OECD Environment, Health and Safety Publications
Series on Testing and Assessment
No. XX

DRAFT DETAILED REVIEW PAPER ON
THYROID HORMONE DISRUPTION ASSAYS

EPA CONTRACT NUMBER 68-W-01-023
WORK ASSIGNMENTS 4-7 AND 5-5
February 4, 2005

Prepared for

Shirlee Tan
Work Assignment Manager
U.S. Environmental Protection Agency
Endocrine Disruptor Screening Program
Washington, D.C.

BATTELLE
505 King Avenue
Columbus, Ohio 43201

Environment Directorate
Organisation for Economic Co-operation and Development

04 February 2005
Also published in the Series on Testing and Assessment:

No. 13, *Detailed Review Document on Classification Systems for Sensitising Substances in OECD Member Countries 1998*

No. 19, Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals used in Safety Evaluation (1999)

No. 25, Detailed Review Document on Hazard Classification Systems for Specifics Target Organ Systemic Toxicity Repeated Exposure in OECD Member Countries (2001)

No. 26, Revised Analysis of Responses Received from Member Countries to the Questionnaire on Regulatory Acute Toxicity Data Needs (2001)

No. 27, Guidance Document on the Use of the Harmonised System for the Classification of Chemicals Which are Hazardous for the Aquatic Environment (2001)

No. 29, Guidance Document on Transformation/Dissolution of Metals and Metal Compounds in Aqueous Media (2001)

No. 30, Detailed Review Document on Hazard Classification Systems for Mixtures (2001)

No. 31, Detailed Review Paper on Non-Genotoxic Carcinogens Detection: The Performance of In-Vitro Cell Transformation Assays (draft)

No. 32, Guidance Notes for Analysis and Evaluation of Repeat-Dose Toxicity Studies (2000)
No. 33, Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures (2001)

No. 35, Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies (2002)

No. 38, Detailed Background Review of the Uterotrophic Assay Summary of the Available Literature in Support of the Project of the OECD Task Force on Endocrine Disrupters Testing and Assessment (EDTA) to Standardise and Validate the Uterotrophic Assay (2003)

No. 39, Guidance Document on Acute Inhalation Toxicity Testing (in preparation)

No. 41, Detailed Review Document on Classification in OECD Member Countries of Substances and Mixtures which in Contact with Water Release Toxic Gases (2003)

No. 43, Draft Guidance Document on Reproductive Toxicity Testing and Assessment (in preparation)

No. 44, Description of Selected Key Generic Terms Used in Chemical Hazard/Risk Assessment (2003)

No. 49, *Report from the Expert Group on (Q)SARs on the Principles for the Validation of (Q)SARs* (2004)

© OECD 2004
Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France
About the OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 30 industrialised countries in North America, Europe and the Pacific, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD’s work is carried out by more than 200 specialised committees and subsidiary groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD’s workshops and other meetings. Committees and subsidiary groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in nine different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; and Emission Scenario Documents. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD’s World Wide Web site (http://www.oecd.org/ehs/).

This publication was produced within the framework of the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC).

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The participating organisations are FAO, ILO, OECD, UNEP, UNIDO, UNITAR and WHO. The World Bank and UNDP are observers. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.
This publication is available electronically, at no charge.

For this and many other Environment, Health and Safety publications, consult the OECD’s World Wide Web site (www.oecd.org/ehs/)

or contact:

OECD Environment Directorate, Environment, Health and Safety Division

2 rue André-Pascal
75775 Paris Cedex 16
France

Fax: (33-1) 45 24 16 75

E-mail: ehscont@oecd.org
ACKNOWLEDGEMENTS

Primary Author

- R. Thomas Zoeller, PhD
 University of Massachusetts, Amherst, USA

Chapter Authors

- **Mammalian:**
 Rochelle W. Tyl, PhD
 Research Triangle Institute, Research Triangle Park, North Carolina, USA

- **Fish:**
 Michael L. Blanton, MS
 Battelle Marine Sciences Laboratory, Sequim, Washington, USA

- **Amphibian:**
 Douglas J. Fort, PhD
 Fort Environmental Laboratories, Stillwater, Oklahoma, USA

- **Avian:**
 F.M. Anne McNabb, PhD
 Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

United States Environmental Protection Agency

Work Assignment Manager

- Shirlee W. Tan, PhD
 US EPA, 1200 Pennsylvania Avenue, Washington, DC, USA

Technical Consultants

- Gary E. Timm, MS, and Les Touart, PhD
 US EPA, 1200 Pennsylvania Avenue, Washington, DC, USA

CONTRIBUTORS, REVIEWERS AND EDITORS

- Vincent J. Brown, PhD, Battelle, Columbus, Ohio
- Robert J. Denver, PhD, University of Michigan, Ann Arbor
- Julia D. George, PhD, Research Triangle Institute, Research Triangle Park, North Carolina
- Mary Ann Ottinger, PhD, University of Maryland, College Park
- Jennifer L. Specker, PhD, University of Rhode Island, Narragansett Bay
- More reviewers to be added following the review process
TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY .. 1

2.0 INTRODUCTION ... 2
 2.1 History and Genesis of a Comprehensive Review of Thyroid Assays across Taxa 2
 2.2 Purpose of the Present Review .. 2
 2.3 Objective of the Different Assays .. 3
 2.4 Methodology used in the Analysis ... 3
 2.5 Definitions .. 3

3.0 GENERAL BACKGROUND ON THE HYPOTHALMIC-PITUITARY-THYROID (HPT) AXIS . 4
 3.1 The Hypothalamic-Pituitary-Thyroid (HPT) Axis ... 4
 3.2 Structure of the Mature Thyroid Gland ... 7
 3.3 Development of the Thyroid Gland ... 7
 3.4 Structure of the Mature Parathyroid Glands ... 9
 3.5 Overview of Functional Relationships among Levels of the Hypothalamic-Pituitary-Thyroid Axis 9
 3.5.1 The Hypothalamic-Pituitary-Thyroid Axis .. 9
 3.5.2 Thyroid Hormone Synthesis ... 10
 3.5.3 Hormone Release .. 14
 3.5.4 Regulation of Serum Thyroid Hormone ... 15
 3.6 Thyroid Hormone Transport into Tissues .. 19
 3.7 Thyroid Hormone Metabolism .. 19
 3.7.1 The UDPGTs .. 19
 3.7.2 Biliary Excretion of Thyroid Hormone ... 20
 3.8 Thyroid Hormone Action ... 20
 3.8.1 Overview of Thyroid Hormone Receptors (TRs) .. 20
 3.8.2 Expression and Regulation of the Alpha TRs ... 21
 3.8.3 Expression and Regulation of the Beta TRs ... 22
 3.8.4 Role of Cofactors ... 22
 3.8.5 Mechanisms Controlling Pleiotropic Actions of Thyroid Hormone 23
 3.8.6 Non-genomic Effects of Thyroid Hormone ... 23
 3.8.7 Thyroid Hormone Negative Feedback on the Pituitary Gland 24
 3.8.8 Thyroid Hormone Negative Feedback on the Hypothalamus 26
 3.8.9 Short-Loop and Ultra Short-loop Negative Feedback .. 26
 3.8.10 Concept of Compensation within the HPT Axis ... 26
 3.9 The Role of Thyroid Hormone in Mammalian Development ... 27
 3.9.1 Overview of Thyroid Hormone Effects in Human Brain Development 27
 3.9.2 Maternal Hypothyroxinemia and Neurological Outcome .. 28
 3.9.3 Clinical Hypothyroidism during Pregnancy and Neurological Outcome 29
 3.9.4 Hypothyroxinemia in Preterm Infants and Neurological Outcome 29
 3.9.5 Congenital Hypothyroidism and Neurological Outcome ... 29
 3.9.6 Epidemiology of Thyroid Dysfunction in Reproduction .. 30
 3.9.7 Thyroid Function during Pregnancy .. 31
4.0 MAMMALIAN SCREENS AND TESTS FOR THYROID TOXICANTS – CURRENT AND POTENTIAL .. 35

3.12 Conclusions.. 34

3.11.1 Pax8 Null Mouse ... 33

3.11.2 TR Knock-out and Knock-in Mice .. 33

3.11 Targeted Deletions and Knock-out/in ... 33

3.10 Overview of Experimental Studies on TH Action in Brain Development 31

3.10.1 Experimental Paradigm for Mechanistic Studies .. 31

3.10.2 Spontaneous Mutants That Have Informed TH Mechanisms......................... 32

3.11 Targeted Deletions and Knock-out/in ... 33

4.1 Known Mechanisms of Thyroid Toxicity .. 35

4.2 Changes in Serum Hormone Levels .. 36

4.2.1 Thyroperoxidase Inhibitors .. 36

4.2.2 Perchlorate Discharge Test .. 38

4.2.3 Inhibitors of Iodide Uptake .. 39

4.2.4 Xenobiotic Effects on Iodothyronine Deiodinases .. 39

4.2.5 Toxictant Effects on Thyroid Hormone Clearance ... 40

4.2.6 Role of Binding Proteins .. 42

4.2.7 Thyrotropin-Releasing Hormone (TRH) and Thyrotropin (TSH) Challenge Test .. 54

4.3 Current in vivo Mammalian Screens ... 42

4.3.1 Endpoints for Thyroid Toxicity in Mammalian Developmental Assays 43

4.3.2 OECD Test Guidelines ... 44

4.3.3 Japanese Screening and Testing Program .. 46

4.3.4 U.S. EPA's EDSP Mammalian Assays ... 47

4.3.5 Modifications of Assay Endpoints for TH Action ... 53

4.4 Thyrotropin-Releasing Hormone (TRH) and Thyrotropin (TSH) Challenge Test 54

4.5 Thyrotropin-Releasing Hormone (TRH) and Thyrotropin (TSH) Challenge Test 54

4.5 Thyroid Hormone Receptor Binding and Activation .. 54

4.6 The Developing Rodent Cerebellum ... 54

4.6.1 Overview of Methods ... 55

4.6.2 Potential Endpoints of Cerebellar Granule Cells .. 56

4.6.3 Apoptosis in the Cerebellum ... 56

4.6.4 TH Effects on Purkinje Cell Proliferation and Differentiation 57

4.6.5 Methods of Analysis ... 57

4.6.6 Planimetric Measurements of Cerebellar Development 57

4.6.7 Granule Cell Migration ... 58

4.7 TH-regulated Gene Expression in the Cerebellum ... 58

4.8 TH Effects on Cortical Neurogenesis ... 59

4.8.1 TH Effects on Cortical Lamination and Barrel Field Differentiation 59

4.8.2 Methods of Analysis ... 59

4.9 Thyroid Hormone Action in Oligodendrocytes Differentiation 59

4.10 Hormone Levels .. 60

4.11 Additional Histochemical or Biochemical Markers of Thyroid Toxicity in the Developing Brain .. 61

4.12 In vitro Screens ... 61

4.12.1 Primary Cultures .. 61

4.12.2 Cell Lines .. 62

4.12.3 In vitro Binding Assays .. 62

4.12.4 Transfection and Transformation Assays ... 62

4.12.5 GH3 Cell Assay for Thyroid Hormone Action ... 63

4.12.6 FRTL-5 Cells .. 63

4.13 Effect of Xenobiotics ... 63
7.1 Overview of the HPT Axis .. 143
 7.1.1 Neuroendocrine Control of Thyroid Function .. 143
 7.1.2 Thyroid Gland Function .. 144
 7.1.3 Thyroid Hormone Secretion ... 145
 7.1.4 Regulation of Circulating Thyroid Hormone .. 146
 7.1.5 Thyroid Hormone Negative Feedback on the HPT Axis ... 153
 7.1.6 Summary of Differences between Avian and Mammalian HPT Axis .. 153
 7.2 Roles of Thyroid Hormones in Avian Development ... 153
 7.2.1 Effects on Growth .. 153
 7.2.2 Induction of Tissue-Specific Differentiation/Maturation ... 155
 7.3 Role of Thyroid Hormones on Seasonal/Organismal Processes ... 158
 7.3.1 Reproduction .. 158
 7.3.2 Hatching .. 159
 7.3.3 Eggshell Formation ... 160
 7.3.4 Molt .. 160
 7.3.5 Development and Maintenance of Photorefractoriness ... 161
 7.4 Role of Thyroid on Behavior .. 161
 7.5 Role of Thyroid on Metabolism .. 162
 7.5.1 Thermogenesis ... 162
 7.5.2 Development of Thermoregulation ... 162
 7.5.3 Lipogenesis .. 164
 7.6 Assay Methods for Assessing Thyroid Disruption in Birds ... 164
 7.6.1 Overview of Experimental Methods .. 164
 7.6.2 Thyroid and HPT Axis Endpoints ... 164

6.10.1 Serum TH in Relation to Reproductive Status .. 107
6.10.2 Effects of Gonadal Steroids on Serum TH ... 108
6.10.3 Larvae .. 109
6.11 Methods of Evaluating Thyroid Disruption in Anurans ... 119
 6.11.1 Overview of Experimental Methods .. 119
 6.11.2 Whole Animal Assays (excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays” with modification) ... 122
 6.11.3 In vitro, Ex vivo, and In vivo Assays ... 130
 6.11.4 Recommended Assay Protocols (portions excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays” with modification) ... 134
 6.11.5 Data Gaps ... 140
1.0 EXECUTIVE SUMMARY

To be completed after the final document is complete.

This document reviews the state of thyroid assays and thyroid assay development across four taxa (mammals, fish, amphibians, and birds). Due to the homology of the thyroid system across vertebrate taxa, and the importance of thyroid hormones to development and physiology, this document strove to integrate assay comparisons among the taxa. By assessing the state of the assays amongst mammalian, fish, amphibian, and avian species, the state of thyroid assays, redundancies, and information gaps presented themselves.

Discuss potential strategies to test for thyroid disruption.

Describe how the recommended strategies will affect OECD member countries, basic ED research, and the regulatory community.
2.0 INTRODUCTION

2.1 History and Genesis of a Comprehensive Review of Thyroid Assays across Taxa

1. The Organization for Economic Cooperation and Development (OECD) initiated a high-priority activity in 1997 to develop new test guidelines and revise existing test guidelines for the screening and testing of potential endocrine disruptors. This activity is organized under the Task Force on Endocrine Disruptors Testing and Assessment as part of the OECD test guidelines program and managed by three Validation Management Groups (VMGs) covering mammalian, ecotoxicity, and non-animal methods. At the first meeting of the VMG non-animal, the International Council on Animal Protection in OECD Programs (ICAPO) presented an initial draft of a Detailed Review Paper (DRP) reviewing in vitro assays for thyroid toxicants. In 2003, all three VMGs identified thyroid screening and testing as areas for further investigation by the OECD. In response to this concern and a request by ICAPO for assistance in completing the DRP on in vitro thyroid screening methods, the U.S. Environmental Protection Agency (EPA) agreed to sponsor the preparation of this comprehensive DRP on thyroid toxicity screening and testing methods.

2. The US EPA established the Endocrine Disruptor Screening Program (EDSP) as a result of the passage of the Food Quality Protection Act (FQPA) and an amendment to the Safe Water Drinking Act (SDWA) in 1996. The EPA relied on an Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) to develop a proposed battery of assays for screening and testing that could be used to determine if chemical compounds disrupt the endocrine system. EDSTAC specifically focused their efforts on assays to detect estrogen, androgen, and thyroid system disruption.

2.2 Purpose of the Present Review

3. The present review was designed to touch upon several major areas that are important to detecting thyroid disrupting compounds. Although the DRP provides a thorough review of the biology and toxicology of thyroid endocrinology among vertebrates, it was also designed as a comprehensive analysis of the strengths and weaknesses of the present and proposed assays to identify thyroid toxicants. The purposes of this review are 5 fold: 1) review the in vitro thyroid assays that are capable of detecting interference with the thyroid system, 2) compare the performance of the in vitro assays to those of the established in vivo assays for their ability to detect thyroid-related effects in both Tier 1 and Tier 2 testing, 3) perform a comprehensive species comparison that could lead to possible recommendations for assay battery composition that covers the effects relevant to both humans and ecological species (for example a fish or frog-based in vitro or in vivo assay could indicate thyroid system abnormalities in all vertebrates and could serve as a Tier 1 assay that is sufficient for indicating a potential response in any Tier 2 assay for thyroid), 4) determine whether there are alternative screens or tests for thyroid that can be more easily linked to adverse consequences than the present tests, and 5) identify strategies to reduce animal use.
2.3 Objective of the Different Assays

A number of the screens and tests discussed in this document are intended to inform the needs of the OECD parties that are interested in this document. Thus, it is not the intention of this review to provide examples of batteries of screens or tests that could be employed within the context of the US EPA’s Endocrine Disruptor Screening Program (EDSP) or the OECD’s Endocrine Disruptor Task Force. Rather, a large number of screens and tests are described for all vertebrates (except reptiles) that can be assembled into an integrated battery to accomplish the goals of chemical identification as well as to minimize cost and animal usage.

2.4 Methodology used in the Analysis

Each chapter was written by an expert in that field, and the first draft is to be reviewed by outside experts via the OECD. The literature cited in this document was gathered by a large number of broad and focused electronic literature searches of national databases (MEDLINE, TOXLINE). Specific screens and tests described in this document represent existing assays for thyroid toxicity or represent the respective authors’ original concepts of effective assays.

2.5 Definitions

6. (Glossary/list of abbreviations to be provided)
3.0 GENERAL BACKGROUND ON THE HYPOTHALMIC-PITUITARY-THYROID (HPT) AXIS

Recent reviews of thyroid toxicology (e.g., Lewandowski, et al., 2004; Strawson, et al., 2004) raise important questions about the ability of the hypothalamic-pituitary-thyroid axis to accommodate (compensate for) toxicant-induced changes within the HPT axis and how differences in the rodent and human system should be compared, especially within the context of risk analysis. It is critical to recognize that current conclusions about whether the degree of thyroid disruption induced by a particular toxicant represents a “compensatory” or “adverse” effect on non-cancer endpoints are not evidence-based. Specifically, there are currently no endpoints of thyroid hormone action recognized as representing markers of adverse effects employed in these screens or tests. Moreover, there is good evidence that the mechanism(s) by which different toxicants disrupt the thyroid system determines the degree to which adverse effects can be inferred. Clearly, to assemble a battery of screens and tests that will generate the information required to identify thyroid toxicants that may disrupt the thyroid system, assays must be developed based on what is known about thyroid endocrinology. Therefore, the goal of this section is to provide a basic primer to the thyroid endocrine system to explicitly address the endocrinology of the thyroid system and the relevant differences between rodents and humans that will affect the informed design of screens and tests for thyroid toxicants. In addition, comparisons among other taxa will be briefly highlighted within this chapter, but expanded in the following chapters.

We begin by providing an outline of the HPT axis, with brief descriptions of the various functional levels of the axis. Following this description, we present detailed background information with references to the points of thyroid disruption known to occur.

3.1 The Hypothalamic-Pituitary-Thyroid (HPT) Axis

Thyroid toxicants are generally defined as toxicants that alter circulating levels of thyroid hormone (Brucker-Davis, 1998). However, the interpretation of data derived from these studies often rests on an incomplete analysis of the dynamic relationships within the HPT axis. These relationships are quite complex, which can confound the interpretation of thyroid toxicant actions, as discussed below (see Figure 3-1). We first present an overview of the HPT axis as developed in mammals, followed by a more detailed description of each of the components of this axis. Finally, we provide a review of feedback relationships among the levels of the HPT axis. In all cases, the focus is on mammalian thyroid endocrinology, with mention of comparative thyroid endocrinology throughout this review.
1. Neurons whose cell bodies reside in the hypothalamic paraventricular nucleus (PVN) synthesize the tripeptide Thyrotropin-Releasing Hormone (TRH) (Segersen, et al., 1987a; Segersen, et al., 1987b). Although TRH-containing neurons are widely distributed throughout the brain (Jackson, et al., 1985; Lechan, et al., 1986), TRH neurons in the PVN project uniformly to the median eminence (Ishikawa, et al., 1988; Merchenthaler and Liposits, 1994), a neurohemal organ connected to the anterior pituitary gland by the hypothalamic-pituitary-portal vessels (Martin and Reichlin, 1987), and are the only TRH neurons to regulate the pituitary-thyroid axis (Aizawa and Greer, 1981; Taylor, et al., 1990).

2. TRH is delivered by the pituitary-portal vasculature to the anterior pituitary gland to stimulate the synthesis and release of Thyroid Stimulating Hormone (TSH) or “Thyrotropin” (Haisenleder, et al., 1992). TRH selectively stimulates the synthesis of the TSH beta subunit (Haisenleder, et al., 1992). However, TRH also affects the post-translational glycosylation of TSH which affects its biological activity (Harel, et al., 1993; Lippman, et al., 1986; Magner, et al., 1992; Taylor, et al., 1986; Taylor and Weintraub, 1985; Weintraub, et al., 1989). To our knowledge, there is no empirical evidence that TSH exerts a short-loop negative feedback effect on TRH neurons of the PVN. Zoeller et al. did not find that TSH affected TRH neurons of the PVN, nor did it affect the ability of thyroid hormone to influence these neurons (Zoeller, et al., 1988).

3. Pituitary TSH is one of three glycoprotein hormones of the pituitary gland and is composed of an alpha and a beta subunit (Wondisford, et al., 1996a). All three pituitary glycoproteins...
(Luteinizing Hormone, LH; Follicle Stimulating Hormone, FSH; and TSH) share the same alpha subunit (Hadley, 2000). Pituitary TSH binds to receptors on the surface of thyroid follicle cells stimulating adenylate cyclase (Taurog, et al., 1996; Wondisford, et al., 1996b). The effect of increased cAMP is to increase the uptake of iodide into thyroid cells, iodination of tyrosyl residues on thyroglobulin (TG) by thyroperoxidase, synthesis and oxidation of TG, TG uptake from thyroid colloid, and production of the iodothyronines T4 and T3. T4 is by far the major product released from the thyroid gland (Taurog, et al., 1996). Recent anatomical studies have shown that human pituitary thyrotropes express the mRNA encoding the TSH receptor (Prummel, et al., 2000; Theodoropoulou, et al., 2000), but no functional studies have explored the physiological significance of these observations.

4. Thyroid hormones are carried in the blood by specific proteins. In humans, about 75% of T4 is bound to thyroxine-binding globulin (TBG), 15% is bound to transthyretin (TTR) and the remainder is bound to albumin (Schussler, 2000). TBG, the least abundant but most avid T4 binder, is a member of a class of proteins that includes Cortisol Binding Protein (CBP) and is cleaved by serine proteases in serum (Fink, et al., 1986). These enzymes are secreted into blood during inflammatory responses and, in the case of CBP, can induce the release of cortisol at the site of inflammation. The physiological significance of this observation is presently unclear for TBG (Schussler, 2000).

5. Thyroid hormones (T4 and T3) exert a negative feedback effect on the release of pituitary TSH and on the activity of hypothalamic TRH neurons (Koller, et al., 1987; Rondeel, et al., 1989; Segersen, et al., 1987b). Although it is clear that thyroid hormone regulates the expression of TSH (Franklyn, et al., 1987; Mirell, et al., 1987; Shupnik and Ridgway, 1987) and TRH (Koller, et al., 1987; Segersen, et al., 1987a; Segersen, et al., 1987b; Zoeller, et al., 1988) in a negative feedback manner, it is also clear that the functional characteristics of negative feedback must include more than simply the regulation of the gene encoding the secreted protein/peptide. In addition, fasting suppresses the activity of TRH neurons by a neural mechanism that may involve leptin (Fekete, et al., 2000; Lagradi, et al., 1997). This fasting-induced suppression of TRH neurons results in the reduction of circulating levels of thyroid hormone. In humans and perhaps in rodents, circulating levels of T4 and of T3 fluctuate considerably within an individual; therefore, TSH measurements are considered to be diagnostic of thyroid dysfunction (Chopra, 1996; Roti, et al., 1993; Stockigt, 2000).

6. T4 and T3 are actively transported into target tissues (Docter, et al., 1997; Everts, et al., 1994a; Everts, et al., 1994b; Everts, et al., 1995; Friesema, et al., 1999; Kragie, 1996; Moreau, et al., 1999; Oppenheimer, 1983). T4 can be converted to T3 by the action of outer-ring deiodinases (ORD, Type I and Type II) (St Germain and Galton, 1997). Peripheral conversion of T4 to T3 by these ORDs accounts for nearly 80% of the T3 found in the circulation (Chopra, 1996).

7. Thyroid hormones are cleared from the blood in the liver following glucuronidation by UDP-glucuronosyl transferase (Hood and Klaassen, 2000a, b). These modified thyroid hormones are then eliminated through the bile.

8. T4 and/or T3 are actively concentrated in target cells about 10-fold over that of the circulation, although this is tissue-dependent. The receptors for T3 (TRs) are nuclear proteins that bind to DNA and regulate transcription (Lazar, 1993, 1994; Mangelsdorf and Evans, 1995; Oppenheimer and Schwartz, 1997; Oppenheimer, et al., 1994). There are two genes that encode the TRs, c-erbA-alpha (TRα) and c-erbA-beta (TRβ). Each of these genes is differentially spliced, forming 3 separate TRs, TRα1, TRβ1, and TRβ2. The effects of thyroid hormone are quite tissue-, cell-,
and developmental stage-specific and it is believed that the relative abundance of the different
TRs in a specific cell may contribute to this selective action.

3.2 Structure of the Mature Thyroid Gland

9. The mature mammalian thyroid gland consists of two elongated oval lobes, one on each side of
the trachea, joined near their posterior poles by a thin isthmus crossing the trachea ventrally (see
Braverman and Utiger, 2004). The lobes, buried under the muscles of the neck region, are richly
vascularized and made up of groups of fluid-filled spheres, or follicles, often visible macroscopically. The
lobes extend anteriorly as far as the cricoid cartilage of the larynx and posteriorly over the first three or
four tracheal rings. Variations in size, extent, and/or position are common.

10. Microscopically, the gland is made up of fluid-filled follicles of varying sizes, surrounded by a
fibrous connective tissue capsule and supported by richly vascular interfollicular connective tissues. The
follicles are lined by simple cuboidal cells with distinct outlines, large spherical nuclei, and clear
cytoplasm. The height of the epithelial cells and the amount and staining quality of the colloid are
generally believed to be indicative of secretory activity.

11. Thyroid follicles are relatively uniform in size, though they appear variable in size in histological
sections because of the different amounts of follicles contained within thin sections. They contain a
homogeneous, slightly acidophilic colloid. During the early postnatal months (1 to 3 months in strain C3H
mice and 1 to 5 months in strain C57 mice), cuboidal cell height decreases rapidly and follicle diameter
increases rapidly. With increasing age, follicles become larger, the interfollicular tissue decreases, and the
colloid becomes more eosinophilic. Senile changes, which occur as early as 12 months of age in mice of
some strains and more markedly in females, include loss of stainable colloid, increase in fibrous
interfollicular connective tissue, and great variation in follicle size. It is not uncommon to observe
coalescense of contiguous large follicles to form bilocular or trilocular cysts with flattened epithelium.
These observations demonstrate that there are developmentally associated dynamic changes in the
histological structure of the mammalian thyroid gland, and thus, experiments must be timed to ensure that
normal variation in structure does not confound the findings.

12. In general, the thyroid gland is structurally conservative among jawed vertebrates
(Gnathostomes). The gland is often a collection of aggregated follicles as described for mammals, highly
vascularized and encapsulated by connective tissue. Especially in fish, these follicles can be distributed
diffusely in the pharyngeal region. These organizational differences impact studies because histopathology
is much more difficult in fishes than in mammals, considering the diffuse organization. However, despite
these structural differences, the biochemistry and regulation of thyroid hormone synthesis is identical.

3.3 Development of the Thyroid Gland

13. The paired ultimobranchial bodies (sometimes termed the lateral thyroid) are thought to form
from the rudimentary fifth pharyngeal pouches beginning in the human at five to six weeks in utero. At
the beginning of the seventh week (13 mm embryo), each ultimobranchial body, joined with the adjacent
pair of parathyroids (from the fourth branchial pouches), separates from the pharynx and comes in contact
with the growing two lobes of the thyroid. The ultimobranchial bodies lose their lumina and become
incorporated into the thyroid gland. The ultimate fate of these bodies is not certain. They may degenerate,
be converted (induced) to differentiate into thyroid tissue, form physiologically and morphologically
distinct follicles within the thyroid, or ultimately form the parafollicular (calcitonin) cells of the thyroid.

14. The thyroid gland, per se, is the first glandular structure to form. Even the human embryo at
three weeks of age, of six somites (2 mm long), exhibits an external bulge on the ventral floor of the
foregut, just caudal to the pharyngeal membrane and cephalad to the pericardial cavity. A distinct endodermal outpocketing, the thyroid diverticulum, soon protrudes (by the time the embryo is 4.5 mm) and lies between the second pair of pharyngeal pouches (see above). This sac initially maintains its connection to the pharynx by a narrow neck termed the thyroid glossal duct (first observed at 8 mm), so named because it is initially hollow and connects the primitive thyroid with the tongue, which is forming from the pharyngeal floor at the same time (about four weeks in utero). The duct opens at the aboral end of the median swelling of the tongue (the tuberculum impar). The duct becomes a solid stalk and disintegrates in the sixth week in utero, but its point of origin on the tongue is permanently marked by an enlarged pit termed the foramen caecum.

15. The thyroid sac quickly becomes a solid bilobed mass that lies against the primitive aortic stem. When the stalk atrophies, the thyroid converts to an irregular mass of epithelial plates. Early in the seventh week in utero in humans, the gland becomes C-shaped and settles into a transverse position with a lobe on each side of the trachea. The transverse position is caused by the forward growth of the pharynx, which leaves the aortic trunk and thyroid gland below it. Also during the seventh week, the enlarging ultimobranchial bodies come in contact with the thyroid primordium and fuse with it (see above), thereby separating the thyroid from the aorta and pericardium. In the eighth week in utero in humans, discontinuous cavities begin to appear in swollen or beaded portions of the solid thyroid plates. These cavities are the beginnings of the follicles that acquire colloid in the third month in utero and soon after become functional. By the end of the fourth month in utero, this conversion into follicles ceases. Thereafter, new follicles form only by the budding and subdivision of those already present. A capsulated vascular stroma differentiates from the local mesenchyme.

16. This same thyrogenic process occurs in similar (or identical) fashion in all mammals. In the fetal pig, the pharyngeal pouches and thyroid gland form similarly with the gland located between the second and third branchial arches, with the thyroglossal duct initially opened just caudal to the tubercular impar (unpaired median swelling) of the tongue. In the mouse, the thyroid gland also forms from a medial epithelial mass growing ventrally at the level of the first and second pharyngeal pouches. The ultimobranchial bodies from pouches IV and V become closely integrated with the median thyroid mass and may form structures that persist in the adult thyroid. Some of these ultimobranchial body-derived follicular tissues are physiologically and morphologically distinguished from the medullary-derived thyroid; ultimobranchial-derived follicles (at least in mice) have ciliated epithelial cells. These follicles with ciliated cells are particularly conspicuous in strain C3H mice, where they have been observed in newborns. In mice, thyroid function is initiated in 15- to 17-day-old fetuses in utero, with colloid secretion preceding follicle formation. Even in the chick embryo (Class Aves), the pharyngeal pouches and branchial grooves (only three, not five) form similarly. In this class, the thyroid gland forms at the level of the second pair of arches from the median floor of the pharynx.

17. Despite these differences in development and adult anatomy of the thyroid gland among the vertebrate taxa, several morphological, chemical, and functional commonalities exist. For example, thyroid hormones (T₄ and T₃) are chemically identical in all vertebrates. Moreover, these molecules are synthesized as part of a large protein (thyroglobulin). Because thyroglobulin is iodinated at the interface of the thyroid follicle cell and the colloid, all thyroid hormone producing tissues in vertebrates must form follicles. However, the organization of follicles into discreet glands differs among the vertebrates as described above. In addition, thyroid function is regulated by TSH in all vertebrates, and this pituitary hormone is regulated by a combination of negative feedback effects of thyroid hormone and by the stimulatory effects of the hypothalamus. However, the tripeptide TRH, which controls pituitary TSH release in mammals and birds, does not appear to control pituitary TSH release in amphibians. Finally, equivalent molecules in all vertebrate taxa control thyroid hormone action. Specifically, all vertebrates express thyroid hormone receptors, and these receptors regulate gene expression. The details of these events are described more fully in the following chapters.
3.4 Structure of the Mature Parathyroid Glands

18. The parathyroid glands produced parathyroid hormone (PTH), and though these glands are regulated independently of the thyroid and the hypothalamic-pituitary-thyroid axis, studies involving thyroidectomy often must deal with the confounding variable of the lack of PTH. In the human (and other mammalian) embryo, the parathyroid glands form from the dorsal portions of the third and fourth pairs of pharyngeal pouches; the third pair forms the adult inferior parathyroids, and the fourth pair remains at the cranial thyroid border and forms the superior parathyroids. In the adult, the position and number of parathyroid lobes are variable, although usually in mice a single lobe lies just under the capsule near the dorolateral border of each lobe of the thyroid. Two members of a pair are seldom at the same anteroposterior level. Sometimes one or both may be posterior to the thyroid; they may be deeply embedded in the thyroid tissue, and/or there may be more than two parathyroid lobes.

19. Each parathyroid gland in the mouse is usually separated from the thyroid by a connective tissue capsule and consists of sheet-like masses and anastomosing cords of polygonal cells separated by a network of capillaries or sinusoids. Specific cell types are identified with their relative abundance varying with age: (1) the principal cells have large vesicular nuclei and scanty basophilic cytoplasm; (2) ovoid to fusiform-shaped cells with smaller hyperchromatic nuclei and more abundant granular eosinophilic cytoplasm in small groups in the interstitial connective tissue (these increase with age); (3) very large cells with large vesicular nuclei and prominent nucleoli (these become conspicuous only in old age); and (4) pigmented dendritic cells in the parathyroid stroma of pigmented mice (most frequently in strain C58 mice). Because the parathyroids develop in close proximity to the developing thymus, ultimobranchial bodies, and thyroid, they may remain in contact with these organs in adulthood. Parathyroid “nests” (distinguishable histochemically) have been consistently found in the thymus septa or surface connective tissue, and sometimes the parathyroid, thyroid, and thymus are found connected by a ciliated cyst.

3.5 Overview of Functional Relationships among Levels of the Hypothalamic-Pituitary-Thyroid Axis

20. Current screens and tests for thyroid toxicants are based on the interactions among hormones within the hypothalamic-pituitary-thyroid (HPT) axis. These interactions include trophic actions (i.e., stimulatory effects) and inhibitory effects (e.g., negative feedback). Therefore, this section was developed to provide background information required to understand the current assays and upon which additional information will be developed to identify new assays to identify endocrine toxicants. This overview is generated largely from experimental work in rodents (mostly rats and mice). However, some information is provided to demonstrate the similarity with the HPT axis in humans where this information is available. We have attempted to clarify the origin of the information throughout.

3.5.1 The Hypothalamic-Pituitary-Thyroid Axis

21. The thyroid gland is controlled principally by an interaction between iodine availability, a requirement for thyroid hormone synthesis, and thyrotropin (TSH) from the pituitary gland. This is true for humans, for rodents (Dunn and Dunn, 2000; Morreale de Escobar, et al., 1997), and in other vertebrates (Norris, 1997). In turn, TSH, a glycoprotein hormone, is under the regulation of thyroid hormone itself (negative feedback) and of the releasing factor, thyrotropin releasing hormone (TRH) from the hypothalamus. TRH release is controlled by thyroid hormone (the long loop of the negative feedback system) as well as by neural inputs that relay information about a variety of physiological states including food availability, body temperature, and perhaps cardiovascular functioning. Greer et al. (1993) proposed that TRH controlled the set point around which thyroid hormone regulates TSH release, suggesting that TSH regulation is a pivotal point of regulation of the HPT axis.
Although these are the central features regulating thyroid function within the HPT axis, there are many additional processes that contribute to the overall regulation of the HPT axis, and of thyroid hormone action at target tissues. Perhaps most important among these are the metabolic enzymes that control changes in the iodination state of thyroid hormone. Specifically, three classes of deiodinase enzymes control the conversion of thyroid hormone to various active and inactive forms. It is becoming clear that the activity of these enzymes can contribute significantly to regulating tissue sensitivity to thyroid hormone and their enzymatic activity can be affected by various toxicants. In addition, enzymes in the liver target thyroid hormone for covalent modifications that lead to removal of thyroid hormones from the circulation. Likewise, the enzymes induced by some toxicants may produce significant changes in serum hormone levels as a result. Finally, serum binding proteins are important in regulating total hormone levels by increasing the carrying capacity of iodothyronines, which are only poorly soluble in aqueous media. Serum binding proteins are themselves regulated by a variety of factors, including thyroid hormone; thus, chemicals that change circulating levels of thyroid hormones are also likely to alter serum binding proteins which will further change (in an adaptive manner or not) the dynamics of this endocrine system. Each of these steps is reviewed in detail below.

3.5.2 Thyroid Hormone Synthesis

Thyroid hormone is synthesized in a very different way than other hormones that use similar signaling pathways (i.e., steroid hormones). Figure 3-2 illustrates the structure and function of the thyroid. Thyroid hormone is a small bi-phenolic compound derived from separate tyrosine residues on a large protein – thyroglobulin (Tg) (Taurog, 2004). Thyroglobulin, in turn, is synthesized on ribosomes and transported (by exocytosis) to the colloid. It is then iodinated at specific tyrosine residues as it is being exocytosed. This large iodinated protein—thyroglobulin—is then stored in the colloid until it is required for the synthesis of hormone. At that time, colloid droplets are ingested by thyroid follicle cells by endocytosis and transported to the side of the cell that is bathed in interstitial fluid. On the way through the cell, the endocytotic vesicle fuses with a lysosome. Enzymes within the lysosome then digest the iodinated Tg and liberate T₄ and T₃. These steps are expanded below.

3.5.2.1 Regulation of Synthesis by TSH

Thyrotropin (“thyroid stimulating hormone” or TSH) regulates the activity of the thyroid gland, including synthesis and release of thyroid hormones, uptake of iodine, and even cell hypertrophy and hyperplasia (Spaulding, 2000). When TSH binds to its receptor on the thyroid cell, the intracellular domains of the receptor activate several guanine nucleotide-binding (G) proteins (Wonerow, et al., 2001). Cyclic AMP-dependent protein kinases (PKA) mediate many of the actions of the activated TSH receptor including its mitogenic action (Dremier, et al., 2002). The PKA signaling pathway activates CREM (cAMP-response element modulator) and CREB (cAMP-response element binding protein) that interact with specific regulatory regions on specific genes. The TSH receptor also activates protein kinase C (PKC) and diacylglycerol (DAG) (Spaulding, 2000). Thus, activation of the TSH receptor produces a transient increase in intracellular free calcium involving an IP₃-dependent mechanism.

Likewise in other vertebrates, thyroid hormone is under the combined regulation of iodine availability and TSH. However, there is no evidence that toxicants can directly interfere with TSH synthesis or secretion, or directly with the ability of TSH to induce a signaling cascade in thyroid cells. However, there are indications that some toxicants can alter the TRH-induced increase in serum TSH (Khan and Hansen, 2003), suggesting that this may be a point of disruption by some classes of chemicals.
3.5.2.2 Thyroglobulin Synthesis

26. Thyroglobulin (Tg) is the substrate upon which thyroid hormones are synthesized (Dunn and Dunn, 2000). In its normal form, Tg is a dimer with a molecular weight of 660,000 daltons. Tg synthesis is controlled by three transcription factors – TTF-1 (thyroid transcription factor-1), TTF-2, and Pax8 (Damante and Di Lauro, 1994; Kambe, et al., 1996; Kambe and Seo, 1996). Hypophysectomy or thyroid hormone treatment can decrease transcription of Tg in rats (Van Heuverswyn, et al., 1984). This is believed to be a cAMP-mediated event (Dunn and Dunn, 2000). The polypeptide chain of Tg is synthesized ribosomally bound to rough endoplasmic reticulum. Under normal circumstances, properly folded Tg dimers migrate to the Golgi complex to complete the addition of carbohydrate and sulfate moieties (Ring, et al., 1987; Spiro and Spiro, 1988).

27. Like TSH, Tg is conserved among vertebrates (Ogasawara, et al., 1999). However, there is no evidence indicating that environmental toxicants can directly influence the production of Tg.

3.5.2.3 Regulation of Iodine Uptake

28. The thyroid gland can concentrate iodine 20-40 fold over blood levels under normal physiological conditions (Carrasco, 2000). The sodium-iodide symporter (NIS) mediates the initial step in thyroid hormone synthesis – the uptake of iodide into the cell. NIS accomplishes this because it is an intrinsic plasma membrane protein on thyroid follicular cells and it couples the inward “downhill” translocation of Na+ to the inward “uphill” translocation of I-. The driving force for the process is the inwardly directed Na+/K+ ATPase that generates a large concentration gradient in sodium (35-fold higher outside the cell). NIS is blocked by the anions thiocyanate and perchlorate. Interestingly, perchlorate does not appear to be transported by the NIS (Eskandari, et al., 1997; Yoshida, et al., 1997; Yoshida, et al., 1998), indicating that it is a blocker of NIS function, not a competitive inhibitor. A number of environmentally relevant anions also inhibit NIS function (e.g., NO₃⁻, ClO₃⁻, and others) (Wolff, 1998). Transcription of the NIS gene is under the regulation of TTF-1, TTF-2 and Pax8; these are activated by PKA activity stimulated by TSH. Thus, the ability of the thyroid gland to trap iodide is enhanced by TSH (up to 200 fold).

29. The NIS is also structurally and functionally conserved among vertebrates (Cabello, et al., 2003). In addition, there are a number of toxicants that affect iodide uptake through this protein (Wolff, 1998). Thus, this is likely to represent an important mode of action of thyroid toxicants. There is also a poorly understood relationship between mild iodine insufficiency and autoimmune thyroid disease (Laurberg, et al., 2000). It is not clear whether this relationship occurs in non-human mammals, or non-mammalian vertebrates. Moreover, it is not clear whether environmental inhibitors of NIS (e.g., perchlorate) may also be related to autoimmune thyroid disease.

3.5.2.4 Mechanism of Iodine Organification - Thyroperoxidase

30. There are four major sites on the thyroglobulin protein where iodine becomes covalently attached (“hormonogenic” sites designated A-D) (Dunn and Dunn, 2000). These “sites” are tyrosyl residues that accept an iodine atom as the consequence of thyroperoxidase activity. The utilization of the major and minor (i.e., less frequently used) sites varies under different physiological conditions and among different species. Some of these sites are more important for the formation of T₄ compared to T₃.
The upper left panel shows the position of the thyroid gland in humans. This position is similar in all mammals, but in some fish (but not all), and in some amphibians, the thyroid follicles are distributed diffusely in the pharyngeal regions. In other animals, the gland is medial, not paired. The upper right panel shows a histological section through the human thyroid gland. Note several large follicles and interfollicular connective tissue stroma. This follicular organization is similar among all vertebrates. In the lower panel is a diagram of the follicular cell, emphasizing the role of TSH in regulating iodide uptake through the sodium/iodide symporter (NIS), pendrin and the thyroperoxidase.
31. Iodide, the form of iodine that enters the cell, must be oxidized to a higher oxidation state before it is transferred to Tg (Taurog, 2004). Of the known biological oxidizing agents, only H_2O_2 and O_2 are capable of oxidizing iodide (Taurog, 1964). Organization of iodine is controlled by the enzyme thyroperoxidase (TPO). TPO is a heme-containing enzyme and there are two substrate sites on the molecule. Both substrates are assumed to undergo one-electron oxidation, yielding the corresponding radical (I. and Tyr.). Thus, this is a two-step mechanism of iodination, similar to other peroxidases (e.g., lactoperoxidase). TPO has no catalytic activity in the absence of hydrogen peroxide. It is likely that the glucose-glucose oxidase system produces this important oxidizer. TPO is also involved in the coupling reaction – the process whereby iodinated tyrosyl residues are coupled together with an ether bond (−O−) (Taurog and Nakashima, 1978). The proposed coupling scheme is as follows (Taurog, 2004): 1) TPO + H_2O_2 oxidize targeted tyrosyl residues on Tg, forming an oxygen radical on one residue and a carbon radical on the other, 2) there is a nonenzymatic coupling forming a 3) quinolone ether followed by a 4) rearrangement which removes the amino terminus and forming the iodothyronine.

32. The TPO enzyme is highly conserved among vertebrates. Moreover, there are a number of toxicants that directly interfere with TPO activity (Wolff, 1998). The relationship between TPO inhibition and Tg iodination is not well understood (Doerge and Chang, 2002; Doerge and Sheehan, 2002). Therefore, TPO inhibition itself is less likely to be a reliable endpoint for adverse effects.

3.5.2.5 Location of Iodine Organization

33. There is autoradiographic evidence obtained by electron microscopy indicating that Tg iodination occurs at the cell-colloid interface close to the apical membrane (Ohtaki, et al., 1982; Taurog, et al., 1990; Yokoyama and Taurog, 1988). This process occurs quickly inasmuch as at least one report demonstrates the appearance of silver grains (in liquid emulsion) concentrated over the apical border of the cell 40 seconds after injection of ^{125}I in rats (Ekholm and Wollman, 1975; Wollman and Ekholm, 1981). Thus, Tg appears to be iodinated on the border of the colloid and the apex of the thyroid follicle cell, and specific tyrosyl residues are coupled within the backbone structure of Tg. This is the material stored in the colloid of the thyroid follicle. These kinds of studies have not been performed in other vertebrates.

3.5.2.6 Thyroglobulin Storage

34. Iodinated Tg is stored in the adult rat thyroid gland at a high concentration (>100 mg/mL) (Smeds, 1972a, b) indicating that the rat stores only a few days’ worth of thyroid hormone (see references in (Greer, et al., 2002)) whereas the normal adult human thyroid stores perhaps several months’ worth of hormone (Brabant, et al., 1992; Dunn and Dunn, 2000). In contrast, the fetal and neonatal human thyroid gland contains very little iodinated Tg (Etling, 1977; Etling and Larroche, 1975; Savin, et al., 2003; van den Hove, et al., 1999), containing only enough iodinated Tg for a single day’s worth of thyroid hormone at birth. This is important because chemicals that inhibit thyroid hormone synthesis (NIS- or TPO-inhibitors) would not affect thyroid hormone release until this stored material is depleted.

3.5.2.7 Thyroid Autoregulation by Iodine

35. Iodine is not only a requirement for thyroid hormone synthesis, it directly regulates many if not all the functions of the thyroid gland itself (Pisarev and Gartner, 2000). The observation that serum TSH remains within a normal range despite fluctuations in daily iodine intake (in iodine-sufficient regions) of between 50 and 1,000 µg suggests that iodine is playing an autoregulatory role. Excess iodine impairs iodide organification ((Wolff, et al., 1949) cited by (Pisarev and Gartner, 2000)) and though this is a temporary block, children of women treated during pregnancy with the highly iodinated drug amiodarone have hypothyroidism and neurological deficiencies (Bartalena, et al., 2001). In contrast, iodine deficiency
leads to hypersensitivity to the goitrogenic effects of TSH (Bray, 1968). In humans, mild iodine deficiency can lead to goiter in the absence of elevated levels of serum TSH (Gutekunst, et al., 1986), though it must be stated that the population reference range of serum TSH is much broader than the individual variance in serum TSH (Andersen, et al., 2002). Still, goiter development in geographical regions of the world with low iodine correlate better with thyroidal iodine than with serum TSH (Stubner, et al., 1987).

36. Excess iodide consumption (or treatment) directly inhibits thyroid adenylate cyclase activity (Rapoport, et al., 1975). This inhibitory effect of excess iodide on adenylate cyclase is itself blocked by inhibitors of iodide organification, indicating that iodinated intermediates formed by the action of thyroperoxidase play a role in regulating cAMP production (Corvilain, et al., 1988). Therefore, in both humans and in experimental rodent systems, persistent exposure to excess iodide results in an inhibition of intracellular thyroidal cAMP and all cAMP-mediated events (Filetti and Rapoport, 1983; Van Sande, et al., 1975). The observation that excess iodide inhibits the transport of iodide, uptake of deoxyglucose and amino acids into the thyroid, as well as cAMP formation and Na/K-ATPase activity in thyroid cells indicates a membrane site of action of iodide (Krawiec, et al., 1991). The mechanism(s) by which iodide controls thyroid function are not well understood. It is possible that there are iodocompounds produced by thyroperoxidase, other than thyroglobulin and thyroid hormones, which then mediate the inhibitory effects on the thyroid gland. Some have suggested that these are iodolipids, especially arachadonic acid derivatives (Dunn and Dunn, 2000; Krawiec, et al., 1991).

37. The direct effects of intrathyroidal iodide on thyroid function are not well understood in other vertebrates. However, these studies indicate that toxicants blocking the NIS may exert complex effects on thyroid function that are not revealed in simple measures of circulating levels of thyroid hormones.

3.5.2.8 Role of Iodine Organification and Link to Synthetic Events

38. As reviewed above, excess iodide can inhibit the activity of adenylate cyclase; therefore, iodide can block both iodine organification and synthesis. Although there are no studies that indicate a functional coupling between iodine organification (i.e., TPO activity) per se and hormone synthesis and release, the observation that TPO inhibitors block the autoregulatory effects of iodide is important. Within this context, several reports demonstrate that dietary iodide intake changes the vascularity of the thyroid gland. Michalkiewicz et al. 1989 was the first to show that low dietary iodine content can increase thyroidal vascularity in rats, and this is reversed by a high iodine diet. The changes occurred within 7 days (the first time examined) and remained nearly the same at 133 days. More recently, this observation was repeated for human volunteers (Arntzenius, et al., 1991), showing that thyroidal blood flow (measured by Doppler analysis) is inversely related to dietary iodine intake and is independent of serum TSH. Because of the role of TPO in the autoregulation of thyroid function, this is an issue that must be considered in experiments using TPO inhibitors.

3.5.3 Hormone Release

3.5.3.1 Regulation of Hormone Release by TSH

39. Thyroid hormones (T$_4$ and T$_3$) are stored in the colloid as part of the iodinated Tg molecule. Therefore, prior to their secretion from the thyroid gland, T$_4$ and T$_3$ must be released from the peptide linkage within Tg. In the rat, as in other species, the process of hormone release from the thyroid gland begins with activation of the TSH receptor and accumulation of cAMP. This results in endocytosis of colloid and fusion of the endosome with a lysosome. Following this, the endosomal vesicle fuses with the basolateral membrane of the thyroid follicular cell and products are released, including Tg, T$_4$, and T$_3$.
3.5.3.2 Mechanisms of Colloid Endocytosis

40. The thyroid cell responds rapidly to TSH stimulation, with pseudopodia forming on the apical surface into the colloid, followed by numerous colloid droplets inside the cell (Wetzel, et al., 1965). Iodinated Tg first appears intracellularly inside apical coated vesicles (Bernier-Valentin, et al., 1990). It is not clear whether this is a Tg receptor-mediated clustering of iodinated Tg, or if the pinocytotic vesicle simply ingests colloid; it may be moot because the concentration of Tg is as high as 100 mg/mL, which may be high enough that sufficient Tg is captured within a single vesicle such that further concentration is not required. Immature Tg molecules may be recognized and recycled by the thyroid cell. The evidence for this is as follows. First, Tg binds to membrane preparations made from thyroid cells; binding is pH and temperature dependent, but is not dependent on the degree of Tg iodination (Consiglio, et al., 1979). In contrast, Tg binding to membrane preparations is dependent on the degree of post translational modification of Tg including addition of sialic acid and N-acetylglucosamine (Consiglio, et al., 1981; Miquelis, et al., 1987; Miquelis, et al., 1993). These studies indicate that there is selective uptake of Tg molecules. Although Kostroch et al. (1991, 1993) found no evidence that Tg and albumin were taken up into thyroid cells selectively, they did find that the two proteins exhibited different intracellular fates, further supporting the concept that there is a selective sorting process.

3.5.3.3 Mechanisms of Thyroxine Production and Liberation

41. T4 and T3 are liberated from their Tg backbone by the action of lysosomal enzymes after fusion of the endosome with a secondary lysosome (Dunn and Dunn, 2000). The enzymes responsible for Tg degradation are not unique to the thyroid gland but are common lysosomal enzymes. The aspartic endopeptidase cathepsin D is a likely candidate (Dunn and Dunn, 1982a, b). Cysteine endopeptidases, cathepsins B, H, L, and S are also likely to be involved in the liberation of T4 and T3 from the Tg backbone (Dunn, et al., 1996; Nakagawa and Ohtaki, 1984, 1985; Petanceska and Devi, 1992). There remain a number of questions regarding the relative importance of these different proteases in the liberation of T3 and T4 from Tg; it is also possible that different enzymes target specific hormonogenic sites on Tg (Dunn and Dunn, 2000). Moreover, there is evidence that some enzymes are in the colloid. T4 and T3 liberated from Tg are released from the cell; iodotyrosyl residues are deiodinated by the thyroid-specific monodeiodinase (Rosenberg and Goswami, 1979). Finally, some Tg is diverted into the bloodstream by transcytosis (Herzog, 1983).

42. Although the details of the mechanics of thyroid hormone synthesis and release are likely to be similar to or identical to those described for mammals, few studies have empirically confirmed this. Likewise, there is no evidence that environmental chemicals can directly alter the steps by which iodinated Tg is stored in the colloid or taken up into the cell for processing as part of the release mechanism.

3.5.4 Regulation of Serum Thyroid Hormone

3.5.4.1 Measures of Thyroid Hormone and their Interpretation

43. Clinical measures of thyroid function have guided the measurement and interpretation of thyroid function in rodents and other experimental systems (Stockigt, 2000). It is important to recognize that clinical features of thyroid disease in humans (adults, children, and newborns) are not unambiguously defined and that the biochemical markers of thyroid disease are considered diagnostic of thyroid disease itself (Stockigt, 2000). Likewise in experimental systems (i.e., rodents), the overt “clinical features” of thyroid dysfunction such as body weight and brain size should not be considered diagnostic of thyroid disorders even in development. Therefore, biochemical measures – serum hormone levels – should be accurately taken and reasonably interpreted. A cogent analysis of the evaluation of serum hormone levels in a clinical setting is provided by Stockigt (2000); Figure 3-3.
See Text for Details

44. In this figure, the center rectangle defines the concentration of TSH and free T4 that are within the normal range. Because of the negative feedback regulation of TSH by T4, the lower right quadrant represents primary hypothyroidism (thyroid dysfunction) where T4 is low and TSH is reflexively high. In contrast, the lower left quadrant represents secondary hypothyroidism (hypothalamic or pituitary dysfunction) in which both serum free T4 and TSH are low. The upper left quadrant represents a TSH-independent stimulation of the thyroid gland; in humans this is most commonly associated with autoimmune Grave’s disease (Schilling, 1997). Finally, the upper right quadrant represents thyroid resistance in which both serum free T4 and TSH are elevated.

45. The logic employed as described for the clinical setting is also employed for experimental animals. However, it is important to note that the relationship shown above is for serum free T4 rather than total T4. The difficulty here is that the measurement of free T4 is not simple. There are kits that measure “free T4 index,” but these measurements are known to be problematic (Midgley, 2001) both because they require the assumption that the antibody used for the radioimmunoassay (RIA) has a lower affinity for thyroid hormones than do the serum binding proteins, but also because they are quite sensitive to changes in the concentration of binding proteins which are never measured. This is further complicated in rodents because clinical RIAs are not necessarily valid for rodent serum.

3.5.4.2 Total T4 and T3

46. Total T4 and T3 are often measured in rodents and interpreted to reflect changes in thyroid function. Most often, total T4 is measured using a human serum-based kit (e.g., ICN Diagnostic Products). Total T4 and total T3 are perhaps the most variable measures of thyroid function because they vary in relation to the amount of serum binding proteins, and in the human population, this is quite variable (Stockigt, 2000). However, it is not clear whether serum binding capacity is highly variable among inbred rodent strains and, therefore, whether total hormone (T4 or T3) is a precise measure of changes in thyroid function. In contrast, it is often claimed that, because rodents do not have all the serum binding proteins present in humans, rodents exhibit changes in circulating levels of thyroid hormones in response to drug or chemical exposure (e.g., Clewell, et al., 2003). Although it is true that the carrying capacity of the blood...
increases with increasing serum binding proteins in humans [e.g., during pregnancy (Brent, 1999)], there is no evidence that the lack of specific serum thyroid hormone binding proteins in rodents (i.e., thyroxine binding globulin, TBG) necessarily makes rodents more sensitive to thyroid perturbation than are humans, because this implies that rodents respond to a lower dose (per unit body weight) of toxicant than do humans. Rather, there is evidence that the role of serum binding proteins is to allow the equal distribution of hormone delivery to a tissue. For example, Mendel et al. (1987) found that 125I-T$_4$ was evenly distributed in the rodent liver following a single pass through the tissue only if serum binding proteins were present in the perfusate. However, the identity of the serum binding protein (e.g., transthyretin versus TBG) did not alter the pattern or intensity of T$_4$ uptake. Therefore, within the limits of sensitivity of the assay being employed (see below), total T$_4$ in rodents is a valid measure of thyroid function if serum binding proteins are not being affected by the treatment under study. Of course, the same precaution applies to the measurement of total T$_3$. Because 80% of serum T$_3$ is derived from peripheral deiodination of T$_4$, serum total T$_3$ is more a measure of D1 activity than it is of thyroid function.

3.5.4.3 Free T$_4$ and T$_3$

Because of the variability in serum binding proteins, total T$_4$ and T$_3$ in humans are not as diagnostic for thyroid disease as free hormone (Stockigt, 2000). However, the only direct measures of free T$_3$ and T$_4$ are the equilibrium dialysis method and the ultrafiltration method (Midgley, 2001). These methods allow the direct determination of T$_4$ and T$_3$ that is not bound to serum proteins. These methods are not often used, and the indirect methods of free T$_4$(T$_3$) index are quite variable.

3.5.4.4 Validity of Hormone RIAs for Various Compartments

There are two ways to validate radioimmunoassays for specific hormones (Chard, 1981). The first is to determine that a dilution series of the sample (e.g., serum) produces a curve that is parallel to the standard dilution curve. The second is that samples spiked with known amounts of hormone produce predictable increments in measured hormone. The standard human serum-based standard curve used in kits for total T$_4$ are not technically valid for rat serum (Gauger, et al., 2004), although the difference between the standard curve and the serum dilution curve is not large. In addition, samples must lie between two standards on the standard curve to be appropriately measured. It may be of some concern that RIAs reported for T$_4$ in rats published recently in the journal *Toxicological Sciences* often report measures below the lowest standard but do not describe methods which would have avoided extrapolation.

3.5.4.5 Thyroxine Binding Proteins

Thyroid hormones are carried in the blood by specific proteins. In humans, about 75% of T$_4$ is bound to thyroxine-binding globulin (TBG), 15% is bound to transthyretin (TTR, also called “Thyroxine Binding Prealbumin” or TBPA), and the remainder is bound to albumin (Schussler, 2000). TBG, the least abundant but most avid T$_4$ binder, is a member of a class of proteins that includes Cortisol Binding Protein (CBG) and is cleaved by serine proteases in serum (Fink, et al., 1986; Khan, et al., 2002). These enzymes are secreted into blood during inflammatory responses and, in the case of CBP, can induce the release of cortisol at the site of inflammation. The physiological significance of this observation is presently unclear for TBG, but it raises the possibility that TBG may selectively release T$_4$ under specific circumstances. Mammals differ in the specific composition of the serum proteins, which carry T$_4$ and, to a lesser extent, T$_3$. It is often stated that rodents do not have TBG (e.g., Clewell, et al., 2003), though this is likely to be an oversimplification (see below). Also, as described in the following chapters, all vertebrates have serum binding proteins for thyroxine, but these differ in their proportions and in their molecular structure.
3.5.4.6 Thyroid Binding Globulin (TBG)

In humans, TBG circulates at a concentration of approximately 0.27 mM compared to 4.6 mM for TTR and 640 mM for albumin (Robbins, 2000). However, TBG carries most of the serum T₄ and T₃ because of its higher affinity for thyroid hormones (Schussler, 2000). The Kᵢ of T₄ for TBG is 1x10⁻¹⁰ M and it is approximately 18.4% saturated with T₄ under euthyroid conditions; in contrast, the Kᵢ for TTR is 7 x 10⁷ M and is approximately 0.16% saturated under euthyroid conditions. The adult rodent (mouse and rat) does not express TBG to a measurable extent. However, between 16 day fetus and 60 days postnatal, this pattern of TBG expression changes considerably. TBG is 2-3 times higher in fetuses than in mothers, then further increases after birth, reaching between 3 and 5 days maximum values, which are 7-8 times higher than the adult. This pattern is not correlated with the ontogenesis of TTR (Vranckx, et al., 1990).

In a follow-up study in rats, this group found that the mRNA encoding rat TBG in liver (cloned by Tani et al., 1994) exhibits a similar developmental pattern. Both serum TBG and hepatic TBG mRNA are nearly undetectable at 8 weeks of age following a transient rise after birth. Interestingly, TBG expression was induced by thyroidectomy in the 8 week-old male rat and T₃ replacement suppressed it. Thus, studies of toxicants that alter serum thyroid hormones may also alter TBG levels.

3.5.4.7 Control of TBG Levels in Serum

In humans, serum TBG is elevated during pregnancy (Brent, 1999). This is the result of the effect of the pregnancy-related increase in estrogen on the post-translational modification of TBG in the liver, producing increased sialylation and a longer serum half-life (Ain, et al., 1987). In contrast, estrogen (estradiol) does not increase TBG expression in vitro (Ain, et al., 1988), indicating that the increased serum half-life is the most important mechanism by which TBG levels rise during pregnancy. In contrast in the rodent, estrogen does not affect TBG levels in serum (Emerson, et al., 1990).

3.5.4.8 Role of TBG in Hormone Homeostasis

It is clear in humans that no one serum thyroxine binding protein is essential for good health or for the maintenance of a euthyroid state (Robbins, 2000). There are a number of clinical situations in which serum binding proteins are elevated or reduced (even completely absent) and the thyroid state is normal. Therefore, despite large increases or decreases in serum total T₄ and T₃ concentrations in some of these patients, serum free hormone and TSH is normal (Refetoff, 1989). In contrast, there is evidence that the role of serum binding proteins such as TBG is to allow the equal distribution of hormone delivery to a tissue. Mendel (1987) found that ¹²⁵I-T₄ was evenly distributed in the rodent liver following a single pass through the tissue only if serum binding proteins were present in the perfusate. However, the identity of the serum binding protein (e.g., transthyretin versus TBG) did not alter the pattern or intensity of T₄ uptake.

3.5.4.9 Transthyretin (TTR)

Transthyretin, or thyroxine-binding prealbumin (TBPA), is, like TBG, produced in the liver and has a higher affinity for T₄ compared to T₃. In addition, TTR binds to retinol (Monaco, 2000). Interestingly, TTR is also a protein involved in production of amyloid deposits (Hamilton and Benson, 2001).

3.5.4.10 Control of TTR Levels in Serum

As reviewed above, TTR expression in liver is increased by growth hormone (GH), but not by thyroid hormone (Vranckx, et al., 1994). The binding capacity of serum TTR in rats is lower in females than males, and this appears to be due to the suppressive effect of estrogen on serum TTR (Emerson, et al., 1990).
3.5.4.11 Role of TTR in Hormone Homeostasis

55. TTR is present in a wide array of vertebrates, indicating indirectly that it is important in physiology (Schreiber, 2002a, b). Defects in the TTR gene do not produce disease in humans (Refetoff, 1989; Robbins, 2000). It is therefore possible that its role in physiology is more complicated than a simple hormone carrier.

3.5.4.12 Role of TTR in T\textsubscript{4} Transport to Brain

56. There is some evidence that TTR is important in transport of thyroid hormone across the blood brain barrier. In large part, this concept is derived from the observation that TTR is produced in the choroid plexus (Power, et al., 2000; Robbins, 2002; Zheng, et al., 2001). However, this concept is not supported by the observation that mice carrying a targeted deletion of the TTR gene have normal concentrations of T\textsubscript{4} in the brain (Palha, et al., 2000; Palha, et al., 2002).

3.6 Thyroid Hormone Transport into Tissues

57. Transport of T\textsubscript{4} and T\textsubscript{3} across plasma and nuclear membranes have been subjects of interest over the years. These hormones are lipophilic and generally thought to diffuse passively across the plasma and nuclear membranes. However, there is some evidence for facilitated transport across plasma membranes and high-affinity TH binding sites in the plasma membranes of different cells (Ekins, et al., 1994; Friesema, et al., 1999; Moreau, et al., 1999). This issue was initially articulated by Oppenheimer (1983) who showed that 125I-T\textsubscript{4} is taken up into different tissues at very different rates. In addition, in one study of human erythrocytes, T\textsubscript{3} was found to be concentrated 55-fold inside cells. There also is evidence for a stereo-specific transporter of T\textsubscript{3} into the nucleus as there was a 58-fold higher concentration of L-T\textsubscript{3} and 4-fold higher concentration of D-T\textsubscript{3} in the nucleus than in the cytoplasm, although different affinities for TR may also contribute to this difference (Samson, et al., 1993; Samson, et al., 1992; Samson, et al., 1996). One potential transporter may be the multidrug resistance P-glycoprotein that can modulate TH concentration when overexpressed in cells (Neves, et al., 2002). Another family of transporters may be the organic anion transporter proteins that have been shown to import TH into hepatocytes (Friesema, et al., 1999). If the regulation of thyroid hormone uptake into specific tissues or cells within tissues is an important point of physiological regulation, then chemicals that interfere with this uptake may produce tissue-specific thyroid disease which would be difficult to identify.

3.7 Thyroid Hormone Metabolism

3.7.1 The UDPGTs

58. Thyroid hormones (T\textsubscript{4} and T\textsubscript{3}) are handled by the liver the way organic ions are handled – they are glucuronidated and sulfated, secreted into the biliary canaliculus, and concentrated into bile (Sellin and Vassilopoulou-Sellin, 2000). The microsomal enzymes responsible for this activity are the UDP-glucuronosyl transferases (UDPGTs). These phase II inducible enzymes are functionally heterogeneous. This functional heterogeneity is classically revealed in the different substrates they modify – 4-dintrophenol compared to bilirubin (Chowdhury, et al., 1983). In addition, different enzyme activities are directed toward T\textsubscript{4} and T\textsubscript{3} (Hood and Klaassen, 2000a), indicating the possible differential regulation of excretion of these two iodothyronines. However, there is very little information about the role of iodothyronine metabolism by liver in the regulation of serum thyroid hormone levels under normal circumstances. Moreover, there is a paucity of information about the role of these enzymes in the production of thyroid disease (hyper- or hypothyroidism). In contrast, there is a very large literature about the role of UDPGTs in the pathway by which various microsomal enzyme inducers can cause changes in circulating levels of thyroid hormones (Barter and Klaassen, 1992; Hood, et al., 2003; Hood, et al., 1999;
3.7.2 Biliary Excretion of Thyroid Hormone

59. Oppenheimer was perhaps the first to demonstrate that drug exposure (e.g., Phenobarbital) increases the hepatic accumulation and biliary excretion of thyroid hormone (Bernstein, et al., 1968). However, as stated above, there is little information about the role of these events within the normal regulation of circulating levels of thyroid hormone.

3.8 Thyroid Hormone Action

3.8.1 Overview of Thyroid Hormone Receptors (TRs)

60. Thyroid hormone exerts its effect on development and physiology perhaps primarily by interacting with specific nuclear proteins, the thyroid hormone receptors (TRs) (Hu and Lazar, 2000; Wu, et al., 2001). Until recently, there were no putative thyroid toxicants known to bind to TRs. One early study (McKinney, et al., 1987) reported that various polychlorinated biphenyls (PCBs) could bind to the "thyroxine receptor". This study was performed using rat liver nuclei, a standard procedure for measuring thyroid hormone receptor binding (Oppenheimer, 1983). However, this study was performed using 125I-T$_4$ as the ligand and they showed that this was not significantly displaced by cold T$_3$ (McKinney, et al., 1987). Thus, although this is a potentially important observation, it is clear that they were not measuring the ability of PCBs to bind to the TR. Thus, the report by Cheek et al. (1999) was the first formal study to identify thyroid toxicants that may bind to the TR. A number of studies have now appeared, showing that chemicals such as bisphenol A (BPA, and halogenated BPA) can bind to the TR with relatively high affinity (Kitamura, et al., 2002; Moriyama, et al., 2002), but that PCBs do not (Gauger, et al., 2004). However, an individual hydroxylated PCB can cause the dissociation of liganded TR from DNA (Miyazaki, et al., 2004). In addition, Yamada-Okabe et al. (2004) have shown that an individual PCB congener can augment, inhibit, or have no effect on T$_3$-mediated gene expression in vitro depending on the gene under study. Thus, the material below represents a background of information about the thyroid hormone receptors and the mechanisms by which they mediate hormone action.

61. TRs are members of the superfamily of ligand-dependent transcription factors (Lazar, 1994; Mangelsdorf and Evans, 1995; Zhang and Lazar, 2000), which include receptors for steroids (estrogen, androgen, corticoids) and thyroid hormones, retinoids, and vitamin D (Lazar, 1993, 1994; Mangelsdorf and Evans, 1995). Two separate genes encode the TRs, designated alpha- and beta-c-erbA (Sap, et al., 1986; Weinberger, et al., 1986). Together, these two genes produce four known functional TRs: TRα1, TRβ1, TRβ2, and TRβ3 (Williams, 2000; Zhang and Lazar, 2000). The gene encoding TRα has 10 exons; TRα1 is composed of exons 1-9. A second major product, TRα2, is generated by the addition of a long c-terminal domain (exon 10) that disrupts the ligand-binding domain of the TR [see review by Flamant and Samarut (2003)]. Thus, TRα2 does not bind to thyroid hormone and is generally not considered to be a bona fide TR. Moreover, there is an internal promoter that drives the transcription of two additional short forms of the TRα gene (Chassande, et al., 1997). These short forms, designated TR$\Delta$$\alpha$1 and TR$\Delta$$\alpha$2, are encoded by exons 8-9 and 8-10, respectively. These proteins are able to bind to thyroid hormone, but do not bind to DNA. In contrast, there are three promoters that drive the expression of the three function TRs from the TRβ gene (Williams, 2000). In addition, the TRβ3 transcript is differentially spliced to produce a TR$\Delta$$\beta$3 isoform. Again, this small product of the TRβ gene binds to thyroid hormone, but not to DNA.
Triiodothyronine binds to these four *bona fide* TRs with equal, or nearly equal affinity (Oppenheimer, 1983; Oppenheimer, et al., 1994; Schwartz, et al., 1992), although it binds with about 50 fold greater affinity than does T4 for each receptor. Thus, T3 is considered to be the physiologically relevant hormone on the receptor. Although T3 binds to the various TRs with nearly equal affinity, there is good evidence that the different receptors vary enough to bind selectively to various TR analogues. For example, desethylamiodarone is a noncompetitive inhibitor of T3 binding to the TRβ1, but a competitive inhibitor of T3 binding to the TRα1 (Bakker, et al., 1994; Beeren, et al., 1995). In addition, the T3 analog, 3,5,3'-triiodothyroacetic acid (triac) has a higher affinity for TRβ1 than does T3 but the same affinity for TRα1 as does T3 (Baxter, et al., 2001; Schueler, et al., 1990; Takeda, et al., 1995). A synthetic thyromimetic compound, GC-1, binds to TRβ-1 with the same affinity as T3 but binds to TRα-1 with tenfold lower affinity (Baxter, et al., 2001; Chiellini, et al., 1998; Kinugawa, et al., 2001). Finally, another synthetic chemical, NH-3, is a TR antagonist, but its isoform selectivity is not fully characterized (Lim, et al., 2002; Nguyen, et al., 2002; Webb, et al., 2002). An important emerging literature focuses on the differential ability of these TH analogues to activate the various receptors on native promoters. For example, Messier and Langlois (2000) showed that triac exerts a more potent effect on TRβ1- and TRβ2-mediated transcription depending on the sequence of the TR response element (TRE). This issue is important because it is likely that xenobiotics will be found to exert these kinds of complex effects on TR activation. This issue will be expanded below.

