumonidae, Pteromalidae) and predaceous beetles (e.g., Histeridae, Staphylinidae) arrive concurrently with the flies and dung-feeding beetles to feed on immature insects developing in the dung pat or to oviposit [28]. In particular the diversity of staphylinids can be very high (10 – 120 depending on the region [21]). There is very little additional colonization of dung by coprophilous insects two to three weeks after deposition. In the latter stages of decomposition, pats may be colonized by saprophagous species including beetles in families Lathridiidae, Ptiliidae and Rhizophagidae, and earthworms). In fact, the colonization of dung pats is not only a complex but also fragile process. In England, the exclusion of mainly dung beetle larvae (Aphodius spp.) for as little as two days following pat deposition significantly reduced both the insect population and the rate of dung pat degradation [29]. Similar results were obtained under Mediterranean conditions when insects were excluded from colonisation [29-30].

The “true” dung beetles (Scarabaeidae) are of primary interest in this document. These beetles comprise at least ten genera and about 7000 species worldwide [30]. High diversities of scarabaeid beetles were reported from many temperate regions, e.g. from a grassland in South-Western Germany where 38 species (including 22 Aphodius sp. and 12 Onthophagus sp.) were
sampled within one year [31]. Depending on factors including climate, soil type, vegetation, and
the diversity of animal dung, about ten to 50 dung beetle species can occur in one region [21],
particularly under mountainous conditions (e.g. 15 Onthophagus sp., 35 Aphodius sp. and 6
Geotrupidae species in the Southern Alps [30-31]). Within Europe, the Mediterranean region
probably has the highest diversity of scarabaeid dung beetles in Europe [32, 33, 34]. The
abundance of individual species can very considerably. Captures of 39 631 dung beetles in an
Irish grassland comprised 24 species of which eight species accounted for 94% of all individuals
[35]. Fewer than 12 dung beetle species might normally occur within the same dung pat.

Different species of dung beetles can be classified by their feeding and reproductive behaviours as
‘dwellers’, ‘tunnelers’, or ‘rollers’ (Fig. 2) [36, 37]. Adult ‘dwellers’ lay eggs in the dung pat,
wherein the immature beetles develop from egg-to-adult. Adult ‘tunnelers’ bury fragments of
dung in tunnels that extend down from beneath the dung pat. This dung provides food for
immature beetles that hatch from eggs laid in the tunnels. Adult ‘rollers’ remove balls of dung that
are rolled away from the pat, before being buried in tunnels. As with the tunnelers, the buried
dung provides food for immature beetles developing from eggs laid in the tunnels. The
degradation of dung pats by species of tunnellers and rollers can occur within a span of hours or
days. In contrast, the degradation of dung pats by dwellers may take weeks or months. Knowledge
of these different functional groups (dwellers, tunnelers, rollers) and how their representation may
vary with region and season, is needed to best assess the potential for veterinary pharmaceuticals
to adversely affect the community of dung organisms and dung degradation.
The most common method to catch dung beetles in the field is via dung-baited pitfall traps for which various versions exist [36, 38, 39]. Although most of the information provided in this document was gained from studies using cattle dung, the same diversity and type of ecological services are also provided by insects in dung of other livestock; e.g., sheep [40, 40-41].