3.8.2 Expression and Regulation of the Alpha TRs

It is quite likely that specific thyroid toxicants can either bind to or modulate the activity of TRs in a highly selective way (McKinney and Waller, 1994, 1998). If true, the effects of these compounds will also be highly selective. Therefore, we will briefly review the literature documenting the selective expression of TRs. Thyroid hormone exerts pleiotropic effects on development and physiology. One mechanism by which thyroid hormone can exert such different, but specific, actions is for these actions to be mediated by different receptor isoforms. The differential expression of TRα and TRβ products are especially robust in the developing brain. By far, the work of Bradley et al. (1992) remain the most comprehensive mapping to date of TR isoforms in the developing rat brain. Subsequent studies have provided insight into the expression of TR isoforms discovered since Bradley’s work (e.g., TRβ3). The earliest embryonic time evaluated for TRα1 expression in the fetal rat brain was E13.5 (Bradley, et al., 1992). At this time, TRα1 is relatively highly expressed in the neuroepithelium that gives rise to the cortex, hippocampus, and basal telencephalon. However, it is also expressed in the trigeminal ganglion and striatum. TRα2 is expressed in these same regions and appears to be more abundant than TRα1. As the brain expands over the next few days of embryonic development, TRα1 becomes more highly expressed in regions to which neurons are migrating and differentiating. For example, TRα1 becomes more intensely expressed in cells of the cortical plate compared to the ventricular zone. This pattern is also true for TRα2 and continues throughout fetal development. In addition, TRα1 and TRα2 are particularly abundant in the fetal thalamus, cerebellum, and inferior colliculus. At all fetal time points evaluated (E13.5, 15.5, 17.5 and 19.5), TRα2 was more abundant than TRα1, and this became more obvious in the later stages.

TRα isoforms are expressed in nearly all tissues of the body (Hodin, et al., 1990), but have been especially studied in bone, liver, heart, and fat (in addition to brain and pituitary) (Yen, 2001). The cardiovascular effects of thyroid hormone have been realized for many years. Thyroid hormone decreases vascular resistance and increases heart rate, stroke volume and contractility, with an overall increase in cardiac output (Klein and Ojamaa, 1998). Thus, hyperthyroidism leads to cardiac arrhythmias and ultimately heart failure, whereas hypothyroidism leads to reduced cardiac function. This is likely to be attributed to the dominant expression of TRα1 in the heart (Hodin, et al., 1990). In addition, TRα null
mice exhibit decreased heart rate and contractility, but these parameters are unaffected in TRβ1 null mice (Gloss, et al., 2001; Johansson, et al., 1998; Weiss, et al., 2002).

The liver is also a major site of action for thyroid hormone (McClain, 1989; Song, et al., 1989; Weiss, et al., 1998). There are a large number of genes affected by thyroid hormone in the liver as identified by cDNA microarray (Feng, et al., 2000; Yen, et al., 2003). These genes may be regulated directly or indirectly by thyroid hormone. However, there are a number of genes that have been explored more extensively and are known to be regulated directly by thyroid hormone. These genes are under differential regulation by TRα and TRβ gene products. Both TRα1, TRα2, and TRβ1 are present in liver (Hodin, et al., 1990; Weiss, et al., 1998). Interestingly, TRα1 and TRα2 are expressed in specific cells, organized around the central vein (Zandieh-Doulabi, et al., 2003). Moreover, TRα2 exhibits a daily rhythm of expression, whereas TRα1 expression is stable throughout the day. However, the physiological relevance of TRα2 expression is difficult to interpret because it does not bind to thyroid hormone.

3.8.3 Expression and Regulation of the Beta TRs

Bradley et al. (1992) also mapped the temporal and spatial distribution of TRβ1 and TRβ2 in the developing brain. The TRβ1 transcript is more widely expressed in the developing brain than the TRβ2 transcript. TRβ2 is expressed in the otic vesicle (Bradley, et al., 1994), and in the upper tegmental nucleus and pituitary gland. In contrast, TRβ1 is widely expressed, though less so than TRα1 and TRα2. In early development (E13.5), TRβ1 is very low in abundance or absent from most of the brain. Cortical expression occurs by E17.5 and this is restricted to cells of the ventricular zone. During postnatal development, TRβ1 expression in the brain increases considerably (Bradley, et al., 1992; Strait, et al., 1990). TRβ1 expression increases first in the striatum, then in the cortex, thalamus, and olfactory bulb. TRβ2 expression is absent or nearly so in these studies. Recent studies indicate that TRα1 and TRβ1 are differentially expressed in the cerebellum (Guadano-Ferraz, et al., 2003; Manzano, et al., 2003b), with TRα1 expressed in cerebellar granule cells and both TRβ1 and TRα1 expressed in Purkinje cells. The regional distribution of the so-called “delta” forms of TR (TRΔα1, TRΔα2, TRΔβ3) has not been performed. TRβ1 is expressed in nearly all tissues (Falcone, et al., 1992; Hodin, et al., 1990; Strait, et al., 1990). However, like TRα1 and TRα2, TRβ1 is regionally expressed in the liver (Zandieh-Doulabi, et al., 2002) and exhibits a diurnal rhythm of expression.

3.8.4 Role of Cofactors

The ability of TRs to affect gene transcription requires them to interact with nuclear cofactors (Glass and Rosenfeld, 2000; Hermanson, et al., 2002; McKenna and O'Malley, 2002a, b; Rosenfeld and Glass, 2001). Cofactors are believed to functionally, if not physically, connect TRs with the general transcription complex (McKenna and O'Malley, 2002a, b), allowing hormone binding to receptors to regulate transcriptional activity. Cofactors may exert these actions by remodeling local chromatin structure. Generally, the specific recruitment of a cofactor complex with histone acetyltransferase activity may play a regulatory role in activating gene transcription, whereas the recruitment of a cofactor complex with histone deacetylase activity may play a regulatory role in gene repression (Struhl, 1998).

A central feature of cofactors is that they can interact with a number of steroid receptors; therefore, steroid hormone receptors compete for individual cofactors indicating that cofactors can affect tissue sensitivity to the hormone. Two kinds of observations support the hypothesis that changes in cellular levels of specific cofactors can modulate cellular responsiveness to steroid/TH. First, ligand-dependent transcriptional activation by one nuclear receptor can be inhibited by ligand activation of another nuclear receptor in vitro, even though this second receptor does not directly regulate the affected gene (Barettino, et al., 1994; Meyer, et al., 1989; Zhang, et al., 1996). Thus, nuclear receptors compete for
specific cofactors to transduce hormonal signals to transactivate gene expression. Second, overexpression of the cofactor steroid receptor coactivator-1 (SRC-1) in MCF-7 cells results in an increase in the mitogenic response to estrogen (Tai, et al., 2000). Thus, the sensitivity of a cell to a specific level of hormone may be determined, in part, by the availability of specific cofactors. There are two categories of nuclear receptor cofactors in general: corepressors and coactivators (Glass and Rosenfeld, 2000; Leo and Chen, 2000). In the absence of TH, TRs are able to repress basal transcription via recruitment of the corepressors SMRT or NCoR (Koenig, 1998; Horlein et al., 1995). In the presence of TH, TRs release their corepressor and recruit a coactivator complex that includes SRC-1 (Koenig, 1998; Onate et al., 1995). The SRC family of coactivators is large and includes SRC-1, TIF2/GRIP1, and RAC3/pCIP (Leo and Chen, 2000).

3.8.5 Mechanisms Controlling Pleiotropic Actions of Thyroid Hormone

69. Thyroid hormone exerts tissue-specific effects and many of these effects are also developmentally time-specific. In the case of global hypo- or hyperthyroidism, the combination of symptoms are characteristics of thyroid disease. However, thyroid toxicants that influence TR function in a selective way may present unique combinations of effects. Thus, understanding the mechanisms controlling pleiotropic actions of thyroid hormone are important for thyroid toxicology. The mechanisms by which thyroid hormone exerts such specific effects are not fully understood, but there are several lines of evidence that provide some insight. First, the spatial and temporal specificity of TR isoforms may play a major role in explaining the pleiotropic effects of TH. The α and β TRs exhibit distinct temporal and spatial patterns of expression in the developing rat CNS (discussed above) (Bradley, et al., 1992). In addition, these receptors are differentially expressed in different tissues (Zandieh-Doulabi, et al., 2002; Zandieh-Doulabi, et al., 2003).

70. The differential expression of TR isoforms in different brain regions is an obvious mechanism by which thyroid hormone could regulate the expression of different genes in different brain regions. However, other factors are clearly involved in regulating thyroid hormone signaling. Observations that illustrate this point include the negative regulation of TRH expression. Thyroid hormone exerts a negative transcriptional effect on the gene encoding TRH (Hollenberg, et al., 1995); however, this regulation occurs in TRH-containing neurons in the hypothalamic paraventricular nucleus (Koller, et al., 1987; Zoeller, et al., 1990; Zoeller, et al., 1988) but not in other hypothalamic or thalamic brain regions despite the same TR being present in TRH neurons of the PVN and in TRH cells of the hypothalamus and thalamus (Koller, et al., 1987; Segersen, et al., 1987b). This is true also for the gene encoding RC3/Neurogranin. RC3/Neurogranin is a well-characterized thyroid hormone-responsive gene in the developing and adult brain (Iniguez, et al., 1993; Iniguez, et al., 1996), and it is broadly co-expressed in the forebrain with the same TR. However, it is regulated by thyroid hormone in only a small subset of these areas (Guadano-Ferraz, et al., 1997). This implies that factors other than the differential expression of TR isoform play a crucial role in regulating the temporal and spatial regulation of gene expression by thyroid hormone. It is also clear that there are mechanisms that direct specific TRs to different target genes within same cell. For example, Monzano et al. (2003a) showed that RC3/Neurogranin is co-expressed in cells of the striatum with the gene encoding Rhes, but that their simultaneous up-regulation by TH is mediated by different receptor isoforms.

3.8.6 Non-genomic Effects of Thyroid Hormone

71. Although it is generally held that most of the effects of thyroid hormone are mediated by TR regulation of target gene transcription in the nucleus, it is clear that thyroid hormones (T₄, T₃, rT₃) can exert important effects on development and physiology through non-genomic mechanisms (Davis and Davis, 1996, 2002; Davis, et al., 2002; Shibusawa, et al., 2003a). Moreover, this may be quite important in that some toxicants may interfere with development or with thyroid hormone action in general by interfering with the non-genomic actions of TH. Early evidence for the non-genomic effects of thyroid
hormone include the lack of dependence on nuclear TRs; the rapid onset of action (typically seconds to minutes); and the utilization of membrane-signaling pathways, typically involving kinases or calmodulin, that have not been implicated in direct TR function (Yen, 2001). Thyroid hormone is known to influence the activity of Ca2+ ATPase, adenylate cyclase, and glucose transporters (Yen, 2001).

3.8.6.1 Glucose Uptake

72. Early work showed that thyroid hormone can affect glucose uptake into cells in vitro. For example, Segal et al. (1989) showed that T3 causes an increased 14C-2-deoxy-glucose by heart muscle in vitro within one minute of application. There are a number of these observations revealing a rapid effect of thyroid hormone on glucose uptake (Davis and Davis, 1996). Although these studies indicate that T3 can increase glucose uptake in the absence of new protein synthesis, it is also clear that T3 can affect the expression of glucose transporters (e.g., GLUT 4 and GLUT 1) (Pickard, et al., 1999), and targeted disruption of the TRs alters brain utilization of glucose (Itoh, et al., 2001). Thus, thyroid hormone exerts both non-genomic and genomic (receptor-mediated) effects on glucose metabolism.

3.8.6.2 Effects on Mitochondria

73. Direct, non-genomic effects of thyroid hormone on mitochondria (Wrutniak-Cabello, et al., 2001) may be important contributions to the physiological actions of thyroid hormone and may mediate important elements of thyroid toxicity by some classes of chemicals. There are a number of reports of rapid actions of T3 injections into hypothyroid rodents on oxygen consumption and oxidative phosphorylation measured in mitochondria isolated from hepatocytes (Palacios-Romero and Mowbray, 1979; Sterling, 1986). These effects were also observed in vitro within 2 minutes (Sterling, et al., 1977), perhaps related to the ability of thyroid hormone to stimulate the mitochondrial carrier adenine nucleotide translocase (Sterling and Brenner, 1995). Thus, thyroid hormone has both long- and short-term effects on mitochondrial function.

3.8.6.3 Effects on Actin Polymerization and Vesicular Recycling

74. Leonard and Farwell (1997) demonstrated that thyroid hormone can catalyze actin polymerization in an in vitro system of primary astrocytes isolated from rat cerebellum. This is an important observation for several reasons. First, regulated actin polymerization is important in neurite outgrowth and cell motility (Dent and Kalil, 2001). Second, Leonard and Farwell found that this activity was affected by T4 and rT3, but not T3 (Farwell and Dubord-Tomasetti, 1999b; Leonard and Farwell, 1997). This opens an entirely novel possibility for xenobiotics that are structurally more related to T4 than to T3 such as polychlorinated biphenyls. Leonard and Farwell have also demonstrated that T4 and rT3 can stimulate vesicular transport in cells by activating myosin V motors (Stachelek, et al., 2000; Stachelek, et al., 2001). These effects are not mediated by the TRs (TRα1, TRβ1, TRβ2), but may be mediated by the delta isoforms (e.g., TRΔα1).

3.8.7 Thyroid Hormone Negative Feedback on the Pituitary Gland

75. That thyroid hormone exerts a negative feedback effect on the pituitary is revealed principally by the negative correlation between serum thyroid hormone and serum TSH. Specifically, serum total T4 is linearly related, with a negative slope, to the log of serum TSH (Chopra, et al., 1975). This classic study by Chopra et al. focused on examining the relationship between serum TSH and serum T4 and T3 in patients exposed to severe iodine deficiency. Therefore, their observation that serum TSH was not at all related to serum T3 may have been in part related to the iodine deficiency. However, many studies designed to characterize the relationship between serum TSH and serum thyroid hormones within their normal reference ranges have observed this (Spencer and Wang, 1995). Thus, serum T4 may be more
important in controlling serum TSH than is T₃. This concept is supported by the observation that mice
carrying a targeted deletion in the type II deiodinase (D2) causes an increase in serum T₄ and serum TSH
(Schneider, et al., 2001). Thus, conversion of T₄ to T₃ in the pituitary is an important step in the negative
feedback action of thyroid hormone on TSH.

76. There are two important issues explored in animal studies that relate to the negative feedback of
thyroid hormone on serum TSH. The first is illustrated by the work of Connors and Hedge (1980) in
which they explore the pattern of thyroid hormone replacement on serum TSH. They specifically
compared tonic (i.e., continuous sc infusion delivered by an osmet minipump) versus periodic (twice daily
sc injections) administration of thyroid hormone on serum TSH in the rat. They found that periodic
administration of thyroid hormone was far more effective at reducing serum TSH than was the tonic
administration in surgically thyroidectomized rats. However, these authors used T₃ as the replacement, and
low doses of T₃ were found to increase serum TSH. Although this was paradoxical at the time, it is likely
that T₃ reduced serum T₄, causing an increase in TSH. This effect of T₃ on serum T₄ may be attributable to
non-genomic actions of T₃ on the pituitary (discussed below). Thus, it is difficult to draw broad
conclusions about this issue, but it is likely to be of fundamental significance because the pulsatility of
hormone secretions are an important component of their actions (Brabant, et al., 1990; Custro, et al., 1994;

77. A second issue that has been addressed both clinically and in experimental systems is the relative
contribution of circulating T₄ or T₃ in the feedback regulation of TSH. The pioneering work of Chopra
(Chopra, 1996; Chopra, et al., 1975) indicated that serum TSH is regulated by T₄, not T₃. Moreover, a
number of clinical studies have appeared reporting that treatment of hypothyroid adults with a combination
of T₄ and T₃ does not improve the regulation of TSH or overall outcome. In contrast, a number of reports
in the experimental literature derive different conclusions. For example, Escobar-Morreale et al. (1995,
1996) demonstrated that treatment of hypothyroid rats with T₄ alone does not restore euthyroidism in all
tissues. Moreover, they report that only the combined treatment of T₄ and T₃ fully restores normal levels
of thyroid hormone in all tissues. Moreover, Emerson et al. (1989) reported that serum TSH in
thyroidectomized rats is more highly correlated with tonic infusion of T₃ than with tonic infusion of T₄.
This may represent a difference in the regulation of TSH by thyroid hormone in humans and animals, or it
may represent a difference between hypothyroidism in humans and the hypothyroidism produced by
goitrogens in animals, some of which affect deiodinase activity as well as hormone synthesis.

78. The mechanism by which thyroid hormone exerts a negative feedback is likely to be complex,
but will also resolve the conflicting results described above. Clearly, the negative feedback effect of
thyroid hormone on TSH is mediated, at least in part, by TRβ. This is clearly shown in mice carrying
targeted deletions of TRα or TRβ; the TRα null mouse exhibits normal serum T₄ and TSH, whereas the
TRβ null mouse exhibits elevated T₄ and TSH (Sadow, et al., 2003). Thus, the receptor-dependent
negative feedback action of thyroid hormone on TSH is mediated exclusively by the TRβ isoform.

79. There are additional factors and mechanisms that influence the ability of the pituitary to release
TSH and stimulate the thyroid gland. For example, TRH from the hypothalamus not only increases TSH
secretion, it also appears to control glycosylation of TSH, which is important for its biological activity
(Harel, et al., 1993; Taylor, et al., 1986; Taylor and Weintraub, 1985; Weintraub, et al., 1989). Therefore,
when Abel et al. (1999) inserted a dominant negative mutation into the TRβ gene and expressed it
specifically in the pituitary gland of transgenic mice, there was a very large increase in serum TSH, but this
was not associated with a parallel increase in serum T₂ in part because TRH release was normal or reduced.
Thus, the control of TSH glycosylation is an important element in the regulation of thyroid function.

80. In addition to direct effects of thyroid hormone on the gene encoding TSH (both the alpha and
beta subunit) (Burnside, et al., 1989; Carr, et al., 1989; Carr and Chin, 1988; Carr, et al., 1987; Carr, et al.,
thyrotropes that mediate the effects of various factors on TSH release. These include the receptors for
dopamine, somatostatin, and TRH (Scanlon and Toft, 2000). Finally, thyroid hormone (T₃) also appears to
exert a non-genomic effect on TSH release from the pituitary gland. This appears to be related to the
ability of T₃ to activate specific potassium channels in pituitary cells. This activation would hyperpolarize
the cell and reduce its electrical irritability, thereby decreasing TSH secretion (Storey, et al., 2002). This
action appears to be mediated by direct actions on GTPases Rac and Rho.

3.8.8 Thyroid Hormone Negative Feedback on the Hypothalamus

81. Early work was unable to determine whether thyroid hormone exerted a negative feedback effect
on the hypothalamus, or whether this action was directed only at the pituitary gland. There were several
reasons for this. First, it was not until 1981 that Aizawa and Greer (1981) identified the specific region of
the brain that produced TRH and regulated pituitary thyrotropin secretion. The restricted distribution of
hypophysiotropic TRH neurons made it difficult to test the hypothesis that TRH release was regulated by
thyroid hormone in a negative feedback manner. Koller et al. (1987) and Segersen et al. (1987b)
simultaneously reported on the ability of thyroid hormone to reduce cellular levels of TRH mRNA
specifically in the PVN. Following these reports, a number of papers were published showing that TRH
peptide is reduced in the PVN (Yamada, et al., 1989) and in the pituitary-portal blood of rats (Rondeel, et
al., 1988). Later reports demonstrated that both T₄ and T₃ can exert a negative feedback effect on TRH
mRNA in the PVN, and that this was mediated by the TRβ receptor (Dyess, et al., 1988; Kakucska, et al.,
1992; Lechan and Kakucska, 1992; Lechan, et al., 1994). More recent work demonstrates that the
hypothalamus is exquisitely sensitive to small changes in circulating levels of thyroid hormone (Abel, et
al., 1999).

3.8.9 Short-Loop and Ultra Short-loop Negative Feedback

82. The potential role of TSH in controlling TRH secretion is unclear, but is not likely to be a
dominant role (Zoeller, et al., 1988). In contrast, there are TSH receptors expressed in human pituitary
thyrotropes (Theodoropoulou, et al., 2000), indicating that TSH may play a role in its own release.
Although there are TRH immunoreactive terminals contacting TRH neurons of the PVN, revealed by
immunocytochemistry at the electron microscopic level (Merchenthaler and Liposits, 1994), it is unclear
whether TRH release exerts an ultra-short-loop feedback on hypophysiotropic TRH neurons.

3.8.10 Concept of Compensation within the HPT Axis

83. The dynamic relationship among hormones secreted by the HPT axis has the effect of
maintaining serum thyroid hormone levels within a narrow range (Martin and Reichlin, 1987; Reichlin, et
al., 1972). This observation in turn has led to the concept that the negative feedback regulation of the
hypothalamic-pituitary component of the HPT axis can compensate for dysfunction of the thyroid gland in
situations, for example, such as mild iodine insufficiency (Laurberg, et al., 2000). Therefore, the hormone
pattern of elevated TSH in the face of normal T₄ would be considered an example of compensation. This
hormone pattern is defined clinically as subclinical hypothyroidism, and it is not at all clear that the
interpretation for compensation is valid (Col, et al., 2004; Surks, et al., 2004). Moreover, Andersen et al.
(2002) demonstrated that the range of serum T₄ in individuals is far more narrow than a population range
(from which reference ranges are derived); therefore, when serum TSH is elevated and T₄ is within the
population reference range, it is likely that serum T₄ is low for the individual. This observation indicates
that TSH is a sensitive marker of altered thyroid hormone levels. However, it is not known whether the
sensitivity of the hypothalamic-pituitary unit to thyroid hormone negative feedback is more sensitive than
all other tissues to changes in serum thyroid hormone levels.
Therefore, the conclusion about whether changes in hormone levels represent a compensatory or adverse effect should rest on specific endpoints of thyroid hormone action that would support such a conclusion. For example, Capen clearly articulates the evidence required to determine whether the responsive increase in serum TSH following thyroid hormone insufficiency is adverse or compensatory within the context of increased risk of thyroid cancer (Capen, 1994, 1997). Because the distinction between adverse and compensatory changes is related to the increased risk of thyroid cancer in response to increased proliferative capacity of the thyroid gland, the evidence required to discriminate between adverse and adaptive responses is related to measures of cell proliferation in the thyroid gland (i.e., hyperplasia versus hypertrophy).

Similarly, to determine whether changes in the HPT axis are adverse or adaptive within the context of neurodevelopment requires overt measures of neurodevelopment that are specifically designed to capture effects of thyroid hormone insufficiency in the brain. Discriminating between adverse and compensatory (adaptive) changes within the HPT axis is not trivial. For example, two recent studies demonstrate that changes in serum T4 levels in pregnant rats can produce effects on the fetal brain without affecting TSH levels in maternal serum. Specifically, Dowling (Dowling, et al., 2000; Dowling and Zoeller, 2000) showed that low doses of T4 given to hypothyroid pregnant rats (made hypothyroid with the goitrogen methimazole, MMI) can produce effects on the expression of specific genes within the developing brain without suppressing serum TSH in the maternal circulation. In addition, Auso et al. have recently reported that as little as 3 days of MMI treatment to pregnant rats can cause a transient decline in maternal T4 without affecting maternal TSH, but that there are significant migration defects in the cerebral cortex of the offspring (Auso, et al., 2004b). Thus, thyroid hormone insufficiency in pregnant rats can produce effects on fetal brain development in the absence of overt measures of “compensatory” changes within the HPT axis (i.e., changes in serum TSH). This is likely to be an issue of timing in that MMI is known to cause a decrease in T4 and an increase in TSH. However, these two events are obviously dissociable temporally.

3.9 The Role of Thyroid Hormone in Mammalian Development

Thyroid hormone is essential for normal brain development in humans and in animals (Howdeshell, 2002), and the consequences of exposure to thyroid hormone insufficiency during development are permanent (Zoeller and Rovet, 2004). Likewise, xenobiotics may exert neurotoxic effects during development by interfering with thyroid hormone signaling. Strategically, development also offers a number of potential end-points to test chemicals for their ability to interfere with thyroid hormone signaling. Therefore, we will review the role of thyroid hormone in brain development with an emphasis on providing guidance to those charged with constructing an EDSP to capture thyroid toxicants with developmental effects.

3.9.1 Overview of Thyroid Hormone Effects in Human Brain Development

Studies illustrating the role of TH in brain development in humans are based primarily on investigations of children with congenital hypothyroidism (CH) (Hindmarsh, 2002; Hrytsiuk, et al., 2002; Leneman, et al., 2001; Rovet and Daneman, 2003; Salerno, et al., 2002) and by studies of cerebellar development in thyroid-deficient rodents (Koibuchi and Chin, 2000; Morte, et al., 2002; Singh, et al., 2003b; Thompson and Potter, 2000). More recent studies in humans (Chan and Rovet, 2003; Haddow, et al., 1999; Kilby, 2003; Song, et al., 2001) provide important new evidence showing that TH is important for early fetal brain development and that the timing and severity of TH insufficiency predict the type and severity of the cognitive deficits (Zoeller and Rovet, 2004). Because these deficits presumably reflect the impact of a loss of TH on different aspects of brain development, this clinical research provides clues as to when and where TH exerts its effects in the developing brain. Concurrently, new evidence in genetic models of TH insufficiency, TH receptor deletion or mutation, and cofactor deletion (Flamant, et al., 2002;
Flamant and Samarut, 2003; Gauthier, et al., 2002; Takeuchi, et al., 2002; Wondisford, 2003) also provide critical insights into the potential mechanisms underlying TH action in the developing brain. Nevertheless, this research does not adequately account for many of the clinical observations in humans who lacked TH at specific times in development. While several recent reviews have comprehensively detailed many of the actions of TH in brain development in animals (Anderson, et al., 2003; Bernal, 2002; Bernal, et al., 2003), critical knowledge is still lacking. However, information currently available is required to determine whether endpoints selected for screening putative thyroid toxicants are capable of capturing those compounds that may exert adverse effects on brain development by a thyroid hormone-related mechanism.

Inferences about the timing of TH action in the human brain are derived from observations on the effects of TH insufficiency during development. Although the fetal brain’s supply of TH is derived from both maternal and fetal sources during the second and third trimesters of pregnancy (Calvo, et al., 2002; Morreale de Escobar, et al., 1990; Morreale de Escobar, et al., 1988), the fetus depends entirely on TH of maternal origin during the first trimester. Conditions involving a reduced maternal TH contribution typically begin during the first trimester, whereas preterm birth, which severs the fetus from the maternal TH supply during the third trimester, produces TH insufficiency at a later developmental time. Finally, congenital hypothyroidism (CH) represents a condition with a postnatal TH insufficiency that persists until treatment is provided and takes effect. While each of these conditions is associated with impaired neurodevelopment, their different neuropsychological manifestations give clues as to the particular effects of TH loss at different stages of early human brain development. Finally, conditions of mild thyroid disease, including hypothyroxinemia (low T₄ with normal TSH) and “subclinical hypothyroidism” (moderately high TSH with normal T₄) are also being revealed to have adverse effects on human development.

3.9.2 Maternal Hypothyroxinemia and Neurological Outcome

Three studies have described the consequences of low maternal TH levels during pregnancy on the cognitive functioning of the offspring. The first study, conducted in the 1960s by Man, found that the first 12 to 29 weeks of pregnancy appear to represent a critical period, when the neural substrates of abilities that depend on the visual system, as well as aspects of the motor system that also depend on vision, are particularly vulnerable to TH insufficiency (Man, 1972; Man, et al., 1971a; Man and Jones, 1969; Man, et al., 1971b, c). More recent studies by Victor Pop and colleagues found that levels of free T₄ and the presence of circulating antibodies for thyroid peroxidase (TPO) were strong predictors of mental development during infancy and IQ in childhood (Pop, et al., 1995; Pop, et al., 1999). These antibodies indicate two possibilities. First, their presence represents at least mild autoimmune thyroid disease in the mother. In addition, it is possible that these antibodies can interfere with fetal thyroid function, compromising the ability of the fetus to contribute its share of thyroid hormone during fetal development. Finally, the study by Haddow and his colleagues, which compared children of women with elevated levels of TSH during the second trimester to those of women with normal TSH levels, described a higher incidence of subnormal IQs (i.e., < 1SD below normal) in the offspring of hypothyroxinemic women, particularly if they were not treated during pregnancy (Haddow, et al., 1999). Their children scored lower than controls on multiple aspects of cognitive functioning including auditory and visual attention, visuomotor ability, reading, and word discrimination (Haddow, et al., 1999), whereas those whose mothers were treated for their hypothyroidism, albeit insufficiently because TSH levels were at 16 weeks, still had poorer visual attention and selective learning problems at school. A comparison of the results from offspring of untreated versus treated mothers, suggests that fine and graphomotor skills and reading abilities appear to be sensitive to TH insufficiency after 16 weeks gestation, whereas visual attention abilities are sensitive to TH insufficiency prior to 16 weeks (Klein and Mitchell, 1999; Klein, et al., 2001).

28
3.9.3 Clinical Hypothyroidism during Pregnancy and Neurological Outcome

90. Several case studies have described suboptimal neurological outcome in offspring of hypothyroid women. The findings have included diminished perceptual and motor skills (Pacaud, et al., 1995) as well as a markedly short attention span (Francis and Riley, 1987). Matsuura and Konishi (1990) reported on 23 families of treated hypothyroid women during pregnancy. Children from four of the five pregnancies involving severe hypothyroidism were developmentally delayed. Smit et al. (2000) studied a small group of infants of women with hypothyroidism diagnosed prior to pregnancy who were seemingly adequately treated. While their children indicated normal neurophysiologic and motor development, they had significantly lower mental development indices at 6 and 12 months. Others have found mild effects on specific cognitive abilities, particularly visual attention and visuospatial processing abilities, in the offspring of hypothyroid women (Rovet and Hepworth, 2001b). The specific types of visual deficits appeared to reflect the timing of TH insufficiency during pregnancy (Mirabella, et al., 2000).

3.9.4 Hypothyroxinemia in Preterm Infants and Neurological Outcome

91. Studies examining the consequences of hypothyroxinemia of prematurity have reported an increased incidence of cerebral palsy (Reuss, et al., 1996), reduced intelligence (Den Ouden, et al., 1996; Lucas, et al., 1998; Lucas, et al., 1996; Reuss, et al., 1997; Reuss, et al., 1994), and poor psychomotor abilities, particularly if the children are born extremely premature. However later-born infants, especially those born between 30 and 33 weeks gestation without neonatal risk, may also show mild neurocognitive impairment that is associated with their reduced thyroid hormone levels. These children show associated deficits in visuospatial, fine motor (Klein, et al., 1989; Saigal, et al., 1991; Siegel, et al., 1982; Vohr, et al., 1992; Wolke and Meyer, 1999), attention, memory (Hack, et al., 1994; Korkman, et al., 1996; Landry and Chapeski, 1988; Luciana, et al., 1999; Rose and Feldman, 1987; Ross, et al., 1996; Sigman, et al., 1986), and math areas. Mirabella et al. (2000) found that one aspect of visual functioning, namely visual acuity, appears to be mildly reduced in infants born between 30 and 32 weeks gestation, and there was an inverse correlation between declining T4 levels in their third trimester of pregnancy and later motor, visuomotor, and attention skills (Ishaik, et al., 2000).

92. To determine whether hypothyroxinemia of prematurity can be corrected by exogenous administration of T4, Van Wassenaer and colleagues randomly assigned high-risk preterm newborns to a 6-week trial of T4 or placebo and evaluated the children at regular intervals in infancy and childhood (Briet, et al., 1991). Although the treated group showed significantly higher levels of serum T4, results of neurophysiologic (Smit, et al., 1998a, b) and cognitive testing showed no overall improvement (Briet, et al., 1991; Van Wassenaer, et al., 1997). However, stratification of the children by gestational age revealed a marked benefit of TH therapy for early neuromotor and later cognitive skills in the children born before 27 weeks (Briet, et al., 1999), whereas children born at 28 or 29 weeks showed an adverse effect of such treatment. This dissociation was attributed to developmental changes between 25 and 30 weeks in the availability of deiodinase enzymes required to convert T4 (in the medication) to T3 (Briet, et al., 1999; Hume, et al., 1998). To test this hypothesis, Van Wassenaer et al. (1998) gave preterm infants past 27 weeks a single dose of T3 12 hours after birth and found increased plasma T3 levels for as long as 8 weeks with no clinical side effects, and this therapy was associated with improved outcome.

3.9.5 Congenital Hypothyroidism and Neurological Outcome

93. Congenital hypothyroidism (CH) represents a model of TH insufficiency occurring somewhat later in development than maternal TH insufficiencies or prematurity. CH is a disorder of newborns that affects about 1 in 3,500 newborns and was once a leading cause of mental retardation. However, since the advent of newborn screening programs, children are now being diagnosed and treated early in infancy before the appearance of associated symptomatology. As a consequence, mental retardation has been
virtually eradicated (Klein, 1980; Klein and Mitchell, 1996). Nevertheless, affected children still
to experience reduced IQ levels by about 6 points on average (Derksen-Lubsen, 1996) as well as mild to
moderate impairments (Brooke, 1995; Heyerdahl, 2001; Rovet, 1999) in visuospatial, motor, language,
memory, and attention abilities (Connelly, et al., 2001; Fuggle, et al., 1991; Gottschalk, et al., 1994;
Kooistra, et al., 1994; Kooistra, et al., 1996; Rovet, 1999; Rovet, et al., 1992). About 20% of cases also
have a mild sensorineural hearing loss (Francois, et al., 1993; Rovet, et al., 1996), which contributes to
difficulties in initially learning to read (Rovet, et al., 1996).

94. There exists among children with CH a wide degree of variability, which reflects factors
associated with the disease and its management (LaFranchi, 1999b). The most severe etiology is
athyreosis or an absent thyroid gland, which occurs in about 25% of cases, while less severe causes include
thyroid dysfunction (20 to 30% of cases), an ectopic thyroid (40% of cases), and either a central defect in
hypothalamic or pituitary regulation of the thyroid or transient hypothyroidism from transplacental passage
of maternal thyroid antibodies or exposure to thyroid-sensitive drugs and substances in the remaining 5 to
15% (Brown, 1996; Calaciura, 1995). Children with athyreosis never produce any TH on their own and as
a result, this condition involves a hypothyroidism that typically begins in utero once the maternal TH
complement is no longer sufficient to meet all fetal needs (LaFranchi, 1999a). These children typically
have the poorest outcome and attain the lowest IQ scores (Rovet, et al., 1987), more impaired nonverbal
visuospatial and arithmetic abilities, as well as attentional difficulties compared to the other etiologic
groups (Rovet and Hepworth, 2001a).

95. Factors associated with the treatment of CH provide insight into effects of TH insufficiency that
occur at a later stage of development. In general, a delay in the initiation of treatment is associated with
poorer outcome (Hindmarsh, 2002), particularly the development of memory, visuomotor, and language
skills (Rovet, et al., 1992). Since the advent of newborn screening, recommended starting dose levels have
increased over the years while the issue of the optimum starting dose has yet to be resolved. Some of the
abilities most affected by a low starting dose level appear to be children’s memory and fine motor skills
(Rovet and Ehrlich, 1995). In addition, the longer it takes to achieve normalization of TH levels following
the initiation of treatment, the weaker the language, fine motor, and auditory processing discrimination
abilities (Rovet, et al., 1992). In addition, increased selective attention and memory deficits (Rovet and
Daneman, 2003; Song, et al., 2001) indicate that these abilities are sensitive to postnatal TH
insufficiencies.

3.9.6 Epidemiology of Thyroid Dysfunction in Reproduction

96. About 0.3% of pregnancies occur to women with previously diagnosed hypothyroidism, but the
majority of these women are typically under-treated because their doses of T₄ are not usually raised to
match the increasing need for TH during pregnancy (Brent, 1999). This increasing demand for TH during
pregnancy should be met by increasing the dose of T₄ by 50% (Brent, 1999). As a consequence, their
infants are likely to have received an insufficient TH supply, particularly in early pregnancy before the
fetal thyroid is functional. An additional 2.5% of pregnant women in North America have low levels of
circulating T₄ without a concomitant increase in serum TSH (Calvo, et al., 2002; Glinoer, 2001; Haddow,
et al., 1999; Pop, et al., 1999; Smit, et al., 2000), a condition known as maternal hypothyroxinemia.
Because these women are typically unaware of their biochemical insufficiency (attributing their mild
symptoms to pregnancy) and do not receive supplemental T₄ (Mestman, 1999; Mestman, et al., 1995), this
constitutes a large proportion of the newborn population with an inadequate TH supply during early
pregnancy (Morreale de Escobar, et al., 2000). Thus, studies of the offspring of women with either
hypothyroidism or hypothyroxinemia during pregnancy provide critical information about the specific
consequences of intrauterine TH insufficiency, particularly in early pregnancy.
3.9.7 Thyroid Function during Pregnancy

97. Thyroid function increases during pregnancy in the human (Brent, 1999). This increase is manifested by an increase in serum total and free T4. The increase in T4 is due in part to the action of estrogen on serum thyroxine binding globulin (TBG) (Brent, 1999). This effect is on the stabilization of TBG by estrogen rather than an increase in synthesis (Ain, et al., 1987). In addition, chorionic gonadotropin (hCG) at high levels can stimulate the thyroid gland directly (Mestman, 1998). In contrast, estrogen treatment in rats does not increase serum T4 but rather decreases it (Emerson, et al., 1990). Thus, in rats unlike humans, thyroid function is not altered to a great extent during pregnancy. It is important to recognize that there are currently no reference ranges for thyroid hormones (total or free T4 or T3, or TSH) in pregnancy. Thus, in studies of pregnant women, “normal” thyroid function is defined by using reference ranges established from studies of the non-pregnant population.

3.9.8 Thyroid Function during Lactation

98. There is little information about thyroid function in lactating women or in experimental animals. A recent study in humans demonstrates that the amount of thyroxine found in milk is not great enough to affect serum T4 in nursing infants (van Wassenaer, et al., 2002). Iodine is passed to the infant through the milk, although iodine levels in milk are highly variable (Dorea, 2002) due to the mother’s iodine consumption.

3.10 Overview of Experimental Studies on TH Action in Brain Development

3.10.1 Experimental Paradigm for Mechanistic Studies

99. Mechanistic studies of the role of TH in brain development have employed several methods for manipulating thyroid status in the dam. Some, mostly older but in some more recent, studies used 131I to ablate the thyroid gland. This isotope of I is taken up into the thyroid gland and destroys the thyroid follicular cells sparing the parathyroid gland and thyroid C cells (e.g., (Fukuda, et al., 1975)). Many studies have used either propylthiouracil (PTU) or methimazole (MMI) to control thyroid function. PTU directly inhibits the function of the thyroperoxidase enzyme (Engler, et al., 1982), which is responsible for iodination of the tyrosine residues on thyroglobulin (Taurog, 2004), a key step in thyroid hormone synthesis. In addition, PTU inhibits the type 1 5’-deiodinase (Ortega, et al., 1996), which converts T4 to T3 in peripheral tissues. As such, PTU reduces the synthesis of nascent thyroid hormone including both T4 and T3, causing a dose-dependent decrease in circulating levels of thyroid hormone (St Germain and Croteau, 1989). Thyroperoxidase (TPO) is a multisubstrate enzyme, which reacts first with hydrogen peroxide, forming an oxidized enzyme. This species then oxidizes iodide, the second substrate, to an enzyme-bound “active iodine”, transferable to tyrosyl residues on thyroglobulin (TG) (Davidson, et al., 1978). The thioureylene drugs including PTU, methimazole (MMI) and thiouracil, can inhibit TPO’s ability to activate iodine and transfer it to TG (Davidson, et al., 1978). However, these drugs act by different mechanisms. Specifically, PTU interacts with the “activated” iodine producing a reversible inhibition of TPO (Davidson, et al., 1978; Nagasaka and Hidaka, 1976), whereas MMI interacts directly with the TPO enzyme and irreversibly inhibits it. The key event of TPO inhibition by PTU leads to a series of events within the hypothalamic-pituitary-thyroid (HPT) axis that may directly produce adverse effects or which may be surrogate markers of adverse effects. Finally, some investigators have used potassium perchlorate either alone or in combination with MMI (Lavado-Autric, et al., 2003).

100. It is important to recognize that very few studies have used methods of manipulating thyroid status that produce a mild or “subclinical” thyroid hormone insufficiency. Rather, these studies largely produce severe hypothyroidism. Thus, the vast majority of research focused on identifying the role of thyroid hormone in brain development has modeled severe hypothyroidism (reviewed by Schwartz 1983).
Perhaps for this reason, the “clinical” symptoms of severe hypothyroidism in animals, including reduction in litter size, body weight, and brain size and a delay in developmental landmarks such as tooth eruption and eye-opening, have come to be viewed as cardinal developmental effects of thyroid hormone insufficiency. Therefore, by association, if these “clinical” signs are not observed, the implication is that there would be no other effects on brain development. The work by Lavado-Autric et al. (2003) (see analysis by Zoeller, 2003) is one of very few studies that used a method of manipulating maternal thyroid status that did not affect measures of litter size or weight. Thus, there are no experimental studies designed to determine what might be considered a “no-effect level” for maternal or neonatal thyroid hormone insufficiency on brain development. However, this will be an important issue to clarify as we consider the significance of maternal hypothyroxinemia or of thyroid toxicants on brain development.

3.10.2 Spontaneous Mutants That Have Informed TH Mechanisms

Several spontaneous mutant mouse lines have been described, which have provided basic information about the mechanisms guiding brain development and in some cases provide insight into the role of thyroid hormone in brain development. These are briefly described below.

3.10.2.1 Staggerer Mouse

The recessive mouse mutation staggerer (sg) disturbs the normal development of cerebellar Purkinje cells and affects certain functions of the immune system (Yoon, 1972). Matysiak-Scholze and Nehls (1997) found that a mutation in the orphan nuclear receptor ROR alpha is the causative deletion in the common coding region of the ROR alpha isoforms. Of the four different isoforms of the ROR alpha gene that are generated by a combination of alternative promotor usage and exon splicing that differ in their DNA-binding properties, isoforms ROR alpha1 and ROR alpha4 are specifically coexpressed in the murine cerebellum and human cerebellum. The RORα gene is regulated by thyroid hormone and plays an important role in mediating the effect of thyroid hormone on Purkinje cell development (Koibuchi and Chin, 1998; Koibuchi, et al., 1999b; Matsui, 1997). Studies of staggerer mice and of the ROR gene have also led to some insight into the mechanisms by which TR function is regulated by associated proteins (Moraitis, et al., 2002; Vogel, et al., 2000). Thus, ROR expression may be a useful marker of thyroid hormone action, disrupted by putative thyroid toxicants, that is known to be associated with adverse effects.

3.10.2.2 Reeler Mouse

The adult reeler phenotype is characterized not only by extreme laminar abnormalities of cell positioning in the telencephalic and cerebellar cortices, but also by relatively less extreme, though distinct, abnormal architectonics in non-cortical structures such as the inferior olive and the facial nerve nucleus (Goffinet, 1984). The causative mutation is in a gene coding for reelin (Miao, et al., 1994). Reelin is a large extracellular protein secreted by Cajal-Retzius neurons of the cerebral cortex that binds to membrane receptors on migrating neurons, inducing the phosphorylation of disabled homolog 1 (Dab1) and triggering an intracellular signaling cascade that appears to be important to instruct cells in their proper destination (Rice and Curran, 2001). Reelin expression is reduced, and Dab1 expression is enhanced in the hypothyroid state (Alvarez-Dolado, et al., 1999). Reelin is also involved in the peripheral nervous system in synapse elimination (Chih and Scheiffele, 2003; Quattrocchi, et al., 2003), which is necessary for controlling motor unit size in major muscle groups so that each muscle fiber receives innervations from a single motor nerve. Hypothyroid animals exhibit a longer period of polyinnervation of motor fibers during sciatic nerve reinnervation (Cuppini, et al., 1996) while adult animals made hypothyroid undergo a period of motor axon sprouting and polyinnervation (Cuppini, et al., 1994). Both of these observations support the possibility that thyroid hormone regulation of reelin in the peripheral nervous system is also important for synapse elimination.
3.10.2.3 Shiverer Mouse

104. The shiverer mutation is one of several spontaneous mutations in the gene encoding myelin basic protein (Mikoshiba, et al., 1991; Nave, 1994). Specifically, the shiverer mouse has a segment of the MBP gene missing. The hypomyelination present in shiverer (Mikoshiba, et al., 1991; Readhead and Hood, 1990) was similar enough to hypothyroid animals to lead to the recognition that thyroid hormone is a potent regulator of myelination (Bhat, et al., 1979; Ibarrola and Rodriguez-Pena, 1997b; Potter, et al., 1984).

3.11 Targeted Deletions and Knock-out/in

105. Several mouse models of targeted deletions of specific genes important for thyroid function have been described. These mouse lines may prove useful in screening programs for thyroid toxicants or in developing cell lines that could be used for toxicological screens.

3.11.1 Pax8 Null Mouse

106. Pax8 codes for a paired-box-containing protein with a highly restricted pattern of expression that is necessary for the development of the thyroid gland (Pasca di Magliano, et al., 2000). The only known defect in the Pax8−/− mouse is the absence of the thyroid gland and as a result they are completely unable to synthesize thyroid hormone (Mansouri, et al., 1998). These mice are healthy when given thyroid hormone and they have no defect in deiodinase activity that occurs following PTU use, no defect in parathyroid hormone or calcitonin that occurs following surgical thyroidectomy, and may not exhibit problems associated with direct effects of goitrogens such as the inhibition of neutral nitric oxide synthase (Wolff and Marks, 2002). For example, two papers appeared in the mid 1990s (Ueta, et al., 1995a, b) indicating that thyroid hormone regulates nitric oxide synthase (NOS) activity in the hypothalamus. They used PTU in these studies, which has since been shown to exert a direct action on NOS (Wolff and Marks, 2002). Thus, the use of a Pax8 deficient mouse may avoid the confounds of methods to manipulate thyroid status.

3.11.2 TR Knock-out and Knock-in Mice

107. TRβ knock-out mice (TRβ−/−) have resistance to TH (Forrest, et al., 1996a; Forrest, et al., 1996b; Gauthier, et al., 1999), meaning that they have elevated levels of both T₄ and TSH. In contrast, mice with deletion of the TRα1 and TRα2 isoforms (TRα/o) are hypersensitive to TH in several of the tissues examined (McKenna and O'Malley, 2002a, b) or less prone to the effects of TH deprivation (Morte, et al., 2002). Moreover, mice completely deficient in both TRα and TRβ (TR null) exhibit more severe resistance to TH than those lacking TRβ only (Gothe, et al., 1999). Taken together, these data suggest that both isoforms play selective and overlapping roles, both centrally and peripherally, in the regulation of the HPT axis and in the control of tissue function.

108. It is important also to recognize that TR knock-out mice do not exhibit the phenotype presented by animals made hypothyroid (Wondisford, 2003). Not only do TR knock-out mice not show affects of brain damage associated with hypothyroidism, but targeted deletion of specific TR isoforms can protect the brain from hypothyroidism in these strains (Morte, et al., 2002). These observations led to the hypothesis that the unliganded TR mediates the adverse consequences on brain development (and on the function of other tissues) of hypothyroidism. To test this hypothesis, Hashimoto et al. (2001) constructed a mouse carrying a TRβ gene with a targeted mutation in the ligand binding domain (TRβΔ337). This mutated TRβ is unable to bind to thyroid hormone, but remains capable of binding to DNA and to the co-repressor N-CoR. These investigators found that the TRβΔ337 mouse exhibits some of the same severe defects in brain development as observed in hypothyroid animals. The Bernal group in Madrid has begun to use
these mouse lines to identify the effects of thyroid hormone on brain development that are mediated by specific TR isoforms (Guadano-Ferraz, et al., 2003; Manzano, et al., 2003a; Morte, et al., 2003).

3.12 Conclusions

109. Thyroid hormone is essential for normal development and physiology. Therefore, environmental contaminants that interfere with thyroid physiology, or with thyroid hormone action, may produce adverse consequences on normal development and physiology. As this chapter describes, the role of thyroid hormone is complex and there are many areas of the basic science of thyroid physiology and thyroid hormone action that are poorly understood. However, there is enough basic information to justify a careful re-evaluation of standard protocols currently employed to identify thyroid toxicants and to determine the degree to which these toxicants exert adverse health effects in animals and in humans. Moreover, there is enough information to construct in vitro assays for thyroid disruption and to clearly articulate their strengths and weaknesses.

110. This information will be employed to review current screens and tests for thyroid toxicants in the following chapters, to evaluate their strengths and weaknesses, and to describe potential new screens and tests that may serve to inform the EDSP and the OECD’s EDTA so that they can eventually regulate chemicals for the protection of human and wildlife population health. The degree to which these assays are applicable across taxa will also be evaluated.
4.0 MAMMALIAN SCREENS AND TESTS FOR THYROID TOXICANTS – CURRENT AND POTENTIAL

111. The goal of this chapter is to review current screens and tests performed in mammals for thyroid toxicants, to discuss their underlying strengths and weaknesses, and to propose additional endpoints or new assays for thyroid toxicants that are now available or are in the research and development phase, and that can overcome existing weaknesses. We first review the modes of action of known thyroid toxicants, followed by endpoints normally employed in screens/tests for thyroid toxicants. Finally, we review current screens and tests – developed by the OECD, by Japanese investigators, and by the U.S. EPA, – with particular attention to ways in which these protocols can be strengthened for their ability to identify potential thyroid toxicants.

4.1 Known Mechanisms of Thyroid Toxicity

112. As discussed earlier, all chemicals classified as thyroid toxicants to date have been defined by their ability to reduce circulating levels of thyroid hormone (Brucker-Davis, 1998). Thus, these chemicals alter the relationship between thyroid hormone biosynthesis and elimination such that the steady-state levels of hormones are reduced. The mode of action by which these chemicals can influence circulating levels of thyroid hormone are either focused on effects on thyroid hormone biosynthesis, or on thyroid hormone metabolism (Table 4-1). These modes of action are reviewed below. These modes of action are germane to other taxa and are relevant to humans.

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Iodide Trapping</th>
<th>TOP Inhibition</th>
<th>Deiodinase Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples of Chemicals</td>
<td>Complex Anions, including C1O4, C1O3, NO3</td>
<td>Carbimazoles</td>
<td>Thiouracils (e.g., PTU), PCBs, iopanoic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isoflavones including genistine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thioconate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mercaptimidazoles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>including methimazole</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and propylthiouracil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>resorcinol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propanalol flavonoids</td>
<td></td>
</tr>
</tbody>
</table>

113. A workshop was held at Duke University in June of 1997 to bring together international experts on thyroid toxicology to review methods for screening putative thyroid toxicants (DeVito, et al., 1999). The workshop focused on more than 20 assays or test systems that have been used to examine chemicals which alter synthesis, storage, transport, and catabolism of T4 and/or T3, assays that evaluate ligand binding and activation of the TRs, and in vivo assays that examine the effects of antithyroid agents and...
thyromimetics in mammalian and nonmammalian wildlife models. The purpose of the workshop was not
to recommend a screening battery or to deal with policy issues pertaining to the use of such screens; the
product of the workshop was intended to describe and evaluate the methods that are currently available or
could be developed in the near future for screening and testing. To date, the paper by De Vito et al. (1999)
likely remains one of the most cogent and concise descriptions of the extant assays for thyroid toxicity (at
least in mammals) and speculates on some potentially new assays. The following subsections represent
modes of action by which toxicants influence thyroid endocrinology.

4.2 Changes in Serum Hormone Levels

Changes in serum concentrations of thyroid hormones (T₄, T₃, and TSH) can be caused by
chemicals that inhibit thyroid hormone synthesis, release, and transport, and by chemicals that increase
metabolism of various thyroid hormones (e.g., Deiodinases, UDPGTs). If a chemical decreases serum
hormone concentrations, specific assays can be used to determine the mechanism by which these hormone
concentrations are decreased. However, the specific pattern is likely to be informative. For example,
inhibition of D₁ is likely to preferentially reduce circulating levels of T₃, which is not likely to be
accompanied by a reduction in serum T₄ or TSH. In contrast, inhibition of iodine uptake is predicted to
cause a reduction of T₄, leading to a decrease in both T₃ and T₁ and an increase in serum TSH. However, it
is important to keep in mind that interpreting changes in hormone levels in terms of mechanisms of
toxicant action or potential adverse effects is quite complex. For example, if thyroid hormones are
decreased and TSH is elevated, it is important to avoid assumptions about compensatory actions. As will
be described below, recent studies in rats demonstrate that goitrogens can produce effects on the fetal brain
before it affects maternal serum TSH. Moreover, exogenous thyroid hormone can influence fetal brain
measurements before it down-regulates maternal serum TSH.

4.2.1 Thyroperoxidase Inhibitors

6-Propyl-2-thiouracil (PTU) is a methylmercaptoimidazole that has been intensively studied in
animals and in humans and is used therapeutically to treat patients with Graves’ Disease (Cooper, 2003).
As a drug, it does not exist in nature and there are no environmental sources of PTU. However, as a class
of compound (the methylmercaptoimidazoles), it is representative of compounds found in the environment
that can affect thyroid function. PTU is well known to reduce circulating levels of T₄ and T₃ and to
increase circulating levels of TSH (e.g., Frumess and Larsen, 1975; Sato, et al., 1976) and has been
extensively used in mechanistic research focused on identifying the role of thyroid hormone in brain
development. The ability of PTU to reduce circulating thyroid hormone levels has been exploited in the
treatment of hyperthyroidism in humans, including in pregnant and lactating women (Mestman, 1998).
PTU (Figure 4-1) is generally believed to produce deleterious effects in animals by causing a dose-
dependent reduction in circulating levels of thyroid hormone. This reduction is caused by the ability of
PTU to directly inhibit the function of the thyroperoxidase enzyme (Engler, et al., 1982), which is
responsible for iodination of the tyrosine residues on thyroglobulin (Taurog, 2004), a key step in thyroid
hormone synthesis. In addition, PTU inhibits the type 1 5’-deiodinase (Ortega, et al., 1996), which
converts T₄ to T₃ in peripheral tissues. As such, PTU reduces the synthesis of nascent thyroid hormone
including both T₄ and T₃, causing a dose-dependent decrease in circulating levels of thyroid hormone (St
Germain and Croteau, 1989).
116. Thyroperoxidase is a multisubstrate enzyme, which reacts first with hydrogen peroxide, forming an oxidized enzyme. This species then oxidizes iodide, the second substrate, to an enzyme-bound "active iodine," transferable to tyrosyl residues on thyroglobulin (TG) (Davidson, et al., 1978). The thioureylene drugs, including PTU, methimazole (MMI) and thiouracil, can inhibit TPO's ability to activate iodine and transfer it to TG (Davidson, et al., 1978). However, these drugs act by different mechanisms. Specifically, PTU interacts with the "activated" iodine producing a reversible inhibition of TPO (Davidson, et al., 1978; Nagasaka and Hidaka, 1976), whereas MMI interacts directly with the TPO enzyme and irreversibly inhibits it. The key event of TPO inhibition by PTU leads to a series of events within the hypothalamic-pituitary-thyroid (HPT) axis that may directly produce adverse effects or which may be surrogate markers of adverse effects. No other modes of action have been proposed for the ability of PTU to reduce circulating levels of thyroid hormone or to affect thyroid histopathology. However, a recent study indicates that PTU can exert direct actions on the activity of neuronal isoform of nitric oxide synthase (Wolff and Marks, 2002). Considering the importance of neuronal NOS in brain development and in neuronal plasticity (Blackshaw, et al., 2003), it is possible that this direct action may influence brain development.

117. A good example of TPO inhibitors are the isoflavones, especially those found in soy protein (e.g., genistein, coumesterol) (reviewed by Doerge and Sheehan, 2002). In humans, goiter has been reported in infants fed soy formula (Chorazy, et al., 1995; Jabbar, et al., 1997; Labib, et al., 1989). In addition, teenage children diagnosed with autoimmune thyroid disease were found to have twice the rate of occurrence if they had consumed soy formula as infants (Fort, et al., 1990). Boker et al. (2002) recently reviewed the dietary sources of a variety of isoflavones (see Table 4-2). These isoflavones are also so-called “phytoestrogens,” which are highly enriched in some commercial preparations.

118. The TPO assay itself involves monitoring the iodination reaction using bovine serum albumin or tyrosine as substrates (Divi and Doerge, 1996). In addition, the oxidation of guaiacol can be used as an indicator of thyroid peroxidase activity (Divi and Doerge, 1994). All chemicals that inhibit the iodination reaction also inhibit the coupling reaction (Divi and Doerge, 1994). The coupling reaction can be assayed using human low iodine thyroglobulin, preiodinated casein, or guaiacol as substrates.

119. A disadvantage of the TPO assay is that purified TPO is not readily available commercially. It was previously reported that porcine TPO is the only purified preparation available (DeVito, et al., 1999). Moreover, a recent on-line search of possible commercial products revealed none. However, if this assay were an important component of a chemical screening program, recombinant enzymes from different species could be developed. In fact, a strength of the TPO assay is that the sensitivity to chemical inhibition of TPO from human and experimental animals can be directly examined. In vitro studies have shown that TPOs from different mammals exhibit differences in their sensitivity to inhibition by propylthiouracil (PTU) and sulfamethazine (Takayama, et al., 1986). Comparisons of the relative
sensitivity of TPO across species to various toxicants may assist in risk assessment for chemicals that inhibit TPO activity, though differences in the pharmacokinetics/dynamics in various species would not be captured by this in vitro approach. The iodination and coupling assays are specific for chemicals that inhibit TH synthesis and are unlikely to produce false positives. However, used alone as a screen, these assays have high potential for false negatives, as chemicals that alter TH concentrations through other mechanisms would not be detected. These assays have been performed for many years, are well established in the scientific literature, and numerous chemicals have been tested using these assays. Although there are no published methodologies that can be defined as high throughput screens, modification of this assay into a high throughput screen is under development in several laboratories (DeVito, et al., 1999).

Table 4-2 Intakes of Phytoestrogen by Food Groups by Dutch Women

<table>
<thead>
<tr>
<th>Food group</th>
<th>Daily Intake</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Fat</th>
<th>Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>15.8^1</td>
<td>31.0^1</td>
<td>40.8^1</td>
<td>33.2</td>
<td>62.2</td>
</tr>
<tr>
<td>Peas/beans</td>
<td>28.6</td>
<td>25.7</td>
<td>46.8</td>
<td>32.4</td>
<td>62.2</td>
</tr>
<tr>
<td>Potatoes</td>
<td>2.1</td>
<td>4.1</td>
<td>-</td>
<td>4.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Legumes/vegetables^2</td>
<td>0.6</td>
<td>0.4</td>
<td><0.1</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>Fruit</td>
<td>4.3</td>
<td>2.1</td>
<td>-</td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Berries</td>
<td>0.1</td>
<td>0.8</td>
<td>-</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Other</td>
<td>4.2</td>
<td>1.3</td>
<td>-</td>
<td>0.6</td>
<td>9.9</td>
</tr>
<tr>
<td>Fruit-vegetable juice</td>
<td>1.5</td>
<td><0.1</td>
<td>-</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Fruit juices</td>
<td>1.0</td>
<td><0.1</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Vegetable juice</td>
<td>0.6</td>
<td><0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Coffee/tea</td>
<td>16.3</td>
<td>4.8</td>
<td>24.3</td>
<td>122</td>
<td>22.9</td>
</tr>
<tr>
<td>Coffee</td>
<td>14.5</td>
<td>4.8</td>
<td>24.3</td>
<td>158</td>
<td>15.8</td>
</tr>
<tr>
<td>Tea</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>122</td>
<td>7.0</td>
</tr>
<tr>
<td>Traditional soy foods</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>17.2</td>
<td>14.4</td>
<td>0.1</td>
<td>0.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Grain products</td>
<td>15.5</td>
<td>11.9</td>
<td>6.2</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Bread</td>
<td>15.4</td>
<td>11.8</td>
<td>6.2</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Cabbage/kale</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>5.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Peas/beans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Nuts (mostly peanuts)</td>
<td>3.8</td>
<td>18.2</td>
<td>2.1</td>
<td>45.0^1</td>
<td>0.1</td>
</tr>
<tr>
<td>Alcohol</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>6.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Other</td>
<td>3.1</td>
<td>13.1</td>
<td>17.5</td>
<td>19.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

^1 Main sources (by foodgroups) for isoflavones, coumestans and lignans intaked.
^2 Leafy vegetables = cabbage/lettuce/pinto/endsive/spinach.

4.2.2 Perchlorate Discharge Test

120. Perchlorate competes with iodide for thyroid uptake and also promotes the efflux of iodide from follicular cells (Atterwill, et al., 1987). The perchlorate discharge test has been used for decades in both animals and humans to detect iodide organification defects (Meller and Becker, 2002; Wolff, 1998). In this assay, animals are exposed to a test chemical and then administered 125I followed by perchlorate. Accumulation of 125I in the thyroid is determined before and after administration of perchlorate. Perchlorate promotes the release of iodine that has not been incorporated into thyroglobulin. Therefore, if a chemical inhibits or deactivates thyroid peroxidase, there would be a brisk decrease in the accumulation of 125I in the thyroid gland. This assay has the potential for providing mechanistic information on the actions of chemicals that alter thyroid function, but it does not necessarily meet the requirements of a screen (DeVito, et al., 1999). A modification of the perchlorate discharge test that would test for chemicals...
that interfere with iodine uptake would be the use of thyroid scintigraphy (e.g., Schellingerhout, et al., 2002). This technique is essentially that of radioactive iodine uptake inhibition used by Greer et al. (2002).

4.2.3 Inhibitors of Iodide Uptake

4.2.3.1 Sodium/Iodide Symporter

121. A variety of complex anions can inhibit iodide uptake through the sodium/iodide symporter (NIS) (Wolff, 1998). The defining characteristic of iodide transport is its very high specificity for iodide with respect to the chloride ion, which is abundant in biological systems. However, despite this, iodide is not the only ion selected by the NIS, nor is it the most avid (Wolff, 1998). The following potency series for anions capable of blocking iodide uptake was constructed by Wolff and reviewed later (Wolff, 1998): $\text{TcO}_4^- > \text{ClO}_4^- > \text{ReO}_4^- > \text{SCN} > \text{BF}_4^- > \text{I} > \text{NO}_3^- > \text{Br} > \text{Cl}$. Although nitrate is actually less potent than iodide at the NIS, environmental contamination with nitrate has nevertheless been associated with goiter (Gatseva, et al., 1998; Vladeva, et al., 2000). Perchlorate (ClO_4^-) contamination also has been studied for its effects on thyroid function, especially considering its potency at inhibiting iodide uptake into the thyroid gland (Strawson, et al., 2004; Urbansky, 2002). The only epidemiological study focused on non-neonates (Crump, et al., 2000) indicates that exposure to perchlorate in drinking water, in combination with elevated iodine intake, tends to increase circulating levels of thyroid hormone rather than decrease it. This observation was also observed in mice (Thuett, et al., 2002).

4.2.3.2 Inhibitors of Pendrin

122. Pendrin is a protein identified by positional cloning to identify a genetic defect resulting in Pendred Syndrome. This syndrome is one of the most common causes of profound sensorineural hearing loss and thyroid goiter (Pendred, 1896; Reardon, et al., 1977; Taylor, et al., 2002). Interestingly, the pendrin protein is expressed in a highly specific manner: in the thyroid gland, the kidney and in the inner ear (Everett, et al., 1997; Everett and Green, 1999). It is not completely clear how this expression pattern accounts for the symptoms of the syndrome. The Pendrin protein transports iodide from the apex of the thyroid follicular cells into the colloid (Figure 3-2, presented above), and it also appears to account for the iodide efflux from the thyroid gland upon perchlorate administration (i.e., the perchlorate discharge test) (Yoshida, et al., 2002), which is why iodide efflux is exacerbated in Pendred’s syndrome (Reardon, et al., 1999; Reardon, et al., 1977). Pendrin has a high degree of structural similarity to known sulfate transporters, but it transports iodide and chloride, not sulfate (Fugazzola, et al., 2001). Although it is possible that Pendrin is a site of action for some xenobiotic chemicals, there is no information on this.

4.2.4 Xenobiotic Effects on Iodothyronine Deiodinases

123. Few studies have focused on the ability of environmental toxicants to interfere with thyroid hormone metabolism by deiodinases. However, this may be an important mechanism by which environmental chemicals could interfere with thyroid hormone action on tissues considering recent evidence that these enzymes play an important role in controlling tissue sensitivity to thyroid hormone, especially during development.

124. The development of the mammalian brain is characterized by an orderly sequence of events (Cowan, et al., 1997). Moreover, the relative timing of maturational events within the brain is quite similar among mammalian species (Clancy, et al., 2001). Recent work in both humans and experimental animals demonstrates that thyroid hormone exerts effects on the developing brain throughout a broad period of fetal and neonatal development (Chan and Rovet, 2003), and that the developmental events and brain structures affected by thyroid hormone differ as development proceeds. Therefore, it is possible that the human brain uses a strategy for “timing” thyroid hormone sensitivity of different brain regions that is similar to that
used by *Xenopus* (reviewed below). The work by Kester et al. (2004) represents a key observation suggesting that this is indeed the case.

125. Kester et al. (2004) report that in several brain regions in humans – especially the cerebral cortex – levels of T_3 increase during fetal development and this is correlated with an increase in the activity of type 2 deiodinase (D2) while the activity of the type 3 deiodinase (D3) is low to undetectable. Type 2 deiodinase controls the conversion of T_4 to the hormonally active T_3, but D3 controls the conversion of T_4 to the hormonally inactive reverse T_3. Because T_3 levels in the fetal cerebral cortex increased to an extent that could not be accounted for simply on the basis of the age-dependent increase in T_4, it indicates that D2 is causing the age-dependent increase in T_3 from 14 to 20 weeks gestation. Importantly, during this same period, the fetal cerebellum has high levels of D3 and low levels of T_3. Finally, at later gestational ages, D3 activity in the cerebellum declines and T_3 levels increase.

126. Deiodinase expression responds to changes in circulating levels of TH (Burmeister, et al., 1997). Thus, thyroid toxins may affect the ability of tissues to compensate for changes in circulating levels of thyroid hormone (Hood and Klaassen, 2000b; Meerts, et al., 2002). Moreover, deiodinase activities may be regulated in a complex manner that is related to both T_4 and T_3 availability in the serum (Burmeister, et al., 1997). Thus, the shape of the dose-response curve defining the effect of toxicant on serum TH levels may not be parallel to the dose-response curve defining the effect of toxicant on endpoints of TH action in tissues.

127. In mammals, approximately 80% of the circulating T_3 is derived from peripheral deiodination of T_4 (St Germain and Galton, 1997). As reviewed above, the deiodinases may control tissue sensitivity to thyroid hormone. For example, a recent report indicates that the human fetal cortex contains high levels of T_3 associated with high D2 activity and low D3 activity (Auso, et al., 2004b). In contrast, the human cerebellum exhibited low levels of T_3 before birth, and this was associated with low D2 and high D3. Thus, it is possible that xenobiotic chemicals that alter deiodinase activity may affect thyroid hormone signaling in the developing brain or in adult tissues, thereby producing an adverse effect, but may not produce changes in serum hormone concentrations. Deiodinase assays have been used for decades to understand the metabolism of thyroid hormones and may be amenable to high throughput assays. However, because the activity of these enzymes is dependent on the serum concentrations of these hormones, these assays would be sensitive toward chemicals that alter serum TH concentrations. Moreover, alterations in deiodinase activity also may alter serum TH concentrations. If serum TH concentrations are changed by deiodinase inhibitors, it may be easier to measure serum TH concentrations than it is to determine deiodinase activity. Similar to many of the assays described above, these assays have greater utility in understanding the mechanism of action of a chemical rather than as an initial screen.

4.2.5 *Toxicant Effects on Thyroid Hormone Clearance*

128. Oppenheimer’s group was among the first to examine the ability of chemicals (phenobarbital and chlordane) to enhance biliary secretion of thyroxine (Bernstein, et al., 1968). These seminal studies were the first to show that chemicals could activate the liver to trap thyroid hormones, enhancing their elimination through the bile and decreasing their serum half-life. Research in this area has focused on the ability of chemicals to induce liver enzymes that conjugate T_4 or T_3 to glucuronide, and/or the ability of chemicals to displace thyroid hormones from their serum binding proteins. However, there is not a consensus about the mechanism by which these chemicals, which do not act on the thyroid directly, can reduce circulating levels of thyroid hormones.
4.2.5.1 Role of Liver UDPGTs

129. Thyroid hormones (T₄ and T₃) are handled by the liver the way organic ions are handled – they are glucuronidated and sulfated, secreted into the biliary canaliculus, and concentrated into bile (Sellin and Vassilopoulou-Sellin, 2000). The microsomal enzymes responsible for this activity are the UDP-glucuronosyl transferases (UDPGTs). These phase II inducible enzymes are functionally heterogeneous. This functional heterogeneity is classically revealed in the different substrates they modify – 4-dintrophenol compared to bilirubin (Chowdhury, et al., 1983). In addition, different enzyme activities are directed toward T₄ and T₃ (Hood and Klaassen, 2000a), indicating the possible differential regulation of excretion of these two iodothyronines. However, there is very little information about the role of iodothyronine metabolism by liver in the regulation of serum thyroid hormone levels under normal circumstances. Moreover, there is a paucity of information about the role of these enzymes in the production of thyroid disease (hypo- or hyperthyroidism). In contrast, there is a very large literature about the role of UDPGTs in the pathway by which various microsomal enzyme inducers can cause changes in circulating levels of thyroid hormones (Barter and Klaassen, 1992; Hood, et al., 2003; Hood, et al., 1999; Hood and Klaassen, 2000a, b; Klaassen and Hood, 2001; Kolaja and Klaassen, 1998; Liu, et al., 1995; Zhou, et al., 2001; Zhou, et al., 2002).

130. An example of the key questions regarding the role of UDPGTs in mediating toxicant effects on serum thyroid hormone levels is provided by the effect of polychlorinated biphenyls (PCBs) on serum thyroid hormone. The chlorinated biphenyl 3,3',4,4',5-pentachlorobiphenyl, Aroclor 1254, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats are all known to reduce circulating T₄ (Barter and Klaassen, 1992; Schuur, et al., 1998; van Birgelen, et al., 1994), perhaps because of their ability to induce T₄-UDPGT (Barter and Klaassen, 1992; de Sandro, et al., 1992; Saito, et al., 1991). However, the degree to which these chemicals reduce serum T₄ is not correlated with the increase in T₄-UDP-GT activity (de Sandro, et al., 1992; Kato, et al., 2003). In addition, Kenechlor-500 reduces circulating levels of T₃ in both rats and mice, but induces UDP-GT in rats but not mice (Kato, et al., 2003). In addition, Kenechlor-500 induces a decrease in circulating levels of T₄ in Gunn rats, a strain that is deficient in UDPGT1A isoforms (Kato, et al., 2004). Thus, there is an argument that UDPGT induction alone is not a uniform marker of the ability of chemicals to cause a reduction in serum thyroid hormone. Nonetheless, the ability of chemicals to reduce circulating levels of thyroid hormone can be associated with UDPGT induction and an increase in fecal elimination of T₄ (de Sandro, et al., 1992; Vansell and Klaassen, 2001).