3. Brief compilation of existing studies (laboratory)
Numerous field studies have reported on the effects of veterinary pharmaceuticals, in particular the avermectins, on dung beetles [41, 42, 43, 44, 45, 46, 47, 48, 49]. This focus is explained partly by the high persistence of these compounds, partly by their toxicity at extremely low concentrations, and partly by their mode of action; e.g., impacting the nervous system of both adult and larval insects [5]. Ingestion is not necessary – contact is often sufficient for mortality [23]. Almost all studies confirm that:
- dung beetle communities (i.e. a wide range of species) can be affected by the residues of parasiticides in dung after treatment of livestock under realistic conditions;
- genera most often affected are Aphodius sp. and Onthophagus sp. but this might be an artefact of the species most often tested;
- even species introduced into a certain region like Onthophagus binodis, a beneficial insect introduced to Australia to increase the rate of breakdown of cattle dung dispersal on pastures, were strongly affected [50].
- these effects usually occur during a period of two weeks after application, but depending on the treatment (active ingredient, concentration and frequency) and the excretion pattern these numbers may vary;
- concentrations were reported as starting at concentrations of 0.5 - 4.0 mg/kg dung [51], but these numbers are difficult to verify since details of the application, residue analysis or the reference (dry or wet weight?) were often not presented;
- usually, the larvae are clearly more sensitive than the adults. However, the dispersal activity of the adults could be severely affected [52, 53];
- avermectins in dung pats can attract as well as repel dung beetles [49]; thus, effects can increase or decrease, making predictions on the overall impact difficult;
- however, in a few cases contradictory results were found (e.g. no effects of ivermectin on the mortality of dung beetles or on the degradation), which may be caused by the use of non-standardised methods [8, 38].

When compiling the effects of veterinary pharmaceuticals on dung beetles in the field it should not be forgotten that these communities are at the same time also affected by other forms of intensive agricultural management like removal of herbaceous field boundaries [35]. However, in reviews of various laboratory studies it has been confirmed that veterinary pharmaceuticals and in particular avermectins as well as synthetic pyrethroids have detrimental effects on dung beetles at environmentally relevant concentrations [54, 55, 56, 57].

In the few cases where dung flies and dung beetles have been tested in the laboratory under comparable conditions (mainly with ivermectin) it seems that on average the beetles were less sensitive than the fly larvae [13, 17, 18]. However, the experience gained so far is much too low in order to draw any final conclusion on this matter.

4. **Short Description of the most promising methods**

There were 17 participants at the inaugural meeting of the SETAC advisory group DOTTS, held at Huntingdon, England, in February 2002. Attendees, from eight countries, represented governmental agencies, industry, contract laboratories and universities. Discussion centred on suitable dung beetle test species and test methods for the assessment of effects of parasiticides. Proposed species included: *Anoplotrupes stercorosus, Aphodius constans, A. haemorrhoidalis, Bubas bubalus, Copris hispanus, Diastellopalpus quinquedens, Euoniticellus fulvus, E. intermedius, Geotrupes spiniger, Onitis alexis, O. belial, Onthophagus binodus, O. gazella, O. taurus, Sisyphus rubrus*. Consideration was given to ecological role, geographic distribution, sensitivity, representativeness, ease of rearing, and available experience. General agreement ultimately was reached on the use in laboratory tests, of *O. taurus* and *A. constans*. Colleagues from South Africa subsequently also proposed use of *Euoniticellus intermedius* [58, 59].
General agreement was not reached on specific test methods, mainly because participants had experience with different techniques. The situation has since improved with development of a standard method for use with dung flies [14], and because of experience gained in recent studies on *O. taurus* and *A. constans* [16, 19]. Obviously, it is advantageous to perform fly and beetle tests as similarly as possible (e.g. in terms of using the same reference compound or test design). Pending clarification of further research, the methodology presented in Parts B and C of this Guidance Document is considered to be sufficiently well developed for application in regulatory ecotoxicology.

Open issues for research are mainly related to the breeding process. For example, culture of *Aphodius* species have been attempted for almost 70 years [60, 61], but despite some progress, mass cultures have yet to be achieved. Laboratory culture of *Onthophagus taurus* has been achieved [15], but is not easy. In addition, the long time needed by this species is a disadvantage. Preliminary results for *Euoniticellus intermedius* are promising, but work with this species in different laboratories has just been started. Current research needs can be summarised as follows:
- Improvement of the breeding and culturing methods with the three species mentioned above;
- Performance of laboratory tests with various parasiticides in order to evaluate their sensitivity.

5. References

PART B: DESCRIPTION OF A TEST USING THE SPECIES APHODIUS CONSTANS

INTRODUCTION

1. This test method is designed to assess the effects of a test chemical, e.g. veterinary pharmaceuticals, to dung dwelling life stages of dung beetles. In this test, insects are exposed under controlled conditions to the test chemical spiked into the dung. An extended test, in which the beetles are exposed to dung originating from livestock treated with the test substance is described in ANNEX 4.

2. Besides Diptera, beetles of the family Scarabaeidae are the most ecologically important dung organisms [1]. In close interaction with micro-organisms and other fauna like nematodes and oligochaetes, they promote the decomposition of the dung pat [2]. This, in turn, allows the release of nutrients contained in the dung which are necessary for the growth of the plants. In addition to their role in removal and degradation of dung in pastures, they are also an important food source for insectivorous birds and mammals. Lack of dung insects has been shown to adversely affect dung degradation in climates where these are the key dung degraders, e.g. Australia [3, 4, 5].

3. *Aphodius (Agrilinus) constans* Duftschmidt (1805) is considered to be a suitable indicator species for estimating the toxicity of these chemicals in dung for the following main reasons: This species covers a wide geographic range in Europe, in Europe [6], has a long activity period, a short larval development time [7] and it plays an important role for the decomposition of dung, since it prefers fresh cattle dung for its nutrition and reproduction [8]. It is also well-known that *A. constans* reacts sensitively to veterinary drugs [9, 10]. In addition, a lot of experience in handling and testing this species is available [11, 12, 13].

PRINCIPLE OF THE TEST

4. This test method is designed to assess the effects of a test chemical, e.g. veterinary pharmaceuticals, to dung dwelling life stages of dung beetles. The possible impact of the test chemical spiked in to the dung on the ´development of the beetle first instar larvae is compared to the negative control(s) (an extended test using dung from drug-treated livestock as test substrate is
described in ANNEX 4). A positive control should be tested periodically (see §7). The test chemical is mixed with bovine faeces, to which the larvae are added. Then the effects of the test chemical on the following measurement endpoints are assessed under controlled conditions after exposure of the larvae to the test substance (always in comparison to the control):

- Number of surviving larvae after exposure;
- Morphological change, i.e. any visual abnormalities, including body size, biomass etc.

Depending on the experimental design, the No Observed Effect Concentration (NOEC) or the ECx (Effect concentration for x% effect e.g. EC50) can be determined.

INFORMATION ON THE TEST SUBSTANCE

5. The water solubility, the log Kow, and the vapor pressure of the test substance should preferably be known to assist the test design. Additional information on the fate of the test substance in dung, such as degradation times, is desirable. Details of the source, batch or lot number and purity of the test and reference chemicals also need to be provided.

6. This Guideline can be used for water soluble or insoluble substances. However, the mode of application of the test substance will differ accordingly. The Guideline is not applicable to volatile substances, i.e. substances for which the Henry's constant or the air/water partition coefficient is greater than one, or substances for which the vapour pressure exceeds 0.0133 Pa at 25 °C.

REFERENCE SUBSTANCE

7. Ivermectin (tech.) is a suitable reference substance that has been shown to affect beetle larval development [10, 11, 12]. The reference substance should be tested regularly, but two options are possible:

- The ECx of a reference substance can be determined 1 - 2 times per year to provide assurance that the laboratory test conditions are adequate and to verify that the response of the test organisms does not change significantly over time. The EC50 for the endpoint survival should be between 50 and 150 µg active ingredient (a.i.)/kg d.w..
- However, it is more advisable to test a reference substance in parallel to the determination of the toxicity of a test substance. In this case, one concentration is used and the number of
replicates should be the same as that in the solvent control (twelve). Significant effects on larval survival should be observed at a concentration of 100 µg active ingredient (a.i.)/kg d.w.. The performance of a reference test is always required when a new batch of beetles is tested for the first time, independently whether they were bought from an existing culture or whether they were collected in the field. The period between reference test and definitive test should be less than plus/minus three months.

VALIDITY OF THE TEST
8. The definitive/limit test is valid if in the control (solvent only) the mortality is lower than 20% (formulated dung) or 30% (fresh dung) see § 13. When a test fails to meet the above validity criteria the test should be terminated unless a justification for proceeding with the test can be provided. The justification should be included in the report.