4.2.5.2 Glucuronidation Assays

131. Glucuronidation followed by biliary elimination of T₄ is one of the major pathways for removing T₄ from the circulation. In humans, there is evidence of sulfation of T₄ as well. There are at least three isoforms of UDPGT in mammals that glucuronidate T₄ (Visser, et al., 1993). Several classes of chemicals induce UDPGTs responsible for the glucuronidation of T₄ (Hood, et al., 2003; Kato, et al., 2003; Matsumoto, et al., 2002; Meerts, et al., 2002; Wade, et al., 2002; Zhou, et al., 2002). Induction of T₄ glucuronidation increases clearance and decreases serum concentrations of T₄. Induction of T₄ glucuronidation is typically determined in hepatic microsomes from animals treated with test chemicals. These assays have been performed for decades in numerous laboratories throughout the world. These ex vivo assays require several days of dosing of the test chemical. The advantage of this type of assay is that it is responsive to metabolic activation of the test chemical because exposure occurs in vivo. The activity of hepatic microsomal T₄ glucuronidation is not as sensitive to stress and circadian rhythms as are measurements of serum TH concentrations. The disadvantage is that these assays are not developed for use as high throughput screening tests and at present are laborious. Additionally, although these assays provide data useful in understanding the mechanisms of action, not all chemicals that affect the thyroid produce alterations in T₄ glucuronidation. Finally, measuring serum T₄ half-life would be a more direct measure of the adverse effect of increasing T₄ clearance.
4.2.6 Role of Binding Proteins

Another prevailing theory proposed to explain the mechanism by which some chemicals can reduce circulating levels of thyroid hormone is that of displacing the hormone from serum binding proteins – especially transthyretin in rodents (Brouwer, et al., 1998b). This hypothesis is supported by the observation that certain biphenyls can displace T4 from transthyretin with great affinity (Chauhan, et al., 2000). Although provocative, TTR-null mice are euthyroid as are humans with a TTR deficiency (Palha, 2002). Thus, it does not appear that TTR is a requirement for normal thyroid hormone homeostasis. However, it is likely to be important to measure serum binding proteins as a way of interpreting changes in serum total T4/T3.

In mammals, the serum-binding proteins for thyroid hormones are thyroid-binding globulin (TBG), transthyretin (TTR), and albumin (see review above). T4 exhibits a greater affinity for TBG and TTR than does T3 (25). Although TBG is present both in humans and rodents, the role of TBG in thyroid physiology in rodents is less well understood than in humans. However, TTR is present in humans, rodents, and nonhuman primates (Schussler, 2000). In addition, there is speculation that xenobiotics can alter circulating levels of thyroid hormone by displacing T4 from TTR (Brouwer, et al., 1998a; Chauhan, et al., 2000). Although this hypothesis is plausible, it is by no means proven. Thus, effects of xenobiotics on protein binding are not known to produce adverse effects.

It has also been suggested that xenobiotic binding to TTR is predictive of interactions with other T4 binding proteins such as the deiodinases and sulfotransferases as well as chemicals with potential for high fetal accumulation (Brouwer, et al., 1998a). These assays have been performed in several laboratories examining xenobiotics for several decades [e.g., (Brouwer and van den Berg, 1986)]. Although these assays can be modified for high throughput screening, they are specific for chemicals that compete with 125I-T4 for serum binding proteins and will not detect chemicals that act through other mechanisms. In addition, the use of either TBG or TTR may not be relevant for nonmammalian species such as teleosts. However, one of the strengths of this assay is that it may be predictive of chemicals that alter fetal concentrations of TH and may provide for a useful screen in this capacity.

4.3 Current in vivo Mammalian Screens

This section focuses on the existing in vivo mammalian screens developed by efforts within the OECD, Japan, and the USEPA.

The OECD in vivo mammalian assays include the following designs in rats:

1. OECD Test Guideline 407: Repeated Dose 28-Day Oral Toxicity Study

2. OECD Test Guideline 414: Prenatal Developmental Toxicity Study

3. OECD Test Guidelines 415/416: One and Two–Generation Reproductive Toxicity Studies

Japanese researchers are developing computer-based screening models, in vitro cell lines, and a “one life-span test” in rodents.

The current in vivo mammalian screens developed by efforts within the USEPA include the following designs in rats:
1. One-generation study (also see OECD 415)
2. Two-generation study (also see OECD 416)
3. 20-day pubertal female study
4. 20-day pubertal male study
5. 15-day adult male study.

139. The study designs for the assays listed above vary as will be described below, but in every case, the endpoints included were originally designed to capture measures of reproductive or general toxicity. Thus, the goal of this section is to demonstrate how the addition of endpoints that will capture thyroid toxicity can be included. Specific endpoints will be discussed below. These endpoints need not be added to all assays; rather, strategic additions should be made to include a combination of developmental and adult thyroid endpoints.

4.3.1. Endpoints for Thyroid Toxicity in Mammalian Developmental Assays

140. The current endpoints proposed for thyroid toxicity in the in vivo OECD and USEPA mammalian assays listed above include thyroid weight and histopathology, as well as hormone measurements (T₄ and TSH, and perhaps T₃). Thyroid weight provides a relative measure of its stimulation by TSH; thus, if thyroid hormone levels are altered subtly, thyroid weight may reflect a change. Thyroid histopathology may provide a more sensitive indicator of this process and may be interpreted as a potential cancer endpoint. However, rats are more sensitive to TSH-induced thyroid cancer than are humans, and the cell type in which the cancer develops differs between humans and rodents (Capen, 1997, 1998). McNabb et al. (2004) recently employed a thyroid endpoint that may be more sensitive and simpler to recruit than thyroid weight and histopathology. Specifically, they measured the T₄ content of the thyroid gland in response to ammonium perchlorate exposure in bobwhite quail and found that this measure was far more sensitive to perchlorate exposure than was either serum T₄ concentration or thyroid weight (McNabb et al. 2004). Although this measure cannot be taken to indicate cancer, it is not clear that TSH-induced cancer in rats is relevant to humans. Therefore, this measure (intra-thyroidal T₄) may be an important and easily captured endpoint for thyroid toxicity.

141. However, the endpoints described above—thyroid gland weight and histology, serum T₄, T₃, TSH, and intra-thyroidal T₄—are not measures of thyroid hormone action and would not be considered to be adverse effects (aside from a potential cancer endpoint). Moreover, thyroid hypertrophy (increased cell size without increased cell number) is interpreted as a “compensatory” response to toxicant exposure, despite the fact that no direct measures of toxicant effects on thyroid hormone action are included in the assay. Therefore, measures of thyroid hormone action must be recruited to capture this information. Mammalian developmental endpoints known to be sensitive to thyroid hormone insufficiency recommended for inclusion in in vivo screens and tests are discussed later in this chapter. These endpoints may be considered to be measures of potential adverse effects as well as generalized endpoints of thyroid disruption. From this point of view, endpoints of thyroid hormone action in non-mammalian vertebrates (e.g., frog metamorphosis) may also be considered to be generalized endpoints of thyroid disruption.

142. The assays proposed for screening and testing for endocrine disruptors are reviewed below, and exposure times and endpoints are described to familiarize the reader with current thyroid analyses. This section will help the reader visualize how well new endpoints or assays may fit into or alter the current mammalian methods for analysis of the thyroid system.
4.3.2 OECD Test Guidelines

143. Thyroid endpoints for the OECD Test Guidelines can be proposed as additional endpoints to add on to the existing assay protocols. The thyroid endpoints currently under consideration for the OECD Test Guidelines are the same as those in the EDSP—namely, thyroid weight, hormone analysis (T_4, T_3, TSH), and thyroid gland histopathology. As described in section 4.3, these endpoints will identify thyroid toxicants that act primarily by changing circulating levels of thyroid hormone, but will not provide a measure of non-cancer “adverse effects.” In addition, these endpoints may not identify toxicants that interfere with thyroid hormone action.

4.3.2.1 OECD TG 407 - Repeated Dose 28-day Oral Toxicity Study in Rodents

144. This is a 28-day assay to evaluate a test chemical’s oral toxicity using repeated daily doses in adult animals. The preferred rodent species is the rat, although other rodent species may be used. Females should be nulliparous and non-pregnant; dosing should begin as soon as possible after weaning and, in any case, before the animals are 9 weeks old. The route of administration should be by gavage, dosed feed, or dosed water. This study will indicate the potential health hazards of a test chemical after repeated exposure for a relatively short duration, especially immunological and neurological effects as well as reproductive toxicity. The TG 407 protocol was recently enhanced to include thyroid endpoints listed above. This assay is considered to identify a test chemical’s effects through clinical observation, hematology, clinical biochemistry of the blood serum and urine, pathology, and histology on organs that are chosen according to the user’s needs. Results from this assay will inform the chemical testing community on how to proceed with further tests.

4.3.2.2 OECD TG 414 - Prenatal Developmental Toxicity Study

145. OECD TG 414 tests for the effects of prenatal toxicant exposure (normally by intubation) on both the pregnant test animal and the developing offspring. Animals are dosed with the test chemical from implantation (around 5 days after mating) to 1 day before the planned caesarean section. This test will usually include the entire period of gestation, but can be shortened depending on the needs of the administering scientist. The assay is designed to observe effects on organogenesis. Suggested endpoints include: clinical observations; analysis of the dams including a complete examination of the uterus; and analysis of the fetus including sex, external alterations, and skeletal and soft tissues analysis. No specific thyroid endpoints are included in this assay. This assay corresponds to U.S. EPA’s Developmental Toxicity Assay and the U.S. Food and Drug Administration’s (USFDA’s) Segment II study.

4.3.2.3 OECD TG 415 - One-Generation Reproduction Toxicity Study

146. OECD TG 415 tests for a chemical’s effects on male and female reproductive performance (i.e., gonadal function, estrus cyclicity, mating behavior, conception, parturition, lactation, and weaning). The One-Generation assay also identifies developmental toxicity (i.e., neonatal morbidity, mortality, behavioral abnormalities, teratogenesis). It corresponds to the EPA’s One-Generation Assay, but doses animals earlier than the EDSP’s proposed One-Generation Reproduction assay.

147. The experimental schedule for this assay doses the parental generation prior to mating (at least 10 weeks for male rats and 2 weeks for female rats) and then throughout mating. The dams are then dosed throughout gestation and lactation until weaning of the F1 generation. Dosing and necropsy of the F1 generation are adjusted according to the intended use for this assay (see EDSP section on the One-Generation assay below). The endpoints included in the test guideline include physical observations, and histopathology of the ovaries, uterus, cervix, vagina, testes, epididymides, seminal vesicles, prostate,
coagulating gland, and the pituitary gland. Other target organs may be added as necessary. Thyroid endpoints, including those mentioned above, could easily be added to this assay.

4.3.2.4 OECD TG 416 - Two-Generation Reproductive Toxicity Studies

148. The OECD’s TG 416 corresponds to the EPA’s Two-Generation Reproductive Toxicity Test as described below. The EDSP’s proposed Two-Generation Test differs from TG 416 in that the dosing does not begin prior to mating, whereas the TG 416 begins dosing the male rats at least 10 weeks prior to mating and the female rats at least 2 weeks prior to mating. In both guidelines, the dosing begins with the parental generation, continuing throughout mating, pregnancy, and lactation to weaning of the F1 generation. The F1 offspring, once weaned, are dosed throughout development, mating, pregnancy, and lactation, to weaning of the F2 generation. Results from this assay are used to assess whether additional studies are required.

149. Endpoints outlined for this assay are very similar to those described for the One-Generation assay (TG 415), but also include estrus cycle and sperm evaluations, extensive observation of the offspring in the F1 and F2 generations, and organ weights of dosed animals (uterus, ovaries, testes, epididymides, prostate, seminal vesicles and coagulating glands and fluids, brain, liver, kidneys, spleen, pituitary, thyroid, and adrenal glands). Other target organs can also be added as needed. Histopathology of the parental and F1 generation are also required for certain organs (vagina, uterus with cervix, ovaries, testis, epididymis, seminal vesicles, prostate, and coagulating gland), and additional ones can be examined if necessary.

4.3.2.5 OECD TG 421 and 422 - The Reproduction/Developmental Toxicity Screening Test and the Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test

150. OECD TG 421 and 422 are both screening assays designed to provide the initial information on the effects of a test chemical on male and female reproduction (Figure 4-2). Both screens offer limited information on whether a test substance causes abnormal postnatal effects after prenatal exposure, or if the effects are due to postnatal exposure. Because these are both considered screens, negative data do not indicate that a chemical is safe. TG 422 also focuses on neurological endpoints.

151. Exposure schedules for these test guidelines are approximately 54 days long with dosing for ~14 days pre-mating, ~14 days mating (or less), 22 days during gestation, and then 4 days of lactation.

152. Endpoints for this assay include clinical observations of adults, body weight, and food consumption changes throughout the study, pathology, and histology (for reproductive organs and accessory sex glands). TG 422 also includes hematometry, clinical biochemistry on blood plasma or serum samples and urine. Histopathology includes organs other than the reproductive organs such as the brain (cerebellum, cerebrum, pons), spinal cord, stomach, small and large intestines, liver, kidneys, adrenals, spleen, heart, thymus, thyroid, trachea, lungs, uterus, urinary bladder, lymph nodes, peripheral nerve, and bone marrow. Pups are observed after necropsy for external gross abnormalities. Thyroid hormone serum analysis and thyroid histopathology are included as potential endpoints for these two test guidelines.

153. No currently proposed EDSP assay is similar to these two test guidelines in the dosing schedule or the proposed endpoints.
4.3.2.6 Summary of OECD Test Guideline Thyroid Endpoints

154. The thyroid endpoints being considered as “add-ons” for these test protocols include thyroid gland weight, histology, and serum thyroid hormone measurements including TSH. These endpoints reflect thyroid function and do not include measures of thyroid hormone action; thus, despite the known importance of thyroid hormone in development, these assays would not provide measures of adverse effects of thyroid disruption other than those that may be considered cancer endpoints (i.e., thyroid histopathology). Further test protocol or endpoint development is needed to evaluate non-cancer developmental measures.

4.3.3 Japanese Screening and Testing Program

155. Overall, the screening and testing program for EDCs being developed by Japanese researchers is comprised of three components: 1) In silico screening using a 3D-SAR docking model (but not for TR), 2) In vitro assays using mammalian cell lines including a TR expression system, and 3) several in vivo assays for estrogen and androgen. A “Rodent one life-span test” that will include endpoints for thyroid toxicants is also being developed as the Tier 2 “definitive” mammalian test. The presumptive one life-span test protocol would monitor the major stages of one life-span of rodents, including conception, in utero development, growth, maturation, and senescence. The exposure period may be perinatal and the monitoring periods would be not only around puberty but also in adulthood and/or early senescence. Currently, the endpoints under consideration will cover not only reproductive endpoints but also those of neurotoxicity and the immune system, with an emphasis on functional endpoints including acceleration of senescence-related phenotypes. Toxicogenomics approaches may be incorporated for monitoring the molecular events underlying the adverse effects. It will be important to incorporate endpoints of thyroid toxicants in this one life-cycle test.
4.3.4 U.S. EPA’s EDSP Mammalian Assays

As with the OECD test guidelines, the proposed assays in the EDSP battery contain thyroid endpoints that were added to assays for reproductive and developmental toxicity. These thyroid endpoints, generally proposed as “add-ons” in the EDSP battery of assays, are thyroid gland weight and histology, and serum thyroid hormone measures (T_3, T_4, TSH).

4.3.4.1 Two-Generation Study (Similar to OECD TG 416)

One of the tests being considered for inclusion in the EDSP is a mammalian, two-generation reproductive toxicity test that could be modified for thyroid toxicity. It is similar to the OECD TG 416. The basic two-generation test is described by the EPA Office of Prevention, Pesticides, and Toxic Substances’ Health Effects Test Guideline 870.3800: Reproduction and Fertility Effects (U.S. EPA 1998): http://www.epa.gov/scipoly/oscpendo/docs/edmvs/ptu2gendraftfordmvs.pdf. The assay is illustrated in Figure 4-3.

Thyroid endpoints under consideration for this test protocol include thyroid weight, histology, and thyroid hormone analysis of T_4 and TSH, and this test has completed pre-validation with the thyroid endpoints included. The two-generation assay is a Tier 2 test that identifies functional disruption of the estrogen, androgen, and thyroid systems during exposure to a chemical over two generations.
Figure 4-3 Exposure and Endpoint Collection in EPA’s Two-generation Reproductive Toxicity Assay
4.3.4.2 One-Generation Assay (Similar to OECD TG 415)

Although the basic two-generation study design was developed to provide information on insult to the reproductive tract, there is concern that certain effects may be missed because the reproductive tract has not had sufficient time to develop before the observations are made. In the standard two-generation test, most F1 animals are sacrificed and examined at postnatal day (pnd) 21; only one animal per sex per litter is usually allowed to continue to maturity, and these animals are then used to breed the F2 generation. An alternative to the two-generation study is a one-generation study that would allow for examination of the F1 males past puberty at pnd 90 +/-2. The study design tests whether continuing toxicant exposure in the F1 generation males through puberty to adulthood will provide additional information for detection of endocrine-mediated effects. The one-generation study has been proposed as an alternative to the two-generation study. In addition, the USEPA’s EDSP conducted a special study of a one-generation test that was added on as an extension to a two-generation assay and continued the F1 male generation out to pnd 95 +/-5 (Gray et al. 2003). The study design is illustrated in Figure 4-4.

Figure 4-4 Study Design to Examine Effects in F1 Offspring

Key:
- Direct dosing of F0 parental females, gd 6 - pnd 21
- Possible indirect exposure of F1 offspring in utero and during lactation from transplacental and/or transadalional transfer
- No dosing of retained F1 males from weaning on pnd 21 to scheduled necropsy on pnd 95 +/-5

160. The objectives of the one-generation study and the one-generation extension study are to determine the following: 1) Can some of the effects of perinatal exposure to thyroid toxicants be missed if the timing of endpoint acquisition is structured to identify reproductive toxicants in post-weaning animals, and 2) Do some of these effects occur at an incidence that would go undetected if only one male per litter were retained past puberty and examined in adulthood?

161. Retaining a greater number of the F1 males to examine at or after puberty may allow for greater distinction of the thyroid endpoints such as thyroid growth and histology. However, this concept is based on the flawed hypothesis that measures of thyroid gland size and histology can be used to gain insight into a chemical’s ability to interfere with thyroid hormone action. It is not yet clear whether the EDSP will proceed in validating the basic one-generation study to use as an alternative to the two-generation assay or the one-generation extension of the two-generation study.
Endpoints of thyroid function, not hormone action, are included in the one- and two-generation assays. Thyroid toxicants identified by influencing thyroid weight and histopathology or hormone levels represent only one class of toxicants and these measures will, by definition, fail to capture non-cancer adverse effects of thyroid toxicity. Thus, without the inclusion of endpoints of thyroid hormone action, false negatives will occur.

4.3.4.3 Female Pubertal Assays

The EDSTAC, assembled by the EPA in 1996, recommended the use of a female 20-day pubertal assay with endpoints to evaluate test materials for effects on the thyroid, the hypothalamic-pituitary-gonadal (HPG) axis, and aromatases. The EPA, at the recommendation of the EDSTAC, has proposed to include a female pubertal assay in an endocrine disruptor screening program. This assay (Figure 4-5) is the most comprehensive assay in the proposed Tier 1 battery of assays, as it is capable of detecting substances that alter thyroid function, inhibit aromatase, act as estrogens or antiestrogens, and interfere with the hypothalamus-pituitary-gonad/thyroid axis (EDSTAC Report, 1998, Vol. 1, Chapter 5, pp. 5-26 to 5-27). The female pubertal assay is currently being validated by several labs. The protocol for the female pubertal assay measures the following thyroid endpoints: serum T4 and TSH concentrations, thyroid gland histology, thyroid gland weight, and body weight changes. Results from other, shorter assays and/or with the use of intraperitoneal (ip) injection as the route of administration, have also been reported (O'Connor et al., 1996, 1999). EDSTAC also recommended that the male 20-day pubertal assay in rodents (described in the next section) be evaluated as an alternate assay (EDSTAC, 1998, Vol. 1, Chapter 5, p. 5-30; see Section 10.1.4.2).

In the female pubertal assay, toxicant exposure begins on the day of weaning (pnd 21). Thus, many of the developmental endpoints sensitive to thyroid hormone (see below in this chapter) have passed. Two potential endpoints of thyroid hormone action should be considered in future versions of this assay protocol. These are discussed below and include measures of myelination and toxicant effects on BrdU-labeled cells in the hippocampus. Addition of these endpoints will require research and development, followed by protocol standardization and validation. Although this process is not immediate, it is important to consider new thyroid endpoints as the state of thyroid research expands, and in recognition that the current assay endpoints do not capture measures of thyroid hormone action.

4.3.4.4 Male Pubertal Assay

The EDSTAC also recommended that a 20-day male pubertal assay in rodents be evaluated as an alternative assay (EDSTAC, 1998, Vol. 1, Chapter 5, p. 5-30). This assay is the most comprehensive assay in the proposed Tier 1 battery of assays, as it is capable of detecting substances that alter thyroid function, inhibit aromatase, act as androgens or anti-androgens, and interfere with the hypothalamus-pituitary-gonadal axis (EDSTAC, 1998, Vol. 1, Chapter 5, pp. 5-30 through 5-32). The study design for the male pubertal assay (Figure 4-6) is similar to the female pubertal assay. The male pubertal assay has been lengthened to a 30-day pubertal assay that covers postnatal days 22-52 and is currently being validated. It includes the following thyroid-related endpoints: body weight, thyroid gland weight, thyroid gland histology, and T4 and TSH plasma concentrations at necropsy. Therefore, the EDSP is pursuing the validation of a male pubertal assay as a potential alternative to other assays in the Tier 1 battery.
KEY:

- No test chemical exposures to F0 dams or F1 offspring during gestation or lactation, no exposure of F1 females in Group 1; F1 females dosed with corn oil.

- Direct once daily gavage dosing with test chemical of F1 females starting on pnd 22

- Q = Quarantine (seven days, gd 13-20)
- G = Gestation
- P = Parturition (pnd 0)
- L = Lactation
- W = Wean (pnd 21) F1 pups
- S = Standardize litters to eight to ten with maximum number of F1 female pups (discard culled pups)
- VO = Acquisition of vaginal opening (evaluation begins on pnd 22)
- VC = Vaginal cytology (evaluation begins on the day of VO)
- N = Necropsy
4.3.4.5 15-Day Adult Male Screen

One of the assays recommended by the EDSTAC as an alternate assay is a short-term screen in intact adult males. The adult male assay was developed to identify compounds that have the potential to act as agonists or antagonists to the estrogen, androgen, progesterone, or dopamine receptor. It can also identify 5α reductase inhibitors, steroid biosynthesis inhibitors, or compounds that alter thyroid function. Results from this assay and/or with the use of intraperitoneal injection as the route of administration, and other assays with a similar purpose, have been reported (O'Connor, 1996, 1999, 2002a, 2002b).

The study design (Figure 4-7) is simple and straightforward: males are dosed once daily for 15 consecutive days (0 through 14), at necropsy on day 14, organ weights, histopathology, and circulating hormone levels are documented. These endpoints for thyroid hormone suffer from the weakness of not capturing endpoints of thyroid hormone action. However, there are fewer obvious endpoints in adult
animals that would be sensitive to thyroid hormone insufficiency within 15 days. Possibilities include endpoints in liver and heart (see below).

Figure 4-7 15-Day Adult Male Screen

4.3.5 Modifications of Assay Endpoints for TH Action

168. The existing *in vivo* screens are designed to identify agents that interfere with estrogen or androgen actions, and measurements of thyroid hormones and various aspects of thyroid gland morphology are “added on.” However, the ability of these “add-ons” to provide information of sufficient value to make their acquisition worthwhile will require a careful consideration of the endpoints and the timing of their acquisition. For example, measures of circulating levels of thyroid hormone (with or without measurements of thyroid histopathology) are important, but without measures of thyroid hormone action, they will not be interpretable in terms of adverse effects. Moreover, these endpoints will not detect toxicants that interfere with thyroid hormone action. Therefore, this section focuses on how existing protocols may be modified to provide strategic measures of thyroid toxicity.

169. Development of endpoints for thyroid toxicants within the context of a screen and test designed to identify reproductive toxicants will require identification of the thyroid-specific endpoints and characterization of their sensitivity to both thyroid hormone insufficiency and to thyroid toxicants. This characterization will also include identifying the timing of TH insufficiency, toxicant exposure, and endpoint acquisition that optimizes the sensitivity of the assay. The fact is that endpoints of TH action, either during development or in adults, have not been examined within the context of toxicology. Therefore, it would be misleading to make recommendations for potential endpoints of thyroid toxicology without acknowledging both the requirement for validation and the fact that, despite the long-time recognition that thyroid hormone is essential for brain development and physiology, there are few thyroid-dependent endpoints sufficiently characterized that will be easily recruited for toxicological studies.

170. For example, a 30% decline in maternal TH, which is itself not associated with an increase in maternal TSH, can significantly alter neuronal migration in the fetal cortex, creating a situation where the adult progeny have a large proportion of neurons that are found in ectopic locations within the cortex (Auso, et al., 2004a). However, the TH insufficiency must occur during mid-gestation. Post-natal exposure to TH insufficiency would not have this effect. Another example is that illustrated by Sui and Gilbert (2003) and Sui et al. (In Press), in which timed TH insufficiency can produce long-term effects on synaptic function in the hippocampus. These examples illustrate that the timing of TH insufficiency (or toxicant exposure) are critical determinants in a protocol designed to identify thyroid toxicants. This observation is consistent with research in humans and in animals demonstrating that the timing of TH insufficiency determines the specific adverse effects (Zoeller and Rovet 2004).
Thus, the endpoints described below, many of which are still in the laboratory development phase, could be incorporated within the experimental protocols described above, and still remain as “add-ons.” Many of the listed assays are highly specific indicators of chemicals for a narrow range of mechanisms. However, it is important to consider these assays until we have a better idea of the number of chemicals that act through the different pathways to disrupt the thyroid system.

4.4 Thyrotropin-Releasing Hormone (TRH) and Thyrotropin (TSH) Challenge Test

These assays test the functional integrity of the pituitary gland and thyroid gland respectively (Fail, et al., 1999). Briefly, the TRH challenge test measures TSH concentrations before and after administration of purified TRH. Challenge with TRH should increase serum concentrations of TSH. A hyperreactive response is observed in the case of deficient thyroid function as the result of the lack of negative feedback on the pituitary gland. In contrast, a decreased TSH response to exogenous TRH is observed if the hypothalamus is deficient (Sarne and Refetoff, 1995; Fail, et al., 1999). Although the TRH challenge has potential for providing mechanistic information on the actions of chemicals that alter thyroid function, the assay may not be a useful screen because of the limited number of chemicals that may act through this mechanism. Likewise, a TSH challenge could be employed to determine whether xenobiotic chemicals can affect thyroid gland sensitivity to TSH.

4.5 Thyroid Hormone Receptor Binding and Activation

In principle, chemicals could alter thyroid hormone signaling by binding to its receptor. There are several isoforms of the receptors that have tissue-specific localization (see the review above). Several environmentally relevant classes of chemicals have been proposed to bind to the TR, such as the polyhalogenated dioxins, dibenzofurans, biphenyls, and diphenyl p ethers (McKinney and Waller, 1994, 1998; Porterfield, 2000; Porterfield and Hendry, 1998), but these proposals have not been adequately tested in the laboratory. Interestingly, a number of recent studies have begun to examine the ability of environmental chemicals to affect TR activation. Specifically, Zoeller et al. (2000) reported that developmental exposure to PCBs can produce thyroid hormone-like effects on the expression of specific genes in the developing brain. However, they did not find that PCBs could displace T₃ from nuclear TRs (Gauger, et al., 2004). However, Miyazaki et al. (2004) reported that at least one hydroxylated PCB congener can cause the TR to dissociate from DNA. This is an important observation because it implies that the PCB congener is binding to an allosteric binding site on the TR that regulates its ability to interact with the gene’s promoter. The observations of Zoeller and of Miyazaki are compatible considering that the unliganded TR is a constitutive repressor. Thus, PCB might increase the expression of RC3/Neurogranin by causing de-repression rather than T₃-activation. Others have shown that bisphenol A and its halogenated derivatives can bind to the TR and exert effects on TR-regulated gene expression (Kitamura, et al., 2002; Moriyama, et al., 2002). Finally, a new report indicates that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can augment T₃-induced gene expression in a cell line (Yamada-Okabe, et al., 2004). These studies reveal that a variety of environmental chemicals can directly affect TR activation, perhaps in novel ways. It would be predictable that chemicals interfering with TR action should alter thyroid hormone levels in serum. For example, BPA binds to the TR and acts as an antagonist (Moriyama, et al., 2002), and treatment of rats with BPA can increase serum T₄ (Zoeller, unpublished). However, this may not always be the case, especially if chemicals interfere with the TRα receptor because it does not mediate negative feedback on the pituitary.

4.6 The Developing Rodent Cerebellum

The effect of thyroid hormone insufficiency on brain development is dependent upon the timing of the insufficiency and the brain area examined. Thus, from a toxicological point of view, assays must be developed that specify the endpoint very clearly and whether this endpoint is mediated by TRα or TRβ (or
both) receptors. Because the cerebellum has been so extensively evaluated for its developmental dependence on thyroid hormone (Koibuchi and Chin, 2000), this section focuses exclusively on this tissue.

4.6.1 Overview of Methods

175. Cerebellar granule cells originate in the external granule layer (EGL) and migrate to the internal granule layer (IGL) within the first 2 to 3 weeks after birth in the rat (Altman, 1982; Altman and Bayer, 1985). After their migration, a significant proportion of these cells undergo apoptosis by a Bcl-2-mediated pathway. A number of investigators show that thyroid hormone affects cerebellar granule proliferation, migration, and apoptosis (Muller, et al., 1995; Pasquini, et al., 2000; Singh, et al., 2003b; Xiao and Nikodem, 1998). The role of thyroid hormone in the control of these developmental events is discussed below. These include the following:

176. Cell proliferation: This was originally performed using tritiated thymidine (3H-thymidine). This building block of DNA is incorporated into the newly synthesized DNA of dividing cells and can be detected by autoradiography (Nicholson and Altman, 1972a). This method requires the use of radioactivity and because it is a very weak beta-emitter, 3H requires some considerable time to detect it in liquid emulsion. Another method is the use of Bromodeoxyuridine (BrdU). BrdU is a thymidine analogue that is incorporated into newly synthesized DNA by cells in S-phase (Doetsch, et al., 1997; Luskin, et al., 1997; Menezes and Luskin, 1994). BrdU-labeled cells are detected using immunocytochemistry with an antibody available commercially that binds to DNA with BrdU incorporated into it. Using BrdU can allow one to detect the timing of cell birth to within a 1-hour period (e.g., Wood, et al., 1992). Finally, cell proliferation has been examined in the developing brain using an antibody to proliferating cell nuclear antigen (PCNA). PCNA antisera are available commercially and stain for a cyclin D2 that is present only in proliferating cells (Gobetto, et al., 1995; Tanaka and Marunouchi, 1998). This method has been used to identify proliferating cells in the developing cerebellum, and considering that the gene coding for PCNA has been cloned (Matsumoto, et al., 1987), this can be used for in situ hybridization and dual-labeling if needed.

177. Apoptosis. The presence of DNA fragmentation identified by TUNEL staining (terminal deoxynucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling) is a late marker of apoptosis (Valavanis, et al., 2001). In addition, there are several reports that TUNEL does not discriminate between programmed cell death and necrosis (Charriaut-Marlangue and Ben-Ari, 1995; Grasl-Kraupp, et al., 1995; Wullner, et al., 1999). Therefore, TUNEL staining is often followed by a marker of early onset of apoptosis using immunocytochemical staining for activated caspase-3 (Valavanis, et al., 2001). In addition, Singh et al. (2003b) have recently reported that the hypothyroidism-induced increase in apoptosis in the IGL is associated with down-regulation of Bcl-2 and Bcl-X$_L$ expression, and up-regulation of Bax expression. Therefore, to support conclusions based on TUNEL and activated caspase-3 staining, it is also important to measure Bcl-2.

178. Migration. There is no specific biochemical marker of cell migration in the nervous system. However, this issue has been inferred by two types of methods. First, those studying TH effects on cell migration in the cerebellum have examined the number of cells in the mitral layer as well as their spindle shape (Morte, et al., 2002) as a measure of migrating neurons (from EGL to IGL). Second, those studying cell migration in the cerebral cortex have examined the position of cells within the cortical laminae. Neurons that occupy different layers in the adult cortex are born at different times, between gestational day (GD) 13 and GD20 (Caviness, et al., 1995; Chenn, et al., 1997; Takahashi, et al., 1992). Recently, Lavado-Autric et al. (2003) showed that subtle thyroid hormone insufficiency in rat dams can alter the migratory behavior of cortical neurons labeled on different days with BrdU. This resulted in a breakdown in the establishment of specific cortical layers.
4.6.2 PotentialEndpoints of Cerebellar GranuleCells

During cerebellar development, large-scale cell proliferation occurs in cells of the external granule layer (EGL) during the first 3 weeks following birth. When proliferation within a specific lineage ends, cells begin to differentiate and migrate inwards to the internal granule layer (IGL). In normal rats, mitotic activity in the EGL declines with age and the EGL disappears at about 24 days (Nicholson and Altman, 1972b). In hypothyroid animals there is a delay in granule cell migration and a persistence of the EGL. Lewis et al. found that in normal animals the EGL at 21 to 22 days of age was only one cell thick, whereas in hypothyroid animals, the EGL, persisted and at 35 days of age was finally reduced to the same thickness as controls (Lewis, et al., 1976). Also, in hypothyroid animals granule cells remain in a proliferative phase longer than in controls, resulting in decreased cell differentiation. In contrast, in hyperthyroid animals there is a premature disappearance of the EGL, indicating an early termination in proliferation and early cell differentiation (Nicholson and Altman, 1972a).

It takes 3 to 4 days in normal euthyroid animals for a migrating granule cell to reach the IGL of the cerebellum (Figure 4-8). In hypothyroid animals the time a migrating granule cell takes to reach the IGL is about half or approximately 2 days. This is most likely due to a 50% decrease in the thickness of the molecular layer (the cell-poor zone between the EGL and IGL) resulting from early differentiation and migration of cells (Rabie, et al., 1980).

4.6.3 Apoptosis in the Cerebellum

Lewis et al. (1976) observed that there was an increase in the number of dying cells in the internal granular layer of 12 day old hypothyroid rats (Lewis, et al., 1976). Rabie et al. (1977) also showed an increase in cell death in the IGL of 10, 14, and 21-day old hypothyroid animals. In both normal and treated animals, cell death in the IGL is maximal at 8 days. The greatest difference between normal and hypothyroid animals was observed at 14 days where there was an increase in the pyknotic index by a factor of 20. A reduced ratio of granule cells to Purkinje cells was also observed. A daily dose of 10µg of T4 administered to hypothyroid animals caused the increase in cell death to return to a normal level as well as a correction in the ratio of granule cells to Purkinje cells (Rabie, et al., 1977).

Using TUNEL staining showed apoptotic activity in the IGL in normal animals from day 2 to 12 with a peak on day 8 and no more apoptotic cells detected on day 22. In hypothyroid animals the peak of

1 Figure Copyright 2004, The Endocrine Society. Used by permission. (Morte et al. 2004)
apoptosis is also on day 8 but is 4 times higher than controls. Apoptosis in these animals is still detectable on day 22 and does not stop until day 42, indicating not only an increase in the amount of apoptosis but also the duration during development (Xiao and Nikodem, 1998).

Although it is clear that thyroid hormone has a dramatic affect on apoptosis during cerebellar development, it is unclear how or why this occurs. There are a number of genes known to be involved in apoptosis, Bcl-2 family proteins being one of the key regulators. Using Western blot it was found that in the cerebellum of hypothyroid animals there is a down-regulation of Bcl-2 and Bcl-xL, which are both anti-apoptotic proteins. Also, hypothyroidism caused an up-regulation in Bax expression, which is a pro-apoptotic Bcl-2 family protein (Singh, et al., 2003a).

4.6.4 TH Effects on Purkinje Cell Proliferation and Differentiation

Purkinje cells in the cerebellum form a single layer on the margin of the IGL and represent the only cell type that carries information out of the cerebellum. It has been well documented that hypothyroidism during the first postnatal weeks of development causes a reduction in Purkinje cell dendritic arborization and a reduction in synaptogenesis between Purkinje cell dendritic spines and the parallel fibers of granule cells (Legrand, 1967, 1982; Nicholson and Altman, 1972a). Legrand also observed that in 14-day old thyroid deficient rats, the inhibition in synaptogenesis was more pronounced at the bottom of the molecular layer, causing a distortion in the normal synaptic organization (Legrand, 1967).

Recently, work has been done to determine how thyroid hormone regulates Purkinje cell development, specifically looking at TR isoforms. Heuer et al. (2003) found that although both TRα1 and TRβ1 are expressed during the peak of dendrite formation, TRα1 in Purkinje cells is the direct target of T3 action. Also, T3 given to cerebellar cultures showed a dose-dependent increase in dendritic outgrowth of Purkinje cells, which was only observed during continuous T3 exposure. This shows that TH is continuously required and is not simply serving as a molecular switch in the maturation of Purkinje cells (Heuer and Mason, 2003). In addition, these histological endpoints could be captured in an integrated EDSP in a manner that could test for the ability to interfere with TRα or TRβ signaling (see discussion below).

4.6.5 Methods of Analysis

Cerebellar development is well known to be sensitive to thyroid hormone and is the focus of a number of research groups attempting to understand the role of thyroid hormone in brain development (Koibuchi and Chin, 2000). Moreover, because the cerebellum develops largely postnatally in the rat, ongoing developmental screens can easily incorporate measures of cerebellar development to capture endpoints of thyroid hormone action without adding to the number of animals used in the overall battery of tests and screens. Although various aspects of cerebellar development have not been evaluated for their sensitivity to thyroid toxicants, there are a number of easily measured endpoints that may prove useful. Validation of these endpoints for use in a screen for thyroid toxicants would necessarily require evaluating their sensitivity to toxicants that act at different points within the thyroid system. For example, perchlorate or methimazole act almost exclusively on thyroid function, where bisphenol A might act more directly on the TR. Because different TRs mediate different actions of thyroid hormone on different endpoints of cerebellar development, this must be considered when developing a uniform screen.

4.6.6 Planimetric Measurements of Cerebellar Development

The population of granule cells that ultimately occupy the internal granule layer (IGL) expands in the external granule layer (EGL), then migrate to the IGL (Altman and Bayer, 1985). Each of these
processes, proliferation and migration, are influenced by thyroid hormone (Koibuchi and Chin, 2000). Potential thyroid toxicants that influence these processes would have effects on brain structure, and therefore would qualify as endpoints reflecting adverse effects of toxicant exposure. Altman and Bayer propose the term “External Germinal Layer” to limit confusion between the two “granule” layers, and to recognize that the EGL is the source of several types of cells that populate the adult cerebellum in addition to granule cells. The sequence of events including proliferation and migration occur in a predictable manner. For example, the planimetric areal measurement of the EGL in postnatal rats increases approximately 10-fold from birth to postnatal day (P) 6 (Altman, 1969). Likewise, the width of the molecular layer increases nearly 100-fold during this period (Altman and Winfree, 1977). Changes in the planimetric area of the EGL are associated with changes in the depth of this layer. Thus, the EGL is about 5 cells thick at birth, rising to 10 cells thick on P8 to 9 and disappearing by P21 (Altman, 1972). Developmental changes in planimetric measurements (or counting numbers of cells in a layer) in response to thyroid disruption could easily be managed within the present EPA guidelines for neurotoxicity testing (EPA, 1998).

4.6.7 Granule Cell Migration

An additional measure of thyroid hormone action in the developing cerebellum is provided by the number of cells found in the molecular layer (between the EGL and IGL) (Manzano, et al., 2003a; Morte, et al., 2003). This is a simple measurement that can be taken as a surrogate marker for granule cell migration.

4.7 TH-regulated Gene Expression in the Cerebellum

There are a number of genes that are known to be regulated by thyroid hormone in the developing cerebellum. Brain-derived neurotropic factor (BDNF) and neurotropin 3 (NT-3) are factors that belong to a group of proteins known to play crucial roles in neuronal differentiation, neurite outgrowth, and synaptogenesis (Lewin and Barde, 1996) and have been shown to be affected in hypothyroidism. In hypothyroid rats, BDNF and NT-3 expression is reduced in the cerebellum and replacement of these transcripts prevents the abnormal cerebellar developmental events associated with hypothyroidism (Neveu and Arenas, 1996). Although a direct effect of T3 on the expression of these genes has not been established, there is evidence of TH regulation (Koibuchi and Chin, 2000; Koibuchi, et al., 1999a).

In a recent paper published by Manzano et al., the effects of GC-1, a thyroid hormone analog that binds selectively to TRβ, on the expression of thyroid hormone target genes in the cerebellum were evaluated (2003). Hypothyroid pups were given either T3 or GC-1 and the expression of known thyroid hormone responsive genes was analyzed on postnatal day 16. They found that the expression of hairless, Rev-ErbAα, and neurotrophin-3 was significantly decreased and the expression of Reelin was increased, as would be expected. T3 administration normalized the expression of all the genes whereas GC-1 administration was only able to restore Reelin expression. These results suggest TR isoform-specific regulation of thyroid hormone responsive genes (Manzano, et al., 2003). Specifically, hairless and NT-3 are TH responsive genes regulated by TRα in granular cells, which contain predominantly TRα. Reelin, however, responded to GC-1 in a similar manner as T3, suggesting regulation through TRβ despite being expressed primarily in granule cells. Reelin has also been shown to be regulated by BDNF, which is also regulated by TH, suggesting that there may be multiple factors involved in Reelin regulation (Koibuchi and Chin, 2000). Rev-ErbAα is expressed in Purkinje cells during the first week of development and plays an important role in development. Deletion of this gene in mice causes a phenotype similar to hypothyroidism. These results suggest that Rev-ErbAα expression might be specifically regulated by TRα. GC-1 has also been shown to induce Purkinje cell protein-2 (PCP-2) expression, which is another
known TH responsive gene expressed in Purkinje cells during development of the cerebellum. It is thought to be regulated by TRβ (Morte, et al., 2002; Strait, et al., 1992).

191. As described earlier, the bulk of experiments focused on the role of thyroid hormone in the mammalian brain employ models of severe hypothyroidism. This is true for studies focused on the role of thyroid hormone in the control of neural gene expression (Anderson, et al., 2003; Bernal, et al., 2003; Potter, et al., 2002). However, there are a number of strategies for taking the measurements of gene expression and this includes differences in the methods of collection of tissue and methods of quantitation. However, a more difficult issue is to identify thyroid hormone-responsive genes closely linked to adverse effects. Thus, histological endpoints may be preferred initially.

4.8 TH Effects on Cortical Neurogenesis

192. In normal rats, the volume of the cortex and number of glia increases rapidly from postnatal day 5 to postnatal day 20 and remains constant thereafter, whereas neuron number reaches a peak at day 5 and remains constant to day 48. In hypothyroid pups, the mean volume of the cortex, glia number, and neuron number are reduced. T₄ supplementation partially reversed these effects (Behnam-Rassoli, et al., 1991).

4.8.1 TH Effects on Cortical Lamination and Barrel Field Differentiation

193. Thyroid hormone causes defects in barrel field cytoarchitecture. Barrel fields are a visibly arranged group of neurons in the somatosensory cortex that are innervated by the animal’s whiskers. In hypothyroid animals there is a 27% reduction in total barrel field area compared to control (Berbel, et al., 2001). Lavado-Autric et al. also found defects in barrel field organization in pups derived from hypothyroxinemic mothers. They found that in layer IV of the cortex, barrels were not clearly defined and were homogenously distributed (Lavado-Autric, et al., 2003).

4.8.2 Methods of Analysis

194. Cerebral cortical neurons are born adjacent to the ventricle (the ventricular zone) then migrate as they differentiate toward the surface of the brain. Early born neurons migrate to positions adjacent to the ventricular zone; late-born neurons migrate farther, past the earlier-born neurons to take positions progressively more superficial. This “upside down” pattern results in the typical laminar appearance of the cerebral cortex. Thyroid hormone insufficiency causes a disturbance in neuronal migration, which is manifested in the adult brain by an apparent disorganization of the cortical lamina. Moreover, if cells are labeled during fetal development using the birth-date marker bromodeoxyuracil (BrdU), it is demonstrable that a significant proportion of cortical neurons migrate to an improper position (Auso, et al., 2004b; Lavado-Autric, et al., 2003). This observation could be exploited as a screen or test for thyroid disruptions. In a paradigm using fetal and neonatal toxicant exposure, BrdU could be administered to the dam on gestational days 15, 16, and 17. Then, in the context of an EPA guideline study of developmental neurotoxicity, BrdU labeling could be developed to determine whether migration defects occur.

4.9 Thyroid Hormone Action in Oligodendrocytes Differentiation

195. Oligodendrocyte precursors known as oligodendrocytes-type II astrocyte cells (O-2A cells) proliferate and migrate throughout the brain (Raff, et al., 1983). Differentiation of these biopotential precursor cells is known to be affected by a number of extracellular factors, including thyroid hormone. Previous work has shown that oligodendrocytes grown in pure cultures without growth factors die after 24 hours. Addition of thyroid hormone to these cultures had no effect on oligodendrocytes survival even with addition of growth factors (Barres, et al., 1994). However, in a recent study done by Jones et al. (2003), thyroid hormone is shown to be an important survival factor for developing O-2A cells. They prepared
primary mixed cell cultures containing not only O2-A cells, but also microglia and astrocytes. They found that without addition of exogenous growth factors these cultures survived for 3 days, indicating that there are survival factors secreted by astrocytes or microglia cells. After 48 hours, T3 supplementation rescued these developing cells from cell death, indicating that T3 regulates the expression of unknown factors required for oligodendrocyte differentiation (Jones, et al., 2003).

196. In studies done in the rat optic nerve, TRα1 is shown to be important in the normal timing of oligodendrocytes development. In TRα1/-/- mice, there are decreased numbers of oligodendrocytes in the P7 and P14 optic nerve and in culture, oligodendrocyte precursors fail to differentiate in response to TH (Billon, et al., 2002).

197. The role of thyroid hormone in myelination has been well documented. Hypothyroid rat brains have shown to have a reduction in total myelin content and a 1 to 2 day delay in myelin protein composition (Walters and Morell, 1981). There is also a reduction in the amount of myelin deposited in white matter and fewer myelinated axons compared to controls (Adamo, et al., 1990). In hyperthyroid animals, there was a greater accumulation of myelin at 13 days corresponding to an earlier initiation in myelination and a 1 to 2 day acceleration in the myelin protein composition (Walters and Morell, 1981).

198. Thyroid hormone is also known to affect a number of genes involved in myelination. 2’3’-cyclic nucleotide 3’ phosphodiesterase (CNPase) and myelin-associated/oligodendrocytic basic protein (MOBP) are both genes involved in myelin compaction and have been found to be down-regulated in the cerebellum and corpus callosum of hypothyroid animals (Barradas, et al., 2001). Myelin basic protein (MBP) and proteolipidic protein (PLP) are expressed during myelin sheath formation and are also down-regulated in the cerebellum, corpus callosum, striatum and cerebral cortex (Barradas, et al., 2001; Ibarrola and Rodriguez-Pena, 1997a). Neonatal hyperthyroidism has been found to markedly increase the expression of these myelin genes at 10 days of age, but levels decreased significantly at 17 days. By 70 days of age hyperthyroid animals show decreased myelination, indicating that although myelination is initially increased, it is also terminated earlier (Marta, et al., 1998; Walters and Morell, 1981).

4.10 Hormone Levels

199. It has been argued, with significant merit, that serum concentrations of thyroid hormones should be an indicator of all thyroid toxicants (DeVito, et al., 1999). This endpoint will reveal thyroid toxicants that interfere with thyroid function (by any mechanism), thyroid hormone metabolism (by any mechanism), or TR activation. Chemicals that interfere with thyroid function (e.g., TPO inhibitors) would reduce T4 synthesis and would suppress serum T4. Likewise, chemicals that increase thyroid hormone metabolism and clearance from serum (e.g., UDPGT inducers) would cause a reduction in serum T4 or at least an increase in serum TSH (to maintain normal T4 levels). Finally, chemicals that interfere with TR activation should alter the negative feedback action of thyroid hormone at the hypothalamus and pituitary, thereby causing a change in serum thyroid hormone levels. Thus, hormone levels are and will remain important indicators of thyroid toxicity. However, thyroid hormone levels change during the early postnatal period and this must be incorporated into screens. For example, T4 levels in normal rat pups are in the range of 0.5 to 1.0 µg/dL on postnatal day 4 (Goldey, et al., 1995a; Zoeller, et al., 2000), rising to 6 to 8 µg/dL on postnatal day 15, then declining to adult levels of approximately 3 µg/dL. Interestingly, the radioimmunoassay used extensively in toxicological research has a lowest standard of 1 µg/dL. Therefore, measurements in the literature should be carefully evaluated because many of these measurements are below the detectability of the assay kit used.

200. All known thyroid toxicants have been identified by changing serum levels of thyroid hormones (Brucker-Davis, 1998). However, changes in serum hormone concentrations are not, in and of themselves, considered adverse in risk assessment. Thus, while an argument can be made for using serum hormone
concentrations as the sole indicator of thyroid toxicity, it will not contribute essential information in the risk analysis paradigm. Moreover, because serum hormone levels have been the sole indicator of thyroid toxicity, we simply do not know if toxicants can interfere with TR activation without influencing serum hormone levels. This may be especially true for toxicants that interfere with the TRα isoform, because this isoform does not contribute significantly to the negative feedback regulation of the pituitary or hypothalamus.

4.11 Additional Histochemical or Biochemical Markers of Thyroid Toxicity in the Developing Brain

201. A large number of endpoints of thyroid hormone action have been described in the developing brain (Bernal, 2002; Bernal, et al., 2003). These included thyroid hormone-responsive genes, proteins, enzyme activities, and developmental events. It is not likely that these endpoints could be developed for screens that could be incorporated into existing developmental neurotoxicity screens because the way that tissues have to be prepared (i.e., perfusion with fixative) is logistically difficult and the measures of mRNA, protein, or enzyme activity levels may be difficult to standardize.

4.12 In vitro Screens

202. There are no cell lines or primary cells that have been validated for use as a thyroid screen in a manner similar or analogous to the E-Screen for estrogen activity, though there are possibilities. In part, this may be because the general focus has been on the ability of chemicals to affect thyroid function, not thyroid hormone action. However, as more chemicals are found to influence TR function, it may be necessary to develop in vitro screens. The following represent potential in vitro assays for thyroid toxicants.

4.12.1 Primary Cultures

203. A number of primary cultures have been employed to study the role of thyroid hormone in brain development and in the development or physiology of various tissues. An important source of primary cells is fetal cortical neurons. For example, these cells (harvested on gestational day 16) were shown by McKay and his colleagues to retain the capacity to differentiate into neuronal or glial lineages (Johe, et al., 1996). Moreover, they found that thyroid hormone could increase the formation of glial cells at the expense of forming neurons. Another example is provided by Denver et al. (1999), who showed, using primary cortical cells harvested on gestational day 16, that the transcription factor BTEB is thyroid hormone responsive and may be involved in the regulation of neurite outgrowth.

204. Cerebellar granule cells are also an important source of primary cultures. One of many examples is work from the lab of Thompson (Potter, et al., 2001) who studied the regulation of synaptotagmin-1 in primary cerebellar granule cells. Likewise, primary cultures of astrocytes harvested from the early postnatal cerebellum have been used quite extensively. These cells have provided the basis of the work by Farwell and Leonard on thyroid hormone actions on actin polymerization and vesicular recycling (Farwell and Dubord-Tomasetti, 1999a, b; Leonard and Farwell, 1997; Leonard, et al., 1994; Stachelek, et al., 2000; Stachelek, et al., 2001). Cardiac myocytes (Bahouth, 1991; Dillmann, 2002; Neves, et al., 2002) and lung tissue (Mendelson and Boggaram, 1991) also have proved to be important primary cultures to study thyroid hormone action.
4.12.2 Cell Lines

205. A very large number of cell lines have been employed to study thyroid hormone action. It is neither practical nor informative to review all of these. Therefore, we will review some of the strategies for using different cell lines.

206. Studies of TR mechanisms require cells without endogenous TRs and which are relatively easy to transfect with one or more constructs. One cell line often used in this research is made up of 293T cells (Shibusawa, et al., 2003a; Shibusawa, et al., 2003b). These are human cells that have been stably transfected with the simian virus T-antigen, allowing it to proliferate rapidly. Moreover, it carries selectable marker genes to increase its utility under conditions of transient transfection studies. In contrast, N-tera-2 (NT-2) cells are derived from a human testicular carcinoma, but possess neuronal precursor characteristics and can be used to study fate specification and the role of thyroid hormone in differentiative events. Recently, Chan (Chan, et al., 2003) has characterized the expression pattern of the TRs both before and after terminal differentiation. In this regard, these cells are similar to PC12 cells, which have also been used to study thyroid hormone action (Munoz, et al., 1993).

4.12.3 In vitro Binding Assays

207. In vitro binding assays can be used as potential screens for chemicals that bind to TRs. The classical binding assays have used nuclear extracts from a variety of tissues and cell lines expressing TRs (e.g., Gauger, et al., 2004b). More recent studies have used various TR isoforms expressed in *E. coli* or translated *in vitro* (Cheek, et al., 1999). These assays require separating bound from free hormones using either filtering or chromatographic methods. Either separation method is cumbersome and time-consuming. More recent advances have used solid-state binding assays using specific isoforms of TRs. The solid-state binding assays developed allow for high throughput screening. In the solid-state binding assays, the TR is coupled to either a multiwell plate or to beads. Coupling of the receptors to plates or beads readily enables the separation of free and bound ligands without the use of either filtering or chromatographic methods. Only three of the four TR isoforms have ligand-binding capability and two of these (TRβ1 and TRβ2) have identical ligand-binding domains. Binding assays are expected to have a low rate of false positives. False negatives can occur if the chemical requires metabolic activation, if solubility problems are encountered, or if the chemical affects TR function without binding to the ligand binding domain of the receptor.

208. Thyroid hormone receptors are structurally conserved among the vertebrates. However, their interactions with ligands, DNA, and accessory proteins are quite complex and it is not likely that TRs from all vertebrates will respond identically. However, considering the paucity of pharmaceuticals directed at TRs, there are very few studies upon which to make predictions concerning the uniformity of toxicant effects on TR behaviors.

4.12.4 Transfection and Transformation Assays

209. One of the problems with TR binding assays is that they cannot differentiate between agonists and antagonists. Alternative assays that would examine effects on receptor function and differentiate between agonists and antagonists are systems in which a specific TR is transfected into a mammalian cell line along with a reporter gene, typically coding for luciferase, beta-galactosidase, or choline acetyl transferase (Zhang and Lazar, 2000). Transformed yeast cell lines containing TR gene constructs have also been developed. In these systems, T₃ or other TR ligands bind and activate the receptor, which then interacts with specific response elements upstream from the reporter gene and enhances its transcription. The increased transcription is determined by increased enzymatic activity of the reporter gene product, e.g., luciferase. Chemicals can be tested alone or in combination with T₃ to determine agonist or antagonist properties. Similar systems have been used to examine the interactions of TR with different
response elements (Mangelsdorf and Evans, 1995), different cofactors (Yen, 2001), and with phosphorylation of TR (Bassett, et al., 2003; Mendez-Pertuz, et al., 2003; Stevens, et al., 2003). Although these systems have not been used for screening for environmental chemicals that are TR ligands, similar screens have been developed for estrogens and androgen agonists and antagonists.

210. There is some evidence that thyroid hormone receptors act predominately as heterodimers with RXR (Mangelsdorf and Evans, 1995); however, this may be promoter-specific (Koenig, 1998; Wu, et al., 2001). Hence, chemicals might alter TR activation by altering RXR pathways. TR activation is also regulated by phosphorylation (Yen, 2001); DNA binding may be dependent upon TR phosphorylation. In designing a screen for TR ligands, chemicals may have different effects depending on the TR transfected, the response element used, and their interactions with potential heterodimers. Because of the complexity of this system, several screens would have to be incorporated to account for the multiplicity of interactions of the different TR isoforms. An advantage of the transfection assays is that chemicals that alter TR activation through mechanisms not involving direct binding to TR would be detected in these assays.

Another advantage of these assays is that they are readily adapted to high throughput screens. 211. A significant disadvantage of these in vitro screens is the potential lack of metabolic capability of the cells used in the assays. It is possible that the metabolites of some chemicals, and not the parent compound, would produce these effects. For example, parent BPA appears to be a TR antagonist (Moriyama, et al., 2002), but the polyhalogenated derivatives are agonists (Kitamura, et al., 2002). The cell lines typically used in these assays have limited ability to metabolize the test compounds, particularly persistent organic pollutants such as the polychlorinated biphenyls (PCBs) and the dioxins. The transformation assays in yeast have additional drawbacks in that for many chemicals, entry into the yeast is limited because of the cell wall.

4.12.5 GH3 Cell Assay for Thyroid Hormone Action

212. An in vitro bioassay has been designed that can detect compounds that interfere with TR signaling much the way the MCF-7 cells are used in the E-SCREEN (Hohenwarter, et al., 1996). GH3 cells have TRα1, TRβ1, and TRα2. This assay uses the rat pituitary somatotroph cell line GH3. Proliferation of these cells is dependent on thyroid hormone when plated at low-density in serum-free medium (Hohenwarter, et al., 1996). One form of the assay measures cell proliferation in response to TR agonists by the determination of the transformation of monoterazolium (MTT) tetrazolium salt into MTT fromazan by mitochondrial enzymes. This assay is performed on microwell plates and can be considered a high throughput screen. Although this assay is relatively new, it has the potential to provide information as a screen for chemicals that activate TR. In the presence of thyroid hormone, this assay can detect TR antagonists.

4.12.6 FRTL-5 Cells

213. These cells were derived from Fisher rat thyroid tissue and have been maintained in culture. These cells can be used to test the ability of toxicants to affect several aspects of thyroid physiology. However, although these cells can concentrate iodide, they cannot organify it (perhaps because there is no colloid). Thus, these cells could be used as in vitro methods of identifying iodide uptake inhibitors or potentially those chemicals that inhibit other thyroid functions (e.g., Tg synthesis, cAMP production in response to TSH).

4.13 Effect of Xenobiotics

214. During the past 3 years, several research papers have appeared reporting on the ability of various xenobiotics to influence thyroid hormone-regulated transcription. These xenobiotics include various PCBs
or mixtures of PCBs (Bogazzi, et al., 2003; Iwasaki, et al., 2002; Yamada-Okabe, et al., 2003), bisphenol A (Kitamura, et al., 2002; Moriyama, et al., 2002), and dioxin (Yamada-Okabe, et al., 2003). The mechanism(s) by which these xenobiotics affect TR-mediated gene regulation are diverse, indicating that screens for TR-active compounds must be broad in nature. For example, parent bisphenol A and its polyhalogenated derivatives bind to the TR and exert either an agonist or antagonist effect. In contrast, 2,3,7,8-tetrachloro-p-dioxin (TCDD) augments T\textsubscript{3} action on the TR (Yamada-Okabe, et al., 2004) but there is little evidence that TCDD binds to the TR. Likewise, specific hydroxylated PCBs can either suppress (Iwasaki, et al., 2002; Miyazaki, et al., 2004) or augment (Bogazzi, et al., 2003) TR activation, also without binding to the TR and displacing T\textsubscript{3} (Gauger, et al., 2004). Interestingly, Miyazaki et al. (2004) have proposed the novel hypothesis that PCBs can cause the TR to dissociate from DNA. This intriguing hypothesis has two important implications. First, it implies that PCBs (and perhaps other polyhalogenated aromatic hydrocarbons) bind to an allosteric site on the TR, which may in fact be a site targeted by endogenous factors. Second, it implies that PCBs cause derepression of TR-regulated genes without activation. Thus, depending on how the experiment is designed, one may conclude that PCBs inhibit thyroid hormone action or exert thyroid hormone-like effects.

These findings demonstrate the importance of incorporating screens that measure the ability of xenobiotics to interfere with thyroid hormone action on the receptor. An argument against incorporating transcription assay(s) into a screen for potential thyroid toxicants is that these chemicals would also affect circulating levels of thyroid hormones. For example, PCBs and dioxins are well known to influence thyroid hormone levels (Zoeller, 2001). However, changes in circulating levels of thyroid hormone are not, in and of themselves, considered to be adverse effects (Strawson, et al., 2004). Moreover, BPA appears to be a potentially important thyroid toxicant in terms of its mechanism of action and its presence in the environment, yet previous studies have not found that BPA can alter circulating levels of thyroid hormone (Takagi, et al., 2002; Tyl, et al., 2002).

4.14 Advantages and Disadvantages of In Vivo Screens/Tests

The advantages of using live intact mammals in screens and tests include:

- Mammalian ADME (absorption, distribution, metabolism, and elimination) is present so any effects observed are realistically predictive (versus worst case theoretical outcomes)
- There is a lower risk of false positives (the target site in an intact animal may never see the active moiety) and of false negatives (if the metabolite is the proximate toxicant) since the metabolic machinery is present to generate the metabolite(s) in intact animals
- The target(s) of the test material, such as hypothalamus, pituitary, thyroid, liver, kidneys, etc. are present and functional, so the screen or test is not limited to assessing a single or only a few mechanisms of action and/or target sites
- Effects in intact mammalian models can be more confidently extrapolated to humans; the intact model is much more predictive of human risk
- Subtle effects or effects in other systems such as alterations in behavior, changes in immune response, developmental effects, reproductive effects, can be detected
- Effects on circulating levels of hormones of interest can be determined
- Results from *in vivo* screens can be used for a decision point to proceed (or not) to Tier II tests; *in vitro* screens cannot be used for such a decision point (EDSTAC, 1998).
The disadvantages of using live intact mammals (versus using an *in vitro* system) include:

- Cost and time (greater costs and longer times for *in vivo* studies)
- Determination of mechanism (or even mode) of action is difficult to impossible in an *in vivo* study
- Determination of primary site of effect and/or identification of causal effects versus downstream subsequent resulting effects is difficult to impossible
- There is no way to evaluate large numbers of chemicals except by repeated or longer studies (vs. high throughput *in vitro* assays).

4.15 Conclusions and Recommendations

Mammalian thyroid hormone function and homeostasis is controlled by a complex and interactive system that encompasses hormone synthesis, release, transport, local metabolism, and catabolism. To date, the evaluation of adverse effects of environmental chemicals on the thyroid have focused on parameters of overall function, since the mechanism of action of a thyroid disruptor may involve any of these processes. As a result, the identification of a simple thyroid disruptor screening assay, either *in vivo*, *ex vivo*, or *in vitro*, is not straightforward. A summary of candidate mammalian thyroid assays, including major endpoints, target effects, advantages, and disadvantages, is presented in Table 4-3 below.

Table 4-4 below shows points of thyroid disruption in mammals. Specific points of thyroid disruption are listed in the left column, coupled to listings of endpoints by which they are characterized, the ultimate effect of disruption by each mechanism, whether assays are available to detect each point of disruption, and the status of this assay.
Table 4-3 Existing or Potential In vivo and In vitro Assays - Mammals

<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Major Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Status of the Assay</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Generation Extension</td>
<td>rat</td>
<td>T₄, T₃, TSH, thyroid weight and histology, testes histology, sperm count</td>
<td>Changes in circulating levels of TH, hypertrophy or proliferation of thyroid follicules, development of testes</td>
<td>Straightforward add-on; circulating levels of TH can be related to human thyroid function; follicular proliferation reflects TSH increase; thyroid histology not particularly sensitive to confounders.</td>
<td>Time course data lacking for compensatory changes; response to stress not characterized</td>
<td></td>
</tr>
<tr>
<td>Pubertal Assays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Day Adult Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Peroxidase (TPO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TPO) using lactoperoxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iodination and coupling of tyrosine residues</td>
<td>Circulating T₄ levels</td>
<td>Sensitive; unlikely to produce false positives; in vitro uses fewer animals; could be adapted to high through-put application</td>
<td>No rodent or human TPO available; high false negative due to specificity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perchlorate discharge</td>
<td>rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iodine uptake in the thyroid</td>
<td>Tyrosine iodination; circulating T₄ levels</td>
<td>Well-characterized in both animals and humans; low false positive</td>
<td>Very specific; high false negative; not an add-on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRH challenge</td>
<td>rat</td>
<td>h-p-h axis integrity</td>
<td>Feedback mechanism; circulating TH levels</td>
<td>Well-characterized in both animals and humans; can distinguish between pituitary and hypothalamic effects</td>
<td>High false negative; very specific</td>
<td></td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Major Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Status of the Assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum protein binding (TTR)</td>
<td>rat</td>
<td>Displacement of (T_4) from TTR</td>
<td>Transport of TH to peripheral tissues; development of the brain; transport to fetus;</td>
<td>Well-characterized; can be modified for high throughput; predictive of chemicals that may alter fetal concentrations of (T_4); Very specific; high false negative; may not be relevant for other species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deiodinase</td>
<td>rat</td>
<td>(T_4/T_3) levels in tissue</td>
<td>(T_3) levels in target tissue</td>
<td>Well characterized; sensitive to changes in serum TH levels; Deiodinases are tissue specific; high false negative; may be easier to monitor TH levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>rat</td>
<td>(T_4) glucuronidate</td>
<td>(T_4) deactivation, reduction of circulating levels</td>
<td>Well-characterized; in vivo exposure, ex vivo assay; inducible; not as sensitive to diurnal rhythm or stress; Very specific; high false negative; somewhat laborious</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{In vitro} receptor binding</td>
<td>mammalian cell nuclear extracts; E. coli isoforms</td>
<td>Receptor binding of (T_3)</td>
<td>local tissue effects of (T_3)</td>
<td>Solid state binding assays available; low rate of false positive; appropriate for high throughput; Receptor binding not fully characterized as a mechanism; high false negative; no metabolic activation; solubility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfection/transformation</td>
<td>yeast; mammalian cells</td>
<td>Receptor binding of (T_3)</td>
<td>local tissue effects of (T_3)</td>
<td>Can determine agonist or antagonist properties; system can be manipulated, optimized, etc.; readily adapted to high throughput; limited metabolic activity; cell wall (yeast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Major Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Status of the Assay</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>GH₃ cell assay</td>
<td>rat</td>
<td>Growth/normal morphology of cell signals agonist activity</td>
<td>local tissue effect of T₃</td>
<td></td>
<td>High throughput adaptability; uses fewer animals; can detect agonist or antagonist activity</td>
<td>Specific for TR binding; high false negative</td>
</tr>
<tr>
<td>Developing brain morphology and biochemistry</td>
<td>rat</td>
<td>Decreased maternal, fetal, and neonatal T₄; decreased perinatal brain weight; morphological abnormalities in cells; changes in neurotransmitter levels</td>
<td>Mammalian brain development</td>
<td></td>
<td>Changes in brain weight and cell morphology are pathonemonic for decreased T₄; Neurotransmitter levels in fetus/neonate directly related to T₄ levels</td>
<td>Somewhat labor-intensive; dependent on fetal/neonatal T₄ levels</td>
</tr>
<tr>
<td>Behavioral testing</td>
<td>rat</td>
<td>Acquisition of developmental landmarks, body weight; auditory function; motor activity</td>
<td>Mammalian brain development</td>
<td></td>
<td>Detects integrated developmental changes in CNS</td>
<td>Labor-intensive; specialized equipment; may not be specific; high false negative; only positive when significant decreases in T₄ levels occur</td>
</tr>
<tr>
<td>Male reproductive system development</td>
<td>rat</td>
<td>Testis weight; sperm count</td>
<td>Development of the male reproductive system</td>
<td></td>
<td>Easy to measure; add-on assay</td>
<td>Not specific for thyroid toxicants; longer study duration; observed only when there is a significant decrease in TH concentration</td>
</tr>
<tr>
<td>Site of Disruption</td>
<td>Endpoints of Interest</td>
<td>Target Effect of Disruption</td>
<td>Assays Available</td>
<td>Assay Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na/Iodide Uptake</td>
<td>Radioactive iodide uptake; circulating hormone levels (total and free T4, T3, TSH); thyroid gland hormone content; thyroid gland histopathology</td>
<td>Disturbs thyroid status, including circulating hormones, which result in reflexive response of the HPT axis.</td>
<td>Yes; routine except iodide uptake inhibition</td>
<td>Assays for endpoints of interest are routine. Relation between I- uptake and TH synthesis not known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPO inhibition</td>
<td>Perchlorate discharge test; TPO inhibition (in vitro); thyroid gland hormone content; circulating hormone levels (total and free T4 and T3, TSH); thyroid histopathology</td>
<td>Disturbs thyroid status, including circulating hormones, which result in reflexive response of the HPT axis.</td>
<td>Yes; routine except iodide uptake inhibition</td>
<td>Assays for endpoints of interest are routine. Relation between TPO inhibition and TH synthesis not known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH release</td>
<td>Thyroid gland hormone content; circulating hormone levels (total and free T4 and T3, TSH); thyroid histopathology</td>
<td>Disturbs thyroid status, including circulating hormones, which result in reflexive response of the HPT axis.</td>
<td>Yes; but there are no toxicants that directly affect TH release</td>
<td>The endpoints of interest would likely be indicative of other modes of action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum Binding Proteins</td>
<td>T4 displacement from serum binding proteins (TTR, TBG)</td>
<td>Causes a reduction in circulating levels of total T4, but often does not cause a reduction in serum free T4.</td>
<td>Yes; but relationship to tissue levels of thyroid hormone is poorly understood</td>
<td>Well developed binding assay for these proteins. May be a screen for T4-like toxicants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucuronidation - Clearance</td>
<td>Liver enzyme (UDPGTs) induction; altered serum hormone half-life; serum total and free T4, T3, and TSH, thyroid histopathology; thyroid gland hormone content</td>
<td>Disturbs serum hormone concentrations; causes a reduction in thyroidal content of T4 and T3, causes reflexive changes in serum TSH</td>
<td>Yes; measures of hormone half-life not often performed</td>
<td>Well developed assays.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue uptake</td>
<td>Hormone content in tissues; transfer of labeled hormone into tissues</td>
<td>Would alter the thyroid hormone status of individual tissues, perhaps selectively.</td>
<td>No</td>
<td>Selective T3 and T4 transporters are identified; little is known about their actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site of Disruption</td>
<td>Endpoints of Interest</td>
<td>Target Effect of Disruption</td>
<td>Assays Available</td>
<td>Assay Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deiodinase</td>
<td>Measurement of types I, II, and III deiodinase</td>
<td>D1 and D2 are outer-ring deiodinases controlling tissue levels of T₃. D3 is an inner ring deiodinase controlling conversion of T₄ to reverse T₃ and T₃ to T₂.</td>
<td>Yes</td>
<td>Assays of deiodinase activity in tissue or cells is routine; isolated enzymes are complicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deiodinase</td>
<td>Serum T₃; tissue levels of T₄ and T₃</td>
<td>Serum T₃ is largely produced by peripheral conversion of T₄ to T₃ by D1. Therefore, serum T₃ is more a marker of D1 activity than it is of thyroid function.</td>
<td>Yes</td>
<td>Serum T₃ is routine; tissue levels of T₄ and T₃ are not routine assays and require optimization and calibration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid hormone receptor binding</td>
<td>T₃ displacement</td>
<td>New studies are showing that chemicals are able to bind to the TR with environmentally relevant affinities</td>
<td>Yes</td>
<td>Assays are well characterized, two types of receptors with several isoforms each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid hormone receptor activation/repression</td>
<td>TH-responsive gene regulation</td>
<td>New studies are showing that chemicals that cannot bind to the TR still alter TH-regulated gene expression</td>
<td>Yes</td>
<td>Assays are well developed. Choice of TRE may not be trivial. Not routinely used for thyroid toxicants.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on this information, it appears that the determination of serum free and total T₄, T₃, and TSH, in combination with thyroid weight and histology, comprises the most informative, if not complete, approach to an initial determination of thyroid function. However, in order to optimize the information obtained from these assays, a more complete characterization of the sampling time course and appropriate dosing regimen is important. In addition, information concerning the effect of handling stress, postnatal age, and estrous cycle on serum concentrations of thyroid hormones will aid in identifying weak agonists and antagonists. As a simple *in vivo* screen, the current design of the Female or Male pubertal assay, the OECD TG 407, or the 15-Day Adult Male Screen, as described in Section 4.3, is satisfactory. Examination of circulating TH (total and free T₄, T₃) can identify effects on synthesis, transport, and/or elimination, with evaluation of TSH, thyroid weight, and thyroid histology providing additional evidence of altered synthesis and release. The addition of hepatic microsomal glucuronidase activity to this assay would add a specific indicator for TH catabolism, which may aid in providing a more complete initial characterization of thyroid disrupting activity.