DESCRIPTION OF THE TEST
Equipment
9. Test vessels must be of an appropriate size (e.g. clear plastic cell counter tubes (20 ml volume made of PS/LD-PE plastic with a diameter of ca. 6.5 cm and a height of 11 cm). Micro well plates (six wells with a diameter of ca. 3.5 cm, a height of 1.5 cm and a volume of 15 mL) are also possible). For identification purposes, each tube or plate will be labelled with treatment number, replicate number, test or reference chemical concentration and study initiation date. Plastic test vessels will be discarded at the end of each assay.

10. Standard laboratory equipment is required, specifically the following:
 - drying cabinet;
 - stereomicroscope;
 - brushes for transferring larvae
 - pH-meter and luxmeter;
 - suitable accurate balances;
 - adequate equipment for temperature control;
 - adequate equipment for humidity control (not essential if exposure vessels are covered by lids).
Selection and collection of the dung

11. Non-contaminated bovine dung will be obtained from cattle of documented veterinary history. At the time of collection the animals must not have been treated with any veterinary pharmaceuticals for at least 5 months if the treatment product is long-acting. No contaminants should be expected in the dung that might interfere with the conduct of the study.

12. The dung may be collected directly from cattle (internal or bag collection) or ground collected. If dung is ground collected, care should be taken to avoid urine contamination. Ground collected dung should be less than 2 hours old at the time of collection to minimise dung fauna colonisation and should be frozen at ca –20°C for at least 1 week before use (preferably longer (e.g. four weeks), in order to avoid mite contamination). Since mite infection is very unlikely for directly collected dung must not be frozen (but it could be frozen if not needed immediately). The husbandry, in particular the diet, of the cattle providing the dung should be recorded. Samples of the dung should be taken to determine moisture and pH (see ANNEX 2).

13. The collected dung can be used in the tests in two different ways: Either fresh after thawing (= fresh dung) or after being dried, grounded and re-wetted (= formulated dung). In the latter case, handling and mixing-in of the test substance is easier and the homogenised distribution of the test substance is better compared to use of fresh dung.

Selection and preparation of test animals

14. The species to be used in this test is Aphodius (Agrilinus) constans Duftschmidt (1805). Frst instar larvae (age: < 7 days after hatching) are used for testing the effects of the test substance. Beetles can be obtained from an established laboratory culture, but continuous breeding of this species is not easy due to its summer diapause (see ANNEX 3).

Alternatively, adult beetles and cow pats can be taken from the field. After transfer to the laboratory the larvae hatching from eggs laid by the adults or by the adults which developed from eggs already in the manure could be used for testing purposes. However, this way is only possible in the period between December and March/April (times valid for Southern France and other parts of Europe) since in this time the beetles are active [6, 7]. Where field-collection of beetles to
initiate a culture is conducted, the species identity must be verified using an appropriate key [6]. In fact, in areas like in the hilly region north of Montpellier (France) this species is the dominant dung beetle in winter and early spring (>95% of all individuals found in cattle dung). Colonies initiated from field-collected organisms should be cultured for a minimum of one generation prior to test initiation. The species confirmation, source and history of the organisms should be documented.

Test conditions
15. The rearing vessels for laboratory culturing of beetles and test vessels will be maintained within the laboratory at a temperature of 20°C ± 2°C. The tests are conducted in permanent dark.

16. The water content of the dung substrate in the test vessels is not maintained throughout the test because a slight drying of the dung surface is allowed in order to drive the larvae through the test substrate.

TEST PROCEDURE
Dung Preparation
17. Dung should be removed from the freezer in time to ensure that it is completely thawed before use (directly collected dung could be used immediately; see §13). The dung should be homogenised for ca 10 minutes, for example in a large-scale laboratory mixer, prior to preparation of the separate treatment groups. No change of the moisture is usually required (experience has shown that a moisture content of 60 - 65% fw is suitable for the beetles).

18. Moisture content and pH of a sample of dung from cattle which has not been treated with any veterinary pharmaceuticals (for at least 5 months if the treatment product is long-acting) will be determined at the start of each test. The dung should be wet enough to be easily moulded into a ca 7 cm diameter ball, but dry enough that the ball will retain its shape. Nitrogen and carbon content (incl. C/N ratio) should be determined. The methods used for measuring these parameters will be recorded. Possible methods for parameter determination are included in ANNEX 2.