The major drawbacks to using an *in vitro* mammalian thyroid screen are the extreme specificity of mechanistic endpoint, the absence of metabolic activation, and solubility issues. Although *in vitro* thyroid assays are unlikely to result in false positives, due to their specificity, the potential for false negatives is a great disadvantage. The GH₃ cell may be an appropriate *in vitro* screen for further development (Hohenwarter, et al., 1996). Currently configured as a high throughput screen, it can identify TR agonists and antagonists. Based on evidence that several known thyroid disruptors that decrease serum TH levels have also been proposed as TR antagonists, additional research and characterization of the TR binding and activation of known thyroid disruptors is needed.

In conjunction with this effort, it may be useful to pursue computer-assisted screening of environmental chemicals for TR agonist and antagonist activity (*i.e.*, *in silico*). Schapira and coworkers (2003) have built a computer model of the antagonist-bound TRV ligand-binding domain, based on the crystal structure of the agonist-bound TRV ligand-binding domain (Darimont et al., 1998). Using this model, Schapira et al. (2003) predicted structures of TRV antagonists, then selected known compounds based on their structural similarity to the predicted models. These compounds were then tested for TR binding in cell culture. In addition, based on computer generated models, a small number of potential TR antagonists were synthesized and tested *in vitro* for TR binding. Incorporation of virtual screening methods for both agonists and antagonists may be useful in identifying potential thyroid hormone disruptors within the vast array of environmental compounds.
5.0 THE HPT AXIS IN FISH AND ITS ROLE IN FISH DEVELOPMENT AND REPRODUCTION

[Editor’s note: Some material in this section was taken from detailed review papers previously prepared for U.S. EPA on Fish Reproductive Screening Assays and on Partial Life Cycle Reproductive and Developmental Toxicity Tests. These materials have been included here because they are considered to be especially relevant to the purposes of this DRP.]

223. Among all the vertebrate groups discussed in this text, fish are the most diverse and demonstrate a high degree of heterogeneity in anatomy, physiology, reproductive strategy, behavior, and ecology (Lagler et al. 1977; Janz 2000; Damstra et al. 2002). There are over 25,000 species of fish comprising six major groups: teleosts (e.g., bony ray fish, perch, bass); holosts (e.g., bowfin); chondrostes (sturgeon); chondrichthyes (e.g., rays and sharks); cyclostomes (e.g., lampreys); and dipnoans (e.g., lungfish) (Lagler et al. 1977; Janz 2000). Taking into account all species of vertebrates, the fishes represent nearly one half (48%) of the species diversity; teleosts account for approximately 95% of that diversity (Lagler et al. 1977; Janz 2000). Accordingly, fish have evolved to inhabit a wide variety of environments in brackish, freshwater, and marine systems ranging from approximately 15,000 meters above sea level to 10,000 meters below (Lagler et al. 1977). The majority of research on the hypothalamus-pituitary-thyroid (HPT) endocrine axis in fish has been focused on teleost fish species, particularly salmonids and others that have economic value or that are readily available and easily cultured (e.g., cyprinids).

224. Thyroid hormones play an important role in the maintenance of a normal physiological state in vertebrates. It has been said that thyroid hormones influence the activity of a wider variety of tissues and biological functions than do any other hormones (Janz 2000). Thyroid hormones assist in control of osmoregulation, metabolism, somatic growth, development, and posthatching metamorphosis (Janz 2000). The control of metamorphosis in flounder and flatfish eye, mouth, and neural structures is associated with a dramatic spike in thyroxine3 (T_4) concentrations (Janz 2000). Likewise, elevated levels of T_4 occur during smoltification in salmonids, reaching concentrations approaching 10 to 15 ng/mL (Janz 2000). These values represent some of the highest circulating T_4 levels observed in fish (Janz 2000).

225. This chapter provides a review of the HPT axis of teleost fish. A thorough review of readily available scientific literature on the HPT axis was conducted. The HPT axis of fish differs, perhaps only slightly, from that of mammals. The features of these systems in fish will be reviewed with an emphasis on known differences in feedback relationships as well as differences in the molecular biology of the thyroid system in fish. This information will provide a tailored background for a review of the role of thyroid hormone in fish development and reproduction. Available information about the HPT axis in fish is detailed in some species and very limited in others. This review focuses on species that have been intensively studied, both because the information provides a stronger base from which to consider screens and tests for thyroid disruptors, and because these species are likely to be valuable laboratory models.

3Thyroxine is specifically L-3,5,3’,5’-tetraiodothyronine, abbreviated as T_4.

3Fish can be oviparous, ovoviviparous, or viviparous.

72
Both in vitro and in vivo assays for screening chemicals for their potential to interfere with the HPT axis are reviewed.

5.1 Overview of the HPT Axis

5.1.1 Central Nervous System and Endocrine System

226. In a broad sense, communication between cells and tissues can occur via the central nervous system (CNS) as well as through release of chemical messengers (hormones) or signals from the endocrine system. Chemical signaling can be further divided into autocrine and paracrine actions to distinguish between effects on similar or different cell types. Although the focus in this chapter is the HPT axis of teleosts, the function of the endocrine system in general is much broader and contributes to the regulation of many physiological processes, such as digestion, metabolism, growth, and development. In essence, the endocrine system is involved with all phases of maintenance of homeostasis, and its function is intimately integrated with that of the CNS. Therefore, we initially describe the interaction between the CNS and thyroid system, and briefly discuss the reproductive system, as well, before describing control processes involved in regulation of these systems.

227. Neuroendocrine control of the HPT endocrine axis is exerted through actions of the brain. Both external and internal sensory information processed by the brain regulates secretion of hormones. Examples of external stimuli are temperature, photoperiod, and olfactory cues. Internal stimuli are represented by basal metabolism, growth, and chemical secretions from peripheral tissues such as gonads and sex steroids, for example.

228. In vertebrates, at least 10 different peptides and neurotransmitters can be formed by neurons within the hypothalamus (Bently 1998). Under proper stimulation, these hormones are secreted and in turn influence the release of pituitary hormones. The pituitary gland in fish, as in other vertebrates, consists of separate tissues called the neurohypophysis and adenohypophysis (Van Oordt and Peute 1983). The functional relationship between the hypothalamus and regions of the pituitary gland varies significantly among the different fish taxa, but in general, the evolutionary trend is toward increased control of pituitary function by neurological connections with the hypothalamus (Scott 1987). This corresponds to greater control by the pituitary of gonad development (Scott 1987). For example, teleost fish differ from other vertebrates in that a well developed portal blood supply between the hypothalamus and the adenohypophysis does not exist (Batten and Ingleton 1987; Peter et al. 1990). Rather, the adenohypophysis is directly innervated by neurosecretory fibers originating in the hypothalamus (Peter et al. 1990). Also in bony fishes, the blood flow to the adenohypophysis passes through the neurohypophysis (Scott 1987). The pituitary gland exerts control through secretion of several hormones, the most important of which with respect to reproduction are the gonadotropins, gonadotropic hormone-I (GTH-I) and GTH-II, and thyrotropin (TSH; Kime 1998).

229. The most important peripheral tissues involved in neuroendocrine control of reproduction are the gonads, which consist of the ovaries or testes. The thyroid system is also considered to aid in regulation of reproduction, although its specific role is less defined than that of the brain-pituitary-gonadal axis.

5.1.2 Thyroid System

230. The functional unit of the thyroid system in all vertebrates is the follicle, which consists of epithelial cells called thyrocytes. Thyrocytes enclose an extracellular space, forming a lumen into which

4 The endocrine system can be defined as any tissue or cells that release directly into the blood a hormone that signals or induces a physiological response in some target tissue (Thomas et al. 2001).
they secrete a glycoprotein called thyroglobulin (Bently 1998). Thyroid follicles actively scavenge inorganic iodide from the blood, which is then incorporated into tyrosine residues within thyroglobulin. Thyroglobulin is successively oxidized by thyroid peroxidase enzyme to form L-thyroxine, commonly called T₄. T₄ synthesis is dependent upon the availability of free iodide; T₃ secretion is regulated by thyroid stimulating hormone (TSH) produced by the pituitary (Figure 5.1). While T₃ has long been recognized as an important thyroid hormone, it has more recently been considered a prohormone, required for production of biologically active 3,5,3’-triiodo-L-thyronine, commonly called T₃. The conversion of T₄ to T₃ occurs in peripheral tissue such as liver (among others). The T₃/T₄ ratios vary widely depending on physiologic state, including time of day, differences in salinity, reproductive condition, pH level, or during parr-smolt transformation in some species (Eales and Brown 1993).

5.2 Hormone Synthesis

5.2.1 Anatomy of the Adult Fish Thyroid Gland

The thyroid system in fish has been extensively investigated and reviewed, most thoroughly in the body of work by Eales and associated researchers who provide a detailed description of the system as well as describing development of assays to evaluate thyroid status in teleost fish (Eales 1979; Eales and Brown 1993; Bres et al. 1994; Eales et al. 1999). Although there are many similarities in the function and activity of fish and other vertebrate thyroid systems, there are also important differences. The fine structure of the fish thyroid exhibits greater heterogeneity than the mammalian thyroid, containing both follicles and cells of different sizes and functional states that are hypothesized to go through a histophysiological cycle of generation, maturation, and decay (Eales 1979). Eales (1979) recognized the importance of this heterogeneity and potential cycling to any future investigation into fish thyroid status or histology. The fish thyroid is much more variable in form and location: it can be either compact or encapsulated with connective tissue or more commonly diffusely arranged around vascular tissue, whereas the mammalian thyroid is usually a concentrated mass or gland (Eales 1979; Bonga 1993). The fish thyroid is also highly variable between and within fish taxa. Follicles can be dispersed in connective tissue near the pharyngeal region (e.g., in the fathead minnow, *Pimephales promelas* (Wabuke-Bunoti and Firling 1983; Bonga 1993), located next to the ventral aorta (e.g., medaka, *Oryzias latipes*) (Raine et al. 2001), or can even migrate from the subpharynx to associate with the kidney (some freshwater cyprinids and poecilids). A schematic representation of the brain-hypothalamus-pituitary-thyroid axis in fish is depicted in Figure 5-1. In this figure the central and peripheral control of thyroid hormone is depicted (adapted from Eales et al., 1999).
Figure 5-1 Outline of the Brain-hypothalamus-pituitary-thyroid Axis, Peripheral Tissue Control and Hormonal Action (based upon Eales et al., 1999)

Sensory Input (Sight, olfactory, dietary etc...)

Brain Hypothalamus

neuro-secretory fibers

neurohypopsis

Thyroid Follicle

TSH

DIET

Plasma

free T4

plasma proteins

T3 free

Tissues

Gene Transcription

Cell Action

Development

Growth Reproduction

Deiodination

cytosol protein

Response Elements

DNA

EXCRETION
DEGRADATION
bile/feces, urine, gill

EXCRETION
DEGRADATION
bile/feces, urine, gill

Formed in liver & other peripheral tissues

Peripheral Control

Hormone Control
5.2.2 Thyroid Cascade

232. In teleosts the central control of thyroid hormone as depicted in Figure 5-1 is limited to the control of the production and secretion of T₄ (thyroxine). The biologically active thyroid hormone T₃ is derived from T₄ in the peripheral tissues, with emphases placed upon the liver for extrathyroidal conversion (deiodination) (Eales et. al., 1999). This differs from the mammalian thyroid system, which is driven principally via the HPT axis and which regulates both T₄ and T₃. This difference is important in consideration of methods for measurement of thyroidal status in fish.

5.2.3 Regulation of Iodine Uptake

233. There are fundamental differences that exist in I⁻ metabolism in fish when compared to mammals. One primary difference is that fish have an extremely effective, highly vascularized gill surface with branchial I⁻ pump that enables effective absorption of I⁻ from the water. Fish can obtain I⁻ from diet, but studies with brook trout in fresh water, that were starved for several weeks, were still able maintain elevated plasma I⁻ levels (Eales and Brown 1993 – citing Higgs and Eales 1971) demonstrating the effectiveness of the gill/branchial I⁻ pump, even in fresh water that has less I⁻ than salt water. In general, iodide levels in fish plasma are much higher than normal human levels (Eales and Brown 1993). Another significant difference between fish and mammals is the occurrence of a plasma “pre-albumin protein” (in some teleosts, e.g., clupeiforms) that actively binds to I⁻; no such plasma iodide binding protein has been discovered in mammals (Eales and Brown 1993). For normal thyroid function the presence of I⁻ is essential; however, fish in natural and most artificial conditions do not suffer from having I⁻ deficiency (Eales and Brown 1993).

5.3 Hormone Release

234. Thyrotropin-releasing hormone (TRH) is a tripeptide that is highly conserved across all vertebrate groups (Bently 1998). In higher vertebrates, TRH functions to regulate pituitary release of TSH in addition to other pituitary hormones (Bently 1998). In fish, the functional role of TRH in regulating TSH release is less well established (Janz 2000). However, recent experiments using pituitary cells isolated from the bighead carp (Aristichthys nobilis) indicated that TRH exposure could upregulate TSH messenger RNA (mRNA) levels (Chatterjee et al. 2001). There have been two TRH pituitary receptors identified from fish; they are analogous to GnRH receptors in that they are cell-surface proteins (Harder et al. 2001). The two TRH receptors characterized in fish are structurally similar to those found in mammals (Harder et al. 2001).

235. In contrast to central nervous system control of sex steroid synthesis by the gonads, such as is exhibited with respect to GTH-I and II, thyroid hormone levels in fish are regulated to a much larger extent by peripheral tissues (Eales and Brown 1993). The functional activity of TSH is limited to regulating T₄ release and iodide uptake by the thyroid follicles (Eales et al. 1999). Secreted T₄ is converted to the active thyroid hormone, T₃, by an outer ring deiodination (ORD) process that is catalyzed by at least two different selenocysteine type, microsomal enzymes (Leatherland et al. 1990; Eales et al. 1999). In fish, ORD activity is typically highest in the liver, but is also present in other peripheral tissues (Darras et al. 1998; Eales et al. 1999). Only a single TSH receptor has been described in fish, which in some species is expressed only in thyroid tissue (Oba et al. 2001). In others, gonadal expression of a TSH receptor has been reported (Kumar et al. 2000). The biological significance of gonadal expression of the TSH receptor is unknown. The action of T₃ on target cells in fish is poorly understood (Cyr and Eales 1996).
Feedback control for thyroid hormone secretion is less complicated than steroid feedback actions and appears to be regulated primarily by a long feedback loop. In the few fish species studied (all teleosts), both T₄ and T₃ have a negative feedback effect on TSH secretion by the pituitary (Yoshiura et al. 1999). Consistent with findings for steroids, both T₄ and T₃ appear to decrease transcription of the beta subunit for TSH in the pituitary gland (Pradet-Balade et al. 1997; 1999). It is unknown whether T₄ or T₃ influences hypothalamic release of TRH; however, T₃ is known to decrease the synthesis of GnRH in tilapia (Parhar et al. 2000).

5.4 Conversion of T₄ to T₃

The conversion of T₄ to T₃ occurs via enzymatic removal (5'-monodeiodination) of the iodide component of the outer ring of T₄ (Eales et al. 1999). T₄ contains 4 iodine atoms. The removal of one of the 5' iodine atoms from either of the two outer ring (phenyl) iodines results in the formation of T₃. As noted above, regulation of T₄ levels in plasma is the primary function of the brain-pituitary-thyroid axis in teleost fish as well as other vertebrates.

Thyroid hormones are activated and deactivated by deiodination, or stepwise removal of iodine from their outer or inner rings. However in fish, unlike other vertebrates, important thyroid hormone transformations are controlled outside the thyroid (i.e., in the liver), and deiodination of T₄ to the biologically active T₃ occurs mainly in peripheral tissue (liver, brain, kidney, gill) rather than in the thyroid itself (Figure 5.1) (Cyr and Eales 1988b; Mol et al. 1998; Bowen 1999; Eales et al. 1999). The availability of T₄ substrate is critical to T₃ production, but T₃ cycling is regulated differently in different peripheral tissues. Mol et al. (1998) and others report that the T₃ generated by the liver is usually exported to plasma, but that other tissues (brain, gill) containing T₃ receptors will bind T₃ and prevent it from entering plasma. T₃ is itself degraded by deiodinating enzymes (deiodinases) into 3,3',5'-triiodothyronine (reverse, or rT₃) and 3,3'-triiodothyronine (T₂), which are considered biologically inactive (T₄ is also deiodinated directly to rT₃). In brief, plasma and tissue T₃ levels are not dependent on or correlated with plasma T₄.

Deiodination in mammals is accomplished by a family of type I, II, and III deiodinases (enzymes). Each active site has genetically encoded selenocysteine, found in the endoplasmic reticulum (i.e., microsomal fraction) (Eales et al., 1999). In fish, deiodinase is similar to that in mammals; deiodinases contain selenocystein and are microsomal (Eales et al., 1999). However, the nomenclature of isozymes for fish does not use the type I, II, and III labels. The pathway of inner and outer ring deiodination is a simple enzymatically regulated pathway, controlled by the thyroid hormone substrate as described above. The enzymes responsible for T₄ outer-ring deiodination in trout are similar to type II enzymes in mammals; likewise the T₄ and T₃ inner ring deiodination enzymes in trout are similar to type III enzymes in mammals (Eales et al., 1999).

5.5 Thyroid Hormone Action

Accumulated information suggests that thyroid hormones variously affect growth, morphogenesis, skin pigmentation, osmoregulatory properties, and behavior in fish in general. For example, such activity has been observed with parr-smolt (parr: life stage of salmon from dispersion from the redd to migration as a smolt; smolt: a fully silvered juvenile salmon during its first seaward migration) phases of the coho salmon life cycle (Dickhoff, et al. 1978). This leads to the opinion that thyroid hormones may have a maturational role in developing fish, or in salmonids in particular, as the hormones do in developing amphibians (Dickhoff, et al. 1978). A number of researchers have investigated the role of thyroid hormone activity in fish embryogenesis, larval development, growth, and behavior, including relatively recent studies by Mol et al. (1997), Orozco et al. (1997), Specker et al. (2000), and Nayak et al. (2000). There have been very few studies on the direct role of thyroid hormone activity in fish reproduction (Leatherland 1982, 1994; Cyr and Eales 1996). Deiodination activity and rates in fish are
responsive to many environmental and physiological conditions (e.g., food quantity, food quality, pH, salinity, turbidity) (Eales et al. 1999). The heterogeneity of fish thyroid systems and their resilience to perturbations make it difficult to measure and interpret changes in activity; the conclusion of Eales et al. (1999) that assays of fish thyroid function need to consider the multiple levels of the “thyroid cascade” is well-founded.

241. The thyroid hormones, T4 and T3, have been linked to a multitude of important functions in fish, such as growth, metabolism, and osmoregulation in addition to reproduction (Cyr and Eales 1996). Interference with thyroid hormone function could be expected to have wide-ranging effects on proper growth and development of gonadal tissues, and to affect estrogen synthesis in the ovary (Cyr and Eales 1988a, 1988b 1989; Legler et al. 2000; Siwik et al. 2000; Soyano et al. 1993). Conversely, estradiol administration has been recently reported to lower circulating T3 levels in immature trout (Alestrom et al. 1994). In the medaka, MT exposure was reported to stimulate thyroid activity (Nishikawa 1976). These studies would suggest the possibility that sex steroid agonists might alter thyroid function.

242. Much research on thyroid function in teleosts has focused on salmonids. During the fish’s upstream migration to spawning grounds, there is a decrease in both T4 and T3 plasma concentrations; however, thyroid serum levels tended to increase just prior to spawning (Cyr and Eales 1996). Such findings suggest that thyroid hormones may contribute to regulation of the initial stages of oogenesis in salmonid fish (Cyr and Eales 1996).

243. Despite these intriguing results, relatively few studies in fish have investigated whether environmental contaminants alter thyroid hormone status or directly interact with thyroid receptors to impair reproduction. However, one group of environmental contaminants, the polychlorinated biphenyls (PCBs), is of particular concern relative to thyroid hormones because of their structural similarity to one another. Studies in lake trout (Salvelinus namaycush) and a marine flatfish, the American plaice (Hippoglossoides platessoides), showed that exposure to selected PCB congeners can alter the turnover of T4 and T3 (Iwamatsu et al. 2000). Because PCBs affect thyroid hormone function in fish, an interesting area of investigation might be to explore the mode of action of PCBs in the test species and to establish whether thyroid hormones could be used as significant endpoints for reproductive dysfunction. TSH activity is another research area that warrants additional study in the context of reproductive performance. Plasma levels of TSH are rarely reported in fish reproductive studies, although the TSH receptor(s) are highly expressed in oocytes and testicular cysts of some teleosts (Kumar et al. 2000), which indirectly suggests that gonadal secretion of thyroid hormones might be important in gametogenesis (Huang et al. 2001).

5.5.1 Endpoint Sensitivity to Thyroid Stimulation

244. A search of the scientific literature revealed only one paper that addressed the effects of T4 or T3 exposure to a relevant test species. In this study, juvenile fathead minnows were exposed for 13 weeks to nominal water concentrations of 12.5, 25, and 50 µg/L T3 (Abrahams and Pratt 2000). Exposure to 50 µg/L T3 significantly decreased the growth rate of the minnows, although a clear dose-response relationship between T3 exposure and growth could not be established (Abrahams and Pratt 2000). Although data on thyroid agonists are limited, it has been proposed that certain PCB congeners or their metabolites might bind to vertebrate thyroid receptors (Fentress et al. 2000; Brouwer et al. 1990). This potential would suggest that stimulation of the thyroid system is possible through a direct mode, such as receptor-mediated action. However, the available data in fish regarding PCB exposure and thyroid status are contradictory (Schnurstein and Braunbeck 2001), and no generalizations can be made regarding the environmental significance of this mode of action.
Many studies in fish evaluate thyroid status by measuring circulating plasma T₄ and T₃ levels. A good example of this approach was a study of hydrogen cyanide exposure to rainbow trout reported by Ruby et al. (cited in Creech et al. 1998). Trout exposed for 12 days to 10 µg/L cyanide had significantly reduced E₂ and T3 plasma concentrations, which corresponded to a lower gonadosomatic index (GSI) and oocyte diameters in females (Creech et al. 1998). Single measurements (or point estimates) of thyroid hormone levels might not be a good indicator of mode of action, because a complicating factor is the strong feedback control of T₄ and T₃ levels. For example, Adams et al. (2000) reported that a 5 µg/kg or 25 µg/kg intraperitoneal injection of PCB congener 77 lowered T₃ levels after 1 week in the American plaice. However, the same treatment stimulated conversion of T₄ to T₃ (specifically, T₄ outer ring deiodination) in liver microsomes (Schnurstein and Braunbeck 2001). These seemingly paradoxical results were hypothesized by the authors to be the result of increased clearance of T₃, which triggered the compensatory action of stimulating its biosynthesis in peripheral tissues (Schnurstein and Braunbeck 2001). A study of zebrafish exposed to ammonium perchlorate, (a chemical used in rocket propellants, which is known to alter thyroid function in mammals by inhibiting the uptake of iodide by thyroid follicles, in turn inhibiting production of thyroid hormone) found that environmentally high concentrations of 18 ppm for 8 weeks affected the histological condition of thyroid follicles but did not impair reproductive performance. However, an exposure to 677 ppm for 4 weeks did impact reproduction, and it may have been due to extrathyroidal toxicity (Patino et al. 2003). These results illustrate the difficulty in assessing xenobiotic effects on thyroid status and the likelihood that point estimates of circulating thyroid hormones measured as part of a reproductive screen will not be useful by themselves in identifying thyroid agonist activity.

5.5.2 Inhibition of Thyroid Function

In contrast to the difficulties in identifying thyroid agonists, there is evidence that certain environmental contaminants can act specifically as antithyroidal agents. A thorough study of the effects of thiocyanate (an inorganic anion that has antithyroidal properties) on thyroid function and reproduction in fathead minnows was reported by Lanno and Dixon (1990, 1994). In these studies, sexually differentiated but immature fathead minnows were exposed to measured concentrations of thiocyanate ranging from 0.06 mg/L to 32.6 mg/L for 21 days and then for an additional 103 days, during which spawning activity was monitored. The results indicated that fathead minnows exposed to 16.6 mg/L and 32.6 mg/L thiocyanate completely lacked or underwent incomplete development of secondary sex characteristics. These fish also made no attempt to reproduce (Lanno and Dixon 1994). However, toxicity was quite high at these exposure levels, with reported mortalities during the exposure of 30% and 63% at the 16.6 mg/L and 32.6 mg/L exposure levels, respectively (Lanno and Dixon 1994). A lower exposure rate of 7.3 mg/L was nontoxic but still impaired reproduction, as measured by the delay in time of first spawning and decreased fecundity (Lanno and Dixon 1994). Antagonism of thyroid function was observed at 7.3 mg/L to 32.6 mg/L thiocyanate exposure rates by the development of overt goiterous nodules along the branchial region of the lower jaw. Histopathological examination of these fish indicated a clear dose-response relationship between thiocyanate exposure rate and the extent of the hyperplastic and colloidal goitrous follicles (Lanno and Dixon 1994). The time to first appearance of the goiters or gender-specific differences of goiter formation were not discussed in this study.

Consistent with the findings of the aforementioned study, other antithyroidal agents have been shown to cause hyperplasia of thyroid follicles and decreased development of secondary sex characteristics. For example, adult catfish (Clarias batrachus) exposed for 1 year to 100 mg/L ammonium sulphate or 3 months to 300 mg/L thiourea, which are known anti-thyroidal agents (inhibitors of thyroid hormone syntheses) (nominal levels, respectively) developed complex histopathology of the thyroid follicles, suggestive of overall hyperemia and hyperplasia (Sathyanesan et al. 1978). In medaka, an intraperitoneal injection of thiourea reduced the microtubule-stimulated growth of papillary processes of the anal fin (Fujiwara 1980). In a related study, Wester et al. (1988) noted that medaka exposed for several
months to various sodium-bromide water concentrations had reduced secondary sex characteristics. A recent study in sexually mature medaka measured T_4 and T_3 plasma levels before and after a 10-day exposure to various nominal water concentrations of thiourea (Tagawa and Hirano 1991). Exposure to 300 mg/L thiourea lowered plasma levels of T_4 and T_3 from 8 ng/mL and 5 ng/mL respectively, to less than 2 ng/mL within 24 hours. A similar reduction in thyroid hormones was observed in eggs laid by exposed females. The effects of thiourea exposure on fecundity were not reported; however, fertilization success and time to hatching were unaffected by the exposure (Tagawa and Hirano 1991). Larval survivability was also unaffected by the thiourea exposure.

5.5.3 Gender Differences

Due to the paucity of studies available for review, little discussion of gender differences in thyroid stimulation or inhibition can be made. Certainly, more research is needed that focuses on thyroid agonists or direct stimulation by T_3 and T_4 and subsequent effects on reproduction. The limited data on antithyroid compounds suggest that both male medaka and fathead minnows might be more sensitive models. In these species, impairment of the appearance of secondary sex characteristics, such as papillary processes on the anal fin in medaka (Fujiwara 1980) or nuptial tubercles in minnows (Lanno and Dixon 1994), might become apparent after short-term exposures. For example, exposure to 16.6 mg/L of thiocyanate resulted in incomplete development of secondary sex characteristics; fish exposed to lower concentration of 7.3 mg/L demonstrated antagonism of thyroid functions by development of overt goitrous nodules along the branchial region of the lower jaw. Histopathology of these fish indicated dose-response relationship between thiocyanate exposure rate and the extent of the hyperplastic and colloidal goitrous follicles (Lanno and Dixon 1994). However, it is unclear whether significant goiter formation can occur in these species over the relatively short exposure periods (14 to 21 days) used in screening assays. In this respect, histopathological analysis of the thyroid follicles would be particularly helpful in identifying antithyroidal chemicals.

The limited data serve only to underscore the broader issue of the scarcity of information on basic thyroid function in fish. Clearly, more basic information on thyroid function during reproduction in the typical test species is needed. Therefore, it is prudent that any endocrine disruptor screening assay should include some measure of effect on thyroid tissue. However this may not be a simple task for most fishes, because the basic unit of thyroid tissue, the thyroid follicles, are typically distributed in a diffuse manner throughout the ventral pharyngeal region and sometimes at secondary locations within the fish, such as in the ovary, head, kidney, and pericardium (Bonga 1993; Janz 2000). The dispersed nature of thyroid tissue in fish makes certain morphological assessments of thyroid tissue, such as determination of a thyroid tissue-somatic index, impractical.

5.6 Thyroid Hormone Metabolism

Studies have shown that fish can excrete relatively large quantities of injected T_4 and T_3 via the bile (Eales 1979). The conjugates of T_3 occur principally in the liver followed by the excretion via bile of the water soluble fraction. To a limited extent, unconjugated T_4 and T_3 can be absorbed from the intestine (Brown et al., 2004). Excretion of T_4 and T_3 to a lesser extent can also occur through gill surface (Brown et al., 2004).

5.7 The Role of TH in Fish Development and Reproduction

5.7.1 Thyroid Hormones in Fish Eggs and Larva

Thyroid hormones in mammals, birds, and amphibians play an important role in early development. The role of TH in developing oocytes and the absolute requirements of thyroid hormone are
not well known. In comparison to what is known about the effects of thyroid hormones on embryos and
larvae of amphibians, mammals, and birds, our knowledge regarding fish lags far behind. Recent studies
using medaka (*Oryzias latipes*) (Tagawa and Hirano, 1991) and rabbitfish (Ayson and Lam, 1993)
demonstrated that reduction in egg thyroid concentration did not adversely impair larval development. A
review paper by Raine et al., (2002) on thyroid gland development states that only three papers have been
published since the late 19th Century on “early ontogeny of the thyroid tissue of teleost fishes” (authors cite
Maurer, 1886; Hoar, 1939; and Raine et al., 2001). Thus, detailed information on the formation of thyroid
follicles in embryos is lacking. Histological investigation by serial sectioning in rainbow trout revealed
that in late embryogenesis, post 40 days fertilization (at 8°C water temperature), distinct thyroid follicles
become apparent. Measurable concentrations of T\textsubscript{4} and T\textsubscript{3} in eggs of Chinook salmon (*Oncorhynchus
tshawytscha*) were 4.2 and 4 ng/organism respectively (Leatherland et al., 1989). In sockeye salmon
(*Oncorhynchus nerka*) the concentration of T\textsubscript{4} and T\textsubscript{3} in eggs was 6 and 1 ng/organism respectively
(Leatherland et al., 1989). Tagawa et al. (1990) measured T\textsubscript{4} and T\textsubscript{3} in eggs of 26 species of fish with the
mean T\textsubscript{4} and T\textsubscript{3} concentration ranging from 15.00 ng/g (chum salmon) to 0.04 (marbled sole) and 9.95 ng/g
(Pacific herring) to 0.07 (goldfish) respectively. In general the concentrations of T\textsubscript{4} are higher than those
of T\textsubscript{3} in freshwater species; however sometimes T\textsubscript{3} is higher in marine species (Power et al., 2001; Tagawa
et al., 1990). Because thyroid follicles are not present in eggs (oocytes), the origin of T\textsubscript{4} and T\textsubscript{3} in fish eggs
is maternal (Power et al., 2001). It is still unclear if the thyroid hormones in eggs are available to the
developing embryo (Power et al., 2001). A slight decrease in thyroid hormones was observed in eggs of
seven fish species just prior to hatching; however, a significant decrease was observed during yolk
absorption in flounder and chum salmon (Tagawa et al., 1990). In a study with medaka (exposed to
thiourea), where maternal thyroid hormone content was altered such that a 90% reduction of thyroid
hormone content in eggs was achieved, no discernable difference was observed in hatchability and time of
hatching (Tagawa and Hirano 1991). In addition, no difference was observed between control and thyroid
limited eggs in survival rate, body length, weights, and condition factor post 16 days (with food supplied)
after hatch out (Tagawa and Hirano 1991). This led the authors to conclude that the majority of thyroid
hormone in medaka eggs was not essential for larval survival and development. However, the impact to
adults, if any, is not clear and it may be possible that less than 10% of thyroid hormone in eggs is required
for normal development.

Conversely, studies have demonstrated that larval teleosts do respond to exogenous thyroid
hormone when exposed to dissolved T\textsubscript{3} at very high doses for weeks at a time. In such a setting the general
response has been enhanced growth, survival, and time of yolk sac absorption (Brown et al., 1987).

Histological investigations with striped bass larvae have shown that thyroid follicles become
functional at approximately 3 weeks of age, with increased activity occurring from week 3 through week 6
(Brown et al., 1987).

5.7.2 Thyroid Hormones in Fish Larva and Adult

As previously mentioned, fish are a very diverse group; however most undergo a similar
developmental cycle from larva stage into juveniles and adults. The larva of fish are very distinct both
morphologically and physiologically from juveniles and adults. The transformation from larval stage to
juveniles is often termed metamorphosis. A classic example of metamorphosis in amphibians is the
remarkable transformation of a tadpole (pollywog) into an adult frog. Thyroid hormones are essential in
this transformation processes. An analogous situation occurs in teleosts. A striking example of this occurs
in flatfish (flounder, halibut) where the transformation of the bilaterally symmetric pelagic larva transform
to an asymmetric benthic juvenile that has both eyes on the same dorsal ("up") side of the fish. During this
transformation it has been demonstrated that thyroid hormones play a key role in a manner similar to
amphibians. A distinct surge of thyroid hormones triggers the start of the metamorphosis processes. In
addition to distinct external morphological changes that occur during larval metamorphosis, internal
alterations are occurring. For example, often in teleosts a functional stomach is not developed until the larval-juvenile metamorphosis is completed (Tanaka, 1971). In “symmetrical fishes,” external morphological changes are not as dramatic as in the asymmetrical flatfishes and involve changes in fin structure, scaling, lateral line formation, and pigmentation. Studies on grouper (deJesus et al., 1998) and zebrafish (Brown, 1997) have demonstrated that exogenous THs were found to accelerate pelvic fin growth and induce early differentiation of pectoral fins. Conversely, exposure to thiourea (goitrogen–thyroid synthesis inhibitor) inhibited the larval to juvenile metamorphosis in zebrafish (Brown 1997). However, in other teleosts such as lamprey (agnathan) exposure to thiourea induced early metamorphosis (Holmes and Youson, 1993). It is apparent that the THs play an important role in larval to juvenile metamorphosis. However, much information is lacking on specific modes of action, and the manner by which THs bring about their effect is less clear in fish than in other vertebrates.

5.8 Methods of Evaluating Thyroid Disruption in Fish

255. A number of researchers have investigated the role of thyroid hormone activity in fish embryogenesis, larval development, growth, and behavior, including relatively recent studies by Mol et al. (1997), Orozco et al. (1997), Specker et al. (2000), and Nayak et al. (2000). There have been very few studies on the direct role of thyroid hormone activity in fish reproduction; one significant review on the subject is provided by Cyr and Eales 1996, entitled “Interrelationships between thyroidal and reproductive endocrine systems in fish”). Deiodination activity and rates in fish are responsive to many environmental and physiological conditions (e.g., food quantity, food quality, pH, salinity, turbidity) (Eales et al. 1999). The heterogeneity of fish thyroid systems and their resilience to perturbations make it difficult to measure and interpret changes in activity. Eales et al. (1999) conclude that assays of fish thyroid function need to consider the multiple levels of the “thyroid cascade” by measuring components of the central control (Brain-pituitary-thyroid) and peripheral control of T3 production and metabolism (such as the liver), in addition to measurements of post receptor-mediated effects of T3 on target cells.

5.8.1 Overview of Experimental Methods

256. An Environmental Protection Agency (EPA)-sponsored workshop in 1997 concluded that all known chemicals that interfere with thyroid hormone action, function, and homeostasis act by inhibiting synthesis of thyroid hormones, altering serum binding to transport proteins, or increasing thyroid hormone metabolism (DeVito et al. 1999).

257. The thyroid systems of fish and mammals are similar in many respects, with one major difference. The mammalian system is driven primarily through the central brain-pituitary-thyroid axis that regulates thyroidal secretion of both T4 and T3. This central control, which includes strong feedback by T3 on the brain-pituitary-thyroid axis, allows the effects of a xenobiotic (e.g., erythrosine) on the peripheral metabolism of thyroid hormone to be detected through a change in thyrotrope function and thyroid stimulating hormone (TSH) release (Eales et al. 1999). Thus, in mammals (i.e., rodents), TSH secretion is commonly used to assess risk to thyroid function at both central and peripheral levels.

258. In fish, the thyroid system does not appear to be driven primarily by the central brain-pituitary-thyroid axis. Instead, the central brain-pituitary-thyroid axis in fish has the primary role of ensuring T4 homeostasis. T3 production and homeostasis is regulated in peripheral tissue by conversion of T4 to T3 by deiodination, removal of either the inner or outer ring iodide from T3 (refers to the deiodination, or stepwise iodine removal, from outer or inner rings of T3) (Eales et al. 1999). In teleost fish the routine role of the central brain-pituitary-thyroid axis may be to ensure T4 homeostasis, so as to provide an adequate supply of T4 prohormone to satisfy peripheral demands for T3. Eales et al. (1999) conclude that “This difference in control emphasis (peripheral versus central) between the fish and mammalian systems has important implications for measurement of thyroidal status in fish.”
The implication is that no single biomarker examines all facets of fish thyroid function. Xenobiotic effects on fish thyroid function have typically been assessed from changes in TH biosynthesis or TH secretion or plasma TH levels. Because these indices relate mainly to the efficacy of TH release from the thyroid to the blood, they do not necessarily detect disruption of TH metabolism or receptor and post-receptor TH effects in peripheral tissues (Eales et al. 1999). To screen for xenobiotic effects in fish requires examination at three levels: 1) the centrally controlled thyroidal secretion of T₄ prohormone to the plasma (T₄ homeostasis), 2) the peripherally controlled conversion of T₄ to active T₃ (T₃ homeostasis), and 3) the post-receptor effects of T₃ (Eales et al. 1999). Even then, because of extensive autoregulatory feedbacks at both central and peripheral levels, overall euthyroidism (T₃ availability to receptors) may be preserved despite potentially disrupting xenobiotic effects on T₄ and T₃ homeostasis. Thus, current assays of thyroid function represent primarily biomarkers of exposure and not necessarily biomarkers of effect.

5.8.2 Whole Animal Assays

Thyroid status and function have been studied in approximately 50 species of teleosts (Cyr and Eales 1996). In these studies various measurement endpoints have been employed, such as histological appearance of thyroid tissue or pituitary thyrotropes; measurement of radioiodide or protein-bound iodine levels in plasma; measurement of plasma T₄ or T₃ levels by radioimmunoassay; measurement of thyroid hormone receptor levels; and measurement of thyroid protease activity, etc. However, performance of these measurements alone does not necessarily constitute development of an assay screen or test suitable for detection of thyroid hormone disruption in fish. An example of morphological measures of metamorphosis and thyroid status includes resorption of dorsal fin rays and migration of the eye in Japanese flounder (Paralichthys olivaceus). Resorption of the dorsal fin rays in the Japanese flounder have been likened to the resorption of the tadpole tail in amphibian metamorphosis (deJesús et al. 1990). During Japanese flounder metamorphosis from bilaterally symmetrical larvae to asymmetrical juveniles, the dorsal fin ray elongates and is subsequently resorbed. Inui and Miwa (1985) showed that exogenous thyroid hormone accelerates metamorphosis in the flounder. The thyroid hormones influenced the metamorphic process in a dose-dependent manner, with T₃ proving several times more potent than T₄ (Miwa and Inui 1986). It is apparent that metamorphosing flounder respond to thyroid hormones, and thyroidal influence on metamorphic events in the flounder involve the alteration or initiation of synthesis of tissue-specific proteins such as myosin, troponin T, pepsinogen, and hemoglobin (Yamano et al. 1994). However, it is unknown how TH regulates tissue development and differentiation, including synthesis of tissue-specific proteins (Yamano et al. 1994).

As an example of a whole animal fish assay, prometamorphic larvae of Japanese flounder were placed in tanks with different concentrations of T₄ (0.0 to 0.10 µg/ml) (deJesus et al. 1990). Hormone levels were kept constant, and 20 percent of the water was exchanged daily. Fish were fed, and every 5 days a subset of fish were randomly sampled and body length and length of the second fin ray was measured. The degree of eye migration was also estimated following the methods of Miwa and Inui (1987). Protocols ultimately developed to morphologically mark thyroid impairment in fish (parr-smolt transformation; young fish metamorphoses) may include any applicable endpoint and should not be limited to one endpoint due to the complexity of the fish thyroid cascade (central and peripheral control).

There are a limited number of routes of exposure of fish to endocrine disruptor compounds. They most often include water, but also include oral and parenteral exposure. Typical practical considerations for sample size are based on the number of endpoints to be collected and whether the specimen must be sacrificed to collect the data. In order to statistically determine the appropriate sample size, the inherent variability of the endpoint must be measured, according to the desired statistical resolution, and the power of predictability determined. The length of the prospective assays and the natural variability associated with metamorphosis, smoltification, or other change may require larger sample sizes than used for short-term partial life-cycle tests. As a useful guide, 100 fish larvae per
replicate has been a standard sample size for starting a long-term exposure for regulatory purposes. However, before sample size and replicate requirements can be determined for the fish assays, formal statistical power analysis is required.

5.8.2.1 Histology

263. Augmented thyroid hormone levels may initiate changes in the functional activity of the interrenal tissue. Interrenal cells have been studied during Japanese flounder metamorphosis (deJesus et al. 1991). Histological examination indicated an increase in the size and number of interrenal cells during metamorphosis. The thyroid gland also showed signs of activation. Japanese flounder interrenal tissues were fixed in Bouin’s fixative, then dehydrated with a graded series of ethanol, embedded in Paraplast, and sectioned to 4 µm thickness. Sections were stained with hematoxylin and eosin.

264. Histological observations in Atlantic salmon (*Salmo salar*) and Pacific salmon (*Oncorhynchus* spp.) also indicate that the pituitary-interrenal axis is activated during smoltification (Specker and Schreck 1982).

5.8.3 In Vitro and Ex Vivo Assays

265. Biochemical measurement of thyroid activity can be measured in plasma obtained from cardiac puncture and whole body tissue. TH (T₃ and T₄) and deiodinase activities have been analyzed in fish primarily using radioimmunoassay (RIA) methods. Regardless of method, quality assurance (QA) measures associated with RIA analyses should include an evaluation of cross-reactivity with other hormones or similar substances, evaluation of linearity using standard curves, and the use of standard additions to assess recoveries.

5.8.3.1 Plasma TH Levels

266. The following radioimmunoassay method for measuring plasma L-thyroxine (T₄) levels is taken from Dickhoff et al. (1978), who measured TH levels in the blood of coho salmon (*Oncorhynchus kisutch*). This method is often cited, with minor modifications, in other studies that measure plasma TH levels in fish. For example, thyroid hormones of the Japanese flounder (*Paralichthys olivaceus*) were extracted and measured by radioimmunoassay (RIAs) following the method of Tagawa and Hirano (1989). The hormones from both newly fertilized eggs and larvae were evaluated to determine changes over time during early development and metamorphosis of this species (deJesus et al. 1991). Likewise, T₄ and T₃ serum concentrations were measured in common dentex (*Dentex dentex*) to investigate seasonal changes in serum levels of thyroid hormones during the first, second, and third reproductive cycles and to determine possible correlations with growth patterns, gonadal development, and spawning (Pavlidis et al. 2000). Commercialized kits were used to analyze the T₃ and T₄ thyroid hormones using coated tube radioimmunoassay methods with slight modification to the procedure. Finally, plasma thyroxin levels were measured in coho salmon (*Oncorhynchus kisutch*) during smoltification (Specker and Schreck 1982). Once baseline conditions are established for various fish species during different life stages and under standardized holding conditions, researchers can examine whether differences occur when fish are exposed to chemicals that disrupt thyroid hormone homeostasis or thyroidal status.

267. In the Dickhoff et al. (1978) method, plasma samples were collected from yearling coho salmon. To obtain the plasma samples, unanesthetized fish were stunned by a sharp blow to the head and the tail amputated. Blood was collected in a heparinized capillary pipet. The blood was centrifuged and the plasma stored at -20°C in plastic microcentrifuge tubes until assayed. A thyroxine RIA was performed using antiserum and high specific activity (700 mCi/mg) ¹²⁵I-labeled thyroxine. For the assay, 10-µl
aliquots of plasma were added in duplicate to the assay tubes. To these tubes containing plasma or T₄ standards, 250 µl of the following mixture was added:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine γ-globulin</td>
<td>150 mg</td>
</tr>
<tr>
<td>8-anilino-1-naphthalenesulfonic acid (sodium salt)</td>
<td>60 mg</td>
</tr>
<tr>
<td>Radioactive T₄</td>
<td>12 X 10⁶ cpm</td>
</tr>
<tr>
<td>0.11M barbital buffer (pH 9.0)</td>
<td>100 ml</td>
</tr>
<tr>
<td>Antiserum</td>
<td>N/A</td>
</tr>
</tbody>
</table>

268. Antiserum was previously diluted to a concentration that resulted in 50% labeled T₄ bound with no added unlabeled T₄. Tubes were capped and incubated for 30 minutes at 37°C followed by 15 minutes at 4°C. Antibody was then precipitated by adding 0.3 ml cold (4°C) 20% (w/v) polyethylene glycol followed by thorough mixing. The precipitate was centrifuged at 2000g for 15 minutes at 4°C. The supernatant was then aspirated and the pellet was counted in a gamma well counter for 3 minutes/tube. Dilution of coho plasma showed parallel cross-reactivity with the T₄ standard, but treatment of coho plasma with an equal volume of dextran-coated charcoal (5 g/L or Norit A and 5 g/L of dextran) removed all immunocross-reactivity.

5.8.3.2 Deiodination Assay

269. The peripherally controlled conversion of T₄ to T₃ cannot be monitored reliably from plasma T₃ levels alone. However, deiodination activities (e.g., in vitro assessments of a suite of rate-limiting deiodinations in the liver and brain) should adequately evaluate peripheral thyroidal (T₃) status. Eales et al. (1999) propose deiodination assay methods that could be used as sensitive indices of peripheral change and as biomarkers of exposure.

270. Eales et al. (1999) includes a T₄ORD (outer ring deiodination) assay for estimating tissue T₄ to T₃ conversion, and an assay run simultaneously that determines T₄IRD activity by measuring *rT₃ by HPLC (* indicates a radioassay, conducted with [¹²⁵I]). T₃ ORD and IRD activity is measured in a similar manner, but substituting *T₃ as a substrate in place of *T₄ in the appropriate part of the assay. After T₃ is formed by removing one of the outer ring iodines from T₄, the generated T₃ may be measured directly by RIA following in vitro incubation of T₄ substrate with either tissue homogenate or subcellular fractions. An even more sensitive approach uses a radiolabeled ([¹²⁵I]T₄ or *T₄) substrate and measures either the *I or the *T₃ products. The assay is preferably performed on the deiodinase-rich microsomal fraction, which may be prepared from fresh tissues or partially thawed tissues previously quick-frozen in liquid nitrogen. The deiodination rate is then calculated as pmol T₄ diodinated hr⁻¹.mg microsomal protein⁻¹ from the total concentration of *T₄ substrate, the amount of *I or *T₃ generated, and the microsomal protein content.

271. T₃ production in rainbow trout has been measured directly using a similar RIA following in vitro incubation of T₄ substrate with tissue homogenate or subcellular fractions. A more sensitive approach is to employ outer-ring labeled [¹²⁵I] T₄ (*T₄) substrate and then measure the levels of [¹²⁵I] T₃ (*T₃) produced in theoretically equivalent amounts (Bres et al. 1994). The products can then be quantified by HPLC (Sweeting and Eales 1992).

5.8.3.3 Isolation of Thyroid Hormone Receptors

272. Thyroid hormone-activated thyroid hormone receptors (THRs) bind directly to a cis-acting element of a gene to regulate expression of the gene either positively or negatively. Thus, it could be expected that the localization of THR during fish metamorphosis could provide key information about
target tissues for TH and TH-inducible protein synthesis during metamorphosis (Yamano et al. 1994). Homologous probes or antibodies for fish THR are not common, though they are available for mammals, chickens, and frogs. To know how similar or dissimilar the fish THR are from those of other species, isolation of cDNAs for THR expressed in fish are needed. Two Japanese flounder THR were identified by Yamano et al. (1994). Both were considered to be α-type THR rather than β-type. The flounder appears to have two distinct genes for two THR, making it more similar to the amphibian, *Xenopus*, than to mammals. The binding properties of these flounder THR to TH or other TH-responsive elements had not yet been determined (Yamano et al. 1994). Two β-type THR were later identified in the flounder as well, though they were found to be encoded by a single gene (Yamano and Inui 1995). Thus, at least three THR genes generate at least four THR proteins in the flounder genome (Yamano and Inui 1995).

5.8.3.4 Thyroid Hormone Receptor Assay

273. The following method was used by Bres et al. (1994) to study properties of TH nuclear receptors in rainbow trout (*Oncorhynchus mykiss*) tissues. It is an in vitro method that employs the principle of saturation analysis and may be conducted on intact nuclei from liver, although nuclei from other tissues are unstable and the receptor must be solubilized and extracted for the assay.

274. From Bres et al. (1994), in general for the binding assay, the whole nuclei or solubilized receptors are incubated to equilibrium with *T3* in the presence of different concentrations of T3. The receptor-bound and the free *T3* are then separated by either low-speed centrifugation (for whole nuclei) or by using Dowex ion-exchange resin, that binds "free" *T3* (for solubilized receptors). Specific binding to the receptor can be distinguished from nonspecific binding (i.e., *T3* trapped within the nuclear pellet or bound to the walls of the assay tube) by adding a large excess of unlabeled hormone at a level about 1000 times the Kd of the receptor. In this circumstance, the receptor-bound *T3* is released and there is a reduction in bound counts. The *T3* that remains bound (nonsaturable binding) is subtracted from the total counts bound:

Saturable binding = total binding – nonsaturable binding.

275. The units of each term are in counts per minute (cpm) or in moles of *T3*. The saturable binding is considered representative of specific binding to the receptors. Detailed methods are found in the literature (Eales 1999).

276. Using the reversible bimolecular binding model, the methods outlined in the report can be used to calculate the receptor properties, including the binding affinity, capacity, specificity, and the association and disassociation rate constants. Furthermore, the procedures described may be adapted to study aspects of receptor function in vivo. One caveat the Bres et al. (1994) paper makes is that the methods described apply to the rainbow trout. Because the conditions have been found to differ even in different tissues of this species, the authors recommend that incubation times and temperatures be experimentally determined in any new species or tissue, and that the incubation times be long enough for binding equilibrium to be achieved.

5.8.3.5 Ex Vivo Assay - Thyroid Hormone Effects on Fin-ray Resorption

277. Dorsal fin rays of Japanese flounder were removed with part of the skull from the body and kept in an ice-cold Hank’s solution containing 1% bovine serum albumin and 60 ug/ml kanamycin sulfate (DeJesus et al. 1990). Five fin rays were randomly distributed into each designated culture bottle containing 5 ml of culture medium supplemented with different concentrations (0.001 to 1.0 ug/ml) of T4 or T3. Cultures were kept at 20°C for 7 to 8 days and the extent of shortening of the dorsal fin was monitored by measuring the length of the second fin ray.
5.8.4 Recommended Assay Protocols

278. A recent review paper on thyroid function in fish by Brown et al. (2004) stated that “a xenobiotic-induced change in fish thyroid function has yet to be conclusively causally linked to decreased fitness of survival.” The attribution of xenobiotic effects to the thyroid function in fish is exceedingly complex (Figure 5-2). One must consider numerous variables, not the least of which is distinguishing the differences between indirect and direct actions on the thyroid cascade from chemical exposure (thoroughly reviewed by Brown et al., 2004).

Figure 5-2 Factors to be considered when evaluating chemical exposure to fish and potential thyroid function impairment (TH = Thyroid hormones) (Adapted from Brown et al., 2004)

279. Currently, the centrally controlled thyroidal secretion of T4 can be monitored adequately from the plasma total and free T4 levels and from thyroid or thyrotrope histological appearance (Eales et al. 1999).

280. The peripherally controlled conversion of T4 to T3 cannot be monitored reliably from plasma T3 levels alone. However, deiodination activities (e.g., in vitro assessments of a suite of rate-limiting deiodinations in the liver and brain) should adequately evaluate peripheral thyroidal (T3) status (Eales et al. 1999). Eales et al. (1999) propose deiodination assay methods that could be used as sensitive indices of peripheral change and as biomarkers of exposure.

281. Assays specific for post-receptor biologic actions of T3 are difficult to develop for fish. This is because T3 acts permissively with other hormones that may be affected by a xenobiotic independently of
any change in thyroidal status. Eales et al. (1999) urge that such assays be developed, however, to provide indicators of effect on both individuals and populations.

282. Based upon this literature review, there are currently no in vitro or in vivo assays that are sufficiently developed to warrant recommendation for use to efficiently screen chemicals for thyroid disruption. Methods are available that can be used to measure thyroid hormones (T4 or T3) in plasma and tissue, such as enzyme linked immunosorbent assay (ELISA) or radioimmunoassay (RIA) methods, deiodinase and thyroid receptor assays (Bres et al. 1994; Cerda-Reverter et al. 1996). However, our ability to accurately interpret the causes and implications of potential alterations in T4 or T3 levels in teleosts is limited. Additional research would be required before an effective thyroid screen would be available for this piscine group. In a recent workshop on screening methods for thyroid hormone disruption (DeVito et al. 1999), participants failed to recommend a single fish thyroid assay, instead recommending an amphibian assay for use in nonmammalian wildlife. However, it was suggested that many of the assays put forward for mammalian systems could be appropriately adapted for use in fish, with additional research and refinement (DeVito et al. 1999). Thyroid function can also be examined histologically in fish; however, histological examinations are confounded, because the thyroid gland in most teleosts is not encapsulated and consists of diffuse scattered follicles, making such examinations difficult.

283. Additional research and refinement of in vivo assays, such as the flatfish metamorphosis assays, could be adapted to be used in screening for thyroid function in fish. However, flatfish is not the best model candidate for laboratory testing, due to its current limited availability. Also, the in vitro deiodination assay shows promise with additional research and refinement as a screening tool that could be used as an effective thyroid assay in the future.

5.9 Summary

284. In most teleost fish the thyroid tissue is distributed diffusely around vascular tissue in the basibranchial region. The fish thyroid cascade can be broken down into the following three elements. First is the centrally controlled brain-pituitary-thyroid axis. The brain-pituitary-thyroid axis is primarily responsible for synthesis, storage, and secretion of T4 and maintenance of T4 levels for a given physiological state. The second element is the peripherally controlled (e.g., in liver tissue) availability of the active hormone T3. The primary production of the biologically active form of the thyroid hormone T3 is via outer-ring monodeiodination of T4, which occurs in peripheral tissues (e.g., liver tissue). In most teleosts this occurs in peripheral organs or tissues such as the liver. The third phase is the receptor-mediated effects of T3 on target cells to regulate development, growth, and aspects of reproduction.

285. While similarities exist between mammalian and fish thyroidal systems, one important distinction exists: in mammals, the thyroid system is principally driven by the central brain-pituitary-thyroid axis, regulating both T4 and T3 secretions via negative feedback by both T4 and T3 on the brain-pituitary thyroid axis. In contrast, the fish thyroidal system does not appear to be centrally driven (i.e., via brain-pituitary-thyroid axis) but instead is under peripheral control. This deference has important implications regarding measurement of thyroidal status in fish. Studies have demonstrated that massive experimental increases of T4 in fish did not increase T3 levels, concluding that increases in T4 do not drive T3 production (Eales et al. 1999).

286. Upon completion of the literature review for this chapter, a sufficiently developed assay for fish thyroid function was not found. In addition, no standardized protocol/method had been validated to assess thyroid disruption in fish.

287. A series of measurement endpoints have been put forward to assess thyroid function at different levels of the fish thyroid cascade (Eales et al. 1999; Brown et al. 2004). A deiodination assay in addition
to other biomarkers and morphological responses, put forward in Table 5-1 below, attempts to monitor activity throughout the thyroid cascade 1) central, 2) peripheral, and 3) receptor-mediated effects.

288. Measurement of the central control of the thyroid cascade could be accomplished via histological investigation of thyroid follicles, in addition to measurement of plasma total and free T₄ levels. T₄ levels can be measured via RIA or ELISA method.

289. The peripheral control of the conversion of T₄ to T₃ cannot be adequately assessed by the simple measurement of plasma T₃ alone (Eales et al. 1999). This is due to several reasons: 1) much of the T₃ produced by a given tissue will not enter the plasma; 2) the plasma T₃ level is not indicative of the T₃ availability to all tissues, just those that rely on T₃ from plasma, such as the kidney; and 3) T₃ levels are very well buffered against perturbations and thus are not a very sensitive measurement (large variations in T₃ levels do not cause significant changes in receptor-mediated effects on target cells) (Eales et al. 1999; Brown et al. 2004). The formation of T₃ from T₄ can be assessed via suite of rate-limiting deiodination from liver or brain tissue (Eales et al. 1999; Brown et al. 2004). Conducting a deiodination assay along with the measurement of plasma T₄ and T₃ levels should provide a good indication of the peripheral thyroid system status (Eales et al. 1999; Brown et al. 2004).

290. A recent review paper (Brown et al. 2004) failed to find a satisfactory assay for evaluation of postreceptor effects of T₃. This was true for our review of the literature as well. However, biological responses that are unique to thyroid function such as parr-smolt transformation, flounder metamorphosis, and young fish early development (metamorphosis from post hatch to fry) with additional research could become effective thyroid hormone screens/tests. Consideration should be given to size of fish test species in addition to the time required to conduct the test. Because of this, it is recommended that future research be focused on very young developing fish, an area that has not been thoroughly explored but a life stage that may prove to be very susceptible to thyroid disruption (Brown et al. 2004). Research is also recommended in the development of biochemical and molecular biological techniques geared toward very small fish (metamorphosis from post hatch to fry) (Brown et al. 2004).

291. Table 5-2 shows generalized points of thyroid disruption in fishes. Specific points of disruption are difficult to tabulate because of the large diversity of fishes and heterogeneity in some of the key proteins mediating specific roles within the HPT axis. Points of disruption are clustered within categories, with more focused assays proposed to test for disruption within these categories.
<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Major Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Status of the Assay</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement endpoint in a Fish Thyroid Assay</td>
<td>Teleost</td>
<td>Centrally Controlled (Brain-pituitary-thyroid axis) Thyroxine (T<sub>4</sub>) synthesis and secretion</td>
<td>Histological evaluation of thyrotrope and measurement of T<sub>4</sub> prohormone</td>
<td>Straightforward histological and hormone measurement endpoint</td>
<td>Does not consider the “Peripherally controlled Thyroid hormone or the Receptor-mediated effects of T<sub>3</sub> on Target cells. Relevance to other taxa, especially mammals, is unknown</td>
<td></td>
</tr>
<tr>
<td>Measurement endpoint in a Fish Thyroid Assay</td>
<td>Teleost</td>
<td>Peripherally Controlled -T<sub>3</sub> synthesis and secretion.</td>
<td>Deiodinase assay. Measures tissues potential to either form or degrade T<sub>3</sub></td>
<td>Deiodination activities in tissue (e.g., liver T<sub>4</sub>ORD) in conjunction with plasma T<sub>2</sub> and T<sub>3</sub> levels provide detection of most xenobiotic effects on the thyroid peripheral system.</td>
<td>Measurement of thyroidal peripheral system only. Does not consider other components of the fish thyroid cascade, such as central T<sub>4</sub> production (Brain-pituitary-thyroid axis) It also does not consider receptor mediated effects of T<sub>3</sub> on target cells. Relevance to other taxa, especially mammals, is unknown</td>
<td></td>
</tr>
<tr>
<td>Flounder metamorphoses assay</td>
<td>Flounder</td>
<td>Metamorphosis of flounder from symmetrical to asymmetrical fish. Migration of eye, mouth and fin ray development.</td>
<td>Normal, delayed, or accelerated morphogenesis from juvenile to adult</td>
<td>Straightforward metamorphical endpoint</td>
<td>Does not consider other components of the fish thyroid cascade, such as central T<sub>4</sub> production (Brain-pituitary-thyroid axis). Relevance to other taxa, especially mammals, is unknown. This assay requires further development and refinement, standardization and validation</td>
<td></td>
</tr>
<tr>
<td>Disruption or Evaluation Site</td>
<td>Endpoints of Interest</td>
<td>Target Effects of Disruption</td>
<td>Assay Availability</td>
<td>Status of Assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrally controlled thyroidal secretion of T₄</td>
<td>Plasma T₄ and histological examination of thyroid</td>
<td>An indication of thyroid follicle function ability to secrete T₄ prohormone.</td>
<td>Yes</td>
<td>RIAs and ELISAs; and histological examination in common use.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripherally controlled conversion of T₄ to T₃</td>
<td>Converting enzymes (deiodinase) in a given tissue to either form or degrade T₃</td>
<td>Deiodination of T₄ to T₃. The ability to convert T₄ to the biologically active form T₃</td>
<td>Yes</td>
<td>Deiodination Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Hormone Receptor (TR)</td>
<td>TR affinity and binding capacity</td>
<td>Receptor-mediated effects of T₃ on target cells</td>
<td>Yes</td>
<td>TRs have been cloned and Sequenced in a variety of fishes and can be used for this assay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post receptor mediated effects</td>
<td>Flounder metamorphosis (or larval fish growth and metamorphosis)</td>
<td>Ability of larval fish to undergo normal metamorphosis i.e., flounder or larval fish to adult).</td>
<td>Yes</td>
<td>A flounder metamorphosis assay has not been fully developed, standardized and validated to specifically detected chemicals that disrupt thyroid function.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 THE HPT AXIS IN FROGS AND ITS ROLE IN FROG DEVELOPMENT AND REPRODUCTION

[Editor’s note: Some material in this section was taken from a detailed review paper previously prepared for U.S. EPA on Amphibian Metamorphosis Assays. These materials have been included here because they are considered to be especially relevant to the purposes of this DRP.]

6.1 Overview of the HPT Axis in Frogs

292. The endocrine system, also referred to as the hormone system, consists of glands and secretory cells located throughout the body. Hormones that are synthesized and secreted by the glands into the bloodstream, receptors in the various target organs, and tissues that recognize and respond to the hormones. Normal function of the endocrine system, therefore, contributes to homeostasis (the body’s ability to maintain itself in the presence of external and internal changes) and to the body’s ability to control and regulate reproduction, development, and/or behavior. The function of the system is to regulate a wide range of biological processes, including control of blood sugar (through the hormone insulin from the pancreas); growth and function of reproductive systems (through the hormones testosterone and estrogen and related components from the testes and ovaries); regulation of metabolism (through the hormones cortisol from the adrenal glands and thyroxin from the thyroid gland); development of the brain and the rest of the nervous system (estrogen and thyroid hormones); and development of an organism from conception through adulthood and old age. An endocrine system is found in nearly all animals, including mammals, non-mammalian vertebrates (e.g., fish, amphibians, reptiles, and birds), and invertebrates (e.g., snails, lobsters, insects, and other species).

293. As summarized by Hayes (2000), the function of the amphibian endocrine system is reasonably consistent with vertebrate hormonal axes, with several exceptions. As in most vertebrate endocrine systems, tropic hormones are released from the pituitary as the result of pituitary stimulation by releasing factors secreted by the hypothalamus (Hayes, 1997a). External environmental stressors and input from the central nervous system influence hypothalamic activity. It is now reasonably well understood that synthesis of TH in the thyroid is under the direction of complex neuroendocrine pathways. TH, in turn, completes a complicated feedback loop at the central nervous system (CNS), hypothalamus, and pituitary levels. These interactions form a complex pathway referred to as the hypothalamus-pituitary-thyroid (HPT) axis (Shi, 2000). This axis is summarized in Figure 3-2.

294. In terms of anatomical organization of the H-P axis, amphibians have features that are generally characteristic of most tetrapods. A helpful description of endocrine control of amphibian metamorphosis is presented in Shi (2000). Further, the tetrapod neuroendocrine system exhibits most of the general characteristics of mammals and lacks the distinguishing structures that characterize the teleosts. In most tetrapods, the median eminence and the pars nervosa are well-developed and have distinct neurohemal function. In tetrapods, no vestige of a saccus vasculosus exists. The amphibian pars distalis displays marginal cellular regionalization, whereas, reptiles and birds demonstrate two reasonably distinct regions; however, these zones are not divided into a rostral and proximal zone as in fishes. The pars tuberalis, which contains secretory cells, is a consistent feature amongst most tetrapods although a specific physiological function has not yet been defined.
6.1.1 Hypothalamus

295. Of the tetrapods, the amphibian hypothalamus is less differentiated into specific nuclei than that found in reptiles, birds, and mammals, respectively (Norris, 1997). In most tetrapods, the control of the adenohypophysis is accomplished by neurovascular means rather than by direct neuronal input. Amphibians, however, appear to have some direct neural control over the pars intermedia. The preoptic area contains several specific neurosecretory centers, including the lateral, medial, and the preoptic nucleus. In amphibians, the preoptic region of hypothalamus is responsible for synthesis of GnRH, GHRH, SS, AVT, TRH, CRH, and an oxytocin-like peptide referred to as mesotocin. The preoptic nucleus is further subdivided into the suprachiasmatic nucleus and the ventromedial nucleus in the posterior region. AVT has been found in the suprachiasmatic nucleus. The infundibular nucleus is located in the basal region of the hypothalamus and provides aminergic and peptidergic fibers to the median eminence. The infundibular nucleus is further subdivided into dorsal and ventral regions and is virtually homologous to the primary physiotropic region within the mammalian hypothalamus. TRH and SS-like peptides have been located in the dorsal regions, and TRH and MSH in the ventral regions, of the infundibular nucleus. A pituitary adenylate cyclase activating peptide which stimulates cAMP production in the anuran pars distalis has also been found in the infundibular nucleus. The neuropeptide appears to play a role in pituitary control by the hypothalamus. The influence of the hypothalamus on metamorphosis is mediated through induction of the release of TSH from the pituitary. TRH is responsible for inducing the secretion of TSH from the pituitary in a similar pathway found in most mammals (Shi, 2000). Historically, the importance of the hypothalamus in the control of metamorphosis has been demonstrated by hypothalectomy, pituitary transplant to a remote part of the body, or providing an impermeable barrier between the hypothalamus and the pituitary gland in frogs (Dodd and Dodd, 1976; White and Nicoll, 1981; Kikuyama et al., 1993; Kaltenbach, 1996, Denver, 1996). High concentrations of TRH have been detected in the brain and skin of *R. pipiens* (Jackson and Reichlin, 1977). Further, in *X. laevis* and *R. catesbeiana* brain tissue, TRH levels have been found to increase throughout metamorphosis and metamorphic climax (King and Miller, 1981; Bray and Sicard, 1982; Millar et al., 1983; Ball et al., 1985; Mimnagh et al., 1987). However, a paradoxical relationship appears to exist between TRH and the rate of metamorphosis (Shi, 2000). More specifically, TRH is readily capable of inducing the release of TSH from the anuran pituitary. However, most experiments have not shown that administration of TRH accelerates metamorphosis (Dodd and Dodd, 1976; White and Nicoll, 1981; Denver and Licht, 1989; Kikuyama et al., 1993; Kaltenbach, 1996; Denver, 1996; 1998).

296. In mammals, CRF is responsible for inducing the secretion of ACTH. Further experimentation demonstrated that mammalian CRF is also capable of accelerating ACTH release from frog pituitaries (Tonon et al., 1986; Gracia-Navarro et al., 1992). Interestingly, ACTH does not induce the thyroid to produce TH (Sakai et al., 1991). CRF is now thought to act directly on the pituitary gland, stimulating the release of TSH (Denver 1988; Denver and Licht, 1989; and Jacobs and Kuhn, 1992). Because CRF is capable of raising TH levels in anurans and accelerating metamorphosis, and because the use of anti-CRF antibodies or CRF receptor antagonists slows metamorphosis; CRF appears to function as the mammalian surrogate of TRH and orchestrates regulation of the anuran pituitary at the hypothalamic level (Rivier et al., 1984; Gancedo et al., 1992; Denver, 1993; 1997b). Anuran CRF genes in *X. laevis* are relatively homologous to mammalian CRF (ca. 93%) (Stenzel-Poore et al., 1992; Shi, 2000). CRF gene expression and the presence of CRF-expressing cells in the hypothalamus of *X. laevis* have not only been identified, but found to be TH-dependent (Verhaert et al., 1984; Olivereau et al., 1987; Gonzalez and Lederis, 1988; Carr and Norris, 1990; Stenzel-Poore et al., 1992). These findings generally agree with the suggestion by Denver et al. (1997) that a hypothalamic feedback loop exists at the pituitary level (Carr and Norris, 1990). Overall, the primary significance of this research is that CRF, not TRH, is the primary hypothalamic releasing hormone responsible ultimately for the induction of metamorphosis (Carr and Norris, 1990; Denver, 1996; Denver et al., 1997; Shi, 2000). Further discussion of the role of TRH, TSH, CRF, and TH...
in amphibian metamorphosis can be found in DRP WA 2-20 (4-5) Amphibian Metamorphosis Assays (Battelle, 2003).

6.1.2 Pituitary

297. The amphibian pituitary is generally divided into the neurohypophysis and the adenohypophysis (Norris, 1996). The pars nervosa of the neurohypophysis is innervated by peptidergic fibers originating from the preoptic nucleus. AVT and mesotocin are co-localized within the pars nervosa. Some evidence supports co-localization of TRH with mesotocin and has been demonstrated to induce MSH release. A set of ANP-reactive neurons have been shown to travel from the dorsal hypothalamus through the median eminence to the pars nervosa. The AVT-secreting cell bodies in the preoptic area and the axonal endings in the pars nervosa have been shown to also contain GHRH. Other sets of neurons following the same pathway from the hypothalamus to the pituitary contain MSH. The adenohypophysis contains three distinct regions including the pars tuberalis, pars intermedia, and pars distalis. Ultrastructural comparison of immunoreactive cytoplasmic granules suggest that two different cell types exist within the pars tuberalis and neural pathways. The pars intermedia has a poor vascular supply, but is innervated by aminergic neurons originating from aminergic nuclei of the hypothalamus. Secretion of MSH has been shown to be under the direct control of the aminergic, and possibly peptidergic, neurons. NPY- and ANP-reactive neurons also innervate the pars intermedia of most anurans. NPY and ANP have been shown to inhibit and stimulate MSH release, respectively. The pars distalis is generally not highly regionalized, although some localization based on cellular subtypes exists, particularly in urodeles. Much of the focus of amphibian pituitary function has focused on the activity of the pars distalis. Because of the extensive research focus on the pars distalis as the primary endocrine region of the pituitary and source of tropic hormones, considerable controversy over the source or sources of the tropic hormones exist (Norris, 1996). Thus, in summary, TSH, GTH, ACTH, PRL, and GH are produced and released from the pars distalis.

6.1.3 Tropic Hormones

298. As in mammals, tropic hormones in amphibians, as well as most vertebrates, are generally categorized as the gonadotropins (LH and FSH) and TSH; growth hormones (GH and PRL); and ACTH, MSH, and other corticotropin-like substances.

299. The fundamental difference between hypothalamic control over thyrotrope production (TSH) and release from the pituitary in mammals and amphibians is that thyrotropin releasing hormone (TRH) does not appear to mediate this process in amphibians. Rather, release of TSH from the pituitary, and ultimately TH from the thyroid, is controlled by corticotropin releasing hormone (CRH) which also provides negative feedback at the pituitary level (Denver, 1993; Denver, 1997a; Denver, 1998; Denver and Licht, 1989; and Ganecedo et al., 1992). Various inter-relationships between glucocorticoids, gonadal steroids, and the thyroid axis have been found to occur in developing amphibians (Roth, 1948; Frieden and Naile, 1955; Jaffe, 1981; Kobayashi, 1958; Kikuyama et al., 1983; Krug et al., 1983; Leatherland, 1985; Galton, 1990; Gray and Janssens, 1990; Leloup-Hatey et al., 1990; Hayes et al., 1993; Kikuyama et al., 1993; Hayes, 1995a; Hayes, 1995b; Hayes, 1997b, and Hayes, 2000). These endocrine pathway interactions are described in more detail in the following sections. In summary, TH interactions with glucocorticoids include: 1) TH-induced production of corticoids by the interrenal gland, and 2) increased titers of T₃ via conversion from T₄. Both processes increase the activity of the thyroid axis. In contrast, sex steroids repress the activity of the thyroid axis directly opposite to the effect of the corticoids. TH interaction with gonadal steroid hormones include: 1) inhibition of T₄ to T₃ conversion, 2) establishment of a negative feedback mechanism at the pituitary level, ultimately slowing the production and secretion of TH. In addition, numerous hormone interactions with the thyroid axis may occur at the receptor level, including: 1)
corticoid enhancement of TH activity by facilitating binding to the TR (Niki et al., 1981; Suzuki and Kikuyama, 1983); 2) TH facilitation of steroid receptor induction in anurans (Hayes, 1997b), and 3) induction of TR synthesis by T₃ (Rabelo and Tata, 1993; Rabelo et al., 1994; Tata, 1994; Ulisse and Tata, 1994).

6.1.4 Significance of the HPT Axis as a Target for EDCs (portions excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays”)

301. Anthropogenic compounds, as well as naturally occurring chemicals, have the potential to disrupt the endocrine system of animals, including humans (Colborn and Clement, 1992). Among the anthropogenic contaminants suspected to interfere with vertebrate and invertebrate endocrine systems are the persistent, bioaccumulative organic compounds including pesticides, industrial chemicals, as well as some metals (Brucker-Davis, 1998). It is suspected that wildlife populations are already adversely affected by these compounds. Lister and Van der Kraak (2002) and McMaster et al. (2001) have summarized the potential impacts of EDCs in various wildlife which include, but may not be limited to: 1) thyroid dysfunction in birds, amphibians, and fish; 2) decreased fertility in birds, amphibians, fish, shellfish, and mammals; 3) decreased hatching success in birds, fish, alligators, and turtles; 4) gross birth defects in birds, amphibians, fish, and turtles; 5) metabolic abnormalities in birds, fish, and mammals; 6) behavioral abnormalities in birds; 7) demasculinization and feminization of male fish, amphibians, birds, and mammals; 8) defeminization and masculinization of female fish, amphibians, alligators, and birds; 9) and compromised immune system in birds and mammals.

302. The term “endocrine disruption” and the hypothesis that such agents exist in the environment that affect reproduction and development dates back to the late 1980s (Colborn and Clement, 1992; Kavlock et al., 1996). These authors described such effects in fish-eating birds, alligators, Great Lakes mink, frogs, invertebrates, and humans. They suggested that these chemicals served as agonists or antagonists to endogenous endocrine hormonal axes to disrupt the hormonal control of homeostasis, cellular differentiation, embryonic growth, and development, and notably included effects on reproductive organs and reproductive function. These agents were called endocrine-active chemicals (EACs), endocrine-disrupting chemicals (EDCs), or most popularly “endocrine disruptors” (EDs) (EDSTAC, 1998).

303. Reduced growth, reproductive dysfunction, abnormal behavior, and abnormal development from exposure to a variety of natural and anthropogenic chemicals in invertebrates, fish, amphibian, reptilian, avian, and mammalian species have been recently demonstrated (Lister and Van der Kraak, 2002; McMaster et al., 2001). Although EDCs are now thought to adversely affect development, reproduction, and general homeostasis in a wide variety of different taxa, several other issues complicate the evaluation of EDCs in vertebrate animals: 1) the chemicals of concern may have entirely different effects on the embryo, fetus, or perinatal organism than on the adult; 2) the effects are most often manifested in offspring, not in the exposed parent; 3) the timing of exposure in the developing organism is crucial in determining its character and future potential; and 4) although critical exposure occurs during embryonic development, obvious manifestations might not occur until maturity (Kavlock et al., 1996). It is also possible to have differing effects of the same compound in different species or tissues, presumably due to differences in receptors.

304. The influence of the hypothalamus on metamorphosis is mediated through induction of the release of TSH from the pituitary. TRH is responsible for inducing the secretion of TSH from the pituitary in a similar pathway found in most mammals (Shi, 2000). Historically, the importance of the hypothalamus in the control of metamorphosis has been demonstrated by hypothalactomy, pituitary transplant to a remote part of the body, or providing an impermeable barrier between the hypothalamus and the pituitary gland in frogs (Dodd and Dodd, 1976; White and Nicoll, 1981; Kikuyama et al., 1993; Kaltenbach, 1996, Denver, 1996). High concentrations of TRH have been detected in the brain and skin of
R. pipiens (Jackson and Reichlin, 1977). Further, in X. laevis and R. catesbeiana brain tissue, TRH levels have been found to increase throughout metamorphosis and metamorphic climax (King and Miller, 1981; Bray and Sicard, 1982; Millar et al., 1983; Balls et al., 1985; Mimnagh et al., 1987). However, a paradoxical relationship appears to exist between TRH and the rate of metamorphosis (Shi, 2000). More specifically, TRH is readily capable of inducing the release of TSH from the anuran pituitary. However, most experiments have not shown that administration of TRH accelerates metamorphosis (Dodd and Dodd, 1976; White and Nicoll, 1981; Denver and Licht, 1989; Kikuyama et al., 1993; Kaltenbach, 1996; Denver, 1993; 1996; 1998).

305. An important clue to the TRH paradox was uncovered by Denver and co-workers (Denver, 1988; and Denver and Licht, 1989) when these investigators found that mammalian corticotropin-releasing factor (CRF) stimulates the release of TSH. In mammals, CRF is responsible for inducing the secretion of ACTH. Further experimentation demonstrated that mammalian CRF is also capable of accelerating ACTH release from frog pituitaries (Tonon et al., 1986; Gracia-Navarro et al., 1992). Interestingly, ACTH does not induce the thyroid to produce TH (Sakai et al., 1991). CRF is now thought to act directly on the pituitary gland, stimulating the release of TSH (Denver 1988; Denver and Licht, 1989; and Jacobs and Kuhn, 1992). Because CRF is capable of raising TH levels in anurans and accelerating metamorphosis, and because the use of anti-CRF antibodies or CRF receptor antagonists slows metamorphosis, CRF appears to function as the mammalian surrogate of TRH and orchestrates regulation of the anuran pituitary at the hypothalamic level (Rivier et al., 1984; Gancedo et al., 1992). Anuran CRF genes in X. laevis are relatively homologous to mammalian CRF (ca. 93%) (Stenzel-Poore et al., 1992; Shi, 2000). CRF gene expression and the presence of CRF-expressing cells in the hypothalamus of X. laevis have not only been identified, but found to be TH-dependent (Verhaert et al., 1984; Olivereau et al., 1987; Gonzalez and Lederis, 1988; Carr and Norris, 1990; Stenzel-Poore et al., 1992). These findings generally agree with the suggestion by Denver et al. (1997) that a hypothalamic feedback loop exists at the pituitary level (Carr and Norris, 1990). Overall, the primary significance of this research is that CRF, not TRH, is the primary hypothalamic releasing hormone responsible ultimately for the induction of metamorphosis (Carr and Norris, 1990; Denver, 1996; Denver et al., 1997; Shi, 2000).

306. However, it should be noted that metamorphosis and, in some cases, thyroid function can be influenced by a combination of other biotic and abiotic factors beyond the realm of chemical stressors. These factors include temperature, water availability, crowding, light, diet, and environmental iodine levels (Dodd and Dodd, 1976). Amphibian larvae respond to changes in these factors through high levels of plasticity in the phenotypes (Stearns, 1989). Some factors that inhibit growth when present during premetamorphic stages are also capable of inducing rapid metamorphosis when present during prometamorphosis. These factors include crowding, resource limitation, habitat desiccation, and predation (Denver, 1997a; Denver, 1998). Temperature also affects the rate of metamorphosis such that greater temperatures stimulate the rate of metamorphosis (Hayes et al., 1993), whereas lower temperatures slow down TH-induced metamorphosis (Dodd and Dodd, 1976). The effects of temperature may be due to reduction in TH binding at the tissue level, changes in neuroendocrine control of TH synthesis, or more generalized effects on metabolism (Tata, 1972; Dodd and Dodd, 1976). Biotic factors, which alter the rate of metamorphosis, such as the synergistic effects of corticosteroids on TH-induced metamorphosis, must also be considered. Overall, it must be understood that the link between the thyroid axis and metamorphosis can be influenced by several different forms of extraneous factors as occurs in many other developmental processes.
6.2 Hormone Synthesis

6.2.1 Anatomy of the Amphibian Thyroid

Generally, the vertebrate thyroid is a highly conserved structure. In amphibians, the thyroid glands exist as a paired set of masses of highly vascularized follicles encased by a connective tissue capsule. Follicular structure and function are highly mammalian-like.

6.2.2 Development of the Amphibian Thyroid

To facilitate the description of the morphological development of the thyroid, a comparison between Xenopus development and development in Rana is provided in Table 6-1. The thyroid gland in most amphibians develops during late embryogenesis (Dodd and Dodd, 1976; Regard, 1978).

In X. laevis, the thyroid develops from a pharyngeal epithelial ridge around NF stage 35 (Nieuwkoop and Faber, 1994). Following division of the thyroid, follicular development is first present by NF stage 44. A functional thyroid gland with numerous follicles is present by NF stage 53. Follicular development continues resulting in growth of the gland throughout prometamorphosis. Concurrently, TH synthesis and secretion into the circulatory system increases in preparation for metamorphosis and peaks with a surge at the onset of metamorphic climax. After metamorphosis is complete, the thyroid gland regresses in size and reduced levels of circulating TH are present. Two naturally occurring TH: 1) 3,5,3',5'-tetraiodothyronine (T₄ or thyroxine), and 2) 3,5,3'-triiodothyronine (T₃) have been found in anuran species. Based on nearly 100 years of research, the effect of TH on amphibian metamorphosis is no longer debated, although research in understanding the functional mechanisms and interaction with other hormonal pathways continues today (Gudernatsch, 1912; Allen, 1916; Allen, 1929; White and Nichol, 1981; Tata, 1968; Dodd and Dodd, 1976; Brown et al., 1995; Shi, 2000).

6.2.3 Regulation of TH Synthesis by TSH

The pituitary hormone thyrotropin (or thyroid stimulating hormone [TSH]), produced and secreted by the par distalis region of the pituitary gland, is primarily responsible for inducing the production and release of TH from the thyroid gland (Shi, 2000). TSH production and release is controlled via negative feedback at the pituitary level (Dodd and Dodd, 1976; White and Nicoll, 1981; Kikuyama et al., 1993; Kaltenbach, 1996; Denver, 1996). Although traditional measures of plasma TSH have not been successful in amphibians due to a lack of sensitivity in the assay, Sakai et al. (1991) found that both purified frog and purified bovine TSH stimulated the release of T₄ from the thyroid gland. In hypophysectomized X. laevis tadpoles, Dodd and Dodd (1976) estimated TSH levels in crude pituitary extracts during development using radiiodine uptake. This work suggested that TSH was detectable at trace levels during metamorphosis (Nieuwkoop and Faber [NF] stage 56), but increased markedly at the onset of metamorphic climax (NF stage 59). In these studies, a decrease in pituitary TSH levels at stage 61 followed by a spike in pituitary TSH at stage 62 was found. Thus, increasing levels of TSH occur during metamorphosis when TH is required. Coincidently, the drop in pituitary TSH production occurs simultaneously with peak TH levels and appears to be the result of increased release of TSH from the pituitary. An understanding of this process at the molecular level has been achieved as the result of the production of complementary DNAs (cDNAs) coding for TSH in X. laevis (Buckbinder and Brown, 1993). Buckbinder and Brown (1993) essentially found that messenger RNA (mRNA) levels during metamorphosis indicated that TSH genes were activated around NF stage 53, immediately prior to the first stage in which pituitary TSH levels are detectable. TSH levels peak at approximately NF stages 58 or 59, and drop to appreciably lower levels toward the conclusion of metamorphosis (Dodd and Dodd, 1976; Shi, 2000). TSH gene repression subsequent to stage 59 coincides with high levels of plasma TH. This finding is consistent with a TH-induced negative feedback loop at the pituitary or hypothalamic levels.
Table 6-1 Comparative Larval Anuran Stages (excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays” with modification)

<table>
<thead>
<tr>
<th>Specie Stages</th>
<th>Morphological Landmarks</th>
<th>Metamorphic Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. laevis⁵</td>
<td>I</td>
<td>26</td>
</tr>
<tr>
<td>R. pipiens⁶</td>
<td>II</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>XI</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>XII</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>XIII</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>XIV</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>XV</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>XVI</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>XVII</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>XVIII</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>XIX</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>XX</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>XXI</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>XXII</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>XXIII</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>XXIV</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>XXV</td>
<td>46</td>
</tr>
</tbody>
</table>

⁵ Nieuwkoop and Faber (1994)
⁶ Taylor and Kollros (1946)
⁷ Gosner (1960)
⁸ Dodd and Dodd (1976)
6.2.3.1 TSH Biochemistry

311. Interestingly, Dodd and Dodd (1976) and Kikuyama et al. (1993) found a relatively high degree of homology between anuran TSH cDNA and mammalian species. In amphibians, TSH is a glycoprotein comprised of two polypeptide subunits (α and β). The α subunit is consistent structurally with other proteinaceous hormones including FSH and LH, whereas the β subunit confers specificity to TSH (Pierce and Parsons, 1981; Kaltenbach, 1996; Denver, 1996).

6.2.3.2 TSH Genes

312. TSH genes have been cloned (cDNAs) in X. laevis (Buckbinder and Brown, 1993) encoding for both subunits and used as a diagnostic tool to measure the time course of expression through metamorphosis. This clone was prepared using a heterologous probe derived from rat TSHα and TSHβ. The clones (longest sequence 578 nt for TSHα and 445 nt for TSHβ) were sequenced (GenBank Accession No. L07619 and L07618) and found to contain an open reading frame of 122 and 129 amino acids with ca. 72% and 62%, 71% and 60%, and 69% and 60% homology to mouse, rat, and cow, respectively. Buckbinder and Brown (1993) found that expression of both subunits was in parallel and occurred between NF stages 54 and the conclusion of metamorphic climax with a peak expression around NF stages 58/59. A single mRNA species of ca. 700 bases was detected for TSHα, whereas TSHβ consisted of three hybridizing species of 4.4, 2.4, and 0.7 kb expressed in similar abundances. Further work identified that the two larger TSHβ were extensions at the 3’end and that each of the three mRNAs differed only in the poly(A) site. Greenspan (1997) and Collingwood et al. (2001) have shown that in contrast to a majority of TR-regulated genes in which up-regulation of promoter activity is controlled by TH, the TSHα promoter is regulated by a negative feedback loop in which the unliganded TR activates expression and the addition of TH results in repression. Collingwood et al. (2001) further demonstrated that regulation of TSHα expression was mediated through control of its promoter via chromatin remodeling induced by TR.

6.2.3.3 TSH Receptor and Signal Transduction

313. Parmentier et al. (1989) cloned the thyrotropin receptor and found that of 11 putative receptor clones, one clone was distinct and contained a domain encoding a 4.9 kb thyroid specific transcript. The polypeptide associated with this transcript consisted of a 398-amino acid residue (amino terminus) constituting a putative extracellular domain connected to a 346 amino acid residue domain on the carboxy terminus that contained a series of transmembrane segments. Expression of the cDNA conferred TSH-responsiveness in the Xenopus oocytes, Y1 cells, and a TSH-binding phenotype to COS cells. These studies demonstrated that the TSH receptor (as well as the LH receptor) constitute a sub-family of G protein-coupled receptors with distinct sequence characteristics. Thus, signal transduction proceeds via a G-protein mediated messenger cascade.

6.2.4 Thyroglobulin Synthesis

314. Essentially thyroglobulin and iodoprotein synthesis is similar in all vertebrates (Norris, 1996). As in mammals, thyroglobulin synthesis occurs in the rough endoplasmic reticulum and is packaged into secretory granules by the Golgi apparatus. The synthesis of TH occurs in follicular cells and involves the synthesis of thyroglobulin and the binding of inorganic iodide to the thyrosine residues. The final step links two iodinated tyrosine residues contained within the thyroglobulin molecule to form the iodinated TH. Since no tRNA for iodinated tyrosine residues have been found in follicular cells and the process of iodination is thought to occur at the cell-colloid interface, non-iodinated tyrosine residues appear to be incorporated into the thyroglobulins first (Norris, 1996).
315. In herpetiles, the majority of the thyroidal iodoproteins are 19S (84%), with approximately 12% as 12S, and 4% as 27S. Generally, the invertebrate and lower vertebrate iodoproteins are primarily <12S or 12S, with increasing S values with advanced phylogeny (Norris, 1996). A 33S mammalian mRNA was found to promote synthesis of an immunologically related thyroglobulin (10S, with a MW of 185,000 daltons) in *Xenopus* (Vassart et al., 1975a and b). Five major thyroglobulins have been identified in most vertebrate species: >300 K, 210-280 K, 30-42 K, 19-28 K, and 10-23 K (Kim et al., 1984). Of these categories, the two smallest had 40-80% of their iodine as iodothyronine, compared to 15-20% for the parent thyroglobulins. Dual iodide isotope injection indicated that the larger peptides decreased in both MW and in iodine content whereas the sum of the smaller iodopeptides increased, suggesting that the larger thyroglobulins served as precursors for the smaller peptides.

6.2.5 Regulation of Iodine Uptake

316. The primary source of iodide in amphibians is dietary and the water supply. Inorganic iodide is absorbed from the gastrointestinal tract or the gills in larval amphibians into the circulatory system. As in mammals, the follicular cells of the thyroid gland selectively accumulate iodide (Norris, 1996). Iodide is co-transported with Na⁺ at the basal membrane and passively diffuses across the apical membrane into the colloid. Translocation of inorganic iodide from the apical surface and conversion to organic forms, such as the iodinated tyrosines, enhance the iodide uptake process. The follicular iodide transport process is dependent upon an ATPase-related mechanism and is not affected by other halide anions. More specifically, the Na⁺/I⁻ symporter (NIS) is reported to be an intrinsic membrane protein (618 amino acids and 65.2 kDa) with 12 putative membrane domains (Levy et al., 1997). These investigators further identified a direct correlation between circulating levels of TSH and NIS expression *in vivo* in rats. Ultimately, this process effectively concentrates iodide in the follicular cells relative to the plasma. It is anticipated that similar processes exist in metamorphosing amphibians (Norris, 1996). The oocytes of oviparous vertebrate animals, including some amphibians, readily accumulate large amounts of iodide. This process ensures that the developing larvae has adequate iodide required for the synthesis of TH until adequate dietary sources are available. Although iodide is accumulated throughout most of larval development, the release of TH is not necessarily related to the uptake of iodide since uptake, binding, and release of TH are independent events controlled by a variety of different factors.

6.2.6 Mechanism of Iodine Organification

317. Organification of iodide is initiated with the conversion of inorganic iodide to an active iodide which can be incorporated into the phenolic ring of tyrosine. As in mammals, the exact chemical structure of active iodide is unknown. Active iodine is apparently formed in the colloid compartment by peroxidases located on the extracellular side of the apical membrane of follicular cells which produce hydrogen peroxides. Peroxides react with iodide to form active iodide which reacts with tyrosine residues of thyroglobulin. The binding of one iodine atom to tyrosine at the 3 position produces 3-monoiodotyrosine (MIT). A second iodine atom may attach at the 5 position of the same tyrosine molecule giving rise to 3,5-diiodotyrosine, or DIT.

6.2.7 Thyroglobulin Storage

318. The specific mechanism by which THs are formed from the iodinated tyrosine residues is unknown. The coupling process in which two DIT molecules, or one DIT and one MIT molecule, results in the formation of THs, 3,5,3',5'-tetraiodothyronine (T₄) or 3,5,3'-triiodothyronine (T₃). This coupling process follows hydrolysis of selected peptide bonds to release small peptide fragments of 15-20 kDa from thyroglobulin. The combination of the adjacent residues in the folded, globular thyroglobulin molecular fragment and the peptide fragment result in the coupling process.
6.2.8 Interdependency of Synthetic Events

319. As previously indicated, although iodide uptake, iodothyronine synthesis, and TH release are controlled by TSH, the activities are not directly linked to one another. TSH independently stimulates engulfment of colloid by the follicular cells and intracellular hydrolysis to MIT, DIT, and THs.

6.3 Thyroid Hormone Release

320. As in mammals, TH release is the ultimate result of hydrolysis of thyroglobulins (Norris, 1996). Engulfed colloid droplets acquired through endocytosis migrate from the apical portion of the follicular cells toward the basal region and adjoin regional lysosomes. Fusions of the colloid droplets with the lysosomes form endolysosomes which catalyze hydrolysis of the thyroglobulins. Ultimately, the endolysosomes become increasingly degranulated and result in the release of the hydrolysis products into the cytosol. Although amino acids, MIT, DIT, and THs are potentially released during the hydrolysis, only T3 and T4 effectively diffuse from the follicular cell into the surrounding capillary network as cytoplasmic deiodinases catalyze conversion of MIT and DIT to tyrosine and iodide. Iodide released from thyroid deiodinated T4, MIT, and DIT forms a pool of second or waste iodide in the follicular cell that can then be used in the iodination of newly produced thyroglobulin. This process provides a means of conserving iodide in the thyroid.

321. The primary active THs, T4 and T3, are synthesized directly in the thyroid gland. Metabolic conversion of T4 to T3, however can occur in other tissues (Fox, 1983; Dodd and Dodd, 1976). TH synthesis is initiated by up-regulation of the thyroglobulin gene in the thyroid, which consequently produces thyroglobulin, the precursor of T4. An intricate set of post-translational modifications, including iodination and condensation of the tyrosine residue to produce T4, is then required. T4 can either be secreted into the plasma from the thyroid gland, or directly converted to T3 in the thyroid by 5’-deiodinase. Both T4 and T3 can be selectively inactivated by 5-deiodinases by converting TH to either T2 or reverse T3, respectively. This allows different tissues to possess different ratios of T3 to T4 depending on their specific requirements. St. Germain and Galton (1997) located two different 5-deiodinases in anurans that have different enzymatic properties and tissue distributions. Differing deiodinases have been isolated and cloned in R. catesbeiana (Davey et al., 1995; Becker et al., 1995) and X. laevis (St. Germain, 1994). Each different isoform was found to have distinctly different regulation patterns in different tissues, thus supporting the hypothesis of TH level regulation at the tissue level.

6.4 Regulation of Serum Thyroid Hormone

6.4.1 Measures of Thyroid Hormone and Their Interpretation

322. Measurement of TH, specifically T4 and T3, produced by the thyroid provides a valuable measure of thyroid status during metamorphosis. Both T4 and T3 can be measured using conventional serum or tissue RIAs. Both serum and tissue (whole brains, thyroid, or carcass following cardiac puncture to obtain serum) should be considered. Three different methodologies of TH analysis are currently being evaluated, 1) high sensitivity RIA, 2) ELISA, and 3) liquid chromatography/gas chromatography with mass selective detection (LC/GC-MS). The former two techniques are reasonably well established in mammals (Ekins, 1999; Baiser et al., 2000), and to a lesser extent in amphibians (Galton et al., 1991). The chromatographic technique is not as well established (Moller et al., 1983; De Brabandere et al., 1998), but has significant promise, because it may be able to simultaneously analyze moniodotyrosine (MIT), diiodotyrosine (DIT), reverse T3, T3, and T4. In some cases it will be important to measure the concentration of free T4 and T3 in relation to the transport protein-bound TH, since the majority of TH is protein bound (Baiser et al., 2000).

Simon et al. (2002) has recently described a new approach for the analysis of iodinated organic species in serum and whole body tissue homogenates using liquid chromatography-inductively coupled plasma-mass
spectrometry (LC-ICP-MS). This method enabled the simultaneous quantification of iodide, T₄, T₃, rT₃, MIT, DIT, as well as, five additional presently unidentified iodinated molecules in Xenopus larvae. Overall, TH analysis will be an important component of the Amphibian Metamorphosis Assays. However, the most beneficial use of TH analysis will be in combination with the histological, morphological, and molecular test methods used. It is possible, but unlikely, that TH analysis alone will provide sufficient information to be a stand-alone measure of thyroid dysfunction.

6.4.1 Total Thyroglobulin

323. Suzuki and Fujikura (1994) used a double antibody RIA method to measure total thyroglobulin in tadpoles and adult R. catesbeiana. These investigators found that levels of serum thyroglobulin increase during pre- and prometamorphosis and reach a peak of nearly 480 ng/mL at the onset of metamorphic climax. Thyroglobulin levels decreased slowly toward the end of metamorphosis with the lowest levels recorded in juvenile animals (ca. 150 ng/mL). Adult serum thyroglobulin levels typically range between 250 and 275 ng/mL. Overall, these levels are generally greater than those found in mammalian species and birds.

6.4.1.2 Total T₄ and T₃

324. Most TH analysis in amphibians is based on total levels in plasma or whole tissue using RIA analysis which is reasonably reliable and sensitive. Detection limits for T₄ and T₃ are typically <50 ng/100 mL and <5 ng/100 mL, respectively. In anurans (R. pipiens, R. catesbeiana and B. marinus), a gradual rise in both T₄ and T₃ occurs during metamorphosis with a spike occurring in both at the onset of metamorphic climax. Peak levels are measured near the midpoint of metamorphic climax. During this time, circulating T₃ levels range from 75-100 ng/100 mL which is 15- to 20-times the levels measured during premetamorphosis, whereas T₄ levels range from 0.4-0.5 µg/100 mL which is ca. 7- to 10-fold greater than levels recorded during premetamorphosis. These levels both decrease sharply immediately following the conclusion of metamorphic climax. Although differences in baseline levels were reported, similar levels of T₄ and T₃ were detected by Valamparampil and Oommen (1997) in the tropical anuran, R. curtipes.

6.4.1.3 Free T₄ and T₃

325. Free levels of plasma T₄ and T₃ followed the same general pattern as the total TH at the various stages examined (Regard et al., 1978). Galton (1980) found that <1% of total serum T₃ and T₄ and 0.5% of the total T₃ and T₄ in the cytosolic fraction were in the free form. In either case, both the free and total TH levels in adult anurans are remarkably low compared to levels measured during metamorphosis.

6.4.2 Thyroxin Binding Proteins in Amphibians

326. The action of TH during development is regulated at many different levels, due in part to the presence of numerous TH binding proteins in the plasma, cytosol, and nucleus. Since many of the proteins with which TH interacts are cytosolic and many of the effects occur at a non-genomic level, it was originally thought that TH acted through cytosolic actions (Davis and Davis, 1996). However, today more evidence exists that TH acts at the nuclear level mediating gene regulation via nuclear-based TR (Tata and Widnell, 1966; Tata, 1967; Oppenheimer, 1979). TH secreted from the thyroid is carried in the plasma to various tissue by various serum TH hormone binding proteins. At least nine cytosolic and plasma proteins are known to transport TH, although several are more significant factors (Shi, 2000).

327. In the serum, TH immediately encounters serum binding proteins, the most notable of which is transthyretin (Yamauchi et al., 1993), which transport TH to the target tissues where TH enters the cytosol (Jorgensen, 1978; Barsano and DeGroot, 1983; Galton, 1983; Benvenga and Robbins, 1993). Cellular uptake mechanisms are not well understood. T₃ and T₄ are relatively hydrophobic at physiological pH (Shi,
Thus, passive diffusion through the cell membrane is a possible route. However, some evidence suggests that a carrier-mediated transport process involving translocation of both the TH transporter and TH is possible (Blondeau et al., 1988; Oppenheimer et al., 1987; Robbins, 1992; Ribeiro et al., 1996; Benvenenga and Robbins, 1993). Within the cytoplasm, TH interacts with a separate group of multifunctional proteins, collectively referred to as CTHBP (cytoplasmic TH binding proteins) (Cheng, 1991). It is presently unclear whether the TH-CTHBP complex is required for activation of the nuclear TRs, or whether it only provides a means of transport to the TR.

6.4.2.1 Thyroxin Binding Globulin (TBG) and Transthyretin

TBG represents one of four plasma TH binding proteins that have been identified in amphibians (Shi, 2000). Although most of the cytosolic transport proteins are multifunctional (i.e., aldehyde dehydrogenase), the plasma proteins including TBG and TTR are reasonably specific and at least TTR plays a major role in the TH transport process. Although it was originally thought that the role of TH protein binding in the plasma was to prevent the loss of the highly lipophylic hormones, the circulating concentrations of bound TH are markedly less than the solubility of the THs suggesting that this is not the case (Schreiber and Richardson, 1997). In mammals, TBG, transthyretin, and albumin represent the primary THBP each with a greater affinity for T₄ than T₃. Small eutherians, some marsupials, and birds utilize albumin and TTR as the primary TH distribution proteins (Richardson, et al. 1994). Albumin is the primary TH transporter in reptiles. In amphibians, however, TTR play the greatest role in TH transport. Further, in lower vertebrates, including amphibians, these TH binding proteins have a greater affinity for T₃ than T₄ which may serve as an evolutionary adaptation (Chang et al., 1999).

In higher vertebrates, TTR is synthesized and secreted by the choroids plexus, with the exception of amphibians and reptiles, and is synthesized in the liver of endothermic animals (Yamauchi et al., 1993 and 1998). Compared to TTRs from other vertebrate species, bullfrog TTR is highly conserved at the TH binding sites and other important structural regions of the subunits. Yamauchi et al. (1998) found bullfrog TTR in the liver, but not the choroids plexus of metamorphosing larvae, as opposed to lipocalin, which is produced and secreted by the adult choroids plexus, but not the liver, in adult amphibians (Achen et al., 1992). From an evolutionary standpoint, the synthesis of TTR in the metamorphosing tadpole liver preceded that of the choroids plexus in reptiles, birds and mammals. Further, production of lipocalin in choroids plexus of amphibians was replaced by TTR in higher vertebrates. As with bullfrog TTR, TTR in X. laevis was found to be reasonably homologous with other vertebrate TTR (Prapunpoj et al., 2000). Further, TTR expression was found in the liver of metamorphosing larvae, but not in the brain, or in adults. Prapunpoj and co-workers (2000) evaluated the structure and binding characteristics of recombinant xTTR. Structural difference in the regions of the TTR genes coding for the amino terminal sections of the polypeptide chains of TTR have incorporated step-wise shifts of mRNA splicing sites between exon 1 and 2, ultimately resulting in a shorter and more hydrophilic amino terminus. This more primitive structure may account for preferential binding of T₃ over T₄ to xTTR. However, increased preference for T₄ binding to TTR in higher vertebrates, including mammals, may be associated with evolving tissue-specific regulation of TH action by deiodination processes (Prapunpoj et al., 2000).

6.5 Thyroid Hormone Transport into Tissues

6.5.1 Kinetics of Thyroid Hormone Uptake

Galton et al. (1986) evaluated the kinetics of TH uptake in red blood and thymus cells in larval amphibians. Both cell types contained 3-5 times greater levels of T₃ than T₄. These investigators found that the uptake of T₃, but not T₄, was facilitated by a carrier-mediated process, although not necessarily by an active transport mechanism. More recently, Friesema et al. (1999) evaluated the potential of the Na+/taurocholate (NAT) co-transporting peptide and the organic anion transporting peptide in the hepatic
uptake of T₄, T₃, rT₃, and T₂ in X. laevis. Both uptake processes were found to participate in TH and TH precursor/metabolite uptake in the liver. Other TH transporters including analogues to the rat fatty acid translocase (rFAT) (van de Putten et al., 2003) and monocarboxylate transporter 8 (MCT 8) (Friesma et al., 2003) may also play a role in TH tissue transport in amphibians.

6.5.2 Cloning of T₄ and T₃ Transporters

Each of the transporters described in the preceding section, including the NAT, rFAT, and MCT 8 have been cloned from mammals in Xenopus.

6.6 Conversion of T₄ to T₃

6.6.1 Overview of Deiodinases in Amphibians

Two deiodinase isoforms are present in most anurans. One isoform, type II (D2), catalyzes the conversion of T₄ to T₃ in the thyroid and various target tissues, whereas the other isoform, type III (D3), selectively inactivates T₃ and T₄ by converting them to T₂ and reverse T₃ by removing an iodide atom from the inner ring of the hormone (Huang et al., 1999). It is thought that type III deiodinase in anurans (X. laevis) is responsible for protecting the tissues from circulating TH. Koopdonk-Kool et al. (1993) developed a method for measuring deiodinase activity by measuring the conversion of [¹²⁵I]T₃ to T₂. In most cases deiodinase activity is not considered in evaluating thyroid function; however, differences in tissue levels of T₄ and T₃ can in some cases be explained by differing deiodinase activities. Further work will be required to fully determine the usefulness of deiodinase measurement in evaluating thyroid dysfunction.

6.6.2 Expression and Regulation of D2

Huang et al. (2001) suggested that the orchestration of metamorphosis and the initiation of the negative feedback loop between the thyroid gland and the pituitary are controlled by D2. The control of TH-induced changes at the tissue level is based on the extent to which variable local levels of deiodinase in one tissue can influence the T3 concentration of another tissue. If the generation of T₃ from T₄ which is catalyzed by D2 is provided for local use only, then D2 could play a significant role in the sequential timing of metamorphic change. Limb buds and tails express D2 activity early and later in metamorphosis, respectively, corresponding with the time these tissues undergo metamorphic alteration. At the climax of metamorphosis, D2 expression is activated in the anterior pituitary cells responsible for the production of thyrotropin, but not in the cells that produce proopiomelanocortin (Huang et al., 2001). Physiological concentrations of T₃, but not T₄, are capable of repressing the expression of TSH subunit β. The timing and specificity of D2 expression in the thyrotrrophs of the anterior pituitary, in addition to the need for locally synthesized T₃ (tissue autonomy), suggest that D2 orchestrates the negative feedback loop at the climax of metamorphosis.

6.6.3 Expression and Regulation of D3

Like D2, D3 also provides a means of mediating hormone activities associated with metamorphosis. However, in the case of D3, Shintani et al. (2002) have suggested that tissue-specific regulation of D3 gene expression is capable of mediating the effects of PRL and GH on metamorphosis in Xenopus. As suggested earlier in this chapter, PRL and GH both act as anti-metamorphic hormones. Further study has suggested that both hormones are also capable of inducing expression of D3 which in turn inactivated THs. On the contrary, both PRL and GH have been shown to down regulate D3 expression in the liver of Xenopus. Using whole cultured Xenopus tadpole tails, Shintani et al. (2002) demonstrated that the D3 inhibitor iopanoic acid reversed the inhibition of tail resorption by PRL. High concentrations of PRL receptor and D3 mRNA were found in the cultured tails. Combined with the
previous data, these results suggest that actions of PRL on metamorphic events is at least partially mediated by tissue-specific expression of D3 mRNA.

6.6.4 Role of Deiodinases in Controlling Tissue Sensitivity to Thyroid Hormone

As previously indicated, D2 appears to play a significant role in establishing tissue sensitivity to TH (T3) through a process of local hormone production and tissue autonomy, and through the activation of negative feedback between the thyroid gland and the pituitary. D3 is also capable of regulating metamorphic events, but appears to do so by responding to induction by antimetamorphic hormones (PRL and GH).

6.7 Thyroid Hormone Action

The action of TH during development is regulated at many different levels, due in part to the presence of numerous TH binding proteins in the plasma, cytosol, and nucleus. Since many of the proteins with which TH interacts are cytosolic and many of the effects occur at a non-genomic level, it was originally thought that TH acted through cytosolic actions (Davis and Davis, 1996). However, today more evidence exists that TH acts at the nuclear level mediating gene regulation via nuclear-based TR (Tata and Widnell, 1966; Tata, 1967; Oppenheimer, 1979). TH secreted from the thyroid is carried in the plasma to various tissue by various serum TH hormone binding proteins. At least nine cytosolic and plasma proteins are known to transport TH, although several are more significant factors (Shi, 2000). The pathway and interactions of thyroid hormones are effectively illustrated in Shi (2000).

6.7.1 Overview of Thyroid Hormone Receptors (TRs) in Amphibians

Diploid vertebrate animals, including X. tropicalis, possess two TR genes (TR alpha and TR beta) (Lazar, 1993). X. laevis, which is oligotetraploid, possess four TR genes, two TR alpha and two TR beta (Mangelsdorf, et al., 1995). Alternative splicing of the TR beta transcripts gives rise to two different isoforms in higher vertebrates and four different isoforms in X. laevis (Brooks et al., 1989; Yaoita et al., 1990). TRs belong to the superfamily of nuclear hormone receptors, including glucocorticoid, estrogen, vitamin D, and retinoic acid receptors (Evans, 1988; Tsai and O’Malley, 1994; Yen and Chin, 1994).

6.7.2 Expression and Regulation of Alpha and Beta TRs

TR alpha is expressed in the early X. laevis larvae prior to the development of the thyroid gland (Yaoita and Brown, 1990; Banker et al., 1991). TR alpha has been suggested to play a significant role in the repression of T3 response genes prior to the onset of metamorphosis. Increasing TR beta levels, however, coincide with increases in TH levels and reach maximum concentrations during metamorphic climax. Early T3 response genes, such as basic transcription element binding protein (BTEB) and TR beta appear to be controlled primarily by TR alpha (Furlow and Brown, 1999). Genes expressed in the intermediate zone, such as the basic region leucine zipper transcription factor (TH/bZIP), or late kinetics, including various protease genes, appear to be controlled by TR beta. Further, different tissues display various activities. For example, during metamorphosis growing limbs have low TR beta, but display higher expression levels of TR alpha. The regressing tail, displays the opposite TR expression profile (Wang and Brown, 1993; Eliceiri and Brown, 1994).

However, since expression of both subtypes occur during development, specific confirmation of the roles of TR alpha and TR beta is difficult. Lim and Furlow (2002) used ribozymes (RNA with specific RNA cleaving activity) to evaluate the specific role of each TR subtype. These investigators specifically demonstrated that TR beta-targeted ribozymes are capable of inhibiting T3-induced transcription of a reporter gene in cultured X. laevis cells using a T3 response element (TRE) from two T3-responsive transcription factor genes. The first transcription factor genes exhibited early expression kinetics in response to T3 and
is proposed to be TRα regulated, whereas the latter displayed intermediate induction kinetics and is at least partially regulated by TRβ.

340. Using a dominant negative TRα X. laevis mutant, Buchholz et al. (2003) demonstrated that the dnTR transgenic line blocked T3-induced metamorphosis at the onset of prometamorphosis (NF stage 54) and that dnTR inhibited the expression of TH response genes. These investigators used chromatin immunoprecipitation to show that the dnTR bound to the endogenous TH response genes when the larvae were exposed to exogenous T3. Reduced histone acetylation was found with the assay which suggested that gene activation was not occurring in response to T3 administration in the dnRT mutants. These studies provided the most direct evidence that T3-induced metamorphosis requires TRE binding by TR, release of specific co-repressors and subsequent modification of chromatin.

6.7.3 Mechanism of TR Action

341. In general, the TR contains five different binding domains, A/B, C, D, E, F (amino to carboxy terminus), which are reasonably consistent within this class of nuclear receptors (Shi, 2000). The amino terminus (A/B domain) of the TR alpha A/B and TR beta-B2 TR isoforms specifically contains the AF-1 domain, which appears to be involved in T3-independent recruitment of specific co-activators. Thus, ligand-independent activation of transcription by at least the TR beta-B2 isoform may be mediated by the binding of specific co-factors to the AF-1 region of the A/B domain (Obertse-Berghaus et al., 2000; Yang and Privalsky, 2001). DNA binding occurs in domain C. The C domain is highly conserved amongst nuclear receptors. Domain D is the variable hinge region which contains a nuclear localization signal and influences both DNA binding and transactivation through co-repressor binding (Giguere et al., 1986; Godowski et al., 1988; Hollenberg and Evans, 1988; Picard and Yamamoto, 1987; Guiochon-Mantel et al., 1989; Uppaluri and Towle, 1995; Puzianowska-Zunicka et al., 1997). Domain E and F are the ligand, or hormone binding and transactivation domains. The carboxy terminus, or region F, contains the AF-2 domain. The AF-2 domain has been found to be a binding site for specific co-activators containing the LXXLL motif of liganded TR (Obertse-Berghaus et al., 2000; Heery et al., 1997; Langlois et al., 1997). TR is presumed to form a heterodimer with the retinoic acid X receptor (RXR). The heterodimer binds to the TH response element in a target gene. In the absence of TH, the heterodimer represses gene transcription, most likely through the recruitment of a co-repressor complex (Horlein et al., 1995; Chen and Evans, 1995).

6.7.4 Mechanisms Controlling Pleiotropic Actions of Thyroid Hormones

342. The various mechanisms by which the pleiotropic actions of THs are controlled are evident throughout the network of organization associated with metamorphic program described in the preceding sections. These actions are ultimately controlled at three levels, 1) CNS (including pituitary and hypothalamus), 2) thyroid, and 3) TR. More specifically, specific modes of actions of could potentially include TH synthesis, TH transport, TH elimination, neuro-endocrine (H-P) axis regulation, and TR expression and/or function. Control at the pituitary level is complex since it may involve thyrotropes (TSH), corticotropes (ACTH), and lactotropes (prolactins). The liver plays a role in T4 and T3 homeostasis, notably in TH metabolism elimination. Similarly, TH transport proteins may play a significant regulatory role in the control of pleitropic actions THs.

6.8 Thyroid Hormone Metabolism

343. The metabolism of THs in amphibian larvae have been evaluated using the use of dual isotope labeling of T3 and T4 to minimize the effects of non-specific deiodination and to identify conjugated forms of the THs (Ashley and Frieden, 1971). Retention studies indicated that in R. catesbeiana larvae, T4 is retained for a longer period than T3. Significant differences in metabolism of THs were also found. T3
was found to be extensively conjugated and excreted as sulfate or glucuronide conjugate. However, T₄ was not extensively conjugated. During metabolism, deiodination was minimal with either TH, except during enterohepatic circulation of T₄. Friesema et al. (1998) also found that THs (T₂>T₃>rT₃>T₄) can be extensively sulfated via sulfotransferases. Unlike the glucuronide conjugates which are extensively excreted in the bile, sulfate conjugation has been shown to facilitate deiodination of iodothyronines by D1 in mammals. Since D1 is not a primary pathway in amphibians, the role of sulfation in lower vertebrates is presently unknown.

344. Cole and Little (1983) evaluated the role of bile pigments and bilirubin UDPGTs during the metamorphosis of R. catesbeiana tadpoles. These investigators found that the major bile pigment in this species was bilirubin Iα (biliverdin was also measured in the bile) which increased in the bile and the plasma during metamorphosis. UDPGT activity was measured in the livers of premetamorphic larvae; however, naturally metamorphosing tadpoles showed slight increases in activity. T₃-stimulated specimens demonstrated at least 2-fold increases in UDPGT activity.

6.9 Dynamic Relationships among Levels with the HPT Axis

345. Three levels of TH feedback on the HPT axis exist within most anuran system (Shi, 2000; Denver, 1996; Kaltenbach, 1996). Essentially, TH exerts negative feedback on the pituitary and in some cases at the level of the hypothalamus. TH is also capable of exerting positive feedback on both the hypothalamus and on the CNS. In amphibians TH compensation may occur through positive feedback at the hypothalamic level. In such cases, including those in which the TH synthesis is specifically inhibited at the thyroid level, the hypothalamus compensates by releasing CRF, inducing TSH synthesis and release from the pituitary. Follicular hypertrophy and metamorphic inhibition as the result of TH synthesis inhibitors has been observed in Xenopus laevis (Fort et al., in press). Generally during metamorphosis, most notably climax, TSH levels rise sharply in the pituitary around NF stage 58/59 immediately prior to the onset of climax. This rise is followed by a subsequent decrease in pituitary TSH at NF stage 61 marking release of TSH. A sharp increase in plasma TH is coincidently observed (Leloup and Buscalglia, 1977; Dodd and Dodd, 1976).

6.10 The Role of TH in Amphibian Development and Reproduction

346. The role of TH in amphibian development through metamorphosis is extensively described in the preceding sections and in DRP 2-20 (4-5), “Amphibian Metamorphosis Assays”. The role THs play in amphibian reproduction is presently unclear, although it is generally thought that the role of TH in adult amphibians is greatly diminished in relation to that during metamorphosis.

6.10.1 Serum TH in Relation to Reproductive Status

347. In the adult anuran, the status of the HPT axis varies with season. Adult anurans produce relatively high levels of TRH. In fact these levels are great enough, that sources outside of the hypothalamus, including the skin, may be involved. As previously discussed in metamorphosing amphibian larvae, the role of TRH is uncertain as CRF is the primary thyrotrope releasing factor. GnRH is more potent than TRH in stimulating production of T₃ in R. ridibunda in November (Jacobs et al., 1988). However, by February, GnRH is virtually ineffective at inducing increased synthesis of T₄. It is likely that this effect of GnRH is species-specific and temperature dependent. In R. pipiens, TRH levels are lower in the spring and summer than in the autumn or winter (Jackson et al., 1977). Pituitary thyrotrophs and follicular cells of the thyroid demonstrate a similar seasonal pattern (Rosenkilde, 1979). At the level of the thyroid, the seasonal pattern exists; however, interpretation is complicated by marked species differences. In some anurans (B. bufo), iodine uptake by the thyroid decreases in the winter, whereas iodine uptake
increase during the winter in *R. temporaria* (Ceusters et al., 1978). Thyroid T₃ and T₄ levels in *R. ridibunda* are low during the winter and increase markedly following hibernation (Kuhn et al., 1985).

348. Following hibernation, the thyroid gland activates and reaches full size immediately prior to reproduction. During reproduction, the thyroid is resistant to TSH stimulation, but reactivates shortly following the reproductive period (Kuhn et al., 1985). *B. bufo* have greater plasma T₄ during hibernation and in the spring breeding period than in the summer and autumn (Rosenkilde, 1982). A similar trend was found in *A. tigrinum*. Norris et al. (1977) suggested that TH hormone levels may be inversely related to environmental temperature.

349. In *R. catebeiana*, TSH is present in the pituitary and the thyroid is capable of producing both T₄ and T₃. However, this capacity is substantially diminished compared to metamorphosing larvae (Mackenzie et al., 1978). Since TSH and TH are found in most anuran species, TH would appear to play some specific physiological role in the adult. However, mere presence does not necessarily relate to a specific role. In *X. laevis*, T₄ is not capable of promoting growth in juvenile frogs. However, T₃ is capable of mobilizing energy stores (Nybøe et al., 1985). Increased oxygen consumption in liver cells occurs in *R. tigrinum* as the result of T₄ administration at 25°C, but not at 15°C (Packard and Packard, 1975). One explanation for the reduced impact of THs in the adult may be difference in the number of TR compared to metamorphosing larvae (Galton and Munck, 1981). Although liver cell nuclei in adults have similar binding domains as found in larvae, the actual number of receptors is markedly lower than found in tadpoles. A similar pattern has been found in RBCs of amphibians which spontaneously metamorph.

6.10.2 Effects of Gonadal Steroids on Serum TH

350. Unlike corticoids, the role of gonadal steroids on metamorphosis is significantly less clear. Based on an early study by Frieden and Naile (1955) in *Bufo bufo*, estrone enhanced the effect of T₄ on metamorphosis. However, the results of this study have not been demonstrated by other investigators. Rather, the majority of historical studies indicate that estradiol and testosterone antagonize the effects of T₄ in *R. temporaria* (Roth, 1941; Roth, 1948) and inhibit larval development in *R. pipiens, X. laevis*, and *B. boreas* (Richards and Nace, 1978; Gray and Janssens, 1990; Hayes et al., 1993) *in vivo*. Hayes et al. (1993) found that at 22°C, testosterone and estradiol had no effect on growth or size at metamorphosis, although testosterone induced precocious forelimb emergence. At 27°C, testosterone and estradiol inhibited growth and development, but did not alter the time to forelimb emergence. Gray and Janssens (1990) also found that gonadal steroids did not inhibit the resorption of cultured whole tails *in vitro*. These results suggest that an inhibitory action of gonadal steroids most likely does not occur at the TR level. Gray and Janssens (1990) and Hayes (1997a) suggest that gonadal steroids most likely act at the hypothalamic-pituitary-thyroid axis level. Hayes (1997a) further hypothesized that the most likely mechanism of gonadal steroid inhibition of metamorphosis occurs through the down-regulation of TH levels, and potentially by up-regulating prolactin levels, which as described below also is capable of inhibiting metamorphosis.

351. Several other investigators have evaluated the effects of gonadal steroids on thyroid axis homeostasis and function; and implications on larval growth, development, and metamorphosis (Jacobs et al., 1988; Vandorpe and Kuhn, 1989; Hayes et al., 1993). Jacobs et al., (1988) found that plasma concentrations of T₄ were significantly raised following IV administration of synthetic luteinizing hormone-releasing hormone (LHRH) in ranids. These investigators concluded that this stimulatory effect was mediated through the hypophysis and suggested a possible correlation between the gonadal axis and thyroid axis. Vandorpe and Kuhn (1989) evaluated the effect of estradiol implants in female *Rana ridibunda* on plasma TH levels and 5'-monodeiodination activity in kidney homogenates in vitro. These investigators found that plasma T₃ and TH levels, and the in vitro T₃ production in kidney homogenates were significantly decreased, suggesting that estradiol may repress the thyroid axis. Other investigators
have evaluated the influence of TH on gonadal steroid activity during metamorphosis (Rabelo et al., 1994; Cohen and Kelley, 1996; Robertson and Kelley, 1996). Rabelo et al. (1994) found that T3 enhanced the precocious activation of vitellogenin genes by estradiol in X. laevis during advanced metamorphosis between NF stages 58-64. Cohen and Kelley (1996) found that androgen-induced cell proliferation in the developing larynx of X. laevis is controlled by TH. These investigators determined that although TH was not required for androgen receptor (AR) mRNA expression in the larynx, cellular proliferation was enhanced by TH, both in vitro and in vivo. Further, Robertson and Kelley (1996) concluded that while gonadal differentiation is independent of TH, androgen-sensitive larangeal development, including sexual dimorphism, require exposure to endogenous TH.

6.10.3 Larvae

6.10.3.1 Overview of Early Amphibian Development

352. Early amphibian development has been reviewed by many investigators. In the case of X. laevis, Nieuwkoop and Faber (1994) provide excellent descriptions of development through metamorphosis. Similar reviews, including Taylor and Kollros (1946) for ranid species and Rossi (1959) for bufonids are available. In X. laevis, hatching occurs ca. 24 hours post fertilization which is relatively quick compared to most temperate ranid species. Organogenesis marks the first 4-d (NF stage 46) of development in X. laevis. NF stage 46 also marks the onset of premetamorphosis in X. laevis.

353. In the case of amphibian development, premetamorphosis, prometamorphosis, and metamorphic climax are three distinct periods. Premetamorphosis is characterized as a phase of embryogenesis and early tadpole growth, including development of the thyroid gland.

354. During prometamorphosis, amphibians acquire TH synthesis. This phase of development is characterized by concentration of endogenous TH. Metamorphic climax is the period in which endogenous TH is at its peak levels and when rapid and drastic morphological changes (i.e., tail resorption) occur.

355. Secondary sexual development in X. laevis is appreciably better understood than many of the mechanisms of primary sexual development. As in most vertebrates, secondary sexual differentiation is controlled by gonadal steroids. Responsiveness of a tissue to gonadal steroids can be determined by following the expression of specific receptors. Further, continual secretion of gonadal steroids are required to maintain the secondary sexual characteristics. These patterns are closely followed in secondary structures, including the oviducts in females and the forelimb nuptial pads in males. Oviducts grow in response to estrogen and regress in the absence of estrogen (or in the case of ovariectomy). Clasping behavior and thickening of the nuptial pads are the result of a specific response to androgens. However, both are lost following castration. Some structures or behaviors do not present themselves simply because the appropriate steroids are not present. Alternatively, some characteristics cannot be expressed in adults since the structure was lost during development. For example, the oviduct in developing males regresses presumably as the result of secretion of an “anti-Mullerian hormone”. If castration is performed prior to this developmental process, the oviducts are retained. Generally, the determination of phenotypic sex is capable of proceeding to a point without gonadal influence. Further most species have a default phenotypic sex, female in mammals, male in birds, and female in X. laevis. Observations from the former two classes of vertebrate animals led to the assumption that the homogametic sex was the driven default (XX females in mammals and ZZ males in birds) (Adkins, 1975). However, as previously discussed the male is the homogametic sex in X. laevis. Therefore, the homogametic sex is not necessarily the default phenotype in all vertebrates. As previously discussed, secondary ovarian development involves differentiation of the follicles and oocyte maturation. In X. laevis, oocytes are generally divided into six sequential stages ranging from stage I-III which are previtellogenic, stage IV in which vitellogenic growth occurs, and stage V and VI in which final maturation and germinal vesicle breakdown (GVBD) occurs in
preparation for eventual ovulation and fertilization (Dumont, 1972). Further discussion of GVBD and
induction by progesterone and/or androgens will be provided later in this DRP. Although typically
dictated by environmental conditions, female \textit{X. laevis} become sexually mature between 12 and 24 months.
In male \textit{X. laevis}, spermatogenesis may occur as early as NF stage 59 (Nieuwkoop and Faber, 1994),
although this finding has not been confirmed microscopically (Kelley, 1996). Witski (1971) identified
spermatocytes two to three months post-metamorphosis. Production of C19 gonadal steroids occurs
between stage 59-62 (Kelley and Dennison, 1990; Robertson et al., 1991; Kang et al., 1994).

356. The development of gonadal steroid response competence is initiated by TH. May and
Knowland (1980) determined that the capacity of larvae to respond to estrogen with induction of the
vitellogenin gene begins at NF stage 62 and requires TH secretion. Kawahara et al. (1987) subsequently
determined that TH did not directly induce the vitellogenin gene or establish inducibility by estrogen, but
rather produced a morphological change in the population of competent hepatocytes in the liver. Further
study by Robertson and Kelly (1992) demonstrated that several male secondary sexual characteristics,
including development of the larval gular morphology, required TH sensitization for responsiveness to DHT.
Further discussion of the role of TH in conferring gonadal steroid responsiveness during secondary sexual
development in \textit{X. laevis} is provided in DRPs 2-20 (4-5), “Amphibian Metamorphosis Assays” and DRP 4-
8 “Amphibian Reproduction and Growth Assay”. In short, TH do not appear to act directly on the gonads
based on several lines of evidence. First, no TR exist in the gonad (Kawahara et al., 1991) at this stage of
development. Second, TH is not required for continued sensitivity to gonadal steroids or secondary sexual
development (Leloup and Buscaglia, 1977).

357. Administration of goitrogens, such as thiourea, which block TH production, resulted in skewed
sex ratios (100% female) in \textit{X. laevis} (Hayes, 1997a; Hayes, 1998). In addition, TH has also been shown
to directly induce the testosterone receptor in the larynx of developing male \textit{X. laevis} (Cohen and Kelley,
1996; Robertson and Kelley, 1996). In the sexually dichromatic anuran, \textit{H. argus}, administration of
estradiol induces female coloration in both male and female specimens (Hayes, 1997a). However, when
estradiol is administered concurrently with thiourea, the skewing toward female coloration characteristics
does not occur. Hayes (1997a) found that when thiourea, a classical TH synthesis inhibitor, is co-
administered with testosterone, induction of gular pouch development does not occur. However, gular
pouch development is induced when testosterone is administered alone (Hayes, 1997a).

6.10.3.2 Overview of Morphological Restructuring during Amphibian Metamorphosis.

6.10.3.2.1 Overview of Amphibian Metamorphosis

358. Metamorphosis is a period of substantial morphological change in which an organism alters its
mode of living and occurs in all major chordate groups with the exception of amniotes (Dent, 1968; Just et
al., 1981). In fact, metamorphosis is developmentally comparable to post-embryonic organogenesis in
mammals (Tata, 1993). Three primary characteristics define metamorphosis, 1) change in non-
reproductive structures between a post-hatch or larval state and sexual maturity, 2) form of the larvae
enable it to occupy a unique ecological niche different from that used by the adult life stage, and 3) the
morphological changes that occur at the conclusion of larval development depend on some environmental
stimulus, either external (i.e., temperature or food supply), or internal (hormonal changes). Each of the
classes of amphibians, anurans, urodeles, and caecilians, undergo metamorphosis, although not all
species within each class metamorphose. For example, obligatory neotenic urodeles do not metamorphose,
and reproduce as an aquatic “adult larvae”.

359. Three primary morphological changes occur during metamorphosis, 1) resorption or regression of
tissue or organ systems that have primary function only in the larval life stage, 2) the remodeling of larval
organ systems to their adult form, which are suitable only for the adult, and 3) \textit{de novo} development of
tissues in the adult that are not required by the larvae. These changes are most marked in anuran species, and less obvious in urodeles and caecilians. In each of the three classes of amphibians, metamorphosis is controlled by thyroid hormone (TH), although less is currently known about the role of TH in the metamorphosis of caecilian species. Amphibian metamorphosis has been most widely studied in anurans, primarily due to the dramatic nature of metamorphosis and the ease in use of anuran species in research. However, within the anurans, of which are nearly 4,000 species (Stebbins and Cohen, 1995) metamorphosis has only been reasonably well studied in three species, *Xenopus laevis* (South African clawed frog), *Rana catesbeiana* (bull frog), and *R. pipiens* (Northern Leopard frog).

360. Anuran metamorphosis is separated into three distinct periods, premetamorphosis, prometamorphosis, and metamorphic climax (Etkin, 1964; Etkin 1968; and Dodd and Dodd, 1976). Premetamorphosis refers to a period of embryonic and early larvae development that takes place without thyroid hormone. Some advanced morphological developments occur during this stage including hind limb bud development. More specific morphogenesis, such as differentiation of the toes and rapid growth (elongation) of the hind limbs, occurs during prometamorphosis. Biochemically, prometamorphosis is characterized by rising concentrations of endogenous TH. The final period is metamorphic climax in which a surge of TH triggers the final processes associated with metamorphosis, including forelimb development and resorption of the tail. Drastic internal transformations at the organ system, tissue, and biochemical levels are also taking place during prometamorphosis and metamorphic climax.

361. From an evolutionary standpoint, amphibians are distinctively separated phylogenetically from other vertebrates. However, specific aspects of the thyroid axis are conserved amongst most chordates at both the morphological and molecular levels. Thus, the conserved nature of the thyroid axis enhances the ability to use an amphibian, particularly an anuran, as a general model for evaluating thyroid disruption that can be extrapolated to other vertebrate species.

362. Tata (1998) described amphibian metamorphosis as a unique model for studying thyroid axis function. In most vertebrates, THs have a profound influence on advanced development and growth. Evaluation of the influence of the thyroid axis on fetal development in mammals is complicated by a myriad of maternal factors that modulate the action of TH. On the contrary, amphibian metamorphosis is dependent on the thyroid axis which orchestrates a diverse and well-understood program resulting in physiological and biochemical changes in post-embryonic morphogenesis, selective cell death, and anatomical restructuring in free-living larvae in most anurans. The thyroid axis represents one potential target for environmental chemicals. Environmental agents, toxicants, natural products, and complex mixtures can alter metamorphosis by interacting with the thyroid axis. Further, the complexity of the thyroid axis yields many different possible mechanisms of inhibiting metamorphic processes in amphibians at differing biochemical and molecular levels. Thus, from this end, use of amphibians to screen for thyroid disrupting chemicals or chemical mixtures as a representative chordate is not unreasonable.

363. To date, the debate on endocrine disruptors has mostly revolved around gonadal steroids including estrogens and androgens, because of controversy regarding their possible link to infertility, breast cancer, and lower sperm counts. Thus, the thyroid has received comparatively little attention. Brucker-Davis (1998) recently reviewed the effects of synthetic chemicals in the environment on thyroid function. This review confirms the hypothesis of thyroid disruption by environmental chemicals in wildlife and supports the need for human population and laboratory animal studies on compounds already identified as thyroid disruptors. In this review, Brucker-Davis (1998) described the effects of over 40 pesticides and industrial chemicals on the thyroid axis.
6.10.3.2.2 Hormones in Metamorphosis.

6.10.3.2.2.1 Thyroid Hormone

364. As previously discussed, the primary active THs, T\(_4\) and T\(_3\), are synthesized directly in the thyroid gland (Shi, 2000).

6.10.3.2.2.2 Prolactin

365. Similar to the effect of corticoids on metamorphosis (Hayes, 1997a), prolactin also appears to exert a bimodal effect on development and maturation of amphibians (Shi, 2000). However, in the case of prolactin, the response is opposite that of corticoids which are capable of inhibiting early development and potentiating TH-induced metamorphosis (Hayes, 1997a). In contrast, prolactin is currently thought to stimulate development during embryogenesis and premetamorphosis, but inhibit the maturation events associated with metamorphosis. In fact, several investigators (Etkin and Lehrer, 1960; Dodd and Dodd, 1976; White and Nichol, 1981; Kikuyama et al., 1993; Denver, 1996) have elaborated on the capacity of prolactin to serve as an apparent growth stimulator in amphibians during premetamorphosis, while also inhibiting metamorphosis in anuran species. Also, in contrast to the effect of corticoids on anuran metamorphosis, prolactin is capable of exerting its inhibitory influence on metamorphosis in vitro (tail explants) (Dodd and Dodd, 1976; Tata et al., 1991). These results suggest that the inhibitory effects of prolactin on metamorphosis could be mediated at the TR level rather than endocrine regulatory level (Leloup and Buscaglia, 1977). In fact, Tata and coworkers demonstrated that prolactin is capable of inhibiting induction of the TR beta genes by TH (Baker and Tata, 1992; Tata, 1997). Wakao et al. (1994) and Han et al. (1997) have also suggested that prolactin inhibits the function of the TH-TR complex.

366. Anuran prolactin, which was originally difficult to isolate due to the low plasma levels, was first isolated from bullfrogs (Shi, 2000). Cloned amphibian prolactin was subsequently found to be relatively homologous to mammalian prolactin (Yamamoto and Kikuyama, 1981; Yasuda et al., 1991; Takahashi et al., 1990; Buckbinder and Brown, 1993). Prolactin in anuran species is produced in the distal lobe of the pituitary gland (Yamamoto et al., 1986; Tanaka et al., 1991). Prolactin production and secretion is under tight stimulatory and inhibitory control at the hypothalamic level (Kaltenbach, 1996; Shi, 2000). Prolactin is transported to various target tissues through the plasma. Low plasma prolactin levels have been detected during pre- and prometamorphic stages. However, prolactin levels appear to rise to peak levels late in metamorphic climax (Clemons and Nicoll, 1977; Yamamoto and Kikuyama, 1982; Yamamoto et al., 1986). Interestingly, TRH serves as the primary prolactin-releasing hormone in amphibians, whereas, dopamine serves as the primary neurological inhibitor of prolactin release. Thus, rather than stimulating the release of TSH (as in mammals), TRH induces the release of prolactin and CRF induces the release of TSH.

367. Originally, prolactin was thought to serve as an “amphibian juvenile hormone” (Shi, 2000) similar to that found in insects. However, work by Baker and Tata (1992) and Tata (1997) suggest that the upregulation of prolactin during metamorphosis indicates there is an alternative function during metamorphosis which differs appreciably from the mechanism by which juvenile hormones act (Riddiford, 1996). In essence, gene expression profiles for prolactin expression at both genomic and proteonomic levels suggest an alternative role for prolactin in the control of metamorphic events. Since many of the morphological changes during metamorphosis, such as intestinal remodeling, hind limb digit differentiation, forelimb emergence, and tail resorption (Leloup and Buscaglia, 1977; Nieuwkoop and Faber, 1994), occur at different developmental stages with differing TH levels, prolactin may play a significant role in the coordination of TH-induced amphibian metamorphosis. Further, hypothalamic factors (TRH) do not affect prolactin gene expression during the early stages of metamorphosis, but rather in upregulation during metamorphic climax (Shi, 2000). De novo synthesis of prolactin appears to be
controlled by TH. Buckbinder and Brown (1993) found that inhibition of TH synthesis with the classical anti-thyroid drug methimazole repressed prolactin gene expression. Conversely, treatment of tadpoles with T3 leads to precocious upregulation of prolactin. Unlike the other hormones and hormonal factors, the anti-metamorphic effect of prolactin appears to be exerted at the tissue level rather than in the brain. It is currently thought that prolactin inhibits TH activity at the thyroid hormone receptor (TR) level. Although this model needs further confirmation, it appears that prolactin gene products interfere with TH binding to TR, thus blocking the action of TH.

368. The current hypothesis regarding the role of prolactin during metamorphosis is that prolactin appears to control the high concentrations of TH present during metamorphic climax so that sequential transformation of different tissues can be systematically coordinated (Shi, 2000). This potential role is significant in tadpole-frog transformation, since different tissues/organ systems require differing TH levels at different times during metamorphosis. For prolactin to exert this effect, it must act directly at the tissue level and relatively early in the TH signal transduction process (Leloup and Buscaglia, 1977). Tata and coworkers recently demonstrated that prolactin is capable of inhibiting induction of the TR beta genes by TH (Baker and Tata, 1992; Tata, 1997). Wakao et al. (1994) and Han et al. (1997) have also suggested that prolactin inhibits the function of the TR-TR complex.

369. Another hypothesis is that prolactin interacts with a membrane bound receptor that initiates a cascade of biochemical events that give rise to transcription factors known as Stats (signal transducers and activators of transcription). Interaction of Stats and TR leads to the inhibition of TR and thus, blocks TH-induced metamorphosis (Kanamori and Brown, 1992). Based on this model, the effects of prolactin on TH action are tissue-dependent, because receptor and Stat levels likely differ in the different cell types. This may provide a method of coordinating systematic transformation of different tissues during metamorphosis. Overall, this discussion demonstrates the importance of other related hormonal systems in the control of metamorphosis.

370. More recently, Favre-Young et al. (2000) demonstrated that TRβ/RXR transfected cell lines (HEK293) significantly repressed prolactin-dependent Stat5a- or Stat5b-induced reporter gene expression. Further, over-expression of the TRβ/RXR complex resulted in increased nuclear localization of Stat5a. These investigators concluded that TRβ/RXR modified the subcellular distribution of transcriptional activator Stat5a, thus providing regulation over this prolactin-mediated signaling pathway.

371. Melatonin, produced by the anuran pineal gland and somatostatin appear to be capable of altering anuran metamorphosis (Shi, 2000). Both factors inhibit TSH secretion and are capable of retarding metamorphosis (Denver, 1996). Melatonin may also inhibit metamorphosis through the induction of prolactin pathways (Rose and Rose, 1998). On the contrary, gonadotropin-releasing hormone (GnRH) has been found to increase TH levels in axolotls and frogs, and thus has the potential of accelerating metamorphosis (Shi, 2000). Limited information is available on these and other hormones and the understanding of their roles in metamorphosis remains unclear.

6.10.3.2.2.3 Corticosterone

372. In general, the relative importance and capacity of corticosteroids in enhancing TH-induced metamorphosis in amphibians has been purported by several sets of investigators (Kaltenbach, 1985; Kikuyama et al., 1993; and Hayes, 1997a). In amphibians, the interrenal gland is responsible for the production of corticosteroids and receives direct input from the hypothalamus via adrenocorticotropic (ACTH). In turn, two primary corticoids are produced and secreted by the anuran interrenal gland: 1) corticosterone, and 2) aldosterone (Cartensen et al., 1961; Macchi and Phillips, 1966; and Kikuyama et al., 1993; Shi, 2000). Interestingly, several investigators have demonstrated that the major corticoid levels in plasma in metamorphosing anurans follow the pattern of rising plasma TH levels in metamorphosing
tadpoles (Jaffe, 1981; Krug et al., 1983; Jolivet-Jaudet and Leloup-Hatey, 1984; Kikuyama et al., 1986; Kikuyama et al., 1993; Hayes, 1997a). Experimental evidence supporting the role of corticoid hormones in the induction of metamorphosis range from basic fundamental studies to complex experiments.

373. For example, Kaltenbach (1985) and Kikuyama et al. (1983) found that exogenous administration of corticoids via the culture media enhanced tail resorption of premetamorphic tadpoles. Similar responses in cultured anuran tails also have been noted as the result of exogenous corticoids (Kikuyama et al., 1983; Hayes et al., 1993; Hayes and Wu, 1995a; Hayes and Wu, 1995b; Hayes, 1997a). Several different tissues in the metamorphosing anuran appear to be responsive to the impact of corticoids on TH action including: 1) the limbs (Galton, 1990; Kikuyama et al., 1993; Hayes, 1997a), and 2) skin (Shimizu-Nishikawa and Miller, 1992). Further, corticoid receptor sites have been identified in the metamorphosing anuran tail and determined to be important in the control of metamorphosis (Woody and Jaffe, 1984 and Yamamoto and Kikuyama, 1993).

374. As an alternative to exogenous corticoid supplementation, the influence of inhibiting the synthesis of endogenous corticoids on metamorphic processes was also evaluated (Kikuyama et al., 1982). In essence, results from these studies indicate that inhibition of corticoid synthesis using Amphenone B is capable of reducing the efficacy of exogenous TH supplementation to thiourea-induced thyroid repressed amphibians. This study suggests that TH and corticoids work in concert to influence amphibian metamorphosis.

375. A study by Hayes (1997a) suggests that corticoids may operate under a dual mode of action based on the stage of anuran metamorphosis. Based on these studies (Hayes, 1997a), corticoids appear to slow development during early embryogenesis. Prior to and during the early stages of prometamorphosis, endogenous TH levels are low. As TH levels begin to rise with the onset of metamorphosis, corticoids enhance the capacity of TH to induce metamorphosis, although a clear mechanism is not yet known. Much of the evidence supporting the role of corticoids in amphibian metamorphosis is based on in vitro studies involving cell and organ cultures. Based on these studies collectively, corticoids appear to exert negative feedback at the pituitary and hypothalamic levels in anurans (Denver and Licht, 1989; Galton, 1990; Nishikawa et al., 1992; Shimizu-Nishikawa and Miller, 1992; Gancedo, et al., 1992; Denver, 1993; Schneider and Galton, 1995; Tata, 1997; Hayes, 1997a).

376. The influence of corticoids on TH-induced metamorphic events has also been observed at the cell and molecular level (Galton, 1990; Kikuyama et al., 1993; Hayes, 1997a). For example, maturation of the skin which occurs during the metamorphic transition of the larvae to an adult involves the expression of adult keratin genes in the epidermis of X. laevis. Under normal physiological conditions, up-regulation is controlled by TH. However, corticoids have also been shown to potentiate the response of these genes to TH. Current research suggests that corticoids act through a nuclear receptor, the glucocorticoid receptor (GR). The GR appears to be similar to classical nuclear-based steroid receptors which essentially belong to the same superfamily of receptors that includes TH receptors (Evans, 1988; Green and Chambon, 1988; Mangelsdorf et al., 1995). Thus, as with most steroid hormones, corticoid effects are induced at the transcriptional level.