Application of Test Chemicals

19. All test concentrations must be given on a dry weight basis in order to ensure comparability of the results from different studies.

20. A known amount of fresh dung will be placed into a large-scale laboratory mixer. Test and reference chemicals will be introduced in a known amount of water. If chemicals are poorly soluble in water, they will be introduced in a known amount (depending on the solubility of the test substance 1 – 10 mL/120 g dw of dung have been proved to be suitable) of an organic volatile
solvent (e.g. acetone or ethanol) and mixed thoroughly for ca 10 minutes. Control dung will be inoculated either with a known amount of solvent (solvent only control) or with an appropriate amount of water only (untreated control). Afterwards, the dung and the respective addition will be mixed thoroughly. Where a solvent carrier is used, the solvent must be allowed to fully evaporate using an extraction hood for at least 4 hours at room temperature before the test organisms are added.

21. The concentrations of application must be confirmed by an appropriate analytical verification. For soluble substances, verification of all test concentrations can be confirmed by analysis of the highest test solution used for the test with documentation on subsequent dilution and use of calibrated application equipment (e.g., calibrated analytical glassware, calibration of sprayer application equipment).

Preparation of Test Vessels and Addition of Organisms

22. Five to seven g (fresh weight) of dung will be added to each test vessel. The larval phase is used as the starting point of the test and should be obtained as documented in the species-specific culturing methods.

23. Harvested larvae should be divided into separate groups corresponding to the number of treatments prior to addition. This ensures the transfer of organisms to a particular dung type does not result in any chemical cross-contamination. Allocation of larvae to treatment groups should be done progressively, in small batches, so as to further randomise larval distribution. Each group of larvae should be kept on moist filter paper in a closed container until ready for use in the test.

24. One larva will be placed in a small hole on the dung surface of each test vessel. In total twelve larvae (= replicates) per control and ten larvae per treatment level are used per test.

Observations

25. Main endpoint is their survival. Assessment of this endpoint is done one, two and three weeks after starting the test. Any visual morphological abnormalities will also be recorded.
26. The test will be terminated three weeks after application of the test substance.

Test design

27. Range Finding Test: If the toxicity of the test chemical is unknown, five nominal test concentrations of 0.1, 1.0, 10, 100, and 1000 mg/kg (dry weight of dung) plus an untreated control and a solvent control (if solvent is not water) should be conducted. If information about the toxicity is available, the test concentrations can be adapted accordingly (see §28). All test concentrations have also to be given on a dry weight basis. Seven replicates should be used.

28. Limit Test: If the range finding test indicates that the no-observed effect concentration (NOEC) of the test chemical is greater than the tested concentrations (e.g. 1000 mg/kg dung d.w.), a limit test at an appropriate concentration (usually 1000 mg/kg dung d.w.) may be carried out instead of a definitive test. The limit test will be conducted with twelve test chemical vessels and twelve untreated vessels. A reference substance and a solvent control (if solvent is not water) will also be included (twelve replicates each). This design was selected in accordance with OECD Guidance Document No. 54 [14].

29. If effects of the test chemical are observed within the range tested in the range-finding study (corrected for control mortality using Abbott’s (1925) formula [15]), a definitive test will be conducted. It can be performed following either a NOEC or an ECx approach:

- For determination of the NOEC, at least five concentrations in a geometric series should be tested. Ten replicates for each test concentration treatment plus twelve controls are recommended. The concentrations should not exceed 3.16.

- For determination of the ECx (e.g. EC10, EC50), twelve concentrations should be tested used. At least two replicates for each test concentration treatment and six replicates control replicates are recommended. The spacing factor may vary, i.e. less than two or equal to 1.8 in the expected effect range at low concentrations and above 1.8 at the higher and lower and more than two at high concentrations.