377. In summary, the synthesis and secretion of endogenous corticoids are under the direct or indirect control of TH, ACTH, and CRF. Based on the work of Hayes (1997a), CRF appears to have dual functions, stimulating the release of both TSH (thyrotropes) and ACTH (corticotropes) from two different regions of the pituitary (Denver and Licht, 1989). Conversely, the role of TRH in metamorphosis which is the primary thyrotrope in most mammals, is currently thought to be insignificant (Shi, 2000). Overall, physiological synthesis and secretion of corticoids play an important role in anuran metamorphosis.
6.10.3.2.3 Role of TH in Larval Organ Resorption

378. Morphological changes that occur during amphibian metamorphosis have been extensively described and various reviews exist regarding these drastic changes in anatomy (Dodd and Dodd, 1976; Hourdry and Daucu, 1977; Gilbert and Frieden, 1981; Fox, 1983; Balls and Bownes, 1985; Yoshizato, 1989). Essentially, three primary changes in tadpoles take place during metamorphosis in order to transform almost all of the tadpole organs to their adult form (Shi, 2000). The first change involves complete destruction or digestion of tadpole-specific organs. The most obvious example of such a resorption process is the loss of the tail during metamorphic climax. The second change involves development of new tissues from newly produced and proliferated cells. As with many embryological processes these newly produced, but unspecified cells, subsequently differentiated cell lines ultimately leading to tissue morphogenesis (i.e., digits of the hind limbs). Finally, restructuring of existing organ systems, such as the liver, lungs, and intestine into their adult forms occurs. These processes occur to allow the metamorph to adapt to a new terrestrial environment or adulthood in species remaining aquatic. For the sake of brevity, only morphological features that are relevant to the development of amphibian metamorphosis assays will be discussed in this DRP.

6.10.3.2.3.1 Tail

379. Of the organ systems resorbed during metamorphosis, two systems degenerate completely: the tail and the gills. Of these two organ systems, resorption of the tail has been the most widely studied (Dodd and Dodd, 1976; Hourdry and Daucu, 1977; Gilbert and Frieden, 1981; Fox, 1983; Balls and Bownes, 1985; Yoshizato, 1989). All tissues that comprise the tadpole tail are resorbed during metamorphosis, including an epidermis, connective tissue, muscular tissue, blood vessels, and the notochord (Shi, 2000). Typically, tail resorption begins at the onset of metamorphic climax around NF stage 58-60 with the loss of cross-striations of the myofibrils and disintegration of sub-cellular structures, such as the mitochondria (Weber, 1964; Dodd and Dodd, 1976) and concludes around stage 65 to 66 with the complete disintegration of the tail fin.

380. Condensation and histolysis primarily contribute to tail resorption (Yoshizato, 1989). The loss of tail length during metamorphic climax results from condensation. Water loss, in turn, causes alteration of the cellular organization of the tail tissue resulting in compaction of the cells and extracellular matrix (Frieden, 1961; Lapiere and Gross, 1963; and Yoshizato, 1989; Yoshizato, 1996). Extensive studies have focused on histolysis as a potential mechanism of condensation, but the specific mechanism has not yet been clearly identified (Kerr et al., 1974; Kinoshita et al., 1985; Yoshizato, 1989). The cells of the tail undergo programmed cell death or apoptosis, and the extracellular matrix is degraded by various enzymes. This process is consistent with apoptosis in other vertebrates. The tail is genetically pre-determined to resorb, requiring only sufficient levels of TH to initiate the process.

6.10.3.2.4 Role of TH in Adult Organ Development

6.10.3.2.4.1 Limbs

381. The classic example of de novo development is the limbs. Hind limb buds are first visible in X. laevis at stage 46 and continue to grossly develop until stage 54 without the assistance of TH. However, between stages 54 and 58, TH levels rise and induce the differentiation of the limb bud cells allowing morphogenesis to form the specific features of the hind limb and toes. The forelimb develops in a similar pattern with the undifferentiated limb bud developing without endogenous TH.
6.10.3.2.4.2 Lungs, Gut, and Nervous System

The majority of organ systems are present in both the tadpole and the adult anuran; however, most require some form of modification in the adult (Shi, 2000). The liver undergoes little overt morphological change; however, extensive biochemical changes take place during metamorphosis. Fine structural changes in liver cells, including increases in the size of mitochondria, endoplasmic reticulum, and Golgi complexes during early and intermediate stages of metamorphosis; and increases in the number of nucleoli and heterochromatic nature of the nuclei during the latter stages of metamorphosis increase the biosynthetic capacity of the liver during metamorphosis. On a biochemical level, hepatocytes within the liver convert from ammonotelic to ureotelic metabolism (Atkinson, 1994; Atkinson et al., 1996; Chen et al., 1994). The nervous system is also restructured to accommodate adult physiology (Kollros, 1981; Fox, 1983; Gona et al., 1988; Tata, 1993, Shi, 2000). At the gross morphological level, changes in the shape of the diencephalon, medulla, and restructuring of neurons in the cerebellum occur during metamorphosis (Gona et al., 1988). At the neuronal level, one of the most dramatic changes includes the genetically programmed regression of the various specialized cells. These cells include a specialized pair of giant neurons, Mauthner cells and Rohon-Beard neurons, which regress or disappear completely, respectively, during metamorphosis (Hughes, 1957; Moulton et al., 1968). In a recent study by Cohen et al. (2001), these investigators that found the antiapoptotic protein Xr11 prolonged survival of Rohon-Beard neurons and reduced morphological change to Mauthner cells. However, Xr11 was not effective in controlling the alterations and ultimate disappearance of other neurons, including spinal cord motor neurons. On the contrary, Purkinje cells, lateral motor column neurons, and the dorsal root ganglia neurons further differentiate during metamorphosis (Hoskins, 1990). The tadpole intestine is proportionately longer, but more simplistic than the adult anuran intestine, which resembles most vertebrate intestines in terms of structure and function (Shi, 2000). The tadpole intestine is comprised of a single epithelial layer surrounded by thin layers of muscle and connective tissue (McAvoy and Dixon, 1977; Kordylewski, 1983; Ishizuya-Oka and Shimozawa 1987; Shi and Ishizuya-Oka, 1996). Remodeling of the intestine during metamorphosis creates a shorter, but substantially more sophisticated epithelium with numerous microvilli, brush boarders, and ultimately, substantially increased luminal surface area. Thus, the increased microstructure of the intestine developed during metamorphic remodeling increases the effectiveness and efficiency of absorption in the intestine, thereby reducing the need for the proportional length found in the tadpole intestine.

6.10.3.3 Biochemical Changes

The cellular and biochemical changes that occur in anurans during metamorphosis can be divided into at least six general areas: 1) molecular and biochemical activities associated with programmed cell death or apoptosis, 2) shift from ammonotelism to ureotelism, 3) increase in serum protein levels, 4) changes in hemoglobin isoforms, 5) alterations in digestive enzymes, and 6) changes in the respiratory system (Shi, 2000). The role of apoptosis in the selective resorption of tadpole tissues was discussed in the previous section. Many of the genes involved in programmed cell death have been isolated and characterized largely due to genetic studies in Caenorhabditis elegans. At least three execution genes, seven engulfment genes, and one degradation gene are involved in apoptosis in the nematode C. elegans, which represent the three primary processes in selective cell death (Yuan et al., 1993; Alnemri et al., 1996; Cryns and Yuan, 1998). Genes participating in execution of apoptosis and subsequent steps are most likely common in biological organisms where cell death takes place (Ellis and Horovitz, 1986). Homologs to the C. elegans and mammalian genes are currently being studied in amphibians. On the other hand, signal transduction genes participating in the early steps leading to apoptosis, such as induction by TH, may vary in different species. A primary feature of apoptosis involves fragmentation of chromatin which is exploited as a means of evaluating apoptosis by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling). TUNEL is capable of marking apoptosis prior to the fragmentation of the nucleus and the cytoplasm (Gavrieli et al., 1992). The initiation of apoptosis is dependent on TH, and
increasing concentrations of T3 (5 to 10 nM) induce an increasing response, demonstrating dose-
dependence. Classical inhibitors of apoptosis, including ATA and Z-VAD, are capable of inhibiting
epithelial apoptosis (Su et al., 1997; Shi et al., 1989). Apoptotic bodies in the tail can be observed as early
as NF stage 59 in *X. laevis* (Shi, 2000).

384. Anuran tadpoles primarily excrete nitrogen waste in the form of ammonia (ammonotelism)
during premetamorphosis (Munro, 1953). During the onset of metamorphic climax, ammonia excretion
decreases and urea (ureotelism) excretion increases. In most juvenile anurans, at least 75% of nitrogen
waste is comprised of urea (Brown et al., 1959). *X. laevis* represents a primary exception to the excretory
conversion to ureotelism. Since *X. laevis* maintain an aquatic life history as an adult, it primarily excretes
ammonia under normal conditions (Munro, 1953). Transient increases in urea during prometamorphosis
are typically detected (Underhay and Baldwin, 1955). However, restrictions in water supply induce a
drastic increase in urea excretion, suggesting that *X. laevis* has similar excretory conversion capabilities as
the terrestrial anurans (Balinsky et al, 1961). During the process of tail resorption, upregulation of a series
of proteases, acid and alkaline hydrolases, and ribonucleases occurs (Shi, 2000). Upregulation of the
degradative enzymes is regionally specific in the tail. For example, acid phosphatase levels in the dorsal
fin region, which resorbs first in this process, are dramatically elevated in this region during this time.
Similar lysosomal hydrolases are upregulated in the intestine during re-modeling. In each case, TH has
been shown to control up and down-regulation of these degradative enzymes during metamorphosis. An
effective description of the genes regulated by thyroid hormone in anurans appears in Shi (2000).

385. In most anuran species, serum protein levels dramatically increase during metamorphosis (Shi,
2000). The ratio of serum albumin to globins is markedly elevated during TH-induced metamorphosis.
Other plasma proteins that increase during metamorphosis include, ceruloplasmin, transferrin, and carbonic
anhydrase (Inaba and Frieden, 1967; Frieden and Just, 1970; Wise 1970). The increase in serum proteins
is thought to play an adaptive role as the tadpole transforms into the frog. In the case of albumin, the
biochemical properties of this critical protein not only fulfill osmotic requirements, but also provide
circulatory transport needs associated with the terrestrial living habitat (Frieden, 1968; Weber, 1967;

386. Anurans undergo changes in hemoglobin synthesis during development similar to mammals and
birds (Shi, 2000). However, in anurans, only one primary change occurs as opposed to other animals,
which typically undergo several changes in synthesis patterns. In this case, complete replacement of
globulin chains occurs (Weber, 1996). Hemoglobin in tadpoles is independent of pH and has a markedly
greater affinity for oxygen than frog hemoglobin, which has lower oxygen binding affinity and is subject to
the Bohr Effect (decreased affinity with decreasing pH) (McCutcheon, 1936; Riggs, 1951; Frieden, 1961).
The greater affinity of tadpole hemoglobin for oxygen most likely allows for adaptation to low oxygen
environments characteristic of the aquatic tadpole habitat. Changes in hemoglobin structure occur around
metamorphic climax, although larval hemoglobin persists for some time in metamorphosed frogs to allow
for adequate adaptation to the change in the environment (Just and Atkinson, 1972; Weber et al., 1991).
Adult frogs require hemoglobin with lower oxygen affinity to facilitate terrestrial life, which has more
rapid and extensive oxygen requirements (Bennett and Frieden, 1962; Dodd and Dodd, 1976).

387. In addition to an increase in plasma proteins, the metabolic capacity of the liver markedly
changes in the metamorphosing anuran. During metamorphosis, drastic increases in nucleic acid and
protein synthesis result in large increases in several enzymes including, catalase, uricase, phosphatases, and
the urea cycle enzymes (Shi, 2000). Of these enzymes, the urea cycle has been the most widely studied.
Upregulation of these enzymes has been observed during anuran metamorphosis and induced by TH as the
direct result of *de novo* protein synthesis (Brown and Cohen, 1958; Brown et al., 1959; Paik and Cohen,
1960; Cohen, 1970; Dodd and Dodd, 1976). Although each of the four primary enzymes associated with
the urea cycle increase at least several fold, the mitochondrial enzyme carbamyl phosphate synthetase
actually increases nearly 30-fold during metamorphic climax. Cytosolic arginase catalyzes the conversion
of arginine to urea waste, and ornithine (Figure 3-2) increases nearly 5-fold in activity in the livers of
metamorphing anurans.

6.10.3.4 Overview of Amphibian Larval Immune Function

388. Consistent with other vertebrates, the major histocompatibility complex (MHC) which represents
a cluster of genes encoding products central to major functions of the immune system is also present in
amphibians. Expression of MHC class I and II antigens early in development is critical for the
development of T cells capable of discriminating self from non-self. In X. laevis, class I antigens are
virtually absent from larval tissues until metamorphic climax (Rollins-Smith et al., 1997a). Overall, the
characteristics of the immune system in larval Xenopus are markedly different than that found in the adult
with metamorphosis triggering the change in systems (Rollins-Smith et al., 1997b). Changes during this
transition actually create increased susceptibility during metamorphosis due to elimination of larval
lymphocytes which decrease the possibility of attack on the newly developed structures (adult-specific
antigens), but create an immunocompromised animal for a short period of time until metamorphosis is
complete (Rollins-Smith, 1998).

389. Rollins-Smith et al. (1997a) evaluated the production of class I antigens during metamorphosis
finding that a slight induction of splenocytes and erythrocytes occurred during prometamorphosis. The
amount of class I antigens increased dramatically during metamorphic climax. Neither acceleration nor
inhibition of metamorphosis altered the timing of class I antigen expression. Further, expression was not
increased when TH was administered to metamorphosis-inhibited specimens suggesting that the expression
of class I antigens was not directly cued by TH. However, unbound glucocorticoids were associated with a
natural decline in total lymphocytes, lymphocyte viability, and mitogen-induced proliferation (Rollins-
Smith et al., 1997b). Reduction in total lymphocyte numbers appear to be the direct result of corticoid-
induced apoptosis. Thus, corticoids remove unnecessary lymphocytes to allow for the development of
immunological tolerance to the new adult-specific antigens that appear as the result of metamorphic
change. However, if an environmental stressor, such as drying of a temporary pond, results in the
induction of metamorphosis at a smaller body size which is less than optimal, as well as a less than optimal
immune system, the organism could potentially be at greater risk of infection (Rollins-Smith, 1998).
Although the role of THs in inducing change in the immune system during metamorphosis appears to be
minor in terms of class I antigens, Ruben et al. (1989) found that T3 stimulated an increase in the number
of cells in X. laevis capable of binding to an interleukin 2 receptor antibody. Therefore, some
metamorphic-based changes in immune function may be controlled by THs.

6.10.3.5 Overview of Larval Amphibian Stress Response

390. The primary neurohormonal stress pathway in amphibians involves CRF (Denver, 1997). Environmental stress, such as desiccation, results in rapid metamorphosis induced by a CRF-interrenal
gland-mediated pathway. This process can be simulated in the laboratory by inducing habitat drying which
stimulates the production and release of CRF, or by injection of CRF directly in western spadefoot toads
(Denver 1997).

391. As discussed previously, CRF is thought to be the primary thyrotrope releasing factor in
amphibians thus, increasing levels TSH and THs and inducing metamorphosis which in some cases is
precocious (Denver, 1997). Interestingly, CRF has been shown to induce parturition, including inducing
pre-term delivery in cases of fetal or maternal stress. Thus, Denver (1997) suggests that this process may
represent a phylogenetically conserved means of alleviating stressful environmental conditions through
metamorphic adaptation.
6.11 Methods of Evaluating Thyroid Disruption in Anurans

6.11.1 Overview of Experimental Methods

Based on the previous discussion, EDCs could potentially affect the thyroid axis at three levels, 1) CNS (including pituitary and hypothalamus), 2) thyroid, and 3) TR. More specifically, specific modes of actions of thyroid axis disruptors could potentially include alteration of TH synthesis, TH transport, TH elimination, neuro-endocrine (H-P) axis regulation, and TR expression and/or function. A summary of potential modes/sites of EDC action on the thyroid axis, in relation to endpoints possibly useful in measuring thyroid disruption, is provided in DRP 2-20 (4-5), Amphibian Metamorphosis Assays. The effect at the pituitary level is complex since it may involve thyrotropes (TSH), corticotropes (ACTH), and lactotropes (prolactins). In addition to the thyroid gland, the interrenal gland may also be a site of EDC action, which could potentially impact metamorphosis. Thus, the impact of potential EDCs on metamorphosis may occur at multiple different levels. In addition other physical environmental factors such as temperature and water level (densities) may also alter metamorphosis. Biochemical factors outside the thyroid axis, such as the corticotropes, may also affect metamorphosis. The liver should not be overlooked since it plays a role in T4 and T3 homeostasis, notably in TH metabolism elimination. Similarly, TH transport proteins should also be considered. The complexity of metamorphosis and control by the neuroendocrine system must be strongly considered in the design of appropriate test methods. Since the objective of the test method is to screen for thyroid axis disruption, a rapid, high throughput biochemical measurement test or molecular test would likely be more advantageous. However, alone, biochemical measurements and molecular tests might not provide adequate information on the morphological effect of the EDC on metamorphosis at the whole organism level. Incorporation of a high throughput biochemical or molecular assay within a short-term morphological method would be advantageous. It is crucial that the methodology used demonstrate diagnostic power by distinguishing between non-thyroid and thyroid-related delays in developmental progress. Morphological components of the assay must address this issue.

6.11.1.1 Water

Water exposure is the most common route to expose larval and metamorphic amphibians to EDCs. The delivery of a toxicant in water at different concentrations is reasonably well established for most aquatic test species, although considerations for static-renewal and flow-through exposures must be made. Although many amphibians, including those previously discussed in this review paper, prefer a static environment (Dawson et al., 1992), the difficulties associated with longer-term static renewal exposure studies necessitate the use of a flow-through design (ASTM, 1998; Ankley et al., 1998b; Kloas et al., 1999). Other than the cost of maintaining a long-term static renewal exposure study, the primary problem associated with the static-renewal approach is maintaining a consistent aqueous concentration during the study. Flow-through exposure systems using a variety of mechanical approaches have been successfully used by many laboratories (Greenhouse, 1976). The greatest challenge in an aqueous exposure system is solubilizing the test substance in water. Organic solvents are often used as co-solvents to assist in delivering a test substance into water, which requires the maintenance of a solvent control. Organic solvents also enhance bacterial growth in the test system, which increases maintenance time during the exposure. Organic solvents may also act interactively or non-interactively with the toxicant to increase (additivity, synergism or potentiation) or decrease (antagonism) its effect. In some cases, saturator columns have been used to eliminate the use of solvents.

6.11.1.2 Oral (Food)

Patyna et al. (1999) recommend that hydrophobic compounds with log P values >5 should be administered via food. Although dosing adult amphibians via food has been accomplished, little work has
been performed using this route of administration in tadpoles (Fort et al., 2001a). Dosing the commercial salmon diet is practicable, although homogenization of the food after spiking the test substance is challenging and obtaining a homogeneous mixture is often quite difficult. Dosing live food items, such as worms, has been performed, but it is also quite difficult to obtain a consistent diet and differentiate between effects from the diet and effects from toxicants that leach from the diet into the culture water (Fort et al., 2001a). In a large-scale screening program like EDSP, oral dosing is probably not as practicable as aqueous exposure, unless required due to limitation in aqueous solubility.

6.11.1.3 Parenteral

Intramuscular or intravenous administration of a toxicant in a premetamorphic tadpole (stage 47-48) is possible. However, the technique is technically difficult and the environmental relevance is questionable since it is difficult to determine or estimate effective environmental concentrations. Thus, as with oral dosing, parenteral routes of administration are not practicable for high volume screening programs.

6.11.1.4 Dose Selection

Dose levels for Amphibian Metamorphosis Assays should be selected with the use of range-finding data, unless other reliable data are readily available. Selected concentrations should be less than lethal levels and less than the maximum water soluble concentration. Exposure concentrations should be measured no less than weekly during the exposure under flow-through conditions. Under static conditions analysis should be performed no less than every 48 h. However, the exposure method and rate of the test substance analysis will be dependent on the degradation rate of the substance. Test substances with rapid degradation rates will require flow-through exposure with more frequent analysis of test substance concentration. Since test substance concentrations tend to decrease over time in mature culture environments, careful attention to maintain a consistent concentration will also be required.

For screening purposes, at least three widely spaced concentration levels would be appropriate depending on the assay endpoints considered. The treatment levels can be separated by up to an order of magnitude. It is not necessary for a partial life-cycle study to have a treatment level that causes no effect. A definitive Amphibian Metamorphosis Assay study should be conducted with at least five treatment levels, and the treatment levels should be separated by approximately a factor of two. At least one of the treatment levels should be below the no-observed adverse effect concentration (NOAEC). Concentrations should be selected to produce an adequate concentration-response curve for the endpoints measured during the study.

6.11.1.5 Stages of Exposure

As previously indicated, two primary developmental periods need to be considered in the exposure regime used in the Amphibian Metamorphosis Assays, prometamorphosis (stages 54 to 57) and metamorphic climax (stages 58 to 66). A toxicant may or may not induce an effect during these periods depending on the mechanism of action. Most compounds that adversely affect the thyroid axis would show activity at least during prometamorphosis. Some of these thyroid disruptors might also demonstrate effects during metamorphic climax. Thus, since a short-term test is desired, an exposure protocol incorporating either prometamorphosis or metamorphic climax would appear to be most effective. It is likely though that late prometamorphosis to early metamorphic climax (stages 51 to 54+) will be the most sensitive period. However, it is remotely possible, that a toxic insult could result in abnormal development of the thyroid during the premetamorphic stage.
6.11.6 Statistical Considerations

399. The objective of the Amphibian Metamorphosis Assays is to provide the most precise and accurate screen of toxicity associated with thyroid disruption for potential EDCs. Thus, the assay must be biologically sensitive, have minimal variability associated with dose exposure throughout the duration of the test, and have a statistically powerful inference. Biological sensitivity is a function of the choice of species tested, the relevance of the endpoints measured to species survival, and the route and duration of the chemical exposure. Design-associated variability in dose exposure is a function of exposure route and duration, chemical stability and purity within the testing environment, and the testing protocol. The power of a statistical inference is a function of the inherent variability in response; design-associated variability; the degrees of freedom and the source of variability for testing; and the estimation process and decision criteria. Other areas in this section have discussed biological sensitivity; this subsection will focus on design-associated variability and statistical power.

400. Design-associated variability can be reduced by minimizing the variability in the exposure dose and chemical purity through the route and duration of exposure. Chemical analysis of the exposure tanks’ water and/or food samples over time should be considered. Species with shorter metamorphic periods or experimental designs using shorter exposure periods reduce the length of the test and by default reduce the possibility of variability in the exposure. Oral exposure could reduce food intake, thus affecting the exposure dose for several days of testing. Alternatively, a water route for a flow-through system produces difficulties in maintaining a constant dose over time. Both exposure routes could be affected by a change of purity and/or dose throughout the test’s duration.

401. Ideally, an experimental design incorporates randomness, independence, and replication (Cochran and Cox, 1957). Randomness is used to remove noise, independence is used to extend the inferences made, and replication provides a measure of variability for testing (Chapman et al., 1996). Randomization of: 1) experimental containers within a testing environment, 2) treatment application to experimental containers, and 3) application of organisms to experimental containers allows one to incorporate the variability associated with the environmental conditions, the containers, and the organisms equally across all treatments. Thus, when the difference between treatments, meaning the variability associated with experimental environment, experimental containers, and organisms being treated, are removed, only the effect of the treatment remains.

402. Independence of treatment application, including the creation of the treatment, incorporates the variability associated with someone else, somewhere else making and applying the same treatment. Thus, the inferences associated with the treatment response are extended to someone else repeating the experiment. The random sample of organisms from a given population actually limits the inference to that population. However, one can evaluate the stability of the inherent variability of the population over time. An experimental unit is defined as the group of material to which a treatment is applied independently in a single trial of the experiment (Cochran and Cox, 1957). Replication of experimental units for each treatment provides a measure of all the necessary sources of variability needed to extend the inference across time and space. A reduction in the sources of variability that are truly independent constrains the inference (Hurlbert, 1984). Thus, if only one solution of each treatment is made and then divided between replicates, the source of variation associated with making the treatment is not included in the variability for testing, and the inference is limited. It can be argued that this variability is nuisance noise, too small to be of concern, and costly to include. Therefore, if this source of variability is not included, it should at least be acknowledged. The variability between replicate experimental units may also include noise that was not randomized out due to a poor randomization or variable measurement error. These sources of variability can be reduced without loss to inference.
Statistical power is the probability of rejecting the null hypothesis (of equal means) when the alternative is true (i.e., detecting a difference when there is a difference). Statistical power is a function of the variability between replicate experimental units (i.e., within a treatment), the number of replicate experimental units, the size of the type I error, and the percentage of difference one wishes to detect. The latter three components can be controlled; however, the variability in response is inherent in the organism being tested. Thus, the choice of which species should be tested and the relevant endpoints measured should include a comparison of inherent variability or CVs (coefficient of variation=standard deviation/mean x 100%). In terms of power, high CVs have low power for detecting small-scale differences. Power can be increased by increasing the number of replicates. The choice of the test species and endpoints with the least inherent variability, by default, requires the least replication for a given level of power and, thus, are more cost-effective.

6.11.1.7 Sample Size: Ensuring Adequate Test Specimens

Typical practical considerations for sample size are based on the number of endpoints to be collected and whether the specimen must be sacrificed to collect the data. With long-term dosing protocols, a dose response is expected (i.e., over some specified range of doses there will be varying intensity of endpoint response that is significantly different from un-dosed or control specimen). Additionally, it is assumed that at some dose there will be no difference between the dosed and un-dosed specimen. In order to statistically determine the appropriate sample size, the inherent variability of the endpoint must be measured, according to the desired statistical resolution, and the power of predictability determined. No current guidelines are available for longer-term exposure assays with amphibians. However, the length of the prospective assays and the natural variability associated with metamorphosis will require larger sample sizes than used for short-term partial life-cycle amphibian tests. As a useful guide, 100 fish larvae per replicate has been a standard sample size for starting a long-term exposure for regulatory purposes. Due to density issues when raising amphibians, a greater number of replicates with less specimens will be required (i.e., 5 replicates of 20 specimen per concentration). However, before sample size and replicate requirements can be determined for the Amphibian Metamorphosis Assays, formal statistical power analysis will be required.

6.11.1.8 Statistical Considerations – Endpoints

The NOAEC has been used to evaluate data from longer-term amphibian exposure studies, typically when the differences between exposure levels are no greater than a factor of approximately 3. An Amphibian Metamorphosis Assay battery will generate multiple NOAEC values if multiple endpoints are selected.

Even though the NOAEC is widely used, it should not be relied on as the sole indicator of low toxicity. The largest dose for which statistical differences have failed to be detected is a direct function of the power of the test. It is also conceivable that short-term range finding experiments will have difficulty in predicting the location of an NOAEC. Using ECx calculations are an appropriate alternate for estimating doses associated with low toxicity. However, care must be taken not to estimate an ECx value that is more sensitive than the data and experimental design will allow. Ultimately, the data may simply indicate impairment of thyroid axis function.

6.11.2 Whole Animal Assays (excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays” with modification)

Aside from analytically measuring pituitary and TH levels, associated regulatory enzymes of the thyroid axis, and TH transport proteins; several classical methods of measuring thyroid function in higher animals, including humans, could be considered. These classical assays include, radioactive I (¹²⁵I) uptake
by the thyroid and T3 resin tests, which measure thyroglobulin binding protein among a host of others (Thomson, 1974). None of these tests have been specifically adapted for use in amphibians due to the advent of more sophisticated molecular techniques. Therefore, it is unlikely that the classical methods of measuring thyroid dysfunction in humans will be more effective in measuring thyroid disruption in amphibians, than the methods already described or the approaches discussed in the following sections.

6.11.2.1 Morphological Measures

408. Morphological measures of metamorphosis and thyroid status include tail resorption, limb emergence and development, skin development, and skin coloration (Hyperolius). Protocols ultimately developed to morphologically mark thyroid impairment may include any applicable endpoint discussed in the following sections, and should not be limited to one endpoint if possible.

6.11.2.1.1 Tail Resorption

409. Tail resorption occurs in anuran species during metamorphic climax and is triggered by a surge of TH. Metamorphic climax in X. laevis occurs roughly over a 16-18 day period and incorporates stages 58 to 66. Tail resorption can be monitored during culture using digital photography and measuring the tail lengths with a scanning digitizer. A rate of tail resorption can be determined from the mean length data obtained. Abnormal tail resorption can also be monitored during this process. Specimens can be selectively preserved throughout the process of tail resorption and evaluated morphologically. In terms of culture, different approaches may be considered. For example, the specific process of tail resorption can be monitored by culturing tadpoles at relatively low densities such as in multiple replicates for 16 to 18 d from stage 58 to 66 during which time the rate of tail resorption is measured (Fort et al., 2000). Low densities of ca. one organism per 500 mL of test solution are required to achieve consistent maximum growth rates in culture. However, this approach does not consider the metamorphic events that lead up to metamorphic climax. In addition, natural inherent variation in tail resorption can be observed due to differing levels of endogenous TH between organisms. As an alternative approach, a German team has developed a longer term (28 days) “Xenopus Metamorphosis Assay” (XEMA) that is designed to measure biochemical and morphological changes, including tail resorption, during metamorphosis. In this assay, X. laevis are exposed to test materials from stage 48 to stage 66. Based on discussion with the investigators (OECD, 2001), it appears that this modified assay is set in a static-renewal format. This assay is currently being reviewed by OECD (OECD, 2001). Although the investigators indicated that the assay can be completed in 28 days, the assay will require a 50-day exposure length based on our experience. Tail resorption can also be monitored in the discussed anuran species using the general approach developed in Xenopus.

410. Based on this information, several factors relating to the measurement of tail resorption and the interpretation of the results require consideration. First, the rate of tail resorption is naturally variable in whole organism culture (Fort et al., 2000; Fort et al., 2001b), which reduces the sensitivity and predictability of this endpoint. Second, this process occurs in the later stage of metamorphosis, when the thyroid is fully active and at its peak early in the climatic period. However, when used with other morphological and biochemical or molecular endpoints, such as TH measurement and TR gene expression, this endpoint is one which could be considered. Issues regarding exposure design, including the use of flow-through systems, need to be addressed.

6.11.2.1.2 Limb Emergence and Differentiation

411. As previously discussed, early hind limb bud development (emergence) occurs prior to thyroid activity in the developing anuran tadpole. However, hind limb differentiation and forelimb development occur during the prometamorphic phase of metamorphosis. Thyroid dysfunction impairs the process of
limb differentiation, but not limb bud emergence. Selecting an exposure window that encompasses hind limb differentiation would require exposure from stages 54 to 60. The longer-term test format described by the German investigators, incorporates limb differentiation as an endpoint. The only standardized test method that evaluates limb development was evaluated by Fort and Stover (1996) and Fort et al. (1997) using *X. laevis*. However, this modified FETAX assay (ASTM, 1998) evaluated only hind limb development, initiating exposure at an early blastula stage and completing exposure around 30 days at stage 54. Thus, this design did not address the effects of thyroid dysfunction on limb differentiation and is longer than necessary since it incorporates a substantial period of premetamorphosis. However, a modification of the assay might be considered that expresses *X. laevis* from stage 51 (limb bud stage) to stage 54, at which time the hind limb is reasonably well differentiated.

The morphology, rate, and extent of limb differentiation can be monitored in a similar manner as described for tail resorption. However, in this case the occurrence of abnormal limb development, including asymmetrical differentiation, should be monitored, thus requiring additional specimens for histological examination, CAT scan, and x-ray analysis.

Skin Development

During metamorphosis, substantial changes to the skin in terms of protein structure, keratinization, and pigmentation occur. Changes in skin structure have already been discussed; however, changes in pigmentation also occur that change a transparent tadpole such as *X. laevis* to a frog with pigmented, non-transparent skin. Classical thyroid inhibitors, such as thiourea, also inhibit pigmentation by blocking melanin synthesis. An evaluation of melanin distribution in skin structure can be evaluated in *Xenopus* under normal light microscopy. Unlike larval skin, metamorph skin possesses well-formed melanocytes containing a relatively dense distribution of melanin. Staining is only required to evaluate the neurological status of the pigmentation process. For evaluation of epidermal structure and keratinization, a standard eosin or hematoxylin/eosin can be effectively used.

Immunohistochemical techniques can be used to distinguish the presence of specific proteins that mark the newly developing frog skin. Therefore, skin maturation is a potential valuable endpoint. Like the endpoints previously discussed, this endpoint is best served with a battery of other metamorphosis-based morphological endpoints in a longer-term exposure design.

Use of the *Hyperolius argus* endocrine disruption screen (HAES) model developed by Hayes and Menendez (1999), which uses the sexually dichromatic reed frog, *H. argus*, provides a novel means of evaluating thyroid function simultaneously with primary and secondary sexual development. In this case, evaluation of skin coloration and patterning determine the potential impact of goitrogens on metamorphosis because the thyroid exerts at least some control over sexual maturation in this species.

16-d Metamorphosis Assay

The 16-day Metamorphic Climax Assay is conducted during the final period of metamorphosis, which is most prominently marked by the resorption of the tail and the development of the forelimb. As originally proposed by Fort et al. (2000), this assay primarily quantitatively evaluated the rate of tail resorption in *X. laevis*, although maturation of the skin and forelimb development were noted anecdotally. Due to higher than acceptable levels of variability in the rate of tail resorption, the assay has been modified somewhat to increase robustness. However, this variability is primarily due to the overwhelming influence of the endogenous TH peak that occurs during this developmental window. Thus, it is anticipated that this stage would be relatively insensitive to TR agonists since the system is fully stimulated by the TH cascade. Conversely, this stage may also be insensitive to TR antagonists as the endogenous TH surge initiates a cascade of gene activity that is insensitive to most synthesis inhibitors (Brown et al., 1996).
417. In terms of the original assay design, larvae are cultured in FETAX Solution (ASTM, 1998), a reconstituted water medium suitable for the culture of *X. laevis* embryos and larvae. FETAX Solution consists of 625 mg NaCl, 96 mg NaHCO₃, 75 mg MgSO₄, 60 mg CaSO₄·H₂O, 30 mg KCl, and 15 mg CaCl₂ per L of solution. Larvae are fed the supernatant of ground Salmon Starter diet (Silver Cup tadpole starter, *Xenopus* 1®, Dexter, MI) slurry prepared by blending ca. 6 g diet/L FETAX Solution. Larvae were fed ca. 2 mL of the slurry/organism, twice per day, starting after day 4 through metamorphosis. FETAX Solution or one-half strength FETAX Solution may be used for the culture of *X. tropicalis*. Twenty stage 58 larvae are placed in each of four 10-L vessels containing varying constant concentrations of the toxicants. Stock solutions were prepared in FETAX Solution. Dilutions are also prepared in FETAX Solution. Five test concentrations are tested in quadruplicate, using a flow-through delivery/diluter system. A solid phase concentrator may be used when necessary to maximize the water solubility of highly hydrophobic test materials. Four separate vessels containing 20 larvae each are exposed to FETAX solution alone. Treatment and control dishes contain a total of 8 L of solution. The pH of the test solutions is maintained between 7.0 to 8.0. Generally, culture temperature for *X. laevis* larvae is maintained between 21-23°C with a 12 h light: 12 h dark photoperiod. The light intensity should be maintained between 61-139 lumens using fluorescence lights. Fort et al. (2000) used a culture temperature of 21 ±0.5°C.

418. If a static renewal design is used, renewal must be performed daily unless degradation of the test substance is minimal over a long period of time. Waste, excess food material, and dead embryos and larvae are removed daily regardless of the exposure design and numbers recorded. Generally, the use of a flow-through exposure design is preferred. Staging is performed during the renewal process (Nieuwkoop and Faber, 1994). Tests are terminated once the larvae reach stage 66 for the evaluation of tail resorption. At the completion of the exposure, larvae are fixed in 3% (w/v) formalin, pH = 7.0, and the gross effects on limb development and skin maturation are noted. Limb defect assessment is aided by the use of a dissecting microscope.

419. Digital images are captured using a high-resolution color digital video camera. A computer with image processing software is used to digitize the tail length at developmental stages 58 to 66. A ruler videotaped with the larvae is used to monitor image distortion and calibrate the length-measuring program to ensure accurate measurements of the larvae. Tail lengths are measured using digitizing software. The mean tail lengths at day 14 for each concentration of each test material evaluated are corrected for the starting tail length at d 0. Statistical comparisons of the control and exposure treatments and determination of NOAEC values are performed using ANOVA. Isotonic regression of monotonic data is performed to determine median inhibitory (IC50) or median stimulatory (SC50) data.

420. As originally described, the primary drawback to this approach, aside from questionable sensitivity, is that it relied merely on gross morphological endpoints. As previously discussed, in order to distinguish between thyroidal- and non-thyroidal-based changes in developmental rates, other biochemical and molecular endpoints need to be incorporated into the test protocol that can establish mechanistic links to the observed morphological effects. Based on this information, a modified morphological test based on the original metamorphic climax assay that incorporates a more sensitive stage of the metamorphic period, such as early prometamorphosis, that is capable of utilizing biochemical and molecular endpoints might be more advantageous.

6.11.2.3 28-d XEMA model (German Proposal Reprinted from OECD Comments Provided on DRP 2-20 [4-5], 2003)

421. The XEMA assay is a 28-d morphological assay designed to specifically detect effects of environmental chemicals on TH-regulated metamorphic development (OECD, 2003; Opitz et al., 2002a). The basic idea of this bioassay is that possible thyroid-disrupting effects of a given test substance become evident in *X. laevis* tadpoles as morphological alterations during metamorphosis. Within this conceptual
framework, one can expect that exposure of tadpoles to compounds that inhibit TH function reduces the rate of metamorphic development whereas substances which mimic or amplify TH activity cause an acceleration of metamorphosis. Treatment-related deviations from normal development can be determined by morphological examination of tadpoles as the metamorphic status of *X. laevis* tadpoles can easily be assessed by using the staging criteria of Nieuwkoop and Faber (1994).

422. To date, the most common approach used to assess the possible effects of environmental chemicals on anuran metamorphosis was to determine whether chemical exposure could alter the time period required until emergence of the forelimbs (Ankley et al., 1998a; Cheek et al., 1999) or for completion of metamorphosis (Allran and Karasow, 2000; Bridges, 2000; Britson and Threkeld, 1998; Gutleb et al., 2000; Jung and Walker, 1997). For *X. laevis*, the time periods from hatching to forelimb emergence and completion of metamorphosis are approximately 35-40 and 55-60 days, respectively, under optimal laboratory conditions. However, in some studies, much lower developmental rates of *Xenopus* larvae have been reported (Goleman et al., 2002; Huang and Brown, 2000). These differences are most likely due to differences in rearing conditions such as food availability, temperature, and density of larvae, all of which can have profound effects on the duration of the larval period.

423. Alterations in duration of the larval period clearly represent an ecologically relevant biological effect. However, a test protocol based on this endpoint will be very time-consuming and unpredictable in its duration. Furthermore, the inter-individual variability of developmental rates increases throughout metamorphosis (particularly during late developmental stages), thereby affecting the robustness and sensitivity of this endpoint. Moreover, from an endocrinological perspective, the period from premetamorphosis throughout prometamorphosis can be considered the most relevant developmental phase to study disruption of TH function.

424. When developing the XEMA test protocol, our working hypothesis was that determination of the developmental stage, to which the test organisms develop within a distinct time period, provides a meaningful approach to assess the biological effects of compounds with suspected thyroid-disrupting activity. The test protocol was designed to allow for a detection of both stimulatory and inhibitory effects on metamorphic development. In XEMA, exposure is initiated with premetamorphic tadpoles (stage 48/50) and continued for a total of 28 days in a static renewal test system. During the exposure period, control tadpoles show development to late prometamorphic / early climax stages (stages 58/59) under optimized rearing conditions. The main endpoints of the initial test protocol were developmental stage, whole body length, and tail length. Based on the experience from several test series, hind limb length was found to be another valuable morphological parameter and was included as an endpoint in the refined test protocol. All these endpoints are measured for each tadpole at days 0, 7, 14, 21, and 28 of exposure.

425. The utility of the XEMA assay to detect inhibitory as well as stimulatory effects was evaluated in a series of experiments during an inter-laboratory study using several substances known to affect the thyroid system. The initial test protocol for the XEMA assay was evaluated by five different laboratories throughout Europe. For this validation study, the following exposure regime was applied: tadpoles were exposed to five different concentrations of the given test substance, 75 mg/L 6-n-propyl-2-thiouracil (PTU) as an inhibitory control substance, 1 µg/L T₄ as a stimulatory control substance and were reared as solvent controls. All exposure experiments used an aqueous route of exposure. The test compounds used in this study were the triazine herbicide amitrole (8.4, 42, 84, 210, 420 mg/L), the dithiocarbamate fungicide zineb (1.37, 2.75, 13.7, 27.5, 137.5 µg/L) and the zineb metabolite ETU (5, 10, 25, 50, 100 mg/L). Treatment solutions were changed out completely and renewed with new test solution three times a week (Monday, Wednesday, Friday).

426. A first important finding was that our testing approach, that is to start the assay with premetamorphic tadpoles, was not hampered by an increased mortality. The use of tadpoles at early life
stages was found to be a prerequisite in order to ensure a high sensitivity of the assay towards stimulatory
activities. A significant acceleration of metamorphosis was still detectable at a low T$_4$ concentration of 1
µg/L. Treatment of tadpoles with PTU produced the predicted inhibitory effect. PTU completely inhibited
progression of metamorphosis beyond stage 54. Concurrent with observations that amitrole and ETU
inhibit TH synthesis in mammals, dose-dependent inhibition of metamorphosis was observed for both
compounds in the XEMA assay whereas zineb showed no effects on development but produced toxic
effects at the highest concentrations used (137.5 µg/L). Results from the inter-laboratory ring test study
demonstrated the practicability, robustness and reproducibility of the XEMA assay (manuscript in
preparation).

427. The primary endpoint in the initial XEMA protocol was developmental stage. Using this
endpoint, the most sensitive time point to detect inhibitory effects of ETU and amitrole was day 28.
Inhibitory effects of the highest test concentrations of both compounds, which produced complete
inhibition of metamorphosis, were already evident at earlier time points during the test phase (days 14 and
21). Lower concentrations of these inhibitors producing only incomplete inhibition of TH synthesis
required a longer time to produce a significant effect on development. Generally, modest inhibitory
activities became not apparent as retardation in hind limb development throughout early and mid-
metamorphosis (days 14 and 21). However, concurrent with the increasing demand on TH for
development through late prometamorphic stages 57/58, delays in metamorphic development caused by
weaker inhibitory activities could be detected at day 28.

428. Additional experiments were performed to compare the endpoints developmental stage, time to
forelimb emergence and time to metamorphosis with regard to their sensitivity towards stimulatory and
inhibitory effects. It was found that determination of developmental stages at day 28 during XEMA
produced dose-response relationships that were qualitatively and quantitatively similar to those obtained
when using forelimb emergence or time to metamorphosis as endpoints (unpublished observations). From
these data, we concluded that the XEMA assay provides a sensitive and viable approach to assess the
biological effects resulting from thyroid disruption in Xenopus tadpoles.

6.11.2.4 Full Metamorphosis Assays

429. The same methodology addressed above for the metamorphic climax assay generally applies to
the German full metamorphosis assay. As with the metamorphic climax assay, this specific procedure is
designed for Xenopus sp. Culturing practices and data collection are identical to those described with the
following exceptions. First, the test is conducted from stage 48 to stage 66 (OECD, 2001). Second,
additional morphological endpoints are included in the full metamorphosis exposure and include hind limb
differentiation, forelimb development, thyroid anatomy and pathology (goiter and myxedema), skin
maturity, and tail resorption. The rates and normalcy of each process are considered. As described
originally by OECD (2001), this assay is designated as a 28-day assay. The length of time generally
required for X. laevis to develop from stage 48 to 66 is at least 50 d under ideal laboratory conditions
(Nieuwkoop and Faber, 1994), which is exceedingly long for a thyroid disruption screening test. Further,
the assay incorporates a significant portion of premetamorphosis at the start of the test in which no
significant thyroidal activity is occurring, making it counterproductive.

6.11.2.5 Prometamorphosis Assays

430. An approximately 14-day prometamorphosis assay protocol exposing X. laevis from late
premetamorphosis stage 52 to the completion of the prometamorphic phase (stage 57) could potentially be
the most advantageous whole organism exposure design. In this scenario, the rate and normalcy of hind
limb differentiation is measured along with biochemical measures of TH and possibly a molecular screen
of TH-inducible gene expression (i.e., TR beta). Previous work by Fort and Bantle (unpublished data)
indicated that earlier developmental stages, starting around stage 52 to 54, were capable of responding to thyroid agonists and antagonists. Although tail resorption was used as a morphological marker of metamorphosis in this study, it is not unreasonable that hind limb development would follow the same pattern, only with increased sensitivity. A late premetamorphosis (stage 51) to early prometamorphosis (stage 54) exposure scenario which also is completed in ca. 14 d could also be considered. Proposals for a short-term prometamorphic assay and *Xenopus* Gene expression assay, description of a *Xenopus* metamorphosis assay (XEMA) for assessment of biological effects caused by thyroid disruption in *X. laevis* tadpoles, and additional references, provided by technical experts from Germany, are presented in appendices C-D, respectively.

6.11.2.5.1 German Short-Term Prometamorphic Assay (Reprinted from OECD Comments Provided on DRP 2-20 [4-5], 2003)

Test Organism: - *Xenopus laevis*

Exposure Phase: - stage 52 to stage 56/57
- alternatively more basic research needed in order to establish shorter exposure regimes for smaller intervals of stages

Treatment: - solvent control
- test substance (various concentrations)
- positive stimulation control (1.5 µg/L T₄)
- positive inhibition control (PTU, methimazole)

Endpoints: - whole body length
- developmental stage
- hind limb differentiation
- T₄/T₃ concentration
- monodeiodinase activities
- thyroid gland histology
- TSH β-subunit mRNA expression
- TR βmRNA expression, additional marker genes

Modes of Action: - inhibition of TH synthesis
- potent TH agonists
- potent TH antagonists
- inhibition of monodeiodinase activities

6.11.2.5.1.1 Endocrinological Aspects of a Prometamorphic Assay

431. As stated above, we suggest that a short-term prometamorphic assay initiated at stage 52 and concluded at stages 56/57 holds promise as a more rapid screening assay for detection of chemically induced disruption of the central hypothalamus-pituitary-thyroid axis. Accordingly, the main focus of this assay will be on modes of action leading to perturbation of T₄ synthesis, transport and elimination. In addition, such an assay may also enable the identification of rather potent TH agonists or antagonists. However, a sensitive detection of chemical effects on target cell action of TH certainly requires a different testing approach (see below).

432. Significant T₄-secretory activity of the thyroid glands begins at stage 54 and circulating T₄ concentrations rise throughout prometamorphosis (Leloup and Buscaglia, 1977). Initiating the exposure with stage 52 premetamorphic tadpoles (that is prior to the activation of thyroidal activity) may allow some time for inhibitory substances to exert their effects before endogenous production of T₄ sets in. Thus,
premetamorphic exposure is suggested to increase the sensitivity of the assay towards inhibitors of thyroid gland function.

433. The precise function of feedback mechanisms along the hypothalamus-pituitary-axis in anuran larvae is not completely understood. During metamorphic development, TSH α- and β-subunit mRNA expression levels rise in parallel with increasing TH plasma levels throughout prometamorphosis, reaching their maximum levels around climax and declining thereafter to low levels (Buckbinder and Brown, 1993; Okada et al., 2002). The critical role of TSH to stimulate thyroid activity during metamorphosis has been shown by immunoneutralization of endogenous TSH using antisera against mammalian TSH (Eddy and Lipner, 1976) or hypophysectomy (Dodd and Dodd, 1976) both leading to metamorphic retardation. Further, it has been demonstrated that amphibian TSH directly stimulates T₄ release from larval thyroid glands (MacKenzie et al., 1978; Sakai et al., 1991).

434. Importantly, it has been shown that inhibition of TH synthesis in anuran larvae by anti-thyroid compounds leads to increased mRNA expression of the α- and β-subunits of TSH (Buckbinder and Brown, 1993; Huang et al., 2001), increased TSH protein synthesis and secretion in the pituitary (Goos et al., 1968; Miranda et al., 1995), hyperactivity of the thyroid gland (Goos et al., 1968; Hanaoka, 1967; Miranda et al., 1996) and formation of goiter (Buckbinder and Brown, 1993). Accordingly, valid measurements to detect antithyroidal activity may comprise histological analysis of thyroid and pituitary tissues, determination of T₄ and T₃ concentrations, and immunohistochemical or molecular analysis of TSH expression.

435. A semiquantitative RT-PCR assay for the β-subunit mRNA of TSH (TSHβ) from X. laevis was developed (Opitz et al., 2002) and used to study TSHβmRNA expression in tadpoles exposed to the anti-thyroid chemical ethylenethiourea (ETU). TSHβmRNA is exclusively expressed in the pituitary but since a single pituitary gland is too small to obtain a sufficient amount of tissue for RT-PCR, whole brains were instead used for RNA isolation. We first determined the developmental expression profile of TSHβ in tadpoles during spontaneous metamorphosis by means of RT-PCR analysis of total RNA extracted from whole brain homogenates. TSHβmRNA levels increased from stage 54 to 58/59 and rapidly declined thereafter to low levels confirming the results of Buckbinder and Brown (1993). The highest signal was obtained in whole brain homogenates of tadpoles at stages 58/59. Next, we compared the expression level in unexposed tadpoles and tadpoles treated with 10, 25 and 50 mg/L ETU for up to 5 weeks (Opitz et al., 2002b). Exposure of tadpoles to 10 mg/L ETU did not affect metamorphic development whereas development was slowed by 25 mg/L ETU and became completely arrested at stage 53/54 at an ETU concentration of 50 mg/L. Expression levels of TSHβ were compared between control tadpoles (stage 58/59), tadpoles treated with 10 and 25 mg/L ETU (stage 58/59) and tadpoles treated with 50 mg/L ETU (53/54). Semiquantitative RT-PCR analysis of whole brain homogenates revealed that all ETU treatments increased TSHβmRNA expression at least two-fold over control levels, respectively. From these results, we conclude that TSHβmRNA expression may provide a very sensitive biomarker for detection of antithyroidal activities in Xenopus tadpoles.

436. Currently, further studies are in progress addressing the stage-dependent induction of TSHβ and the temporal expression profile of TSHβmRNA, respectively, following ETU treatment. These studies are aimed at the identification of the most sensitive developmental period for TSHβ induction in response to anti-thyroidal compounds and the minimum treatment duration until up-regulation of TSHβ becomes detectable. However, studies are still needed to characterize TSHβ gene activity following treatment with modulators of monodeiodinase activities because at least D2 activity appears to play an important role in mediating feedback responses at the pituitary level (Huang et al., 2001; Schneider et al., 2001). Furthermore, a detailed characterization of pituitary and thyroidal activity in response to T₄ and T₃ exposure is warranted for a better understanding of the compensatory feedback mechanisms being activated along the pituitary-thyroid axis in response to inhibiting and stimulating compounds. Since most of the recommended endpoints for an amphibian prometamorphosis assay are related to these
compensatory activities, a comprehensive evaluation of these biomarkers should be performed not only for inhibitors of TH synthesis but also for modulators of monodeiodinase activities.

6.11.3 In vitro, Ex vivo, and In vivo Assays

6.11.3.1 Biochemical Markers of TH Action

437. TH (T₃ and T₄), precursors (MIT and DIT), and deiodinase activities can be analyzed by the following methods. Since these methods have not been extensively used in amphibians, multiple methods will need to be considered. Further, biochemical measurement of thyroid activity can be measured in plasma obtained from cardiac puncture and whole body tissue. Three primary methods are available, although limited data are available on each in terms of sensitivity and reliability (Moller et al., 1983; Galton et al., 1991; Mellstrom et al., 1991; Ekins, 1999; De Brabandere et al., 1998; Baiser et al., 2000). These methods include RIA, ELISA, and LC/GC-MS. Of these methods, only RIA techniques have been used to measure amphibian TH (Galton et al., 1991). Currently, ELISA and LC/GC-MS test methods have been developed for mammals, in human tests of thyroid function. In order for ELISA to be routinely used, an ELISA kit would need to be developed for amphibian TH and deiodinase. In addition, new chromatographic methods developed for human TH analysis need to be adapted for amphibian samples. At this point, conventional RIA analysis methods of TH are adequate. Regardless of method, quality assurance (QA) measures associated with ELISA and RIA analyses should include an evaluation of cross-reactivity with other hormones or similar substances, evaluation of linearity using standard curves, and the use of standard additions to assess recoveries. Perhaps the most promising of the biochemical techniques are described by Simon et al. (2002), who have recently developed a new approach for the analysis of iodinated organic species in serum and whole body tissue homogenates using liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). This method enabled the simultaneous quantification of iodide, T₄, T₃, rT₃, MIT, DIT, as well as five additional presently unidentified iodinated molecules in *Xenopus* larvae.

6.11.3.2 Molecular Markers of TH Action

438. Three molecular approaches for measuring TH-induced metamorphosis are currently being evaluated: transgenesis, multiple gene expression assays, and single gene expression assays. The multiple gene expression assays reviewed include differential display and gene array techniques. The single gene expression assays reviewed included RT-PCR and RPA technology. Development of transgenic lines expressing novel TH-inducible gene sets (i.e., TR beta and related TREs) is possible. However, the complexity and time required to create a transgenic line makes it somewhat less attractive than the gene expression assays. The potentially most useful molecular assays are the gene array and RT-PCR approaches. Differential display is plagued by difficulty in interpretation and quantification of the results of simultaneous multiple gene expression, and will thus not be considered further. Although the RPA technology could potentially be used to monitor single gene expression, the newer RT-PCR techniques are most efficient and sensitive. Based on this information, measurement of TH-inducible gene arrays (TR beta, TR alpha, ST3, and other related genes), including the respective TREs, could be used to measure changes in multiple gene activity as the result of EDC exposure. A more simplistic method is to use RT-PCR to measure changes in single gene activity. In this case, changes in TR beta, ST3, arginase, or other relevant TH-induced genes could be quantitatively measured for changes as the result of EDC exposure. Furthermore, both RT-PCR and gene arrays could be used as an endpoint in the short-term morphological tests, along with biochemical measurements, to determine if the responses are the result of thyroidal or non-thyroidal processes. The primary advantage of the gene array technology over the RT-PCR approach is that it is capable of monitoring multiple gene activity. Since TH-induced metamorphosis is the result of multiple genes acting within a highly complex program, it is more realistic and potentially useful.
6.11.3.2.1 German Proposal for a Xenopus Gene Expression Assay (Reprinted from OECD Comments 1 Provided on DRP 2-20 [4-5], 2003)

Test Organism: - *Xenopus laevis*
Exposure Phase: - Stage 50/51
Treatment: - solvent control
- test substance (various concentrations)
- test substance (various concentrations) + 5 nM T₃ (T₄)
- 5 nM T₃ (T₄)
Endpoints: - TRβ mRNA expression (24 hrs)
- additional early and late TH-response genes (24, 72 hrs)
- hind limb differentiation
- monodeiodinase activities
Modes of Action: - TH agonists
- TH antagonists
- modulators of monodeiodinase activities
- other mechanisms affecting TH action

6.11.3.2.1.1 Endocrinological Basis of a Short-Term Gene Expression Assay

Background concentrations of TH are very low in premetamorphic tadpoles because significant T₄-secretory activity of the thyroid gland has not yet started. However, premetamorphic tadpoles already display a competence to respond to exogenously added TH by upregulating TH-responsive gene expression programs leading to precocious induction of morphological changes (Tata, 2000). The presence of TRβ in premetamorphic tadpoles provides the basis for this competence. The first gene which is upregulated by TH is TRβ (Yaoita and Brown, 1990). Upregulation of TRβ occurs within a few hours after TH administration. Maximal induction is achieved within 48 hours after T3 treatment (Kanamori and Brown, 1992; Yaoita and Brown, 1990). It is further of note that induction of TRβ gene expression is unique to TH as other hormones did not show a direct effect on this gene activity (Kanamori and Brown, 1992). These characteristics make TRβ one of the candidate molecular biomarkers for the study of TH-mimicking activities of environmental chemicals. We performed various experiments in order to evaluate the utility of TRβ as a molecular biomarker of thyroidal activity in *Xenopus* (Opitz et al., 2002). TH-induced upregulation of TRβ mRNA in different tadpole tissues was measured by means of semi-quantitative RT-PCR. TRβ mRNA expression was increased in a dose-dependent manner after 24-h treatment with T₄ (1, 5 and 10 nM) and T₃ (1, 5 and 10 nM) in both head and tail tissues with T₃ being more potent than T₄. The magnitude of TRβ induction by T₄ and T₃ over control levels was further stage-dependent being highest in stage 50/51 tadpoles. Induction of TRβ was less pronounced in stage 54/55 tadpoles, while in stage 58/59 tadpoles, concentrations of 1 and 10 nM T₄ were ineffective in inducing a significant increase in TRβ expression over control levels. This was true for both head and tail tissues. The low background expression of TRβ at stages 50/51 allowed for a very sensitive detection of TH activity when TRβ expression was measured by RT-PCR 24 hours after treatment with T₄ (LOEC: 1 nM) or T₃ (LOEC: < 1 nM).

440. From these data, we suggest that analysis of TRβ gene expression following short-term treatment (24 to 72 h) of stage 50/51 tadpoles with a given test substance may provide a rapid means to detect direct
agonistic activities. Results from a study by Veldhoen and Helbing (2001) as well as recent data from our own experiments suggest that incorporation of an acute challenge exposure with TH can enhance the utility of such an short-term molecular assay to detect chemical interaction with TH action which otherwise would not be noticed. Analysis of gene expression after an acute challenge with TH may reveal various possible modes of action for chemicals to interfere with TH action in target cells. Since TH treatment leads to a rapid increase in the cellular TR population, this may, as an secondary effect, increase the sensitivity of tissues to weak agonists. Thus, comparison of TRβ induction after acute TH exposure of untreated tadpoles and tadpoles treated with the test substance may indicate the potential of a test substance to act synergistically or as an antagonist. Further, it remains to be investigated whether inhibitors of monodeiodinase activities can affect the pattern of gene expression within an acute challenge assay. The advantage of an acute challenge exposure is that it reduces the possibility that chemical effects are obscured by compensatory activities at different levels.

6.11.3.3 Neuroendocrine Peptides (CRH, TRH), Deiodinases, and Transport Proteins

TH synthesis and secretion, TH transport by carrier proteins, and TH binding to TR constitutes the primary thyroid axis pathway. Thus, measurement of TH transport proteins and TR provide a measure of TH activity and responsiveness (Tata, 1999). The most practicable methods of evaluating these processes appear to be quantifying changes in protein levels during metamorphosis. Conventional ELISA is suitable for the analysis of specific transport proteins, such as transthyretin (Yamauchi et al., 1993). Evaluating TR gene expression also represents a suitable method for evaluating the up and down regulation of TR. Immunohistochemical analysis of TR in the whole organism can be used to regionally quantify the presence of TR in a metamorphosing tadpole.

6.11.3.4 Receptor Expression

One of the most promising single gene molecular biomarker assays is RT-PCR. RT-PCR methodologies for specifically measuring TR beta gene expression changes, as the result of exposure to potential EDCs in *X. laevis* tail biopsies, were developed by Veldhoen and Helbing (2001). RT-PCR analysis of ST3 or other relevant gene activity during prometamorphosis could also be considered. RT-PCR technology is based on the construction of cDNA from isolated RNA using reverse transcriptase. The cDNA and cDNA primer fragment (i.e., TR beta) are amplified. The amplified DNA products are then separated on an agarose gel and the amplified DNA bands are quantitatively analyzed using densitometry. RT-PCR techniques have been used to measure the induction of vitellogenin genes in *Xenopus* as the result of exposure to the weakly estrogenic compound bisphenol A (Kloas et al., 1999). Work by Veldhoen and Helbing (2001) demonstrates that quantitative analysis of single gene activity, such as TR beta, is feasible. If the TH-response genes selected for evaluation are ubiquitous, other tissues could be sampled besides the tail, including the hind limb, using a similar biopsy approach.

6.11.3.5 Pathology Endpoints

In most cases, thyroid dysfunction, such as goiter or myxedema, manifests changes in the morphometry of the thyroid. For example, tadpoles exposed to the goitrogen methimizole develop enlarged thyroid glands that are visible under low magnification in the transparent *Xenopus* tadpole (Fort et al., 2001a, b). In this case, the thyroid gland can be digitally photographed and the size quantified by photodigitization. Some EDCs may induce myxedema, or a shrinking of the thyroid gland (Wollman, 1980). Again, myxedema can also be quantified using the methods discussed for goiter. Distinct histopathology is also associated with goiter, including a thickened capsule wall, shrinking of capillaries, fusion of the follicles, increased follicular size, and infiltration of connective tissue (partitions) entering the lobe from the capsule (Wollman, 1980). The histological techniques are relatively simple, using thin sections of the thyroid gland and standard light microscopy of hematoxylin/eosin stained tissue. Use of
thyroid morphometry and pathology, particularly in *Xenopus*, where the thyroid gland is fully visible in the intact specimen, should be included in the analysis of thyroid function.

Specimens for histological examination can be selectively preserved in Bouin’s Solution prior to preparation. Following tissue processing, including decalcification if needed, the tissue sample can be embedded in paraffin. Microtome sectioning (4-5 µm) or step sectioning (30-32 µm between steps) can be performed prior to hematoxylin-eosin staining. The histological examination could include changes in the gland, including hypertrophy of follicular cells, hyperplasia of thyroid follicles, size of the follicle, and degree of colloid accumulation. Use of digital photographs can be used to illustrate changes and provide a means for outside peer examination. In addition to traditional light microscopic procedures, electron microscopy (EM), particularly scanning EM (SEM) or scanning transmission EM (STEM), can be considered as a potentially useful diagnostic tool. As for light microscopy described previously, EM procedures are readily available and can be adapted for evaluation of thyroid pathology.

6.11.3.6 Novel Endpoints

6.11.3.6.1 Transgenic Animals

A physiological means of studying gene function is through gene knockout and transgenic lines. To date, no gene knockouts have been developed in amphibians. However, two methods of developing transgenic lines have been established using amphibian species. The first approach involves the nuclear transplantation of somatic nuclei into an enucleated oocyte. Once the transplantation is complete, the oocyte is fertilized. Kroll and Gerhart (1994) used this approach to transfect a gene of interest into a *X. laevis* tissue culture cell line. Successfully transfected nuclei are then microinjected into newly fertilized embryos. However, this approach has not been largely successful in growing embryos beyond a young larval stage. Thus, the use of transfected somatic nuclei transgenesis is not well suited for studying metamorphosis. The inability to raise the transgenic specimen beyond early larval stages prompted Kroll and Amaya (1996) to develop the second approach that uses undifferentiated sperm cell nuclei. This approach entails the insertion of a gene or genes with appropriate promoters in a plasmid. The plasmid is then linearized using restriction enzymes. The linearized plasmid and *X. laevis* sperm cell nuclei are mixed in a high-speed extract made from *X. laevis* eggs. A short incubation period allows decondensation of the nuclei to occur, allowing plasmid incorporation into the chromatin. The transfected sperm nuclei are then microinjected into oocytes at a rate of one nucleus per egg. Although the efficiency is still rather low, the techniques compare favorably to similar approaches developed for the mouse and zebrafish.

The availability of many genes involved with metamorphosis (see Table 6-2 above) in combination with tissue-specific promoters, will eventually allow construction of a transgenic line that models the expression of a series of genes important for successful metamorphosis. Adaptation to *X. tropicalis*, a diploid organism with a shorter lifecycle, further increases the feasibility of these studies. A transgenic line exploiting TH/TR response elements could be developed. Activation of these response elements by the action of an exogenous EDC could be marked by a marker protein. For example, Oofusa et al. (2001) evaluated the activity of the thyroid responsive element (TRE) using *X. laevis* carrying a transgene containing the 5’ upstream region of the TR beta A1 gene and a green fluorescent protein (EGFP) gene. EGFP expression was then monitored throughout the entire premetamorphic, prometamorphic, and metamorphic climax periods. TR beta expression was found as early as neurula stage at low levels, with low activity during the remainder of premetamorphosis, culminating at metamorphic climax. A similar transgenic *Xenopus* line could be developed to measure TR beta expression and the influence of potential EDCs on gene expression. Furlow and Brown (1999) identified a novel lencine zipper transcriptional factor (TH/bZIP) that is induced by TH during metamorphosis in transgenic *X. laevis*. Two genomic TH/bZIP genes regulated by an adjoining DR+4 TRE have been found in *X. laevis*. The effect of potential EDCs on up and down regulation of TH/bZIP could also be measured using an EGFP marker. Overall, in
accordance with the work of Luze et al. (1998), Ulisse (1996), and Rowe et al. (2002), it is possible that a reporter gene assay created from either somatic or germinal transgenesis could be used to mark thyroid axis disruption in a quantifiable, rapid process. Further, this assay could be used in conjunction with a broader-based morphological assay.

6.11.3.6.2 Organ/Cell Culture

447. Consistent TH-induced tail resorption is relatively easy to monitor in organ cultures (Weber, 1967; Tata et al., 1991). Whole tail cultures could be used to evaluate TH agonists and antagonists downstream from the thyroid gland. More specifically, tail culture assays could potentially evaluate TH interaction with the TR, TR activation of the TREs, and the cascade of molecular events associated with selective cell death in the tail. Similar transfected cell culture lines could also be established to measure the influence of EDCs on TREs and associated gene products (Denver et al., 2002).

6.11.4 Recommended Assay Protocols (portions excerpted from DRP WA 2-20, “Amphibian Metamorphosis Assays” with modification)

6.11.4.1 Species Selection Criteria

448. Considering that the objectives in selecting an amphibian species are to: 1) develop a short-term Tier I screening assay for thyroid disruption, and to 2) ultimately develop a longer term Tier II assay that includes advanced developmental and reproductive endpoints, the minimal attributes of a test species are described in the following eight criteria:

1. The species must be amenable to continuous culture in the laboratory;
2. Reproduction in the laboratory must be routine throughout the year, using either naturally occurring reproduction or some type of hormonal induction;
3. Larvae must be able to be routinely reared to predetermined developmental stages;
4. The developmental rate for the interval included in any test must be relatively fast so that the effects are observed quickly, thus minimizing test duration and test costs;
5. The endpoints which constitute the test data that will be used for regulatory or pre-regulatory action need to be supported by a sufficient knowledge base that indicates that they are relevant to the question at hand.

449. In addition to the minimal criteria noted above, it would be highly beneficial for the subject species to have additional information relevant to the following areas:

1. Genetic information, including gene sequences of thyroid axis-related genes and some knowledge of the genetic programs associated with TH dependent processes;
2. Biochemical information on the endocrine axis, particularly of the hypothalamus-pituitary-thyroid (HPT) axis; and
3. Metabolism information, especially as it relates to TH homeostasis.
6.11.4.2 Test Species

450. The only anuran species which meets the minimal criteria established above is *X. laevis*. This species is routinely cultured in laboratories worldwide and is easily obtainable through commercial suppliers. Reproduction can be easily induced in this species throughout the year using hCG injections and the resultant larvae can be routinely reared to selected developmental stages in large numbers to permit the use of stage-specific test protocols. The developmental rate for *X. laevis* is relatively rapid compared to the two Ranid species commonly used in biological and toxicological research, *R. pipiens* and *R. catesbeiana*. In terms of thyroid dependent post-embryonic development, more is known about *X. laevis* than any other anuran species. In addition to meeting the minimal requirements stated above, the genetic information regarding *X. laevis* is more extensive than other anurans, especially in the area of the thyroid axis, where numerous publications have detailed the genes and the genetic program involved in the process of metamorphosis. Finally, the information on the biochemical and metabolic control of TH in this species is well-developed, and includes information on all of the typical hypothalamus-pituitary-thyroid (HPT) modulators as well as peripheral tissue enzymes, such as the deiodinases, which ultimately control the local and downstream effects of TH.

451. The only alternative species that should be considered is *X. tropicalis*. This species is similar in terms of ease of culture and reproduction. The primary advantages of this species are: 1) relatively rapid developmental rate that could shorten test protocols, especially those that include reproductive endpoints (not specifically discussed in this DRP), and 2) the genome of this species is diploid which will eventually facilitate the development and use of molecular endpoints. However, at this time, there is too little experience in the broader scientific community to support the selection of this species as the primary species for a Tier I screen. In addition, disease susceptibility may be greater in *X. tropicalis* than in *X. laevis*, making them more difficult to rear successfully in the laboratory. Eventually, as the genetic information is developed for this species (major initiatives have been proposed to sequence the genome of *X. tropicalis*) and as more laboratories develop biological and toxicological information to support the use of *X. tropicalis*, this species may replace *X. laevis*.

452. In terms of a Tier II screen that includes advanced developmental (e.g., gonadal development) and reproductive endpoints, *X. tropicalis* is superior to *X. laevis*. The primary advantage is that sexual maturity occurs in *X. tropicalis* in about 4 to 5 months, whereas *X. laevis* requires 1 to 2 years. One possible problem common to both species is that spontaneous reproduction cannot be reproducibly achieved in the laboratory and amplexus must be induced by hCG injections. However, spontaneous reproduction of other amphibian species in the laboratory also does not generally occur and breeding in the laboratory is substantially more complex.

6.11.4.3 Description of Method

453. The utility of any biological protocol is necessarily constrained by inherent limitations of the model, costs of conducting the protocol, variability inherent in the endpoint responses, specificity of the response with respect to the hypothesis, and sensitivity of the endpoints using a practical and reproducible approach. Given these general considerations, it is important to focus the development of a Tier I screen for thyroid disruption on a specific hypothesis. This hypothesis is, “exposure to a test chemical causes changes in the homeostasis and action of thyroid hormone on the thyroid axis.”

454. In addition to the basic hypothesis, it should be the goal of this approach to develop a protocol which serves as a generalized vertebrate model that can be used to help evaluate the risk concerns among vertebrates. In order to accomplish this goal, it is necessary to understand the mechanisms involved in thyroid perturbation. Extrapolation to other species is dependent on defining the similarities and dissimilarities at the mechanistic level. There are many conserved aspects of the thyroid pathway among
vertebrates, especially in the HPT axis. For example, substantial homology exists for many of the genes associated with TH homeostasis. And, in practice, commonly used inhibitors of thyroid synthesis behave similarly in anurans as they do in mammals. In combination, these facts support the plausibility that results obtained from a X. laevis model could be extrapolated to other vertebrates.

6.11.4.4 Specific Protocol Recommendations

6.11.4.4.1 Developmental Stage

455. Assuming that X. laevis is the species of choice and assuming that testing the above hypothesis is the objective, establishing which developmental stage(s) should be included in the protocol is paramount. As noted earlier, the process of metamorphosis in X. laevis (and other anurans) can be divided into three phases: premetamorphosis, prometamorphosis, and climax. Premetamorphosis is the interval of development that proceeds from hatch to stage 54. This stage is characterized primarily by growth in the absence of a functional thyroid gland and consequently this development is considered TH independent. This is supported by the fact that inhibition of TH synthesis during premetamorphosis permits development up to stage 54, but not beyond. In fact, continuous exposure to TH synthesis inhibitors during premetamorphosis will maintain the organism at stage 54 indefinitely. At stage 54, prometamorphosis begins, which is characterized by the onset of thyroid gland function, rising levels of TH, and the process of TH-dependent morphogenesis. Prometamorphosis continues through approximately stage 60, and many tissues reach their respective metamorphic fate during this phase (e.g., limbs). At stage 60, metamorphic climax begins which is characterized by an abrupt rise in TH synthesis and the dramatic morphogenetic events, including tail resorption, which complete the transition from the larval to the juvenile phase at stage 66.

456. Given this background and the hypothesis to be considered, it seems obvious that exposures that cover the premetamorphosis period would be ineffective at detecting inhibitors of the thyroid pathway. Since inhibition of the thyroid pathway is the most likely mode of action of environmental chemicals, an assay that includes a substantial period of premetamorphosis is unwarranted.

457. At the other end of the developmental sequence, metamorphic climax, TH-dependent morphogenesis requires very high TH levels. This suggests that climax may be a relatively insensitive period as the level of inhibition would have to be relatively greater than for premetamorphosis in order to observe an effect. Stage 60 larvae are, in fact, less sensitive to inhibitors than prometamorphic larvae. In some cases, inhibition at stage 60 was ineffective, consistent with the observations of other laboratories (Brown, 1996; Fort and Bantle, unpublished data) that once the genetic program is initiated by rising TH levels, the cascade of the gene expression program continues even in the face of inhibition. In terms of stimulation, it is likely that further stimulation of the TH pathway during climax will be inconsequential to the developmental outcome because the overwhelming stimulation via the endogenous rise in TH overshadows any presumptive additional stimulation. Furthermore, it has also been demonstrated in the literature that larvae are competent to respond to stimulation as early as stage 48. And, the earlier developing tissues, particularly hind limb during prometamorphosis, are more sensitive than tissues that complete remodeling during climax. This is consistent with the natural sequence of TH-dependent morphogenesis when compared to the endogenous TH levels. That is, the more sensitive tissues remodel during prometamorphosis when TH levels are low, and the endogenous TH elevation at climax is necessary for the late developing tissues.

458. Consequently, the general developmental period upon which an assay should be developed is prometamorphosis (NF stages 55 through 57). The rationale for this is that 1) the thyroid system is fully functional, 2) tissues are fully competent to respond, and 3) prometamorphosis is more sensitive to inhibition and stimulation than climax. This period, according to Nieuwkoop and Faber (1994), lasts for
approximately 20 days, depending on culture conditions. But, since effects can be determined prior to the
completion of prometamorphosis, it is unlikely that it will be necessary to conduct the exposure for the
complete interval, making the ultimate protocol shorter. An additional argument that has merit is that the
transition period from pre- to prometamorphosis would be particularly sensitive to perturbation of the TH
pathway because the exposures would be initiated with organisms that are initially naive to TH, but that
TH synthesis would be developmentally acquired during the protocol. Effects of inhibition that precede
endogenous production of TH could be enhanced because there is no TH pool to promote TH-dependent
development in the absence of nascent synthesis. Conversely, effects of stimulation could be enhanced
since there is no TH at the initial stages of the study. To address the issues of necessary length of exposure
and optimal developmental period, Tietge et al. (personal communication) have examined the effects of
methimazole, perchlorate, and propylthiouracil on development of stage 51 and 54 organisms for periods
of up to 14 d. Based on these studies, exposure of stage 51 or 54 larvae for 14 to 21 days were capable of
detected developmental delay based on apical morphological endpoints. Further, histological markers of
thyroid impairment were observed substantially earlier than the conclusion of the exposure period.
Utilization of stage 51 specimens confirmed a slight increase in sensitivity. However, further examination
of the differential sensitivity conferred by beginning exposure with stage 51 or 54 and the duration of
exposure needs to be performed.

6.11.4.4.2 Endpoints

459. Apical morphological endpoints are useful in that they demonstrate an organism-level effect that
integrates all aspects of the toxicological process. While there is value in apical morphological endpoints,
they are limited because: 1) they are not necessarily diagnostic of a particular mode of action, 2) they are
generally less sensitive than sub-organismal endpoints, 3) they are the slowest of the endpoints to manifest
effects, and 4) they may be difficult to use in terms of inter-species extrapolation. For example, Tietge et
al. (personal communication) have demonstrated that histological analysis of the thyroid gland of
organisms that have been exposed to several TH inhibitors can detect substantial thyroidal hypertrophy and
hyperplasia in 8 days at concentrations where there is no effect on the apical morphological endpoints.
These observations suggest that, based on apical endpoints, one would conclude that the thyroid pathway is
unaffected, when in fact, there is clear evidence of a thyroid-specific effect at a histological level. The
interpretation of this pattern of responses is that the thyroid axis is inhibited, but the mechanisms that
underlie homeostasis are able to compensate at a dose which results in incomplete inhibition. More
specifically, partial inhibition of TH synthesis results in depressed TH levels, which is sensed by the CNS
and results in TSH release which, in turn, stimulates thyroidal hyperplasia and hypertrophy. This response
compensates for low TH levels by up-regulated synthetic pathways.

460. Another problem with apical morphological endpoints is that they tend to be divergent and do not
leend themselves to inter-species extrapolation. Endpoints which address more central and conserved
processes are more desirable because they do lend themselves to inter-species extrapolation. For example,
several chemicals are known to inhibit TH synthesis via different mechanisms. The same mechanisms are
apparently affected similarly in both mammals and amphibians (e.g., inhibition of iodide uptake by
perchlorate, inhibition of thyroid peroxidase by methimazole). The manifestation of these inhibitory
mechanisms in an anuran at the apical level would be inhibition of metamorphosis based on a
morphological response, such as tail resorption. It would be difficult to use this response to predict effects
in mammals, where tail resorption does not occur. Therefore, if the subject protocol is to be used as a
generalized vertebrate model, then apical endpoints are insufficient and endpoints with more diagnostic
power are clearly necessary.

461. There are three additional classes of endpoints that should be considered for this assay: 1)
molecular endpoints, 2) biochemical endpoints, and 3) histological endpoints. Classical toxicology tests
focus primarily upon tissue and organism-level effects, which are often insufficient for discriminating the
modes/mechanisms of action (MOA). A fundamental understanding of MOA, however, is critical to the ability to extrapolate toxicological effects among species and chemicals, and across biological levels of organization. This necessitates the development of tools capable of linking tissue and organism-level effects to MOA. Monitoring gene expression is one approach commonly used to link whole organism changes to specific MOA. However, traditional methods in molecular biology have generally utilized a "one gene in one experiment" approach and, as a consequence, the throughput is very limited and resource-intensive when more than a few genes are monitored. In the past several years, a new technology, called DNA array analysis, has been developed to monitor a large number of genes simultaneously (Nuwaysir et al., 1999; Khan et al., 1999; Debouck and Goodfellow, 1999). Application of this tool to the study of thyroid toxicology could allow investigators to easily and simultaneously monitor the expression of many thyroid related genes at multiple points within an organism. This approach would provide insight as to where in the organism or tissue toxicity is occurring, and which genes might serve as indicators of exposure and effects. Ultimately the combination of DNA arrays and whole organism testing would enhance our ability to link functional changes in the organism to specific MOAs.

Biochemical endpoints, like molecular endpoints, provide useful information on MOA and are, thus, important in developing a protocol that provides data that are diagnostic of a thyroid-specific effect and that can be extrapolated to other vertebrates. The most commonly used method to assess T₃ and T₄ status is RIA. RIA determinations on organisms exposed to a chemical represent the minimal data necessary to evaluate inhibition of T₄ synthesis and metabolic conversion of T₄ to T₃ via deiodinase activity. Other methods should be considered that permit the analysis of synthetic precursors of T₄, as well as metabolic products that are the result of elimination pathways (e.g., deiodination, glucuronidation, sulfation). Several HPLC-based methods have been utilized to achieve separation of such compounds, but they often rely on the use of radiolabeled iodine for detection. Alternative detection methods should be further investigated and possibly included as a routine analytical method to augment the utility of the Tier I protocol. Finally, histological analysis of the thyroid must be included as an endpoint at this time because it confers diagnostic specificity to the assay that is unattainable using apical morphological endpoints alone.

In summary, endpoints which confer diagnostic specificity are needed in order to accurately determine whether or not the thyroid pathway is the target of a test chemical. This is needed, not only to properly characterize the chemical for potential regulatory action, but to provide a basis for interspecies and interchemical extrapolation. Although the molecular and biochemical endpoints suggested herein require additional research and development, their successful implementation will reduce the time and cost associated with conducting an assay, and will improve the quality and utility of the data. Ultimately, this will help reduce testing needs in the future.

6.11.4.4.3 Exposure Protocol

Based on the information provided in the present DRP, the recommended exposure protocol will involve exposure of late premetamorphic X. laevis larvae from stage 51 to stage 54, resulting in a late premetamorphic to early prometamorphic test. In general, X. laevis larvae will be cultured as described in Table 6-2 above, during which time histological effects data will be collected on the thyroid, including hypertrophy, hypotrophy, hyperplasia, and hypoplasia. Since histological effects on the thyroid may occur well before apical morphological effects are manifested, exposure through stage 54 may not be required for EDCs that strongly affect the thyroid axis. Thus, collection of data prior to the ca.14-day prometamorphosis assay period could potentially shorten the test. Collection of control (positive and negative) and exposed specimens for histological evaluation of the thyroid gland should be performed on at least days 8 and 14. At this time, samples should also be collected for biochemical analysis of TH (T₄ and T₃) via RIA. Samples should also be collected for analysis of gene expression. Using tissue punch samples described by Veldhoen and Helbing (2001), molecular analysis could be performed without
sacrificing specimens and could allow for tracking of simultaneous histological effects and gene activity changes on the same individual. At this point, it is not completely clear which molecular assay will be best served for this exposure protocol. The two best options are RT-PCR analysis for measuring single gene activity and gene array analysis for measuring multiple genes activity. Of the single genes to be strongly considered, TR beta (or TR alpha) and ST3 are potential candidates for analysis. However, gene array analysis now provides a means of measuring multiple gene activity simultaneously, which is a tremendously powerful tool and potentially more useful in this assay. Finally, apical morphological endpoints should not be excluded from the assay. During this period of development, evaluation of hind limb differentiation should be monitored.

In summary, the recommended exposure protocol will involve a ca. 21-/14-day prometamorphosis assay with *X. laevis* initiated at either stage 51 or 54 and concluded at stage 54. Static-renewal or flow-through exposure, with adequate test substance analysis based on the physicochemical properties of the test substance, is recommended. On at least days 8 and 14 (and possibly 21), specimens should be digitally photographed to document morphological development and stage. Hind limb development can be measured using a scanning digitizer. Specimens should be randomly selected for histological examination of the thyroid and samples should be collected for biochemical analysis and analysis of TH-induced gene expression via constructed DNA arrays. It should be noted that if one of the endpoints demonstrates particular sensitivity, reliability, and speed, it may be chosen as a single endpoint for the proposed assay. However, the use of multiple endpoints provides additional confirmation of the response and will help distinguish between thyroidal and non-thyroidal responses. More research will be required to survey this issue and will be addressed in the Data Gaps section of the DRP (Section 6.11.5).

Interpretation of Results

Results from the prometamorphic assay will be classified as: 1) histological, 2) biochemical, 3) molecular, and 4) morphological. Changes in thyroid histology, including hyper- and hypoplasia, and hyper- and hypotrophy will be reviewed. Since histological changes can be somewhat subjective, additional confirmation may be required. Criteria for establishing what constitutes a significant change in thyroid histology will also be required. Chemicals which disrupt TH synthesis (goitrogens) cause hypertrophy of the thyroid due to increased stimulation from greater quantities of TSH induced by TH feedback loops. This results in a hyperactive thyroid that produces similar levels of TH. In this case, although distinct histopathology of the thyroid exists, no marked changes in TH may be observed. These scenarios confound interpretation of the results. Changes in TH levels directly indicate changes in thyroid activity. However, measurement of biochemical parameters alone will not demonstrate a specific histological or morphological effect. Thus, biochemical analyses of TH levels will be an important complement to the other endpoints. The molecular tests (gene arrays) will be most straightforward in terms of interpretation. Changes in differential gene expression for arrays under control of a TRE suggest that the test substance is capable of altering TH-inducible gene activity. For example, in the measure of TH, acetochlor (Veldhoen and Helbing, 2001) synergistically induces TR beta genes. Changes in downstream gene activity could potentially affect thyroid histology or TH levels, although more work will be required to specifically evaluate these relationships. Apical morphological evaluation cannot be used alone to determine if a substance alters thyroid homeostasis. Thus, if used, morphological endpoints will require other biochemical and/or molecular endpoints to distinguish between thyroid- and non-thyroid-mediated responses. In summary, because of the complexity in evaluating and interpreting results from these studies, use of each endpoint that has been sufficiently developed should be included until a sufficient database is developed that aids in interpretation of the data and the selection of specific endpoints to be used in the future.
6.11.5 Data Gaps

467. The primary objective in identifying data gaps is to prioritize and apply resources to areas of uncertainty so as to reduce this uncertainty through research. As the EDSP process moves closer to implementation of this assay, several critical questions must be addressed. First, what responses, both organismal and sub-organismal, to established thyroid agonists and antagonists are currently known? The effects of thyroid agonists and antagonists on apical morphological changes during anuran metamorphosis are reasonably well understood. However, the relationship between changes in thyroid axis homeostasis and apical morphological changes are not as obvious. Before the effects of unknown chemicals on thyroid function can be assessed, the response of known thyroid disruptors in the recommended model system must be identified.

468. Second, which of the proposed endpoints will provide confidence that the observed effects are due to thyroid-based mechanisms? At this point, it is understood that disruption of apical morphological changes during metamorphosis may or may not be the result of alteration of thyroid function. More work will be required to assess confidence in the histology, biochemical, and molecular endpoints in terms of predictability of thyroid impairment. As additional data are collected, an assessment of whether these endpoints could stand alone or would require other complementary or confirmation endpoints can be made.

469. Third, what is the time course of these responses? As research continues in these previously discussed areas, it will also be important to determine the time frame required to observe the effects of EDC exposure based on the selected endpoints. For example, observation of molecular and biochemical changes may be observed more rapidly than histological or morphological changes. However, the estimated time course in which one would expect to observe these responses and changes in sensitivity relative to the time course, need to be elucidated.

470. Fourth, what is the sensitivity of the measurement endpoints? The relative sensitivities of each endpoint recommended can be estimated at this point. However, information on the specific sensitivities of each endpoint needs to be determined.

471. Fifth, when does a molecular change constitute a valid indication of thyroid perturbation? To understand with confidence at what point molecular changes are indicators of thyroid disruption, the results must somehow be shown to be related to an upstream or downstream response within the thyroid axis. If molecular changes, such as inhibition of TR beta mRNA synthesis, can be linked to a histological, biochemical, or possibly even an apical morphological change in metamorphic processes, this relationship can be addressed. Work will be required to determine the threshold of molecular change that results in a physiological change in thyroid status. However, once this relationship and set-point are determined, the molecular assays, like gene arrays and RT-PCR techniques, will be extremely valuable.

472. Finally, and most importantly, what is the dynamic range of thyroid axis homeostasis and its relationship to gross morphological, molecular, biochemical, and histological changes? The degree to which thyroid homeostasis can be changed without adversely affecting the organism needs to be determined. In addition, the relationship between the sensitivity of thyroid axis homeostasis and the measurements also requires understanding. To bridge these data gaps, further studies during prevalidation will need to be specifically directed toward these areas.

473. Table 6-2 shows existing or potential assays for amphibians. Table 6-3 shows points of thyroid disruption in amphibians. Specific points of thyroid disruption are listed in the left column, coupled to listings of endpoints by which it is characterized, the ultimate effect of disruption of this mechanism, whether assays are available to detect this point of disruption, and the status of this assay. These data are derived from work focused on anuran species.
<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Major Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Status of the Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-18 day Metamorphic Climax Assay</td>
<td>Xenopus laevis</td>
<td>Tail resorption; T<sub>4</sub>/T<sub>3</sub> levels; forelimb emergence.</td>
<td>Delayed tail resorption and forelimb emergence.</td>
<td>Straightforward metamorphical endpoint.</td>
</tr>
<tr>
<td>14-day Frog Prometamorphosis Assay (NF stage 54-ca. 58)</td>
<td>Xenopus laevis</td>
<td>Hind limb differentiation; T<sub>4</sub>/T<sub>3</sub> levels; monodeiodinase activity; thyroid gland histology; whole body length; developmental stage.</td>
<td>Normal, delayed, or accelerated morphogenesis from tadpole to frog.</td>
<td>More sensitive than tail resorption alone; more comprehensive than other Tier I screens for thyroid; relatively short; can accommodate other biochemical and molecular biomarkers.</td>
</tr>
<tr>
<td>21-day Frog Prometamorphosis Assay (NF stage 51-ca. 58)</td>
<td>Xenopus laevis</td>
<td>Hind limb differentiation; T<sub>4</sub>/T<sub>3</sub> levels; monodeiodinase activity; thyroid gland histology; whole body length; developmental stage.</td>
<td>Normal, delayed, or accelerated morphogenesis from tadpole to frog.</td>
<td>More sensitive than tail resorption alone; more comprehensive than other Tier I screens for thyroid; relatively short; can accommodate other biochemical and molecular biomarkers.</td>
</tr>
<tr>
<td>28-day XEMA (NF stage 48-ca. 58)</td>
<td>Xenopus laevis</td>
<td>Developmental stage; hind limb differentiation; whole body length; tail length.</td>
<td>Normal, delayed, or accelerated morphogenesis from tadpole to frog.</td>
<td>Considers pre- and prometamorphic exposure period.</td>
</tr>
<tr>
<td>Xenopus Gene Expression Assay (NF stage 50/51)</td>
<td>Xenopus laevis</td>
<td>TRβ mRNA expression (24-h).</td>
<td>Induction or repression of TRβ mRNA expression.</td>
<td>Potentially sensitive; molecular biomarker.</td>
</tr>
</tbody>
</table>

Advantages Disadvantages

Lack of sensitivity relative to prometamorphosis assay; relevance to other taxa, especially mammals, is unknown.

Relevance to other taxa, especially mammals, is unknown.
<table>
<thead>
<tr>
<th>Disruption or Evaluation Site</th>
<th>Endpoints of Interest</th>
<th>Target Effects of Disruption</th>
<th>Assay Availability</th>
<th>Status of the Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismal thyroid status: circulating hormones</td>
<td>Serum and tissue T<sub>4</sub></td>
<td>Thyroid status affecting all target organs/tissues downstream of gland.</td>
<td>Yes</td>
<td>RIAs and ELISAs; in common use.</td>
</tr>
<tr>
<td>HPT axis activation or inactivation</td>
<td>Serum and tissue TSH and thyroid gland histology</td>
<td>Reflects HPT axis feedback effects from altered serum/plasma T<sub>4</sub> and T<sub>3</sub> due to alterations in thyroid gland function or hormone turnover. Also reflects stress input (corticosterone [positive]) and other interactive hormones (prolactin [negative]).</td>
<td>Yes</td>
<td>RIA available. New literature now available on thyroid histology.</td>
</tr>
<tr>
<td>Thyroid gland: iodide uptake</td>
<td>Na-I symporter and thyroid gland histology</td>
<td>Decreased thyroid gland uptake of iodide resulting in decreased hormone synthesis.</td>
<td>No</td>
<td>Radioiodide uptake assay not adequately developed or widely used. Symporter expression assay possible.</td>
</tr>
<tr>
<td>Thyroid gland hormone content</td>
<td>Thyroidal T<sub>4</sub> and thyroid histology</td>
<td>Altered thyroid hormone stores. Sensitive to release of stored hormones to maintain serum/plasma concentrations when hormone synthesis or turnover is decreased.</td>
<td>Yes</td>
<td>Difficult to isolate and sample thyroid in prometamorphic larvae.</td>
</tr>
<tr>
<td>Thyroid gland: TPO</td>
<td>TPO and thyroid histology</td>
<td>Altered thyroid peroxidase activity; effects on thyroid hormone synthesis.</td>
<td>No</td>
<td>Has not been used or validated for amphibian thyroid status evaluation.</td>
</tr>
<tr>
<td>Hormone transport: transthyretin</td>
<td>Tissue TH transport</td>
<td>Transport of TH to target tissues/liver.</td>
<td>Yes</td>
<td>Gene expression assay has been developed, but has not been properly evaluated.</td>
</tr>
<tr>
<td>Target tissues: receptor expression/binding</td>
<td>T<sub>3</sub> receptors (TR)</td>
<td>Altered tissue response to TH. Unknown significance.</td>
<td>Yes</td>
<td>Receptor binding assays and TRβ expression assays are available.</td>
</tr>
<tr>
<td>Target tissues: development</td>
<td>Developmental stage kinetics, body weight, tissue differentiation</td>
<td>Altered metamorphosis. Effects on rate of development, body weight for a given stage of development, state of differentiation.</td>
<td>Yes</td>
<td>Techniques have been developed and are currently being used to evaluate thyroid disruption.</td>
</tr>
<tr>
<td>Thyroid hormone excretion</td>
<td>Phase II liver transformation enzymes; UDP-GT</td>
<td>Increased T<sub>4</sub> excretion resulting from contaminant induction of uridine diphosphate glucuronosyltransferase activity, i.e. increase in T<sub>4</sub> glucuronidation which enhances excretion in bile.</td>
<td>Yes</td>
<td>Assays not validated for evaluating contaminant effects, sensitivity unknown.</td>
</tr>
</tbody>
</table>
7.0 THE HPT AXIS IN BIRDS AND ITS ROLE IN BIRD DEVELOPMENT AND REPRODUCTION

7.1 Overview of the HPT Axis

In birds, the functions of the HPT axis appear to be similar to those of vertebrates in general. Thus, there is evidence for: pituitary control being the predominant factor in regulation of thyroid gland function, both stimulatory and inhibitory hypothalamic regulation of the HPT axis, and negative feedback influences on hypothalamic-pituitary function.

7.1.1 Neuroendocrine Control of Thyroid Function

7.1.1.1 Hypothalamic Control of the Pituitary-Thyroid Axis

As in mammals, thyrotropin releasing hormone (TRH), which is stimulatory to the anterior pituitary production and release of thyrotropin (TSH), is present in the avian hypothalamus (Jackson and Reichlin 1974; Thommes et al. 1985) and is the same tripeptide found in mammals (Scanes 2000). The chicken TRH receptor has been cloned and shown to be very similar to mammalian TRH receptors (Sun et al. 1998). Synthetic TRH stimulates the release of TSH that can be detected by bioassay (Scanes 1974) and this results in increases in plasma T4 concentrations in chickens (Klandorf et al. 1978). Somatostatin also is produced in the avian hypothalamus and its brain distribution and concentration have been mapped (Geris et al. 2000). The administration of exogenous somatostatin decreases plasma T4, presumably by depressing TSH release (Lam et al. 1986). In addition, corticotropin releasing hormone can stimulate TSH release (Meeuwis et al. 1989). In general, hypothalamic and pituitary control of thyroid function in birds appears to be very similar to that in mammals (reviews, Decuypere and Kühn 1988; Scanes 2000).

7.1.1.2 Pituitary Control of Thyroid Gland Function

TSH is produced in the avian pars distalis and, as in mammals, has a unique β chain and an α chain that is identical to that of the other two glycoprotein hormones, luteinizing hormone (LH) and follicle stimulating hormone (FSH). Historically, many studies have shown that both mammalian TSHs and avian pituitary homogenates stimulate thyroid gland activities (radioiodine uptake, thyroid hormone release, and gland growth; see for example work by MacKenzie, 1981) and these activities are mediated via TSH receptors (Hull et al. 1995).

Avian TSH is not readily measured. As there are no antibodies specific to avian TSH (i.e., no β chain specific antibodies) RIAs for TSH are not available. For this reason, most studies of avian TSH alterations in pituitaries have been made by bioassay using thyroid gland endpoints such as increased T4 release, increases in thyroidal radioiodine uptake, or indirect information about changes in circulating thyroid hormones (reviews, McNabb 2000; Scanes 2000). A subtractive RIA strategy has been used by Kühn's laboratory: TSH = total pituitary glycoprotein hormone immunoreactivity to the α pituitary glycoprotein chain (common to TSH, LH and FSH) minus LH-β and FSH-β immunoreactivity (method of Berghman et al. 1993). There is good evidence that this measurement strategy is effective for measuring distinct changes in TSH. However, one of the problems with such a subtractive framework is that all
variability in the multiple measurements is attributed to the TSH fraction. Heterologous TSH antibodies
to mammalian TSH have been used in some immunocytochemical investigations of avian pituitary
development (Sharp et al. 1979; Thommes et al. 1983) and in a study of feeding effects on TSH in
Japanese quail (Almeida and Thomas 1981). However, our attempts to use RIAs with heterologous TSH
antibodies for measuring avian plasma TSH showed insufficient binding to be of use (unpublished,
McNabb laboratory). A new bioassay uses the cyclic adenosine 3',5'-monophosphate response of a line of
cultured mammalian thyroid cells (FTRL cells) for measuring avian TSH in pituitary homogenates
(Iwasawa et al. 1998). Although this technique is effective for measuring TSH in pituitaries, it appears
unlikely to be sensitive enough to measure plasma TSH. To date most of the methods are not sensitive
enough to measure TSH changes in plasma in many experimental contexts. The gene sequence for
Japanese quail TSH has now been published (Kato et al. 1997; Catena et al. 2003) opening the way to
synthesis of peptides that can be used in the preparation of avian TSH β chain-specific antibodies.
Measurement of chicken TSHβ mRNA throughout embryonic and early posthatch development has
verified the role TSH plays in stimulating thyroid function at different stages (Gregory et al. 1998).

Despite the limitations in measuring TSH described above, there is considerable knowledge
about TSH effects on thyroid function in birds. Mammalian TSHs are effective in stimulating thyroid gland
function in birds (McNabb et al. 1985a,b) and studies using goitrogens and thyroidectomy have been used
to alter TSH release and to follow the consequent effects on thyroid gland function. In general, the effects
of TSH on the avian thyroid gland are very similar to those in mammals (review Scanes 2000).

Pituitary control of the thyroid in precocial chicken embryos is established by the middle (day
11.5) of the 21-day incubation period although hormones are present in the axis much earlier (TRH at day
4.5 and TSH at day 6.5; Thommes et al. 1983, 1985). Establishment of axis control is followed by steady
increases in circulating T4 concentrations during the remainder of the incubation period. In altricial ring
doves, establishment of HPT control occurs after hatch; thyroid function is insensitive to TSH until day 2
posthatch (McNichols and McNabb 1987) and circulating thyroid hormones remain very low through the
peri hatch period and then increase gradually during the first three weeks of posthatch life (see 7.1.4.1
below).

7.1.2 Thyroid Gland Function

7.1.2.1 The TSH Receptor

Many studies suggest that TSH control of thyroid gland function is very similar in birds to that in
mammals (section 7.1.2). There do not appear to be published studies characterizing the avian TSH
receptor.

7.1.2.2 Biosynthesis and Iodination of Thyroglobulin

It is presumed that the processes involved in iodination of thyroglobulin and thyroid hormone
formation in birds correspond to those in mammals but there have been few studies that directly address
this topic. Measurements of the iodide content of chickens, ducks and pigeons indicate these avian species
have 2-4 X the iodide content present in rat thyroid glands (Astier 1980). This plays a role in the
observation that thyroidal iodide content in adult chickens and quail is essentially unaffected by a wide
range of iodide availability except when iodide is very low (Newcomer 1978; Astier 1980; McNabb et al.
1985a,b). Studies of phylogenetic differences in thyroglobulins have indicated some differences between
vertebrate classes. Among the differences that may be important, the proportion of tyrosine residues
(precedors to hormone formation) is ~1.6 X higher in chickens than in rats and the degree of iodination of
avian thyroglobulin (1.4-2.6%) is greater than in other vertebrates (0.5-0.85%; review by Astier 1980).
However, more iodine atoms in thyroglobulin appear to be "required" per molecule of hormone formed in

144
birds than in mammals (10 iodines per T4 in mammals, 30 per T4 in birds; Daugeras et al. 1976). It would appear that the higher iodine content of avian thyroid glands should compensate for this lower "efficiency" in hormone formation. The physiological significance of these differences in iodination and its relationship to hormone formation between birds and mammals are not clear.

7.1.2.3 Thyroglobulin Storage in Colloid

The thyroid glands of birds, like those of all vertebrates, store thyroid hormones within thyroglobulin in the colloid space of thyroid follicles. The histology and ultrastructure of thyroid gland activity, with respect to follicle cell height and colloid space in relation to cell height in birds, is like that of other vertebrates (Fujita 1984; French and Hodges 1977). Much of the information on hormone storage in avian thyroid glands was developed prior to the availability of radioimmunoassays for the specific detection of thyroid hormones. Such studies of hormone storage usually separated gland hormones by chromatographic methods then determined the hormone content of different fractions indirectly by measuring their iodine content. These studies indicated that T4 predominated in the avian thyroid, with little or no detectable T3 present. They also indicated that in adult chickens and quail, thyroidal iodide and hormone contents appeared to be essentially unaffected by a wide range of iodide availability (review, Astier 1980). More recently, thyroid hormone content has been measured by digesting thyroid glands with a bacterial pronase, extracting the hormones in ethanol and measuring thyroid hormones in the extract by RIA (method of McNabb and Cheng 1985). This technique also has shown that adult Japanese quail maintain relatively constant thyroid hormone content with a wide range of dietary iodine intakes. In contrast, in embryos or chicks thyroid hormone content is directly proportional to increased egg or dietary iodine availability (McNabb et al. 1985a, b). Comparisons of adult ring doves and Japanese quail with similar body size indicate that thyroidal hormone content is similar in these species with T4 comprising at least 97% of the thyroidal hormone content in birds on an iodine-sufficient diet (McNichols and McNabb 1987). On very low iodine diets (<100µg I/kg feed) total thyroidal hormone content was markedly decreased (to 1/4 - 1/2 that on iodine sufficient diets) and the T3/T4 ratio in the thyroid was increased (by 2-3X).

The ontogenic pattern of thyroidal hormone content has been compared in precocial Japanese quail and altricial ring doves (see 7.1.4.1 for general information about these developmental patterns). In quail, thyroid hormone content is extremely low at mid incubation, increases markedly during late incubation to peak during the perihatch period, decreases to about 25% of the peak levels at 1 1/2 - 2 weeks of age, then gradually increases to adult levels. In contrast, in altricial doves, thyroidal hormone content is extremely low until after the perihatch period, rises slightly in the first week posthatch, then rises rapidly between 1 and 3 weeks of age to reach levels at fledging that are about double those in adults. During mid to late incubation in both species, the thyroidal T3/T4 ratio is higher (T3 is about 8% of gland hormone content) than in chicks or adults of both species (McNabb et al. 1985b; McNichols and McNabb 1988). The elevated T3/T4 ratio during embryonic life may be the result of relatively low thyroidal iodine content during development. That thyroidal T3/T4 ratio responds to low iodine has been demonstrated; thyroidal T4 content is decreased and the T3/T4 ratio is increased in quail embryos from eggs of iodine-deficient hens compared to controls (Stallard and McNabb 1990). Recently measurements of thyroidal hormone content have been used in studies of the effects of perchlorate on avian thyroid function (see 7.6.2.3).

7.1.3 Thyroid Hormone Secretion

Prior to the development of RIAs for measuring thyroid hormones, a number of studies measured the daily thyroid hormone secretion rate (TSR) of T4 by several indirect methods (reviews Astier 1980; Wentworth and Ringer 1986). Several of these methods indicated highly variable TSRs from different studies and different techniques but the values (range from 1.2 to 2.3 µg T4/100g body weight in four studies of chickens <9 weeks of age) were generally in the range of the TSR in rats measured by the same
techniques (~2 µg T₄/100g body weight) and in humans (~1.3 µg/100 g body weight; Chopra and Sabatino 2000). Many aspects of the early techniques used for avian TSR measurements are now in question because they may seriously over or underestimate TSR, so this historical work is difficult to evaluate. These studies did show that TSR is dynamic, for example, adult chickens maintained in cold temperatures had approximately double the TSR of birds maintained at warm temperatures, iodine deficient diets lowered the TSR, and by 13 weeks of age the TSR had decreased to 0.6 µg T₄/100 g body weight (Wentworth and Ringer 1986). There do not appear to be any more recent investigations of TSR in birds.

7.1.4 Regulation of Circulating Thyroid Hormone

7.1.4.1 Ontogenic Patterns

In birds, as in mammals, there are two developmental modes, precocial and altricial. In brief, birds with a precocial developmental pattern are hatched at a relatively advanced stage of development characterized by functionally mature sensory systems (i.e., eyes open), capability for locomotion (i.e., relatively mature musculoskeletal function), behavioral patterns that allow some independence with relatively little parental care (e.g., imprinting to the adults) and the capability for initiating thermoregulatory responses to cooling from the time of hatching onward. In contrast, altricial young are hatched at an earlier stage of development characterized by functionally immature sensory systems (i.e., eyes closed), poorly developed musculoskeletal systems incapable of coordinated locomotion (young are nest-bound), behavioral patterns geared to parental care and feeding (e.g., food begging behaviors) and a lack of thermoregulatory responses to cooling for much of the nestling period. Although most birds fall into one of these general developmental categories, there is a continuum along which some birds are intermediate and are categorized as semi-altricial or semi-precocial (see Starck and Ricklefs 1998 for altricial and precocial patterns; see McNabb and Olson 1996 for patterns of thermoregulatory development in precocial and altricial birds).

Thyroid hormones regulate that part of metabolism that is associated with the heat increment that distinguishes homeothermic birds and mammals from poikilothermic vertebrates (Danforth and Burger 1984; Danforth 1986). Associated with this, the developmental patterns of thyroid function are markedly different in precocial vs. altricial, birds and mammals, the two homeothermic classes of vertebrates (review, McNabb 1989). In precocial birds, such as galliform chickens and quail, the thyroid gland differentiates during the first few days of incubation and comes under pituitary control at about 1/3 to 1/2 of incubation (reviews, Thommes 1987; McNabb 1987). During the latter half of incubation, circulating T₄ rises steadily concurrent with increases in thyroid gland function which outpace body growth by several fold (based on radioiodine uptake studies and the accumulation of thyroidal hormone stores; McNabb et al. 1981; McNichols and McNabb, 1988). Just prior to hatching, HPT axis signals (Gregory et al. 1998) trigger marked increases in T₄ release resulting in a dramatic peak in circulating T₄ concentrations during the perihatch period (review, Thommes 1987). Circulating T₃ concentrations also peak during this time but are slightly behind those of T₄ (McNabb et al. 1981; McNabb and Hughes 1983). The spike in T₃ results from marked increases in the activity of Type I hepatic 5’-deiodinase (5’D I; Decuypere et al. 1982; Freeman and McNabb 1991) which is the main supplier of T₃ to the circulation in mammals (Leonard and Visser 1986) and appears to perform the same function in birds. Concurrent with this perihatch increase in 5’D I, there is a decrease in hepatic 5-deiodinase (5D), a deactivating pathway that converts T₄ to inactive reverse-T₃ (Galton and Hiebert 1987; Darras et al., 1992). It is often stated that this deactivating pathway is protective of T₃ toxicity to embryos. However, whether or not this is the key function of 5D activity in embryos is difficult to verify and convincing experimental work is lacking. Circumstantial evidence suggests that the peaks in circulating T₄ and T₃ concentrations are associated with the initiation of thermoregulatory responses in precocial birds in response to cooling during the hatching process (Freeman 1970, 1971). Altricial species which are poikilothermic at this time do not have a perihatch peak in thyroid hormones (see below). After the perihatch period, at a few days of age, circulating T₄ and T₃ both decrease
markedly in precocial chicks, then increase moderately to reach adult levels. The plasma T₄ and T₃ concentrations in juvenile and adult birds are characteristically lower than those of the perihatch peak. The pattern described above is consistent for precocial birds that have been investigated (chickens, Thommes and Hylka 1977; Japanese quail, McNabb et al. 1981; turkeys, Christensen et al. 1982). To date, studies of the patterns of thyroid development in precocial birds have been limited to studies of galliforms, and precocial species from other avian orders have not been investigated.

487. In contrast to precocial species, altricial birds show very little histological or functional thyroid development during embryonic life or the perihatch period. In altricial birds neither the increase in circulating T₄ during late incubation nor the perihatch peak in thyroid hormones that occurs in precocial birds, are present. In altricial ring doves, circulating thyroid hormone concentrations are very low and the thyroid does not respond to TSH until several days posthatch (McNichols and McNabb 1988). The functional capacity of the thyroid, and its hormone storage and release of hormones to the circulation then increases gradually during the first 3 weeks of posthatch life. Circulating thyroid hormone concentrations plateau after 2-3 weeks concurrent with the transition from poikilothermy to homeothermy (McNichols and McNabb 1988). As indicated above, there is no perihatch peak in circulating thyroid hormones in altricial birds which are essentially poikilothermic during this time. Several altricial species from different avian orders, have been investigated and show consistent patterns of circulating thyroid hormones during development (ring doves, McNabb and Cheng 1985; starlings, Schew et al. 1996; red-winged blackbirds, Olson et al. 1999; review, McNabb and Olson 1996). For a broader review of all growth-associated hormone patterns in precocial and altricial birds, see McNabb et al. (1998). It should also be noted that the general patterns of thyroid development in precocial and altricial birds are like those in precocial and altricial mammals (review, McNabb 1989).

7.1.4.2 Diurnal Patterns

488. Studies of diurnal patterns indicate that circulating T₄ concentrations rise and peak during the dark phase of the diurnal cycle and fall during the light phase in chickens, quail and ducks. The plasma T₃ pattern is the opposite to that of T₄ (review, Wentworth and Ringer 1986; Cogburn and Freeman 1987). These patterns for T₄ and T₃ are consistent with the idea that the release of thyroid hormones (almost entirely T₄) from the thyroid gland is highest during the dark period and extrathyroidal T₄ to T₃ conversion is highest during the light period. However, neither thyroidal T₄ release nor 5'D I activity have been measured over the 24 hour daily period. Food intake increases 5'D I activity and in fasting chickens the rhythmic pattern of T₃ disappears, so daytime food intake is a key factor involved in higher circulating T₃ concentrations in the light than in the dark phase (review Decuypere and Kühn 1988). Seasonal patterns of circulating hormones will be described in section 7.3.

7.1.4.3 Transport Proteins

489. In birds, the main thyroid hormone binding proteins in blood are transthyretin (TTR or thyroxine-binding prealbumin) and albumin. Birds lack a specific T₄-binding protein such as the thyroxine-binding-globulin (TBG) found in large mammals (review, Wentworth and Ringer, 1986). In Japanese quail and chicken plasma, in vitro studies with labeled T₄ show the relative proportions of T₄ bound by these proteins are: 17-32% to TTR, 66-75% bound to albumin, and the remaining few percent bound to other plasma proteins (Davison et al. 1978; Tanabe et al. 1969; McNabb and Hughes 1983). In these same studies T₃ bound primarily to albumin and globulins. Free hormone RIAs suggest the free T₄ and T₃ concentrations in avian plasma are similar to those in mammalian plasma (McNabb and Hughes 1983). During development the binding proteins in avian plasma appear to modulate hormone availability at different developmental stages (McNabb and Hughes 1983; McNabb et al. 1984; Nishiguchi and Hoshino 1993).
Recently Schreiber’s laboratory has developed methods that overcome some of the problems with variability that have been characteristic of studies of TTR binding affinity and has used those methods in extensive studies of TTR binding across the vertebrate classes. In addition to questioning some of the past generalities about mammalian TTR, these studies indicate that avian TTR (chicken, pigeon, ostrich, emu) has approximately twice the affinity for T$_3$ that it has for T$_4$. This results from avian TTR having about 4X higher affinity for T$_3$ than is the case for mammalian TTR (Chang et al. 1999). This finding of higher T$_3$ affinity is in marked contrast to the situation in mammals in which TTR has approximately 4X the affinity for T$_4$ than it has for T$_3$ (review, Schreiber 2002).

In mammals, binding proteins are generally considered to serve as an extrathyroidal hormone store, to help regulate hormone supply to the tissues, and to help regulate hormone distribution within organs (Schreiber 2002). Some studies are suggestive of binding proteins modulating tissue hormone supplies in birds, e.g. in development in quail and doves (McNabb and Hughes 1983; McNabb et al. 1984; Spiers and Ringer 1984) and in diurnal patterns in ducks (Harvey et al. 1980). TTR is produced in the choroid plexus (as well as the liver) of both birds and mammals and is involved in regulating the transport of thyroid hormones into the central nervous system (Southwell et al. 1991; review Schreiber 2002). New physiologically oriented studies of the role(s) of binding proteins in birds are needed, especially to further clarify its role in binding of T$_3$.

7.1.4.4 Factors Affecting Thyroid Hormone Concentrations

Adult birds usually have plasma or serum T$_4$ concentrations in the range of 5-15 ng/ml (6-19 pmol/ml) and T$_3$ concentrations in the range of 0.5-4 ng/ml (0.7-1.5 pmol/ml; reviews, Astier 1980; McNabb 2000). Compared to mammals, birds have similar plasma T$_3$ concentrations but much lower plasma T$_4$ concentrations. In addition to the developmental patterns of thyroid hormones described in 7.1.4.1 and the diurnal patterns described in 7.1.4.2, circulating thyroid hormones also vary with food availability, the nature of the food sources utilized, the adequacy of iodine availability, the temperature conditions and, on longer time scales, with season and reproductive condition. Food availability and temperature appear to have the largest effects on plasma thyroid hormones. Both short term fasting and longer term starvation are associated with decreases in thyroid hormones, especially in T$_3$, in both birds and mammals (review, Eales 1988).

In birds, as in vertebrates in general, complete fasting (starvation) decreases circulating T$_3$ concentrations but may have differential effects on T$_4$ (plasma T$_4$ decreases in mammals but usually increases or remains constant in adult chickens; reviews Eales 1988; Darras et al. 1995). In most vertebrates the fasting induced decreases in T$_3$ appear to be due to decreases in hepatic T$_4$ to T$_3$ deiodination (review Eales 1988). However, in partial food restriction, an increase in the deiodination enzymes that degrade T$_3$ may play a key role in plasma T$_3$ decreases in both chickens and rats (Darras et al. 1995; see 7.1.4.6 for more detail about the roles of deiodinases in regulating circulating thyroid hormones). Refeeding restores T$_1$ concentrations at rates related to the caloric content of the food. Other hormones such as insulin and glucagon, which are involved in the regulation of glucose can also play additional roles (e.g. glucagon stimulates T$_4$ to T$_3$ conversion; Eales 1988).

Temperature patterns can modulate the hormone concentrations within the diurnal cycles. In chickens, cold temperatures increase and warm temperatures decrease plasma T$_3$ and the effects on T$_4$ are generally in the opposite direction (Cogburn and Freeman 1987). The changes in circulating T$_3$ in cold exposure reflect cold-induced increases in T$_4$ to T$_3$ deiodination in peripheral tissues (Rudas and Pethes 1984, 1986).
7.1.4.5 Thyroid Hormone Transport Kinetics

495. Compared to mammals, relatively little is known of thyroid hormone kinetics in birds. A number of studies from the 1950s and 1960s found apparent half-lives in several avian species (chickens, ducks, Japanese and Bobwhite quail) that were similar for T4 and T3 and that were short (3-9 hours) compared to those in mammals using the same techniques. Many aspects of the methods used for these studies are now considered inadequate for accurate half-life measurements, so the specific values should be considered cautiously until better methods are used (review McNabb 2000). There is some evidence that cold temperatures decrease the half-life of T4 in galliform birds (review McNabb 2000) and this would be consistent with the increase in T4 to T3 conversion that occurs at cold temperatures (Rudas and Pethes 1984, 1986).

496. Specific transport of thyroid hormones into the central nervous system is thought to be mediated by TTR which is produced in the choroid plexus in birds, as in mammals (Southwell et al. 1991; Schreiber 2002). Studies of adaptive changes in the uptake of thyroid hormones with altered thyroid states offer physiological support for this idea (Rudas 1989; Rudas and Bartha 1993; Rudas et al. 1994).

7.1.4.6 Deiodination Enzymes

497. The patterns and proportions of T4 and T3 in the circulation depend not only on hormone production and secretion by the thyroid gland, but also on deiodinase enzymes present in extrathyroidal tissues. The extreme predominance of T4 over T3 in the avian thyroid gland (see 7.1.2.2 and 7.1.2.3) and the much higher T3/T4 ratios in the circulation, suggest that in birds as in mammals, most T3 is produced extrathyroidally. Three key deiodination pathways need to be considered: (1) Type I deiodinase (referred to as 5'D I) which converts T4 to T3 (outer ring deiodination) as well as T4 to rT3 (inner ring deiodination), (2) Type II deiodinase (5'D II) which converts T4 to T3 (outer ring deiodination) and (3) Type III deiodinase (5'D III) which deactivates T3 to diiodothyronine (inner ring deiodination). Thus, Type I and Type II 5'D both activate T4 to T3 whereas Type III deactivates T3 to inactive T2. In addition Type I can "dispose of" T4 by converting it to rT3 (i.e., "prevent" T3 production). In general, many of the key patterns and characteristics of deiodinases in birds appear to be similar to those described for mammals (reviews, McNabb 1992; Kühn et al. 1995). Type I activity is present in liver, kidney, and small intestine of chickens, Japanese quail and ring doves, Type II is present in brain of chickens and herring gulls and Type III is present in liver of chickens (Borges et al. 1980; Galton and Hiebert 1987; Freeman and McNabb 1991; Darras et al. 1992; Rudas et al., 1993; Suvarna et al. 1993; Fowler 2001).

498. Studies of the characteristics of the three types of avian deiodinases have shown them to be very similar to the deiodinases in mammals (Type I, Freeman and McNabb 1991; Darras et al. 1992; Type II, Rudas et al. 1993; Type III, Darras et al. 1992). Because of these similarities, it generally is assumed that in adult birds hepatic 5'D I is playing the same major role in supplying most of the T3 for the circulation in birds as in mammals. Recent studies of liver T4 and T3 content in fed vs. fasted birds provide evidence that the liver is an important supplier of T3 to the circulation (Reyns et al. 2002). However, the relative importance of 5'D I in kidney, which also is important in generating T3 for supply to the plasma in mammals, has not been investigated.

499. Some important aspects of the changes in deiodinases with different developmental and physiological states also are similar in birds and mammals, for example, in the liver of chicken embryos most T3 is deiodinated to rT3 and little T3 is converted to T2 (Borges et al. 1980; Galton and Hiebert 1987). Because there also is an active Type III 5'D present at this time, any T3 that is produced is converted to T2 (Darras et al. 1992). Together this combination of deiodinase activities results in very low circulating T3 concentrations until the perihatch period when there are marked increases in 5'D I during the perihatch period (quail, Freeman and McNabb 1991; chickens, Darras et al. 1992) and concurrent decreases in 5'D III.
that are largely mediated by growth hormone (chickens Darras et al. 1992). The expression and activity of
the different deiodinases in many tissues has been investigated during the last week of embryonic chick
development (Van der Geyten et al. 2002). Consistent with the general picture that has developed from
enzyme activity studies (see above) this survey found 5D III to be the most widely expressed; it occurred
in all tissues examined, thyroid, lung, brain, pituitary, heart, liver, spleen, gonads, skin, muscle, intestine,
Bursa of Fabricius and kidney. The expression and activity of 5’D I also were widespread but 5’D I was
not found in brain, thyroid, muscle or skin. 5’D II expression and activity were only present in brain at this
stage of development (Van der Geyten et al. 2002). Other examples of how changes in deiodinase
activities alter circulating thyroid hormone concentrations with different physiological states are seen
during fasting, partial food restriction and exposure to cold (see 7.1.4.4).

500. Brain 5’D II also appears to be very similar in its physiological roles in birds (Rudas et al. 1993)
and mammals (Kaplan 1986; Leonard and Visser 1986). The activity of 5’D II shows adaptive patterns that
protect the central nervous system from extremes of high and low thyroid hormone exposure. Thus, in
response to low circulating thyroid hormones in hypothyroidism, 5’D II increases to maintain euthyroid T 3
levels in the central nervous system. Conversely, in response to high circulating thyroid hormones in
hyperthyroidism, 5’D II decreases to maintain euthyroid T 3 levels in the central nervous system (Kaplan
1986). The studies of Rudas et al. (1993, 1994) and Rudas and Bartha (1993) in young chickens indicate
that 5’D II and the movements of thyroid hormones in and out of the central nervous system are regulated
in response to changes in thyroid status (Rudas 1989; Gereben et al. 1998). The 5’D II gene of chickens
has been cloned and the increase in its expression in specific brain regions during hypothyroidism has been
demonstrated. In addition, in contrast to mammals, in chickens 5’D II mRNA and enzyme activity are
present in liver and may play a role in avian circulating T 3 production (Gereben et al. 1999).

501. Tissue-specific deiodination patterns also may play a role in the effects of thyroid hormones on
tissue development or physiological or biochemical activities. For example, differences in 5’D I activity in
the intestine of high and low weight lines of chickens suggest local T 3 supply may be important in
regulating the timing of tissue differentiation (Suvarna et al. 1993). The recent study of Van der Geyten et
al. (2002; see description above) illustrates the range of deiodination patterns in different tissues in avian
embryos. These different combinations of deiodinases in different tissues have the potential for tissue-
specific regulation of thyroid hormone effects.

7.1.4.7 Thyroid Hormone Action

502. There is considerable evidence that T 3 is the metabolically active hormone accounting for most
thyroid hormone action in mammals. The main reason for considering T 3 the metabolically active
hormone in mammals is the much higher affinity of the thyroid receptor (TR) for T 3 than T 4 (see Section
3.8.1) and because studies have shown that most occupied TR sites in vivo are occupied by T 3. T 4 appears
to be primarily a prohormone (which is deiodinated to T 3), although T 4 can bind to thyroid receptors and
initiate tissue responses. Overall, the physiological potency of T 3 is much higher than that of T 4 in
mammals (Engler and Burger 1984). In contrast to this well documented picture of T 3 as the main
metabolic hormone in mammals, there is a body of evidence published between 1950 and 1970 that
suggests T 4 and T 3 are of essentially equal physiological potency in birds (review, McNabb 2000). These
studies assessed a wide variety of physiological, thyroid hormone-responsive endpoints (such as
organismal and tissue oxygen consumption, heart rate, feather growth, and amino acid uptake in growing
tissues) and found similar or equal potency of T 3 and T 4 in birds (review, McNabb 2000), a result which is
in dramatic contrast to the results of similar studies in mammals. Essentially all of these studies were done
prior to the discovery that thyroid receptors have their highest affinity for T 3 and prior to when most
knowledge of deiodinases developed. Neither the studies on birds nor those on mammals attempted to
block deiodinase activities. However, it is hard to see how this could account for the differences in
potency between birds and mammals in similar studies. At present, it is not understood why T₄ and T₃ appear to be essentially equipotent in birds.

503. Birds have TRs that are essentially identical to those of mammals with respect to their biochemical characteristics, including having higher affinity for T₃ than T₄ (Weirich and McNabb, 1984; Bellabarba et al. 1988). In addition the same receptor isoforms are found in both birds and mammals (see below). Because of these receptor similarities, many congruencies in deiodinase activity in birds and mammals (see 7.1.4.6), and the higher circulating T₃/T₄ ratio in birds than in mammals, it is generally assumed that T₃ is responsible for most actions of thyroid hormones in birds. However, there are no data available on the proportion of receptors occupied by T₃ in vivo so some key information that would provide direct support for this assumption is lacking.

504. As in mammals (Chapter 3, Sections 3.7.1-3.7.3), the expression of TRα and TRβ isoforms differs by tissue in embryonic and early posthatch chickens and there are different developmental patterns for the different TR isoforms (Forrest et al. 1990). Specifically, TRα is widely expressed in different parts of the chick brain throughout embryonic development and for the first three weeks posthatch (Forrest et al. 1990) whereas TRβ expression increases sharply at day 19 of the 21-day incubation period, coincident with the thyroid hormone-sensitive period of brain development (Forrest et al. 2001). However, this study also suggested early embryonic effects of the receptor at other times in brain development when the effects of thyroid hormone are not well understood. TRα also was found in all of the 14 tissues examined during embryonic and posthatch development, although the presence of TRβ was restricted to brain, eye, lung, yolk sac and kidney and the patterns of its expression differed with developmental age (Forrest et al. 1990). Overall, these data suggest general early developmental roles for TRα and specific developmental roles for TRβ, as is the case for this isoform in other vertebrate classes (see Chapters 3 and 6 of this review). Additional evidence that TRα is important in very early embryonic development comes from the studies of Flamant and Samarut (1998) who found a low level of TRα expression initially followed by an increase in expression in neuroectoderm during neurulation in the chicken embryos prior to incubation. They demonstrated that maternal T₃ was released from egg yolk prior to gastrulation and that the pattern of T₃ tissue distribution and the effects of T₃ alterations were suggestive of TRα, like those of RXR, playing a role in embryonic development prior to the onset of embryonic thyroid gland function.

505. Several studies have investigated receptor isoform distribution and changes in different tissues in relation to thyroid status. Brain receptor numbers change, in an adaptive manner, in response to altered thyroid states after hatch in precocial birds as they are known to do in young mammals. Both TRα and TRβ are increased in the brain in young chickens in response to developing hypothyroidism following thyroidectomy. This receptor response is part of a suite of adaptive actions that include increased T₃ uptake (Gereben et al. 1998) and increases in brain 5'D II activity (see Section 7.1.4.6 above) in response to hypothyroidism.

506. Receptor isoforms also have been investigated in cardiac, pectoralis and semimembranous leg muscle, as well as in liver, pituitary and cerebral cortex in ducklings rendered hypothyroid or hyperthyroid by methimazole or methimazole + T₄ or T₃. TRα expression was present in all the tissues sampled but was unaffected by any of the treatments. In contrast, in association with lower leg muscle growth in the methimazole treated birds, the expression of TRβ 1 was depressed significantly compared to controls; TRα expression in pectoralis and cardiac muscle was not significantly altered by this treatment although the growth of these muscles was depressed. Thyroid hormone treatment elevated TRβ 1 expression in all three muscles. TRβ 2 was only expressed in the pituitary in this study (Bishop et al. 2000). In the context of HPT axis activity, the TRβ 2 is active in the feedback inhibition of T₃ on hypothalamic TRH gene expression in chicken embryos (Lezoualch et al. 1992, 1994).
7.1.4.8 Thyroid Hormone Metabolism

507. Thyroid hormone metabolism (i.e., degradation) by pathways other than deiodination can involve conjugation, deamination, decarboxylation or cleavage at the ether linkage between the aromatic rings. In mammals, for T_4 degradation, deiodination has been estimated to account for about 80% and these other degradative pathways account for $<$20% (Engler and Burger 1984). Both T_4 and T_3 readily form conjugates of sulfates and glucuronides. The major conjugation of T_4 is the esterification of the phenolic hydroxyl with glucuronide. For T_3, the major conjugation is with sulfate (Sekura et al. 1981). Although a large proportion of the T_4 produced by the thyroid appears as conjugates (of glucuronide or sulfate) in bile, there is evidence in some experimental mammals that as much as 40-60% of this sulfoconjugate is deconjugated by intestinal bacteria and reabsorbed (Kung et al. 1988). There is evidence in rats that sulfoconjugation followed by deiodination accounts for the largest proportion of T_3 degradation (Mol and Visser 1985a,b; deHerder et al. 1988). Surprisingly, studies of thyroid hormone distribution in rats found no thyroid hormone conjugates in the feces (DiStefano 1988). This argues for all conjugated thyroid hormones being recovered in the intestine at least in "normal" animals. However, in PCB treated rats there is good evidence that increases in UDP-GT are responsible for marked decreases in circulating T_4 (Barter and Klaassen 1992a, 1994) suggesting that UDP-GT induction does increase hormone excretion as well as metabolism.

508. Uridine diphosphate glucuronosyl transferase (UDP-GT) is present in avian liver based on in vitro activity toward p-nitrophenol, a substrate thought to reflect the activity of most or all of the isoforms of UDP-GT (Japanese quail, Riviere et al. 1978; chicken embryos, McCleary 2001; adult chickens and ostriches, Amsallem-Holtzman and Ben-Zvi 1997). The activity of UDP-GT in birds varies considerably in these species and is much lower than that of rats (comparison of Amsallem-Holtzman and Ben-Zvi 1997). This enzyme is of particular concern in studies of thyroid disruption by chemical contaminants because studies with laboratory rats show that chemicals such as PCBs induce UDP-GT, thereby enhancing the glucuronidation of T_4 and its excretion in bile (Barter and Klaassen 1992b). One study has shown increased UDP-GT activity in Japanese quail liver at a dose of 5 mg Phenoclor/bird/day (Riviere et al. 1978).

7.1.4.9 Dynamic Relationships among Levels Within the HPT Axis

509. When decreases in circulating thyroid hormones feedback to the HPT axis a series of adjustments “attempt to” compensate and restore circulating hormones to euthyroid levels. However, the unique hormone storage capacity of the thyroid gland makes this compensation somewhat different from that in other endocrine axes where the final endocrine organ does not possess appreciable storage capacity. In birds, as in other vertebrates (Section 7.1), if circulating thyroid hormones decrease, negative feedback will result in increased TSH release from the pituitary with consequent stimulation of thyroid gland growth and function (thyroidal iodide uptake and the capacity to produce, store and release hormones). Most important to early responses is that the stored hormones in thyroid glands are available for release to restore circulating thyroid hormone concentrations. However, this restoration may be transient; depending on the type and magnitude of the problem that caused the original depletion, circulating hormones may again decrease, resulting in TSH release and more release of stored thyroid hormones. Thus, in those cases where increased thyroid gland function cannot compensate, a cyclic pattern of decreases in circulating hormones and release of stored hormones can occur with resulting depletion of thyroid gland hormone stores. This type of cyclic pattern of responses occurs in response to iodine deficiency in humans (Delange and Ermans 1996) and appears to be the case in both quail (McNabb et al. 2004) and rats (York et al. 2001) exposed to perchlorate which interferes with thyroidal iodide uptake. Such cyclic patterns of HPT axis response appear to be a key reason why measurements of plasma thyroid hormones often are highly variable in studies of endocrine disruption by chemicals (Section 7.6.2.1).
7.1.5 Thyroid Hormone Negative Feedback on the HPT Axis

7.1.5.1 Thyroid Hormone Negative Feedback on the Pituitary

510. Studies that decrease or enhance circulating thyroid hormones have demonstrated negative feedback effects on the avian pituitary (review, Scanes 2000). In mammals, most of these feedback effects are from T₄ which enters the pituitary and is then deiodinated by 5′D II to produce T₃, which in turn binds to TRβ and inhibits TSH production and release (Silva and Larsen 1977). TRβ 2 expression is present in the pituitary in ducklings (Bishop et al. 2000). The gene for 5′D II is present in embryonic chicken cDNA libraries (Sun et al. 1998) but surprisingly 5′D II mRNA transcripts were not detectable in late incubation in the study of Van der Geyten (2002). These studies indicate that avian embryonic deiodination of T₄ to T₃ in brain and perhaps pituitary are similar to those in mammals.

7.1.5.2 Thyroid Hormone Negative Feedback on the Hypothalamus

511. Recent molecular studies have demonstrated that increased T₃ results in TRβ mediated inhibition of TRH gene expression in hypothalamic neurons from chick embryos but that TR α does not play a role in this negative feedback (Lezoualch et al. 1992). Immunocytochemical studies of hypothalamic neurons from day 6 chicken embryos, maintained in culture, possess TRs suggesting that the negative feedback effect of T₃ on TRs matures relatively early and prior to the time when there is linking of the HPT axis function (Lezoualch et al. 1994).

7.1.6 Summary of Differences between Avian and Mammalian HPT Axis

512. In general, there are few differences between birds and mammals in thyroid function and its control. Some differences are: differences in the iodination of thyroglobulin in the representatives of those classes that have been tested to date, differences in the thyroid hormone binding proteins between birds and large mammals, and shorter half-lives of thyroid hormone in birds than in mammals.

7.2 Roles of Thyroid Hormones in Avian Development

7.2.1 Effects on Growth

7.2.1.1 Interactions between the Thyroid and Growth Axes

513. Thyroid hormones are required for growth in birds, and within some range, growth is related to thyroid hormone exposure. However, at circulating thyroid hormone concentrations both above and below this range, growth is decreased (reviews, King and May 1984; McNabb and King 1993; Cogburn et al. 2000). Most of the work in this area has been in chickens because of the economic importance of optimizing growth in poultry. Thyroid hormones appear to act on growth in a permissive or indirect way in conjunction with other hormones of the growth axis. In birds, as in mammals, most of the end organ growth is thought to result from the effects of hepatic insulin-like growth factors (IGFs) whose secretion is largely under the control of growth hormone (GH) from the pituitary (Cogburn et al. 2000). Chickens with the sex-linked dwarf gene have provided a useful model for examining the effects of thyroid hormones in avian growth. These birds have low plasma T₃, normal or high plasma T₄, no alterations in binding proteins and only slight decreases in thyroid gland function. The defect responsible for the decrease in circulating T₃ is a deficiency in hepatic 5′D I (review, Decuyper and Kühn 1988).

514. There are interactions in which the HPT axis affects the growth axis, with TRH stimulating, and somatostatin inhibiting, GH release (review, Scanes 2000). In contrast to mammals (in which thyroid hormone stimulates GH secretion), in birds, thyroid hormones decrease GH secretion by effects on...
pituitary somatotropes and by negative feedback effects on TRH (Scanes 2000). Recently thyroid hormones have been shown to affect the differentiation and abundance of somatotrophs in chicken embryos in vivo (Liu et al. 2004) and in vitro studies indicate this stimulation requires synergistic interactions with corticosterone (Liu and Porter 2003).

515. There also are interactions between the thyroid and GH axes in the opposite direction; GH has regulatory effects on some aspects of thyroid function. Increases in GH just prior to hatching stimulate the increase in plasma T\textsubscript{3} during the perihatch period in precocial chickens. The GH increase causes marked and rapid decreases in 5D III activity (decreased T\textsubscript{3} degradation) and cause a slower increase in 5D I activity (increased T\textsubscript{3} production from T\textsubscript{4}). Together these alterations in deiodination result in the perihatch T\textsubscript{3} peak (see Section 7.1.4.6). The effects of GH on 5D III also are present in immature growing broiler chickens (Vasilatos-Younken et al. 2000). Glucocorticoids, which also may influence deiodinases, increase late in incubation/gestation, but in contrast to mammals, they appear not to be an important factor in the changes in deiodination activity at this time in precocial birds (see review in Darras et al. 1995). The effects of GH on deiodinases vary with deiodinase type and tissue; GH decreases hepatic 5D III (effect at the level of transcription) but does not alter 5D II in the brain (Van der Geyten et al. 2001). GH receptors are present in the thyroid and in vitro studies indicate that GH decreases T\textsubscript{4} release from the thyroid and may directly stimulate thyroid gland growth (Hull et al. 1995).

516. Nutritional status also may play a role in thyroid and growth axis interactions. Long term food restriction results in decreases in plasma T\textsubscript{3} but increases in plasma T\textsubscript{4}, GH and IGFs (Bruggeman et al. 1997). The changes in plasma GH as well as in hepatic GH receptor numbers may be important in altering deiodination patterns and subsequent effects on plasma T\textsubscript{3}. This sequence of events has been shown to be important in the restoration of plasma T\textsubscript{3} following refeeding (Buyse et al. 2002).

7.2.1.2 Embryonic, Perihatch and Posthatch Growth

517. The effects of thyroid hormones on body growth of precocial birds during the latter half of embryonic life as well as posthatch have been demonstrated using thyroid inhibitors, iodine deficiency and T\textsubscript{4} supplementation (reviews, King and May 1984; McNabb and King 1993; McNabb et al. 1998). It is less clear whether thyroid hormones are required for growth during the early parts of embryonic life. Hens deposit thyroid hormones in their eggs in relation to their own thyroid status so maternal hormones are available in the egg prior to the time when the embryonic thyroid is producing and releasing appreciable thyroid hormone (review, McNabb and Wilson 1997). Maternal hormones in the egg can affect embryonic tissue growth; increased maternal hormone content of eggs from T\textsubscript{4} supplemented hens was associated with increased pelvic cartilage growth and differentiation by late incubation in Japanese quail (Wilson and McNabb 1997). Pelvic cartilage is a tissue where both T\textsubscript{3} and insulin-like growth factors are required for differentiation and growth (Burch and Lebovitz 1982). There is an extensive literature on many factors that affect growth in poultry and a number of studies have attempted to manipulate the hormones of the HPT axis, largely without success, in attempts to find hormonal strategies for augmenting poultry growth.

518. Little is known of the relationships between thyroid hormones and growth in altricial birds. In a number of altricial species circulating thyroid hormone concentrations are very low during embryonic and early posthatch life then gradually increase until they reach levels like those in adults by the time of fledgling (see Section 7.1.4.1). Many altricial birds grow very rapidly during the early posthatch period when thyroid hormones are very low and these essentially poikilothermic chicks are investing energy in growth but not in thermoregulation (McNabb and Olson 1996). In altricial starlings, growth during this early posthatch period is associated with transient increases, then decreases, in GH and IGFs and gradual, sustained increases in T\textsubscript{4} and T\textsubscript{3} in the circulation (Schew et al. 1996). Studies of plasma GH and IGF concentrations in several altricial species indicate that both these hormones are high in the early posthatch
period (up to about 10 days) then fall to low levels in both altricial and precocial birds (McNabb et al. 1998).

7.2.2 Induction of Tissue-Specific Differentiation/Maturation

519. Thyroid hormones are involved in the differentiation and maturation of many body systems in all classes of vertebrates. The systems that are most dependent on THs during development are the central nervous system, the skeletal system, the heart and body musculature. Many if not all of these developmental events are initiated by T3 binding to TRs resulting in transcription of specific genes and the transduction of specific structural or enzymatic proteins (see Section 3.8). In general in birds, thyroid hormones appear to directly trigger some of the same specific differentiation and maturation events as in mammals, although far fewer examples have been addressed.

520. The older literature on thyroid hormone effects that point to specific effects of thyroid hormones on differentiation in skeletal components and muscle have been reviewed by King and May (1984) and King et al. (1987). The contractile characteristics and metabolic activity of three fast and slow muscle types are closely correlated with T3 receptor numbers during development (Dainat et al. 1986). These studies of receptor development suggest that the effects of thyroid hormones on developmental events are modulated by several factors including T3 availability, receptor numbers, receptor binding affinities, and the linking of receptors to physiological effects (see below).

521. *In vitro* studies of embryonic chick cartilage have been used to examine some of the biochemical events involved in the hormonal control of skeletal development (Burch and Lebovitz 1982). Specifically IGFs appear to trigger T3 stimulation of cartilage growth by chondrocyte proliferation but the thyroid hormone stimulation of chondrocyte differentiation is independent of IGFs (Burch and Van Wyk 1987). Other specific differentiation/maturation events triggered by thyroid hormones in perihatch chickens are the maturation of lung tissue just prior to the initiation of pulmonary respiration (Wittmann et al. 1983) and the maturation of intestinal function just prior to feeding (Black and Moog 1978; Black 1988).

7.2.2.1 Brain Development and Architecture

522. Thyroid hormones are critical to the establishment of brain architecture during central nervous system development in vertebrates. Thyroid hormones are required for the development of cellular branching processes that lead to the elaborate synaptic interconnections between brain neurons and the architecture of each brain region (for a comparative review see McNabb 1992). Thus altered thyroid states during development are likely to result in serious, permanent effects on central nervous system function. Essentially all of the recent cellular and molecular work in this area has been done on rats and it is reviewed in detail in Chapter 4, sections 4.3 and 4.4. Only the very limited studies on birds will be covered in this section.

523. Studies focused on TR provide evidence that maternal T3 from yolk and TRα (but not TRβ) play a role in the early stages of nervous system differentiation in chicken embryos prior to the onset of thyroid gland function (Flamant and Samarut 1998). In cultures of quail neural crest cells, retinoic acid and T3 interact (the first is stimulatory and the second inhibitory) in the control of adrenergic cell development (Rockwood and Maxwell 1996). Surveys of the presence of TRβ in embryonic chicken brain are suggestive of roles of this receptor isoform in later aspects of avian brain development especially in the last few days before hatch in this precocial species (section 7.1.4.7).

524. Some investigations of T3 effects on mitosis, gene expression and apoptosis have used chicken embryos. For example, between days 6 and 11 of the 21-day incubation period, exogenous T3 stimulates
mitosis followed by changes in the degree and timing of apoptosis in the optic lobes of chicken embryos. However, in this case the effects of elevated T3 were transient (Ghorbel et al. 1997).

525. Morphometric studies of brain development in birds, exposed to several persistent types of persistent polychlorinated aromatic hydrocarbons that alter thyroid function, have shown grossly asymmetric brain development (Henshel et al. 1997a,b; Henshel 1998). This technique may have promise in investigations of developmental effects of thyroid disruption (section 7.6.3.5) but to date these studies have not measured thyroid variables to attempt to correlate them with altered brain development.

7.2.2.2 Neuronal Turnover in Adult Birds

526. In recent years a great deal of attention has focused on the neurogenesis that occurs throughout adult life in the telencephalon of songbirds. Most of the attention has been on the role of gonadal steroids in this aspect of brain function (Rasika et al., 1994; Hidalgo et al. 1995; Smith et al. 1997; Bernard and Ball 1997). However, thyroid hormones are among the hormones that appear to play either independent or interactive roles in the plasticity exhibited by this part of the songbird brain. Circulating thyroid hormones are high during molt in association with the highest rates of cell turnover in the high vocal center (HVC; Kirn et al. 1994). Recently Tekumalla et al. (2002) investigated the effects of T4 treatment in adult zebra finches and found increased neuronal turnover and a decreased number of HVC neurons. The decrease in cell numbers was due to altered cell survival, specifically increased cell death in regions where they detected the presence of TRs. The effects of thyroid hormone treatment were transient and subsequent cell proliferation was not compensatory. Some species of songbirds show seasonal changes in HVC neuron numbers (Tramontin and Brenowitz 2000) and seasonal changes in thyroid hormones. Overall, these findings argue for thyroid hormones playing a role in regulating the timing of song learning and production (Tekumalla et al. 2002).

7.2.2.3 Skeletal System (cartilage and bone)

527. Thyroid hormones affect the development of the skeletal system through effects on the initiation and fusion of ossification centers as well as on bone elongation. The hormonal control of postnatal skeletal growth in mammals involves both growth-related and thyroid hormones. GH appears to be primarily responsible, through IGF actions on cell proliferation, for cartilage growth in the epiphyseal plate of long bones. Thyroid hormones stimulate the maturation of cartilage cells, and the deposition of the matrix and its mineralization. Prenatal skeletal development is thyroid hormone dependent in mammals, but some early aspects of skeletal development in altricial rats do not appear to require either thyroid hormones or GH (reviews, Legrand 1986; Schwartz 1983). Embryonic chick pelvic cartilage has been used as a model system for investigating some of the effects of thyroid hormones and the interactions between thyroid and growth-related hormones in the control of skeletal development. Thyroid hormone stimulation of cartilage growth is initiated by IGFs although T3 stimulation of maturation (differentiation into hypertrophic chondrocytes) is independent of IGFs (Burch and Lebovitz 1982; Burch and Van Wyk 1987). Pelvic cartilage growth and alkaline phosphatase activity (which indicates differentiation) effectively reflected increased maternal T4 exposure of embryos in ovo in eggs from hens treated with T4 (Wilson and McNabb 1997).