Besides an untreated control and a solvent control (if solvent is not water) a reference substance (not always, see §7) is tested.
29. Positional bias will be eliminated by using a randomised complete block design for all studies carried out (range test, limit test or definitive test).

STATISTICAL EVALUATION

30. No definitive statistical guidance for analysing test results is given in this guideline. However, based on recent recommendations in other OECD guidelines (mainly the Guidance Document on statistics [14] but also other recently published guidelines [16]) some proposals can be made. This Guideline primarily focuses on the determination of the ECx. According to the recent VICH guideline [17] the EC50 is required by many regulatory authorities (e.g. in the European Union), mainly resulting from statistical and ecological considerations. However, for reasons of flexibility guidance is also given for the determination of the NOEC [16].

31. The number of surviving larvae will be tabulated along with each concentration of test chemical. In addition, all other observations morphological changes, always compared to the control, will be provided in a tabular format.

TEST REPORT

32. On completion of the study a final report will be prepared. The report must include the following information (but not be limited to):

Test substance:
- Test chemical (name, common name, chemical name, Batch no., purity etc.)
- Reference chemical (name, common name, Batch no., purity etc.)
- Properties of the test substance (e.g. log Kow, water solubility, vapour pressure and information on fate and behaviour), if possible

Test species:
- Test species used (confirmation of species, source of organism, breeding conditions)
- Handling of organisms
- Age of organisms when added to test vessels
Test conditions:
- Source of dung and recent veterinary history of livestock used
- pH and moisture content of the dung
- Depth of dung in the test vessels
- Test vessels (material, dimensions and size)
- Test concentrations and number of replicates
- Description of the preparation of test and reference chemical dosing solutions
- Environmental conditions (temperature, light cycle and intensity, humidity)

Test results:
- Number of surviving larvae at the end of the test
- Morphological abnormalities (e.g. body size) per replicate
- Results of the tests with the reference substance
- Results presented in tabular and/or graphical form
- Estimates of toxic endpoints (e.g. ECx, NOEC), and the statistical methods used for their determination

Evaluation of the test results:
- Fulfilment of validity criteria
- Review/discussion of results obtained
- Conclusion reached

REFERENCES

ANNEX 1

DEFINITIONS

The following definitions are applicable to this Guideline:

NOEC (No Observed Effect Concentration) is the highest test substance concentration at which no effect is observed. In this test, the concentration corresponding to the NOEC, has no statistically significant effect (p < 0.05) within a given exposure period when compared with the control.

ECx (Effect concentration for x% effect) is the concentration that causes an x% of an effect on test organisms within a given exposure period when compared with a control. For example, an EC50 is a concentration estimated to cause an effect of 50% on a test endpoint in an exposed population over a defined exposure period. In this test the effect concentrations are expressed as a mass of test substance per dry mass of the test dung.

ANNEX 2

DETERMINATION OF DUNG PROPERTIES

Dung pH can be determined by adding a weighed amount of dung (at least 5 grams) to a 1.0 M potassium chloride solution or 0.01 M calcium chloride in a vial [18]. The ratio between dung and aqueous phase should be 1 : 5 v/v. The suspension is then shaken thoroughly for five minutes and then left to settle for at least 2 hours but not for longer than 24 hours. The pH of the liquid phase is then measured using a pH-meter that has been calibrated before each measurement using an appropriate series of buffer solutions (e.g. pH 4.0 and 7.0).
Moisture content can be determined by weighing three replicate dung samples (ca 20 g) into vessels and drying overnight in an oven at ca 105°C [19]. The samples are then removed, cooled at room temperature in a desiccator and reweighed, the moisture content calculated and expressed on an oven dry basis.

Nitrogen content can be determined using the method of Tilman and Wedin [20] or the micro-Kjeldahl procedure as described by Hesse [21]. Again, ISO methods should be preferred [21, 22, 23]. Accordingly, the carbon content in dung should be determined by using modified ISO guidelines [e.g. 25].

ANNEX 3

CULTURING OF THE DUNG BEETLES

Continuous breeding of the species Aphodius constans which needs fresh dung for feeding and reproduction is difficult since this spring/winter-active beetle has usually a summer diapause. In the following, experiences made at the University of Montpellier (France) and in the laboratory of ECT Oekotoxikologie GmbH Flörsheim (Germany) are summarised.

Beetles were collected at a field station (Saint-Martin-de-Londres) located about 30 km north of Montpellier. Adult beetles were kept in transparent plastic boxes with a size of 42 x 26 x 15 cm while their larvae were reared in slightly smaller boxes (27 x 21 x 14 cm). The boxes were covered with a gauze (mesh size: 200 µm) in order to provide a permanent air exchange. The breeding substrate, consisting of quartz sand, vermiculite (K3) and commercial garden soil in equal shares at the bottom of the boxes (200 – 300 g dry weight) was made of 1/3 quartz sand, 1/3 vermiculite (K3) and 1/3 of commercial garden soil with a pH value of about 7 (measured according to ISO 10390) [18]. The moisture of this mixture was determined according to ISO 11461 [19]. To each culture box one cowpat with a fresh weight (f.w.) of about 800 g and 50 dung beetles were added after a thin crust appeared at the surface of the cowpat. Suitable dung was collected as fresh as possible, since otherwise contamination with dung flies may occur. After
transport to the laboratory, the dung was frozen at -20°C for at least one week before the first use. Since thawing took 2 – 3 d, the general appearance of the pats did not change compared to their physical appearance before freezing. Larval and adult boxes were kept in an air-conditioned room (18 ± 2 °C) at a normal day/night schedule. Eggs and larvae remained in the dung until the latter pupated under dung pads. In order to activate the breeding period during summer, the breeding room temperature was decreased to 4°C for one week before returning to 18°C.

ANNEX 4

Testing of dung collected from livestock treated with veterinary pharmaceuticals

In contrast to use dung spiked with a test substance the dung beetles can also be exposed to dung which was collected from livestock (usually cattle) treated with the test substance. This test design is considered to be more realistically since it includes all metabolism occurring during the passage of the drug through the body of the treated animal. In addition, the exposure situation reflects the real availability of the test substance in the dung which may differ from the one reached after spiking and homogenisation. For these reasons, such an extended laboratory test may be required at higher tiers when assessing the potential risk of veterinary pharmaceuticals for dung organisms.

Basically the test is performed as described in the main body of this guideline. Therefore, in the following only those issues which need to be modified are listed (for example, no changes are necessary concerning reference testing, validity criteria or the culturing of the two test species).

Information on the test substance:

§ 5,6 In addition to the physico-chemical properties of the test substance the formulation used in the test with treated dung has to be described.

DESCRIPTION OF THE TEST
§ 10: To be added: Equipment to treat livestock with the test substance (depending on the formulation used, e.g. a syringe).

New § after § 10:
In addition, the treated animals (e.g. race, age, weight of cattle; husbandry, feeding) and their treatments (e.g. how often and in which frequency the livestock was treated etc.) have to be described in detail.

§ 20 Since it is not known how much of the test substance will occur in the dung it is necessary to analyse the dung for the test substance and its main metabolites. Residue analysis has to be performed as long as test substance is appearing in the faeces of the treated livestock.

§ 21 ff.: Dung from treated cattle is collected at different dates after treatment, depending on the excretion profile of the test substance (e.g. for a pour-on formulation containing ivermectin used on cattle, samples were taken up to 12 days after treatment [12]). Dung samples from one animal and from the same day are combined and mixed in order to get a homogenized batch. From each batch, 5 - 7 g (f.w.) are taken for each replicate (= vessel).

§ 26 ff.: Depending on the aim of the study, the same test designs could be used as for the tests with spiked dung, since each dung sample from treated livestock contains a different concentration of test substance depending on the excretion profile. Therefore, both limit tests (just one sampling date) or dose-response designs (ECx, NOEC) are possible. For the same reasons, there is also no difference concerning statistical assessment.

§ 32: In the test report, the additional information referring to the test modifications described in this ANNEX No. 4 have to presented.

PART C: DESCRIPTION OF A TEST USING THE SPECIES Onthophagus taurus

TO BE ADDED LATER