7.2.2.4 Muscle

528. Skeletal muscle comprises a large proportion of body mass so it represents a large proportion of body growth. In mammals, thyroid hormones are necessary for normal skeletal and cardiac muscle growth and have a number of specific, direct effects on the maturation of muscle cells. Thyroidectomy at birth in rats, which are altricial and have most thyroid development after birth, results in marked deficiencies in skeletal muscle mass and alterations in muscle proteins, with the most extreme effects on myosin. There is
evidence in both rats and chickens that thyroid hormone replacement reverses the effects of hypothyroidism on myosin, that GH administration reverses the effects on muscle weight but not those on myosin, and that thyroid hormones plus GH administration results in a synergistic effect with larger muscle weight than with either hormone alone (reviews, Legrand 1986; Scanes et al. 1986). Thyroid hormones alone do not result in normal growth if GH is not present, although they do stimulate increases in protein synthesis. Thus, thyroid hormones do not seem to stimulate the proliferative aspects of muscle growth, because DNA synthesis and satellite cell formation are not increased. These latter effects appear to be the most important actions of GH in skeletal muscle (Legrand 1986).

In birds, as in mammals, thyroid hormones are required for the differentiation of muscle cells, especially for the shifts from neonatal forms of myosin to the adult fast myosin heavy chain accumulation (King et al. 1987). Muscle development in embryonic and posthatch turkeys (embryonic day 18 to posthatch day 8) has been investigated in T₄ and goitrogen treated animals. The transition from embryonic to neonatal myosin heavy chain isoforms was blocked temporarily by either goitrogen (methimazole) or supplemental T₄ treatment but then occurred 6 days later despite continued treatment. These data indicate that thyroid hormones are involved in muscle myosin differentiation but are not absolutely required for it (Maruyama et al. 1995). The numbers of TR in different muscles during the development of young chickens is well correlated with the metabolic activity of the different muscle fiber types present (Dainat et al. 1984, 1986). Studies of domestic ducks treated with methimazole, T₄, T₃ or combinations of these treatments from 1-8 weeks of age showed cardiac and pectoralis muscle masses were decreased by 28% and 32% respectively, and body mass was decreased by 18%, compared to controls. This study also examined thyroid receptor gene expression and found TRα unaffected by methimazole treatment while TRβ 1 was decreased in leg muscles but not cardiac or pectoralis muscle. However, TRβ 1 expression was increased by thyroid hormone treatment in cardiac or pectoralis muscle (Bishop et al. 2000). Treatments that produce hypo- or hyperthyroid conditions in chicken embryos also can affect the proportion of fast and slow twitch fibers in the plantaris muscle of birds posthatch (at 3 or 35 days of age) and these effects were different in males and females (Dainat et al. 1991). These changes in the proportions of slow vs. fast muscle fiber types influence the aerobic capacity of locomotor muscles in adult ducks. Treatment with thyroid hormones for an 8-week period increased resting oxygen consumption and the activity of the aerobic enzyme citrate synthase in the left ventricle of the heart and in a leg muscle. However, there were no increases in muscle or body mass (Bishop et al. 1995). Studies of TRs in avian myoblast cultures indicate that the retinoic acid receptor (RXR) is important in the regulation of myoblast differentiation by T₃ (Cassar-Malek et al. 1996).

7.2.2.5 Gut

Thyroid hormones and glucocorticoids act together in gut maturation toward the end of incubation in chicken embryos. Glucocorticoids are involved in the maturation of intestinal glucose transport, thyroid hormones stimulate cellular differentiation and induce digestive enzyme production (Black and Moog 1978; Black 1988). More recent work has addressed the physiological details of the maturation of gut transport in birds (Obst and Diamond 1992). T₄ or T₄+cortisol in ovo stimulate precocious increases in glucose uptake in chick embryo intestine; cortisol alone does not have this effect. Similarly, organ culture studies of chick intestine show dose-dependent increases in some types of glucose transporters but there are some discrepancies between the in vitro and in vivo studies on this subject (review, Collie 1995). Studies of 5’D I in chick intestine suggest that intratissue deiodination may be important in generating T₃ for intestine development (Suvarna et al. 1993).

7.2.2.6 Lung

Thyroid hormones appear to be necessary for the maturational events preparatory to lung inflation in both birds (Wittmann et al. 1983) and mammals, with the timing of the effects differing in
precocial and altricial species. However, the picture is complex and it is not clear whether thyroid hormones are acting directly on cell differentiation or proliferation. Thyroid hormones interact with glucocorticoids and prolactin in these lung maturation events and the relative roles of the different hormones and the nature of their interactions are not fully understood (review, McNabb 1992).

7.2.2.7 Liver Enzymes

532. In mammals and birds the control of malic enzyme and some other hepatic lipogenic enzymes is related to thyroid status, and this system has been used as an important model system for understanding the mechanisms of thyroid hormone action. Typically hypothyroidism leads to a decrease in the mobilization and metabolism of lipids and to a lesser extent decreases in the synthesis of lipids. Hyperthyroidism also leads to increases in lipogenic activity.

533. Feeding by perihatch chicks is associated with rapid increases in both circulating T₃ and hepatic malic enzyme. Investigations of the molecular aspects of hormonal control of this system by T₃ have led to a number of discoveries about thyroid hormone action in birds. The regulation of malic enzyme synthesis is by both nutritional and hormonal factors and involves transcriptional effects (less important) and pretranslational effects (more important). In addition, the control of malic enzyme synthesis is tissue-specific (review, Goodridge et al. 1989).

534. Most of the work on the control of lipogenesis in birds has been with the goal of altering lipids in poultry production. Feeding T₃ decreases in vitro lipogenesis (IVL) at different protein levels in the feed although it did not compensate for some of the alterations caused by different levels of dietary protein (Rosebrough and McMurtry 2000). Hypothyroidism also can decrease IVL (as in mammals); T₃ replacement restores IVL initially but is followed by a decrease in IVL (Rosebrough and McMurtry 2003).

7.3 Role of Thyroid Hormones on Seasonal/Organismal Processes

7.3.1 Reproduction

535. In temperate latitude birds under natural photoperiods there is generally an inverse relationship between circulating reproductive steroids and thyroid hormones. Reproductive activities generally occur in the spring and summer when day lengths are increasing or long and stimulatory to breeding activities. Plasma thyroid hormones, which appear to be important in the initiation of gonadal development (section 7.3.1.1), decline during the early reproductive period. After some period of egg laying, the bird becomes refractory to the effects of long day length, reproduction ceases and postnuptial molting occurs. Thyroid hormones rise during the period when egg laying is declining and thyroid hormones (as well as prolactin) are thought to play a permissive role in the development of photorefractoriness (i.e. the lack of gonadal responsiveness to long days) because thyroidectomized birds do not become photorefractory. Thyroid hormones also are important in the molting process (section 7.3.4). This general seasonal picture applies to a number of wild bird species that have been investigated as well as domestic birds under natural photoperiods (Jallageas and Assenmacher 1979; Nicholls et al. 1988; Dawson 1989; Lien and Siopes 1993a). Thyroxine treatment results in testicular regression and decreased hypothalamic gonadotropin releasing hormone in male starlings, indicating that thyroxine mimics the effects of long day length (Boulakoud and Goldsmith 1991). The picture of thyroid hormone relationships in tropical birds is much more complicated (see below).

7.3.1.1 Gonadal Development

536. In mammals some cell types in both male and female gonads have TRs at least during development. There is relatively little information about whether thyroid hormones are required for the differentiation of gonads in either avian or mammalian embryos. At least part of this lack of information
seems to have resulted from early work suggesting that gonads were unresponsive to thyroid hormones at least in the context of hormone-stimulated changes in oxygen consumption. This seems to have stifled research on the potential effects of thyroid hormones on gonads. Recently however, there have been a number of cellular and molecular studies of the effects of thyroid hormones on mammalian testes (review, Jannini et al. 1995) and the detailed information from these studies suggests that similar experimentation is needed in both male and female birds.

537. Temporary exposure of both female and male chicks to thyroid inhibitors for several weeks affects later reproductive development and performance and manipulations of this type have been used in attempts to alter time of puberty, to attempt to improve reproductive performance in poultry and in reinitiating egg laying following molting (e.g. Peebles et al. 1994; Siopes 1997). It is generally accepted that thyroid hormones are involved in the onset of puberty in birds (Kirby et al. 1996). Recent studies have shown that in females hypothyroidism during embryonic chick development results in increases in oocyte volume, nuclear size and mitochondria (Roda-Moreno et al. 2000). In male chicks thyroid hormone treatment for several weeks posthatch results in precocious puberty, larger testis size and increased sperm production but abnormal spermatogenesis (Kirby et al. 1996; Knowlton et al. 1999). These effects of transient hypothyroidism are similar to ones seen in developing rats in which TRs are now known to be present in Sertoli cells of developing testes but not in adult testes (review, Jannini et al. 1995). Testis size in rats is related to initial Sertoli cell numbers suggesting that thyroid hormones may be playing a role in testis size in birds as well (review, Thurston and Korn 2000).

538. In adult birds thyroid hormones are required for gonadal maturation; thyroidectomy prevents seasonal gonadal maturation in temperate latitude birds. In tropical and subtropical birds the picture is more complex with thyroidectomy resulting in a wide variety of responses in different species. A number of studies that have manipulated brain thyroid hormones in relation to photoperiod in American tree sparrows have addressed many of the interactions of T₄, T₃ and photoperiod on the programming of seasonal reproduction, photorefractoriness and postnuptial molt using a variety of experimental paradigms including intracerebroventricular injections of T₄ and T₃ (e.g., Reinert and Wilson 1997; Wilson and Reinert 1998, 2000). The brain injection studies suggest that T₄ is more important than T₃ in its effects on the brain/HPT axis in the interaction of photoperiod and reproduction. A recent review of this literature as well as the historical literature on thyroid and photoperiod interactions in tropical birds suggests that thyroid hormones are playing an organizational role that influences the way in which gonadotropin releasing hormone neurons respond to photoperiod (Dawson and Thapliyal 2002).

7.3.1.2 Egg Production/Laying

539. Thyroid hormones are required for normal reproductive activity in female birds. Thyroid inhibition in adult hens is associated with decreased egg laying, and in the extreme, with complete cessation of egg laying in galliform birds (review, Decuypere et al. 1991). Hypothyroidism results in decreased egg production, egg weight, shell thickness and ovarian weight in poultry (Wentworth and Ringer 1986). Temporary treatment with goitrogens has been used as a strategy for altering the timing and performance of egg laying in chickens (Lien and Siopes 1993a,b). Treatment of developing female chickens with thiouracil from 0-6 or 6-16 weeks of age decreased plasma T₄, body weight and egg production. Some eggshell quality alterations were found in the experiment with thiouracil treatment from 6-16 weeks but these alterations did not occur consistently (Peebles et al. 1994).

7.3.2 Hatching

540. Historically, the observations that thyroid hormones peaked during the perihatch period and that thyroid inhibition interfered with hatching in chickens and quail led to the idea that T₃ was THE "hatching" hormone (Freeman 1974). General support for this idea came from the observation in precocial birds that
the plasma T₃/T₄ ratio rises in conjunction with internal pipping into the air cell and remains high throughout the remainder of the perihatch period. Treatment of eggs with goitrogens late in incubation, and the resultant decrease in thyroid hormones, is associated with increased time between external pipping through the shell or failure to hatch, and sometimes with failure of yolk sac retraction in those embryos that do hatch (review Decuypere and Kühn 1988). However, the absence of a perihatch peak in all the altricial species studied to date (McNabb and Olson 1996) argues against thyroid hormones playing such an absolute role in hatching in all birds. In chickens, inhibition of thyroid function in hens decreases their egg production, the hatchability of their eggs and embryonic mortality during the hatching process. Thyroid hormones stimulate a variety of metabolic and developmental processes necessary for successful hatching but the mechanisms by which these effects on hatching and survival are occurring are not fully understood. Goitrogen administration to eggs during incubation leads to failure in hatching and in yolk sac retraction. Early hatching is associated with increased plasma T₃ (review Decuypere and Kühn 1988). Small amounts of exogenous T₄ introduced into turkey eggs prior to incubation can improve hatchability (Christensen 1985) and differences in 5'D II activity and plasma T₄ concentrations (substrate availability) leading to T₃ production appear to play a role in different hatching times in weight-selected lines of chickens (McNabb et al. 1993).

7.3.3 Eggshell Formation

Many studies that have manipulated thyroid hormone availability (by goitrogens or iodine deficiency) have demonstrated that thyroid hormone deficiency decreases or eliminates (depending on the degree of deficiency) egg laying by hens and hatchability of those eggs that are laid (review, Decuypere et al. 1991). Temporary exposure to thyroid hormones can have some stimulatory effects on thyroid function during a rebound period after cessation of the thiouracil treatment and can stimulate the precocious onset of egg laying. Studies that exposed female chickens to thiouracil from 0-6 weeks and 6-16 weeks posthatch and followed egg production and egg quality for 28 and 38 weeks, respectively, found very complex interactions. The 0-6 week thiouracil treatment led to decreased body weight, egg weight and egg production from 20 to 28 weeks. The 6-16 week thiouracil treatment did not have these effects. Likewise, neither experiment gave evidence of associations between plasma T₄ and altered eggshell quality (Peebles et al. 1994).

7.3.4 Molt

The administration of thyroid hormones can induce molt and cessation of egg laying in birds as can feed restriction or a combination of these two approaches. It is common practice in the poultry industry to induce molt using various combinations of these treatments as well as manipulation of photoperiod and other dietary alterations (Decuypere and Verheyen 1986; Lien and Siopes 1993b). In seasonally reproducing wild birds and domestic birds that molt naturally, the cessation of reproductive activity and molt occur concurrently with increases in thyroid hormone (Goldsmith and Nicholls 1984a,b). A decrease in circulating estrogen also is associated with the initiation of molt (review, Decuypere and Verheyen 1986). Studies that have followed hormonal patterns during molt induced by feed restriction in chickens suggest that increases in both plasma T₄ and T₃ are associated with the induction of molt but that an increase in the thyroid hormone/estrogen ratios are associated with the induction of new feather papillae. Several studies suggest that T₄ is more important than T₃ in these processes (review Decuypere and Verheyen 1986). In turkeys, T₄ induces molt but T₃ does not (Queen et al. 1997). Other studies that have followed the patterns of hormones in molt induced by feed restriction argue that a decrease in progesterone is the key hormonal stimulus (i.e. primer) for the induction of molt and that T₄ is most important in feather regrowth (Herremans et al. 1988). Studies with T₄, T₃ and inhibitors of 5’D in tropical birds also provide evidence that T₄ is more effective in stimulating feather regeneration than T₃ (Kanchan and Chandola-Saklani 1995).
High plasma thyroid hormone concentrations, especially high T₄, are present in many species of wild birds during both the prenuptial and postnuptial molts, although the latter molt is much more extensive than the former (Assenmacher and Jallageas 1980). Molt is very energetically demanding both for new feather production and to balance the additional heat loss with poor insulation during the molt (review, Blem 2000) so it seems likely that the high thyroid hormones at this time are at least partially involved with the level of energy demand and thermogenesis.

7.3.4.1 New Feather Formation

Studies of the hormonal balances during molt in poultry suggest that estrogen decreases appear to be important in the initiation of molt but that new feather formation is promoted by an increase in the thyroid hormone:estrogen ratio. Detailed studies of thyroid hormones during the postnuptial molt in emperor and adélie penguins also show strong correlations between specific stages of feather replacement (initial growth of the new feathers and subsequent shedding of the old plumage) and thyroid hormones with plasma T₄ showing the closest relationships (Groscolas and Leloup 1986). A number of studies have suggested that T₄ directly affects the activity of feather papillae but it should be noted that these studies were done before the time when T₃ was recognized as the more metabolically active hormone so the results do not distinguish between the effects of T₄ and T₃ (review Decuypere and Verheyen 1986).

7.3.4.2 Feather Pigmentation

Because both thyroid and reproductive steroid hormones are important in molting, it is plausible that these hormones could affect feather pigmentation. However, it appears that most of the expression of feather color in males is part of the “neutral” developmental state and that less colorful female plumage results from estrogen suppression of the male color patterns. In a few species testosterone plays a role in male coloration (review, Owens and Short 1995). Thyroid hormone alterations affect a number of aspects of feather structure but there does not seem to be any published data linking feather pigmentation and thyroid hormones. An attempt to use feather pigmentation as a potential assay for thyroid disruption is discussed in Section 7.6.3.2.

7.3.5 Development and Maintenance of Photorefractoriness

7.3.5.1 Melatonin

There are differences in the roles that melatonin plays in birds and mammals. In mammals melatonin is involved in the coordination of reproduction with a favorable time of year. In contrast, in birds melatonin is involved in the entrainment of circadian activity rhythms. Melatonin also is involved in seasonal regulation of immune function and with the neuroplasticity of the avian song control system (Bentley 2001). The effects of melatonin are opposite in these two cases; melatonin enhances immune function but has an inhibitory effect on the song control system. Thus, during the breeding season, melatonin receptors are downregulated and this appears to occur through the same thyroid-dependent mechanism that controls reproductive state (Bentley 2001; section 7.3.1.1).

Relationships between the immune response and thyroid hormones have been suggested by some experiments in poultry. However, attempts to verify this in different lines of chickens found no relationship between thyroid hormones and antibody responses (Martin et al. 1988).

7.4 Role of Thyroid on Behavior

Although the roles of reproductive hormones in the different phases of reproductive behavior have received a great deal of study, thyroid hormones have not been considered in these studies. Thyroid
hormones are involved in the neuronal regrowth in the vocal centers of the songbird brain (see section 7.2.2.1) but the behavioral implications of this hormonal role in development are not understood.

7.5 Role of Thyroid on Metabolism

7.5.1 Thermogenesis

Metabolic heat can be categorized into (1) essential heat, which is the metabolic heat produced by essential life processes and which is comparable in poikilothermic and homeothermic animals, (2) obligatory heat, which is the additional heat increment of resting heat production of homeotherms at thermoneutral temperatures, and (3) regulatory or adaptive heat which is the extra heat produced by homeotherms in response to cool temperatures to maintain constant body temperature (Danforth and Burger 1984). Obligatory heat is generally considered to be directly under thyroid control, while regulatory heat historically has been considered to be primarily under nervous control with thyroid hormones playing a permissive role on factors such as tissue sensitivity to sympathetic nervous control or the capacity for heat production in thermogenic tissues (Danforth and Burger 1984). Some birds show increases in resting metabolic rate with acclimation to sustained cold (Dawson and Marsh 1989) so in these cases the capacity for sustained heat production in the cold alters obligatory heat production. A role for thyroid hormones in regulatory heat is indicated by the lack of thermoregulatory responses to cooling in hypothyroid chicks and adult birds (reviews Hillman et al. 1985; Jansky 1995).

Historically most avian thermogenesis in response to cold (regulatory heat) has been attributed to shivering of skeletal muscle. In contrast to mammals, birds do not possess brown adipose tissue in which oxidative phosphorylation is dissociated from the very high heat production in this tissue. The regulation of this dissociation is by an uncoupling protein (UCP). Searches for such a UCP in avian adipose tissue in cold acclimated birds and birds that undergo deep torpor have not been successful (review, Stevens 1996). However, an avian UCP has recently been identified in chicken and duckling muscle (Raimbault et al. 2001). Several lines of evidence suggest this UCP is playing a thermogenic role in birds. The expression (mRNA) of this avian UCP is increased in cold exposed chickens and ducks (Raimbault et al. 2001) and decreased in heat exposed chickens (Taouis et al. 2002). There are good correlations between increased heat production, increased avian UCP-mRNA and increased plasma T₃ concentrations in chicks exposed to cold for 7 days compared to chicks maintained at thermoneutral temperatures (Collin et al. 2003a). In addition it is regulated by T₃ (which stimulates thermogenesis), as indicated by increased UCP-mRNA in T₃ treated and decreased UCP-mRNA in goitrogen treated (methimazole or iopanoic acid) chickens (Collin et al. 2003b). Thyroid hormone effects on thermogenesis include both slow effects thought to be mediated through nuclear TR and more rapid effects that appear to affect mitochondria. Recently a form of the TRα has been identified in the inner mitochondrial membrane and a number of lines of evidence suggest this extranuclear pathway of action of T₃ may be involved in thermogenesis (review, Wrutniak-Cabello et al. 2001).

7.5.2 Development of Thermoregulation

Avian embryos initially produce only essential heat and the time of initiation of thermoregulatory responses differs in precocial and altricial birds. Precocial chicks show thermoregulatory responses during the perihatch period, altricials first showing thermoregulatory responses days or weeks after hatching. During early thermoregulatory development it is difficult to distinguish between obligatory and regulatory heat because this distinction is based on the animal having established a homeothermic resting metabolic rate. In the period when thermoregulation is developing, resting metabolic rate (obligatory heat) changes with increases in the stable body temperature the bird can maintain at a given age. As the bird’s body mass increases (improved surface to volume ratio for heat conservation), its insulatory feather cover expands the length of the thermoneutral zone (the range of ambient temperatures where metabolic rate is basal).
longer the thermoneutral zone, the lower the critical temperature at which regulatory heat will be required, so older chicks have less need for regulatory heat production. Likewise, adult birds will require even less regulatory heat production in any given set of temperature conditions than will chicks. The development of thermoregulation in altricial and precocial chicks has been reviewed by Visser (1998) and the relationships between the development of thyroid function and the development of thermoregulation have been reviewed by McNabb and Olson (1996) and McNabb et al. (1998).

7.5.2.1 Precocial Species

552. The most detailed information linking thyroid and thermoregulatory development in birds is available for precocial galliform birds, chickens and quail. In these species, much of the increase in metabolic capacity occurs prehatch, i.e. it appears that the acquisition of obligatory heat production occurs during late incubation (review Vleck and Bucher 1998). Some regulatory heat production may be present in late embryonic life; chicken embryos near the end of incubation show an increased resistance to cooling or transient increases in heat production with cooling (review Visser 1998). Two studies suggest that these metabolic responses may be due to the increasing plasma thyroid hormones present at this time (section 7.1.4.1); 16.5-day chicken embryos increase plasma T_4 in response to cooling (Thommes et al. 1988), and chicken embryos treated with thiourea do not show the metabolic responses to cooling (Tazawa et al. 1989). However, it should be noted that in many studies precocial embryos have not shown metabolic responses to cooling (review Visser 1998). Precocial hatchlings characteristically show strong metabolic responses to cooling in association with the time of the perihatch peaks in plasma T_4 and T_3. Further evidence of the role of thyroid hormones in these thermogenic responses is that inhibition of thyroid function by goitrogens interferes with or eliminates these thermogenic responses (Freeman 1970, 1971). The increase in circulating T_3 and the T_3/T_4 ratio during the perihatch period is closely associated with the initiation of thermogenic responses at this time. These increases in circulating T_3 result from increased deiodination of T_4 to T_3 and decreased degradation of T_3 (section 7.1.4.6). Increases in hepatic T_4 to T_3 conversion are stimulated within hours after cold exposure in young chickens (3-5 weeks of age). These deiodinase responses appear to be inherent liver responses because they are independent of HPT and growth hormone axis control, i.e., they are present in thyroidectomized and hypophysectomized as well as control birds (Rudas and Pethes 1984, 1986). Thyroid function in precocial birds other than galliforms has not been studied in the context of the development of thermoregulation.

7.5.2.2 Altricial Species

553. Altricial embryos and early posthatch young are essentially poikilothermic, i.e. their body temperature approximates that of the environment and they do not show increases in metabolism in response to decreases in temperature. Altricial chicks develop thermoregulation at ages ranging from about 1 to 3 weeks posthatch depending on their “position” on the altricial-precocial spectrum (review, Visser 1998; Dawson and Whittow 2000). The pattern of circulating thyroid hormone development has been studied in several altricial species and is generally correlated with the pattern of thermoregulatory development (McNabb and Olson 1996). In brief, plasma thyroid hormones are extremely low in embryos and early posthatch life, then increase gradually to reach a plateau by the time the birds are attaining homeothermy (section 7.1.4.1). HPT axis maturation in altricial birds occurs posthatch, so the linking of the axis components involved in the relaying of a hypothalamic signal initiated by cold exposure is not present until several days after hatch (doves; McNichols and McNabb 1988). Essentially all of the studies linking thyroid function to thermoregulation in altricial species are correlative (review, McNabb and Olson 1996).
7.5.3 **Lipogenesis**

Thyroid hormone stimulates lipogenesis in mammals and the amplified response of malic enzyme, one of the lipogenic enzymes, is well studied in both mammals and birds (section 7.2.2.6). Studies of lipogenesis in relation to feeding regimes and T3 effects in broiler chickens indicate complex responses of this system to thyroid hormone status and diet (e.g., Rosebrough 1999; Rosebrough and McMurtry 2003).

7.6 **Assay Methods for Assessing Thyroid Disruption in Birds**

7.6.1 **Overview of Experimental Methods**

The published studies on thyroid disruption in birds have used two categories of endpoints: (1) endocrine variables related to thyroid function or its HPT axis control and (2) target organ endpoints related to the developmental effects of thyroid hormones (McNabb In press). This section will be organized according to those categories and will focus on the sensitivity of different methods for demonstrating thyroid disruption and its downstream effects. The presentation of the work will be in the context of known mechanisms of chemical action that depress thyroid function and that are consistent with the effects of these chemicals in well controlled laboratory tests. It should be noted that in a number of cases, studies have reported that some data on thyroid variables suggest increased thyroid function, especially at the low ranges of the chemicals used. These data are too limited to determine if these apparent stimulatory effects should be categorized as evidence of thyroid disruption or whether they reflect transient overshoots in circulating hormones as part of the compensatory responses of the HPT axis. Some examples of field studies will be cited, but in general field studies have not linked chemical exposure, thyroid alterations and other endpoints in a way that allows evaluation of the effectiveness of methods for thyroid disruption screening or testing.

7.6.2 **Thyroid and HPT Axis Endpoints**

7.6.2.1 **Circulating T4 and T3**

Measurement of circulating concentrations of thyroid hormones is the key indicator of whole body exposure and thus would seem to be the best measurement of organismal thyroid status. In human clinical medicine free-T4 (fT4) concentrations are used and they are typically supplemented by TSH measurements to provide information about HPT axis activation. Concentrations of fT4 rather than total T4 are preferred because the free fraction of hormone is considered to be that part available to tissues and because fT4 concentrations are typically independent of hormone binding protein changes that occur in some physiological states. Some of the categorical problems/considerations that need to be taken into account in using hormone concentrations for assessing thyroid disruption in mammals have been discussed by DeVito et al. (1999). In birds, almost all of the available information is on total thyroid hormone concentrations.

In general, much of the data on circulating thyroid hormone concentrations in birds in relation to exposure to chemicals thought to alter thyroid function are highly variable and do not appear to give clear information about thyroid disruption. In rats, exposure to PCBs causes marked decreases in plasma T4 and T3 (see for e.g., Barter and Klaassen 1992a,b,1994). In contrast, a variety of laboratory and field studies in birds give much more equivocal and often inconsistent results (review, Scanes and McNabb 2003). Thus, in many of these studies one cannot tell whether the chemical is affecting thyroid function or whether the effect is obscured by variability in the circulating hormones. Studies of perchlorate exposure (perchlorate competitively inhibits thyroidal iodide uptake) in bobwhite quail have been used to compare the sensitivity of circulating thyroid hormone concentrations, thyroid gland weights and thyroid gland hormone content.
These studies showed circulating hormones to be the most variable measurement and to be the least sensitive indicator of altered thyroid function (McNabb et al. 2004a,b). At the lower and mid range concentrations of perchlorate, both high and low hormone concentrations were observed in different individuals and from experiment to experiment. It seems likely that these variable responses reflect cyclic patterns of circulating hormone changes reflecting HPT axis responses. In brief, with initial exposure to perchlorate, plasma hormone concentrations will decrease, leading to increased TSH stimulation which in turn will increase hormone release from hormone stores in the gland, thereby restoring euthyroid levels of circulating hormone. The increased TSH also will stimulate thyroid gland growth and functional capacity so at low perchlorate exposure levels this may partially compensate for the initial effects of perchlorate. However, if exposure continues, circulating hormone concentrations may again decrease and the cycle may repeat. This type of cyclic response pattern of circulating thyroid hormones, including times when circulating hormones overshoot in a positive direction, is known in iodine deficiency in humans (Delange and Ermans 1996) and in perchlorate-exposed rats (York et al. 2001). It seems likely that the large hormone stores in the thyroid, a feature unique to this endocrine gland, play an important role in setting up such cyclic patterns.

558. The use of fecal hormone assays to measure thyroid hormones has potential as a non-invasive technique for assessing thyroid disruption in some wild species, especially endangered ones. However, these assays are likely to be more variable than plasma measurements and in addition will have all the same potential problems (e.g. diurnal variations, food related differences, etc.).

7.6.2.2 Thyroid Mass and Histology

559. Historically, thyroid mass has been used as an indicator of HPT axis activation (resulting from low circulating thyroid hormones) in a number of contexts in avian endocrinology. In laboratory studies of ammonium perchlorate (bobwhite quail and mallard ducks) and in herring gulls exposed to PCBs in the field, thyroid mass and circulating T₄ are of approximately equal sensitivity for detecting decreases in thyroid function (McNabb et al. 2003; McNabb et al. 2004a,b; McNabb, 2005).

560. Although alterations in thyroid histology, resulting from increased TSH stimulation associated with HPT axis activation, are regularly used as indicators of altered thyroid function in mammalian studies (DeVito et al. 1999), this type of assessment has received little use in birds. However, thyroid gland weight and histopathology were used to provide evidence of thyroid disruption in herring gulls collected from Great Lakes sites polluted with PCBs between the mid 1970s and the early 1990s (Moccia et al. 1986). Gulls at the high PCB sites had thyroidal microfollicular hyperplasia, as well as thyroid hypertrophy compared to gulls collected at the reference site in the Bay of Fundy. Although the lower iodine availability in the Great Lakes, compared to the marine environment of the reference site, could be a confounding factor in these studies, evidence from other studies suggests that this was not the key factor altering thyroid mass or histology (Moccia et al. 1986).

7.6.2.3 Thyroid Hormone Content

561. Thyroidal T₄ content measurements, which have not previously been used as an index of thyroid function, are a much more sensitive index of decreased thyroid function than either plasma thyroid hormones or thyroid gland weight in bobwhite quail chicks exposed to ammonium perchlorate for two weeks (McNabb et al. 2004a). In this study thyroidal hormone content revealed decreased thyroid function at ≥0.05 ppm, thyroid gland weight indicated decreases at ≥500 ppm and plasma T₄ indicated decreases at ≥1,000 ppm. Preliminary studies with mallard ducks indicate the same ranking of these variables with respect to detecting thyroid function (McNabb et al. 2003) and studies of field caught herring gulls exposed to PCBs in the Great Lakes also support this pattern (McNabb and Fox 2003).
7.6.2.4 Deiodinase Activity

562. Exposure to commercial PCB mixtures (Aroclors) decreases hepatic 5’D I activity and increases brain 5’D II activity in laboratory rats (Morse et al. 1993, 1996; Raasmaja et al. 1996). In chicken embryos from eggs dosed with 6.7 ppm Aroclor 1242, hepatic 5’D I activity just before hatch was significantly decreased; Aroclor 1254 at the same dose did not alter hepatic 5’D I (Gould et al. 1999). Brain 5’D II activity in herring gulls exposed to PCBs in the Great Lakes showed no relationship to site PCB exposure (Fowler 2001). Thus, based on these two studies in birds, hepatic 5’D I activity may have promise for detecting thyroid disruption. Tests of the responsiveness of brain 5’D II in relation to a different level of thyroid disruption need to be performed.

7.6.2.5 Transthyretin and Free Thyroid Hormone Concentrations

563. Some chemicals, e.g. certain hydroxylated PCBs competitively displace T₄ from mammalian TTR in vitro (McKinney et al. 1985; Cheek et al. 1999) and there is some evidence that this is important in decreasing thyroid function in rats (Brouwer and Van den Berg 1996). However, in birds, transthyretin also binds T₃ and with higher affinity than T₄ (Chang et al. 1999). Recently this technique has been used to compare the inhibition, by a number of medical, industrial and agricultural chemicals, of T₃ and rT₃ binding to chicken TTR. Most of the chemicals tested (e.g., diethylstilbestrol, pentachlorophenol, ioxynil, dicofol) were effective in competitively displacing T₃ binding from TTR although dicofol showed a biphasic effect, inhibiting T₃ binding at some concentrations and facilitating binding at others (Ishihara et al. 2003). This method also has been used to test for inhibition of T₃ binding to chicken TTR by bisphenol A, nonylphenol and seven chlorinated derivatives of these compounds found in effluents from paper manufacturing plants. Biphenol A and nonylphenol were the most effective competitive inhibitors of T₃ binding, and less chlorinated derivatives were poorer competitors than more highly chlorinated ones (Yamauchi et al. 2003).

564. When chemicals competitively displace T₄ from TTR binding, presumably this T₄ displacement should increase circulating fT₄ concentrations thereby enhancing T₄ metabolism and excretion. Herring gull plasma from birds at high PCB sites showed a trend toward higher fT₄ concentrations than at the reference site. Surprisingly plasma fT₃ was not altered in relation to PCB exposure (Maher et al. 2002, 2003). These data are suggestive of PCB displacement of T₄ from transthyretin at high PCB sites. The opposite pattern was seen in cormorants from a western European site with approximately 2-fold higher PHAHs than the reference site; fT₄ was significantly decreased in these birds (Van den Berg et al. 1994). In contrast, common tern hatchlings from eggs with a 6.4X range of site PCBs showed no significant differences between sites in plasma fT₄ (Murk et al. 1994). Overall, these correlative studies are difficult to interpret and are not convincing that fT₄ measurements are likely to be an effective indicator of thyroid disruption.

7.6.2.6 Receptor Binding Assays and Thyroid Receptor Expression

565. Chemicals that disrupt reproductive endocrine function often act by binding to estrogen or androgen receptors and act as hormone agonists or antagonists. Thus for assessing chemical potential for reproductive disruption, receptor binding and expression assays are powerful tools. In contrast, very few chemicals bind to either mammalian TR (Cheek et al. 1999) or avian TR (Ishihara et al. 2003; Yamauchi et al. 2003) so this technique has little relevance for screening chemicals for thyroid disruption.

566. Thyroid receptor binding and receptor expression assays do have utility in basic research on the effects of chemicals. Altered thyroid function is likely to result in receptor up or down regulation in tissues and this may be an important part of the nature of the response to the chemical. Studies of TR cited in
sections 7.1.4.6, 7.1.4.7 and 7.2 indicate ways in which these assays could be used to understand the effects of chemicals on thyroid function and thyroid effects on target organs.

7.6.2.7 Altered Hormone Excretion

567. Increased T4 excretion resulting from the induction of hepatic UDP-GT (which glucuronidates T4 and facilitates its excretion in mammals) is an example of an indirect mechanism that alters thyroid function. Thus, UDP-GT activity could be used as a marker of exposure to certain chemicals with the potential for thyroid disruption (section 7.1.4.8). McCleary (2001) measured UDP-GT in chicken embryos exposed to PCB 126 in ovo. However, although there were trends toward decreased hepatic UDP-GT, thyroid function changed little so these studies do not adequately address the usefulness of the technique in assessing thyroid function. Murk et al. (1994) measured hepatic UDP-GT in terns exposed to mixed PHAHs in the environment. They found no significant differences in UDP-GT and no differences in the thyroid variables used in relation to PCB exposures. Thus to date there are no adequate data, based on relationships between UDP-GT activity and differences in thyroid state, for evaluating this type of assay for assessing thyroid disruption in birds.

7.6.3 Target Organ Endpoints

7.6.3.1 Growth Measures

568. Because thyroid hormones are required for growth in birds (section 7.2.1), body and tissue growth are generally thought to be suitable endpoints for assessing the effects of thyroid disruption. Several studies have measured growth in relation to thyroid disruption in birds exposed to contaminant chemicals in well controlled experiments (see below). Overall, neither hindlimb growth nor body weight seem promising as sensitive indicators of thyroid disruption in precocial embryos or chicks.

569. Embryos: Gould et al. (1997) studied the effects of Aroclor 1242, Aroclor 1254, or PCBs 54, 77 or 80 introduced into eggs and measured pituitary GH content, body mass, femur length and thyroid hormones in chicken embryos from those eggs on day 17 of the 21-day incubation period. They also measured plasma GH and IGF but found no effects of any treatment on these growth-related hormones. If body weight and femur length are useful indicators of decreased thyroid function, then they should be positively associated with decreases in thyroid function. At the highest dose of Aroclor 1242 (6.7 ppm) both plasma T4 and body weight tended to be decreased and femur length was significantly decreased. The highest dose of Aroclor 1254 (6.7 ppm) did not affect thyroid hormones yet both body weight and femur length were significantly decreased. One individual PCB congener (PCB 77) significantly decreased body weight and femur length, significantly increased GH and tended to decrease plasma T4, but these effects were only at one intermediate dose and there was no consistency to the trends seen at other doses. The other individual congeners used did not show any consistent pattern of effects.

570. In a second study, Gould et al. (1999) used the same PCBs and doses but the chicken embryos were sampled at the end of incubation (day 21) when 5'D I activity was high. In this study, the 6.7 ppm dose of Aroclor 1242 significantly decreased plasma T4, plasma T3, 5'D, femur length and relative liver weight but not body weight. Aroclor 1254 (6.7 ppm) decreased plasma T4 and femur length but not plasma T3, relative liver weight or body weight. None of the individual congeners showed any consistent pattern of effects. Overall these studies show that decreases in femur length are positively associated with decreases in plasma T3 in some but not all cases.

571. Chicks: Studies of the effects of ammonium perchlorate (AP) on thyroid function and growth in bobwhite quail chicks also provide evidence that growth is a relatively insensitive indicator of thyroid disruption. In dose response studies with quail chicks exposed for 8 weeks (beginning a few days after
hatch) to a series of AP concentrations up to 4,000 ppm in drinking water, body weight was unaffected and femur and tibia growth were decreased significantly only at the highest (4,000 ppm) AP concentration used. Thyroid gland hypertrophy at concentrations ≥ 1,000 ppm, decreased plasma T4 at ≥ 2000 ppm and decreased thyroidal hormone content at ≥ .05 ppm suggested that growth-related variables are much less sensitive indicators than all other measures of thyroid function that have been tested in birds. It appears that sustained periods of thyroid deficiency are required before body and skeletal growth are affected in these young precocial birds (McNabb et al. 2004a).

7.6.3.2 Feather Characteristics

572. Thyroid hormones are critical to feather replacement and feather abnormalities are associated with altered thyroid function. In addition, changes in estrogen and in the thyroid:estrogen hormone ratios play a role in the timing of molt (section 7.3.4). Thus, since PCB exposure has sometimes been associated with decreased thyroid function, molt and plumage characteristics might be a suitable endpoint for assessing downstream effects of PCBs. Quinn et al. (2002) tested this idea in American kestrels exposed to Aroclor 1242. The highest dose used was one reported to disrupt reproduction, the birds were dosed from the beginning of egg laying until the postnuptial molt was complete (6 months) and plasma was collected for hormone analyses weekly for 5 weeks postmolt. There were no effects of the Aroclor 1242 treatment on plumage color or reflectance or on plasma estradiol concentrations. In females, plasma T4 was significantly decreased at the highest dose compared to controls at only one of the 5 weeks. In males, there were no significant changes in plasma T4 but concentrations tended to decrease. Unfortunately the lack of significant, consistent thyroid hormone effects from the PCB treatment in this study do not allow any judgments of the usefulness of feather characteristics as an indicator of thyroid disruption.

7.6.3.3 Expression of Target Organ Developmental Genes

573. Alterations in the expression of target organ genes or translation of their proteins that are under the control of thyroid hormones, when correlated with known anatomical, physiological or metabolic effects, can provide information about the consequences of thyroid disruption. Currently, such endpoints in the developing central nervous system are the focus of a great deal of research (Chapter 4) in mammals but have received little if any attention in birds.

7.6.3.4 Tissue Differentiation in Target Organs

574. Avian embryonic pelvic cartilages, in which cartilage differentiation events are known to be responsive to T3, may be a useful model for evaluating target organ effects of thyroid disruption (section 7.2.2.2). Likewise, the techniques that have recently been used to follow neuronal turnover, cell differentiation and apoptosis in relation to hormone effects in the vocal center regions of songbird brains (Tekumalla et al. 2002; section 7.2.2.1) seem to be potentially useful techniques for determining how thyroid disruption alters brain development in young animals. However, techniques of these types have not been utilized in the context of chemically induced thyroid disruption.

7.6.3.5 Brain Morphometrics

575. Exposure to dioxins and dioxin-like compounds is associated with the development of grossly asymmetrical brains in domestic and wild bird species (Henshel et al. 1997a,b; Henshel 1998; section 7.2.2.1). It seems likely that thyroid disruption is playing a role in this effect although measurements of thyroid function were not made in these studies. Evaluation of the relationships between thyroid disruption and brain morphometry should be evaluated as possible methods for the assessment of thyroid disruption effects on a key target organ, the brain.
7.6.3.6 Behavioral Tests

576. Although alterations in specific reproductive behaviors may have merit for revealing disruption of reproductive hormones, no specific set of behaviors linked to thyroid function are known. Thus, behavioral alterations associated with thyroid disruption are likely to be non-specific effects resulting from altered brain architecture and function during development. A number of behavioral tests have been used in mammals (DeVito et al. 1999) but not in birds. One specific area that might be promising is behaviors related to hearing (or direct tests of hearing) because thyroid deficiencies are known to permanently alter the development of hearing in mammals (Goldey et al. 1995a,b; 1996a,b).

7.6.3.7 Photorefractory Induction/Maintenance

577. Although thyroid hormones are important in photorefractoriness, there are variations in the responses seen in different species, differences between temperate vs. tropical birds, and delays in timing between thyroid effects on the higher parts of the hypothalamic-pituitary-gonadal axis and reproductive system effects (section 7.3.1.1). In addition, thyroid hormones are interacting with gonadal steroids and other hormones in their effects on reproductive timing. Thus, the complexity of this system argues against it being useful in assessing thyroid disruption.

7.6.4 Recommended Assay Protocols

7.6.4.1 The Avian Two-Generation Toxicity Assay (EPA DRP Contract # 68-W-01-023; 2003)

578. This includes a number of thyroid-relevant endpoints that will be measured in parental or subsequent generations of birds. The exposure of hens (parental generation) to chemicals will ensure that if transfer of the chemical to eggs occurs, embryos will be exposed in ovo. Secondly, the exposure of half of the F1 chicks to the chemical will allow separation of pre- and posthatching effects. The thyroid-relevant endpoints in this assay are listed in Table 7-1 below. The first four endpoints (plasma/serum thyroid hormones, plasma/serum TSH, thyroid weight, and thyroid histology) are intended to detect thyroid disruption, and the next two (bone length measurements and skeletal X-rays) are addressed to target organ effects of altered thyroid function. The final endpoint listed (plasma steroids) presumes a relationship between plasma/serum steroid and thyroid hormones. However, such a relationship is not documented in the avian literature. The two endpoints listed in the Avian Two-Generation assay that are most promising with respect to sensitive detection of thyroid alterations are plasma/serum TSH and thyroid histology. However, antibodies are not available for measuring TSH in birds. Thyroid histology procedures for avian studies have not been standardized, nor has the sensitivity of this endpoint been investigated. Thyroid histology is a relatively-to-very sensitive endpoint for detecting HPT axis activation in mammals, so it is likely to be of similar sensitivity in birds.

579. The second section of Table 7-1 addresses other endpoints that have been used or suggested in other documents to be useful in these assays. Based on the available information, thyroid gland hormone content is the most promising because it is very sensitive to altered thyroid function (section 7.6.2.3) and it is less labor-intensive than other potentially sensitive endpoints such as histological evaluations. The other endpoints listed in this section of the table are either very insensitive or they require considerable development to determine their sensitivity and practicality.

580. Endpoints that measure the effects of thyroid alterations on target organ endpoints have been very limited and mostly confined to indicators of growth. In general these endpoints are useful only if birds have experienced sustained organismal hypothyroidism (section 7.6.3.1). Biochemical and molecular techniques that measure endpoints associated with the effects of thyroid alterations on differentiation offer promise, but these techniques have not been developed for avian assays. Behavioral assays also offer
promise as noninvasive techniques that do not require animal sacrifice. However, there is no available information about the efficacy or sensitivity of these techniques.

581. A wide variety of possible endpoints are listed in Table 7-2 below. To date, the most sensitive endpoint for detecting altered thyroid function in birds is the measurement of thyroid gland hormone content, of which >95% is T₄ (sections 7.6.2.1 through 7.6.2.3). This measurement capitalizes on a unique feature of thyroid glands, namely their capacity to store large amounts of thyroid hormone. This measurement detects alterations in function before changes are severe enough to alter organismal-level thyroid function (i.e., before the body as a whole is exposed to sustained decreases in plasma thyroid hormones). In addition, the measurement of thyroidal hormone content is less labor-intensive and more easily quantified than histological assessments, which, based on studies in mammals, also may be very sensitive endpoints.

582. Thyroid gland weights are the second most sensitive assay currently available for birds, at least until plasma TSH assays are developed. Plasma thyroid hormone measurements are very insensitive indicators of altered thyroid function. Plasma hormone concentrations are highly variable, probably because of cyclic patterns of HPT axis responses as the system attempts to compensate for alterations in thyroid function partly by the release of thyroidal hormone stores and partly by increased gland function (section 7.6.2.1).

583. As mentioned above, at present there are no measurements/assays of downstream target organ effects that have been shown to accurately reflect the final effects of thyroid disruption in birds. Body and hindlimb growth measurements are very insensitive. Differentiation processes appear to be promising candidates for the development of endpoint measurements, e.g., cartilage to bone differentiation processes in pelvic cartilages from avian embryos have been shown to respond to T₃, and there are a number of ways in which their differentiation could be assessed. Molecular and cellular differentiation events in central nervous system, heart, or skeletal muscle development also have promise. The investigations in these latter areas are developing more quickly in mammalian studies than in birds, but it appears that many of these events are sufficiently alike in birds and mammals that the same assays can be used in both.

584. In summary, the sensitivity of the Avian Two-Generation Assay for detecting thyroid disruption in birds could be improved by the addition of measurements of thyroid gland hormone content. Comparative studies of thyroid gland hormone content and thyroid histology are needed to determine whether histology is more or less sensitive than measurements of thyroid gland hormone content. With respect to the effects of thyroid disruption on target organs, there are currently no sensitive assays that have been developed for use in birds. Biochemical or molecular endpoints indicative of alterations in target tissue differentiation seem most promising for the development of new assays.

7.6.4.2 Embryo One-Generation Assay

585. Measurements of a variety of reproductive endpoints in hatchlings exposed to contaminants in ovo have been proposed as screening and testing assays. Studies of the effects of estradiol and other potential reproductive toxicants in this type of assay are currently in progress (personal communication, M.A. Ottinger). In these studies the chemical is introduced into the egg early in incubation, half of the hatchlings are sampled and the remaining half are reared and sampled at a later time. The endpoints to be measured are indicators of reproductive endocrine disruption. However, the effects of chemicals on the development of thyroid function could be evaluated concurrently by the addition of measurements of thyroid gland hormone content or thyroid histology (see discussion above). The other endpoints commonly used to reflect altered thyroid function probably would not be useful unless embryos and chicks were sampled at several stages because subtle differences in maturation can markedly increase endpoint variability when only a single sampling time is used. For precocial species (Japanese or bobwhite quail, or
mallard ducks) thyroid function undergoes considerable maturation during embryonic life, so sampling either prior to the perihatch period or shortly after hatching should allow effective detection of thyroid disruption. In contrast, altricial birds have little thyroid development until some time after hatch so they would need to be sampled later in development. The available literature is not adequate for evaluating whether this type of embryo exposure assay would be more sensitive for screening or testing than the measurement of thyroid endpoints within the Two-Generation Assay. However, an evaluation of embryo assays seems warranted because they could potentially require relatively short studies for thyroid screening.
<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Major Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Status of Assay</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian Two-Generation Assay</td>
<td>Bobwhite or Japanese quail, Mallard ducks</td>
<td>Plasma/serum T<sub>4</sub> and T<sub>3</sub></td>
<td>Organismal level thyroid function may affect differentiation of target organs/tissues including CNS, growth</td>
<td>Doesn't require sacrifice. Relatively inexpensive, easily validated.</td>
<td>Plasmas T<sub>4</sub> and T<sub>3</sub>, highly variable due to cyclic, compensatory responses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma/serum TSH</td>
<td>HPT axis activation resulting from feedback of altered thyroid hormones.</td>
<td>Doesn't require sacrifice. Relatively inexpensive, easily validated.</td>
<td>TSH assays not available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thyroid weight</td>
<td>HPT axis activation resulting from feedback of altered thyroid hormones.</td>
<td>Simple, quick, inexpensive.</td>
<td>Relatively insensitive, variation in dissection, requires sacrifice.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thyroid histology</td>
<td>HPT axis activation resulting from feedback of altered thyroid hormones.</td>
<td>Potentially very sensitive but details of sensitivity have not been documented.</td>
<td>Relatively labor intensive, has received little use in avian thyroid studies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone length measurements</td>
<td>Target organ effects of decreased thyroid function during skeletal development.</td>
<td>Simple, quick, inexpensive.</td>
<td>Not well investigated. Variable results from different studies. Difficult to standardize measurement techniques.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skeletal X-rays</td>
<td>Target organ effects of decreased thyroid function during skeletal development.</td>
<td>Should reduce variability in measurements.</td>
<td>Has not been used in published studies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma steroids</td>
<td>Undefined relationship.</td>
<td>Doesn't require sacrifice, relatively inexpensive, easily validated.</td>
<td>No systematic investigations indicating relationship to thyroid function.</td>
<td></td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Major Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Status of Assay</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Other endpoint measurements not included in current assays</td>
<td>Bobwhite or Japanese quail, Mallard ducks.</td>
<td>Thyroid gland hormone content of T₄ and T₃.</td>
<td>Depletion of gland hormone stores due to release to maintain euthyroid circulating levels.</td>
<td>Very sensitive, effects appear early and at lower exposure levels than revealed by other methods. Has not been validated but validation should be straightforward.</td>
<td>Very sensitive, effects appear early and at lower exposure levels than revealed by other methods. Has not been validated but validation should be straightforward.</td>
<td>Requires sacrifice.</td>
</tr>
<tr>
<td>Thyroid peroxidase.</td>
<td></td>
<td></td>
<td>HPT axis activation resulting from feedback of altered thyroid hormones.</td>
<td>Potentially sensitive. Validation should be straightforward.</td>
<td>Potentially sensitive. Validation should be straightforward.</td>
<td>Requires sacrifice. No avian assays available.</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
<td>Indirect thyroid hormone effects on target organs.</td>
<td>Very easy, very inexpensive. Doesn’t require sacrifice.</td>
<td>Very easy, very inexpensive. Doesn’t require sacrifice.</td>
<td>Extremely insensitive.</td>
</tr>
<tr>
<td>Neurobehavioral tests</td>
<td></td>
<td></td>
<td>Thyroid hormone effects on nervous system development.</td>
<td>Potentially sensitive, doesn’t require sacrifice.</td>
<td>Potentially sensitive, doesn’t require sacrifice.</td>
<td>No avian assays have been tested.</td>
</tr>
<tr>
<td>Cold stress tests</td>
<td></td>
<td></td>
<td>Thyroid hormone effects on thermoregulatory ability.</td>
<td>Likely to be very insensitive. Doesn’t require sacrifice.</td>
<td>Likely to be very insensitive. Doesn’t require sacrifice.</td>
<td>No avian assays have been tested.</td>
</tr>
</tbody>
</table>
Table 7-2 Points of Thyroid Disruption in Birds

<table>
<thead>
<tr>
<th>Disruption or Evaluation Site</th>
<th>Endpoints of Interest</th>
<th>Target Effects of Disruption</th>
<th>Assay Availability</th>
<th>Status of Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismal thyroid status: circulating hormones</td>
<td>Serum/plasma T<sub>4</sub>, T<sub>3</sub></td>
<td>Organismal thyroid status affecting all target organs/tissues (developmental and metabolic effects);</td>
<td>Yes</td>
<td>RIA s and ELISA s; in common use.</td>
</tr>
<tr>
<td>HPT axis activation</td>
<td>Serum/plasma TSH</td>
<td>Reflects HPT axis feedback effects from altered serum/plasma T<sub>4</sub> and T<sub>3</sub> due to alterations in thyroid gland function or hormone turnover.</td>
<td>No</td>
<td>No available avian antibodies; heterologous antibodies don’t cross-react.</td>
</tr>
<tr>
<td>HPT axis activation</td>
<td>Thyroid gland weight</td>
<td>Reflects HPT axis feedback effects from altered serum/plasma T<sub>4</sub> and T<sub>3</sub> due to alterations in thyroid gland function or hormone turnover.</td>
<td>Yes</td>
<td>Requires some training; consistent trimming of glands during dissection.</td>
</tr>
<tr>
<td>HPT axis activation</td>
<td>Thyroid gland histology</td>
<td>Reflects HPT axis feedback effects from altered serum/plasma T<sub>4</sub> and T<sub>3</sub> due to alterations in thyroid gland function or hormone turnover.</td>
<td>Yes</td>
<td>Not validated/standardized as a technique for avian thyroid studies.</td>
</tr>
<tr>
<td>Thyroid gland: iodide uptake</td>
<td>Na-I symporter</td>
<td>Decreased thyroid gland uptake of iodide resulting in decreased hormone synthesis.</td>
<td>Yes</td>
<td>Radioiodide uptake.</td>
</tr>
<tr>
<td>Thyroid gland: hormone content</td>
<td>Thyroidal T<sub>4</sub> and T<sub>3</sub> content</td>
<td>Altered thyroid hormone stores. Sensitive to release of stored hormones to maintain serum/plasma concentrations when hormone synthesis or turnover is decreased.</td>
<td>Yes</td>
<td>Used in avian thyroid research. Not validated across different laboratories.</td>
</tr>
<tr>
<td>Thyroid gland: TPO</td>
<td>TPO</td>
<td>Altered thyroid peroxidase activity; effects on thyroid hormone synthesis.</td>
<td>Yes</td>
<td>Has not been used or validated for avian thyroid studies.</td>
</tr>
<tr>
<td>Target tissues: hormone supply</td>
<td>Binding protein effects on free hormones</td>
<td>Enhanced free hormone concentrations (and consequent increased hormone turnover) resulting from competitive displacement of hormones from binding proteins by contaminant chemicals.</td>
<td>No</td>
<td>Assays could be developed, but may have limited utility sensitivity.</td>
</tr>
<tr>
<td>Target tissues: receptor binding</td>
<td>T<sub>3</sub> receptors</td>
<td>Altered hormone action. Few chemicals bind to thyroid receptors so these measurements are of minor relevance to thyroid disruption.</td>
<td>Yes</td>
<td>Receptor binding assays.</td>
</tr>
<tr>
<td>Target tissues: growth</td>
<td>Body or organ growth</td>
<td>Altered body or organ weights or skeletal dimensions.</td>
<td>Yes</td>
<td>Requires some training for consistency of measurement.</td>
</tr>
<tr>
<td>Disruption or Evaluation Site</td>
<td>Endpoints of Interest</td>
<td>Target Effects of Disruption</td>
<td>Assay Availability</td>
<td>Status of Assay</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Target tissues: brain morphometrics</td>
<td>Brain morphometrics</td>
<td>Altered development of brain regions.</td>
<td>Yes</td>
<td>Not definitively linked to thyroid effects; could be reflecting direct effects on CNS.</td>
</tr>
<tr>
<td>Target tissues: development</td>
<td>Markers of tissue differentiation.</td>
<td>Altered tissue differentiation in central nervous system, muscle or skeletal tissues. Could include gene expression assays.</td>
<td>No</td>
<td>Assays used in mammals, have not been used in birds.</td>
</tr>
<tr>
<td>Target tissues: metabolism</td>
<td>Metabolism (oxygen consumption)</td>
<td>Altered metabolism in adults or altered thermoregulatory development in young birds.</td>
<td>Yes</td>
<td>Likely to be too insensitive to be useful.</td>
</tr>
<tr>
<td>Target tissues: deiodinases</td>
<td>Brain 5’D II activity</td>
<td>Central nervous system regulation of tissue T₃ concentrations may reflect responses to alterations in circulating thyroid hormone concentrations.</td>
<td>Yes</td>
<td>Sensitivity unknown for use as a screening tool.</td>
</tr>
<tr>
<td>Target tissues: molting and feather characteristics</td>
<td>Altered feather replacement</td>
<td>Disruption of hormonal control of the molting process.</td>
<td>No</td>
<td>Limited studies available suggest assays would be of limited utility and low sensitivity.</td>
</tr>
<tr>
<td>Target tissues: behavior</td>
<td>Altered sensory and motor performance</td>
<td>Altered central nervous system development reflected in behavior.</td>
<td>No</td>
<td>Tests of behaviors dependent on sensory or motor functions known to be thyroid responsive during development.</td>
</tr>
<tr>
<td>Thyroid hormone excretion</td>
<td>Phase II liver transformation enzymes; UDP-GT</td>
<td>Increased T₄ excretion resulting from contaminant induction of uridine diphosphate glucuronosyltransferase activity, i.e. increase in T₂ glucuronidation which enhances excretion in bile.</td>
<td>Yes</td>
<td>Assays not validated for evaluating contaminant effects, seem unlikely to be sensitive.</td>
</tr>
</tbody>
</table>
8.0 SUMMARY AND IMPLICATIONS

586. Thyroid hormones are essential for normal development in mammals, birds, amphibians, and fishes. Therefore, chemicals in the environment that interfere with the ability of thyroid hormones to play their normal role in development could have devastating effects on wildlife or human populations, and on individuals that make up those populations. Considering the role of thyroid hormones in development, it is important to construct screens and tests for potential thyroid toxicants in any endocrine disrupter screening and testing program. These screens and tests should adequately capture the range of points within the thyroid endocrine system that may be disrupted by these toxicants. A central goal of this DRP is to review the current literature on thyroid endocrinology in mammals, birds, amphibians, and fish; to review and evaluate current screens and tests under consideration by various committees charged with developing a comprehensive battery that will evaluate chemicals for thyroid disruption within the context of this literature (see Table 8-1 below); and to make recommendations to consider additional assays or endpoints that address specific weaknesses in the current assays.

587. Several important features of the thyroid system are conserved across all taxa. The structure of T_4 and T_3 is the same in all taxa, as is the mechanism by which they are synthesized. Moreover, T_4 is the principal hormone secreted from the thyroid gland, and T_3 is the most hormonally active form in the tissue. Peripheral conversion of T_4 to T_3 is responsible for controlling tissue sensitivity to thyroid hormones in all vertebrates. Thus, blood levels of T_4 represent a measure of thyroid function, and blood levels of T_3 represent a measure of peripheral deiodination of T_4. Because some animals are very small (e.g., amphibian larvae, flounder larvae), it may not always be practical to measure blood levels of hormones. Therefore, it may be necessary to develop and validate methods that utilize tissue for hormone measurements.

588. The functional interactions among levels of the HPT axis also are similar among vertebrates. The hypothalamus controls the pituitary, which controls the thyroid gland. Negative feedback of thyroid hormones controls the hypothalamic-pituitary axis. However, in amphibians – at least during metamorphosis – the hypothalamic peptide responsible for pituitary-thyroid activity is not the same as in other vertebrates. Thus, while the general functionality of the system is the same among the vertebrates, there are differences in specific molecules that must be considered.

589. Thyroid hormone does not regulate the same developmental or physiological endpoints in all organs within a single animal, and the same is true in the same organ across all vertebrates. Thus, thyroid hormones control events in the metamorphosing amphibian that are likely to be different in human development. However, within the context of thyroid toxicology, these different endpoints can be viewed as ways of testing the hypothesis that a specific chemical can interfere with thyroid hormone action. For example, the drug propylthiouracil (PTU) can reduce blood levels of thyroid hormone in both amphibians and in mammals. However, PTU-induced reductions in blood levels of thyroid hormone will not affect the same endpoints in the two species, but will similarly be indicative of an antithyroid agent.

590. All known thyroid toxicants have been identified by their ability to alter serum levels of thyroid hormones (Brucker-Davis, 1998) because this is currently the only definition of thyroid toxicity. It has been reasonably argued that serum concentrations of thyroid hormones should be an indicator of all thyroid
toxicants (DeVito, et al., 1999). Hormone levels will reveal thyroid toxicants that interfere with thyroid function (by any mechanism), thyroid hormone metabolism (by any mechanism), or TR activation (in principle). For example, chemicals that inhibit thyroperoxidase would reduce T_4 synthesis and would suppress serum T_4. Likewise, chemicals that increase thyroid hormone metabolism and clearance from serum (e.g., UDPGT inducers) would cause a reduction in serum T_4 or at least an increase in serum TSH (to maintain normal T_4 levels). Finally, chemicals that interfere with TR activation should alter the negative feedback action of thyroid hormone at the hypothalamus and pituitary, thereby causing a change in serum thyroid hormone levels. Thus, hormone levels are and will remain important indicators of thyroid toxicity.

However, changes in serum hormone concentrations are not, in and of themselves, considered adverse effects. Thus, while an argument can be made for using serum hormone concentrations and thyroid weight/histology as the sole indicators of thyroid toxicity, these endpoints will never contribute significantly to non-cancer risk analysis and these measures will fail to identify chemicals that act by interfering directly with TR action. For example, toxicants that interfere with the TRα isoform may be especially good examples of the described scenario, because the TRα isoform does not contribute significantly to the negative feedback regulation of the pituitary or hypothalamus. Thus, if a compound selectively regulates TRα activity, thyroid hormone levels would not change, but TRα-enriched tissues (e.g., heart) will be significantly affected.

As reviewed in this document, new research indicates that endpoints can be developed that will likely prove to be sensitive indicators of adverse effects of thyroid hormone insufficiency and of thyroid toxicity. While we await development of new measures for these assays by the scientific community, changes can be made immediately to improve the sensitivity of the current assays. For example, alterations in thyroid hormone levels during the early postnatal period are currently not accounted for in any of the existing assays; these measurements should be incorporated into the screens. Specifically, T_4 levels in normal rat pups are in the range of 0.5 to 1.0 µg/dL on postnatal day 4 (Goldey, et al., 1995a, 1995b; Zoeller, et al., 2000), rising to 8 to 12 µg/dL on postnatal day 15, then declining to adult levels of approximately 3 µg/dL by postnatal day 21. Thus, chemicals that affect serum hormone levels on P15, but not on P21, would not be captured in an experimental protocol in which P21 was the only time that serum thyroid hormone levels were measured. Incidentally, the radioimmunoassay used extensively in toxicological research is a commercial kit based on human serum and calibrated for human serum T_4 levels that are slightly higher than for rats. This kit has a lowest standard of 1 (or in some kits 2) µg/dL. Because serum samples that do not have T_4 levels above that of the lowest standard cannot be interpreted, measurements in the literature should be carefully evaluated because many of these are below the detectability of the assay kit used. Moreover, although the structures of thyroid hormones (T_4 and T_3) are identical among all vertebrates, the composition of the serum differs among animals, which may confound the assay.

Considering the biology of thyroid hormone action in development, a number of conclusions can be made regarding our ability to develop a cogent battery of screens and tests that would effectively evaluate chemicals for the ability to interfere with thyroid hormone signaling. These conclusions are presented below, but the reader is strongly encouraged to refer to the background information presented in this document used in making these conclusions.

8.1 Conclusions

Several important conclusions can be derived from this detailed review paper:

1. Research published in the past 5 years has clarified important issues germane to thyroid toxicology, and suggests endpoints and assays that should be considered for research and
development and, if possible, current or future use in assay protocols (in addition to those initially recommended).

2. The current *in vivo* screens and tests were originally designed to evaluate toxicant effects on reproduction and development. These protocols can be modified to test for thyroid toxicants by the addition of specific endpoints acquired at specific developmental time points. Although selected EPA and/or OECD protocols are adequate in their dosing regimen and timing of treatment, they will require adaptation for the timing of thyroid endpoint acquisition to effectively evaluate toxicant effects on thyroid hormone action (as mentioned previously).

3. Current thyroid endpoints of thyroid gland weight and histopathology, serum T4 and serum TSH, measure only thyroid function and not thyroid hormone action. As reviewed, measures of thyroid weight and histopathology may be interpreted within the context of thyroid cancer, but they cannot be interpreted within the context of “compensatory” responses. Specifically, thyroid hypertrophy may reflect a period of thyroid hormone insufficiency and a reflexive increase in serum TSH at a period of brain development that is sensitive to this degree of thyroid hormone insufficiency.

4. Thyroid endocrinology and biochemistry are remarkably conserved across vertebrate taxa (as discussed in the beginning of this section).

5. A significant number of new reagents have become available, including identified genes and antisera, which will better support homologous assay development in non-mammalian vertebrates.

8.2 Overall Strategy for Thyroid Screening and Testing

595. The following overview includes endpoints and assays considered to be a priority for research and development as well as those available for validation, so that regulatory programs may further develop and/or incorporate those that will be most valuable for their particular purposes. For a specific list of existing or potential future assays see Table 8-1.

a. *In Vitro* screening assays

 Research and Development:

596. A number of *in vitro* screening assays are described in this DRP. Generally, these fall into two categories—*in vitro* systems that 1) specifically examine receptor binding and activation, and 2) allow observation of the consequences of disrupting specific modes of action. The following *in vitro* assays are in different states of research and development. None of them have been validated for use as screening assays, and all of them need various amounts of development before they could enter into validation.

597. *In vitro* thyroid hormone receptor (TR) binding and activation assays are equivalent to estrogen and androgen receptor binding and activation assays. They can be made to accommodate high throughput and can identify thyroid toxicants that interact directly with thyroid hormone receptors. All vertebrates have TRs; their comparative structure and the kinetics of T3 binding to these TRs are quite similar. Therefore, it is theoretically possible that xenobiotics will bind to all vertebrate TRs with the same characteristics. This needs to be tested before being assumed.

598. *In vitro* assays that allow examination of thyroid hormone action may be useful, but certain disadvantages exist. For example, GH3 cells may be used to detect generalized disruption of TR action in a manner analogous to the ESCREEN for estrogenic/antiestrogenic chemicals. Although this assay may be
prone to false positives, it could be used as a tool to prioritize chemicals in conjunction with binding assays because these cells have both TRα and TRβ receptors and they respond to T₃ with proliferation.

599. Other in vitro assays allow the investigator to evaluate the effects of chemicals on specific modes of action. Most of these assays use cell lines that can address specific modes of action of thyroid disruption. For example, FRTL-5 cells can be used for their ability to concentrate iodide. Purified thyroperoxidase can be used to test for the ability of chemicals to block this enzyme.

600. The in vitro assays are most useful in exploring specific modes of action, but it would be unrealistic to incorporate in vitro tests that cover all possible points of thyroid disruption across taxa into a screening and testing battery—a large battery of in vitro tests would have to be assembled to allow chemicals to be tested for all aspects of thyroid toxicity. Thus, it would appear to be most effective to focus on adapting existing in vivo assays for thyroid endpoints. As these would be added endpoints to existing assays, little or no increase in animal usage would be required.

Possible Inclusion in Validation at This Time:

601. No in vitro assays are currently ready to validate in an existing screening battery. Several of the in vitro assays discussed in this document could be considered for validation after a limited amount of research and development.

b. In Vivo screening assays

Research and Development:

602. In general, the in vivo screening assays are relatively short-term treatments of toxicants during peripubertal or adult life stages (e.g., OECD 407 and the male and female pubertal assays). Considering that some thyroid cancer experts believe that thyroid histopathology in rats does not capture endpoints of human relevance, it may be useful to replace this difficult and expensive endpoint with those that are simpler, less costly, and more informative. For example, measuring thyroid gland T₄ content, as proposed by McNabb et al. (2004a, 2004b), may be a more sensitive indicator of TSH stimulation in the face of specific toxicants. Endpoints such as body weight or behavioral activities are affected by severe thyroid hormone insufficiency, but are not likely to be sensitive to small changes in circulating levels of thyroid hormones. There are few other in vivo endpoints of thyroid hormone action in adults that are well developed, and research in this area is needed.

Possible Inclusion in Validation at This Time:

603. These assays can provide important information about thyroid toxicants if strategic endpoints are included as described in this document. As described earlier in this chapter, endpoints more relevant to thyroid hormone changes at different life stages, or to changes that occur following exposure to chemicals that alter thyroid hormone levels, could be added to existing in vivo assays with little alteration to the number of animals utilized.

c. In Vivo Tests

Research and Development:

604. The in vivo tests include a number of developmental tests such as the OECD prenatal toxicity test or the one- or two-generation reproductive toxicity test. These tests can be modified to include measures of development that may be sensitive biomarkers of thyroid disruption. These future endpoints will likely be measures of histogenesis. There are a number of endpoints associated with neuronal differentiation and
migration in the cerebellum and cerebral cortex (during cerebral cortical layering) in the developing brain. These endpoints may be highly sensitive to thyroid hormone insufficiency and would clearly reflect adverse effects. Endpoints for brain development are still progressing and are not yet ready for validation in any regulatory testing program.

Possible Inclusion in Validation at This Time:

605. As described earlier (chapter 4 and chapter 8), additional time points for thyroid hormone measurement could accompany existing tests (such as the two-generation reproduction assay) so that developmental changes in thyroid hormone would be more accurately monitored.

d. Methods to integrate results from multiple species (including Table 8-2 below, showing points of disruption across taxa).

606. Interpreting results from several vertebrate taxa will likely require considerable debate. Two key considerations are: 1) different classes of vertebrates, and genera/species within those classes, likely have specific metabolic capacities or other physiological mechanisms that may render them particularly sensitive or insensitive to any one thyroid toxicant; and 2) it is likely that specific chemicals that interfere directly with thyroid hormone signaling will exert these effects across vertebrate taxa; however, the specific effects of thyroid hormone (and disruption) in different taxa will vary. We are just beginning to investigate these issues and we cannot expect to be able to derive broad inferences at this time.

8.3 Implications

607. The goal of this document is to provide a thorough review of the current literature of thyroid endocrinology and a basis for the strategic design of screens and tests to effectively identify environmental thyroid toxicants. The endocrine system is complex, and there are large gaps in our understanding of this system and the role it plays in development and physiology. In addition, because the field of thyroid toxicology has relied so heavily on measures of serum hormone levels and thyroid histopathology, few additional endpoints have been developed as a general screen of thyroid toxicity. Therefore, most of the endpoints described in this document are either unexplored for use in toxicology studies, or have not been validated. Moreover, a reasonably comprehensive review of these endpoints has been provided so that a broad perspective of available endpoints could be realized. The complexity of the endocrine system combined with large data gaps and endpoints uncharacterized in toxicological studies undoubtedly calls for ongoing research and development, as well as frequent re-evaluation and upgrading of the thyroid endpoints and assays used for regulatory purposes.

608. Table 8-1 shows existing or potential assays across all four taxa of interest, including advantages and disadvantages. Table 8-2 shows the primary targets of disruption across all four taxa.
Table 8-1 Existing or Potential In vivo and In vitro Assays

<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Primary Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Additional Endpoints to Consider for Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pubertal Assays</td>
<td>rat</td>
<td>Total serum T_4, TSH, thyroid weight and histology</td>
<td>Changes in circulating levels of TH, hypertrophy or hyperplasia of thyroid follicles</td>
<td>Simple add-on; Changes in TH levels relevant to human; follicular proliferation reflects TSH increase; thyroid histology not sensitive to confounders.</td>
<td>No target organ effects measured; one time hormone measurement; total hormone levels not necessarily adverse; lack of uniform histopathology method.</td>
<td>Time course for TH observations; thyroid gland TH content; possible measurement of serum binding proteins, Tg.</td>
</tr>
<tr>
<td>15-Day Adult Male</td>
<td>rat</td>
<td>T_4, TSH, thyroid weight and histology</td>
<td>Changes in circulating levels of TH, hypertrophy or hyperplasia of thyroid follicles</td>
<td>Simple add-on; Changes in TH levels relevant to human; follicular proliferation reflects TSH increase; thyroid histology not sensitive to confounders.</td>
<td>No target organ effects measured; one time hormone measurement; total hormone levels not necessarily adverse; lack of uniform histopathology method.</td>
<td>Time course for TH observations; thyroid gland TH content; possible measurement of serum binding proteins, Tg.</td>
</tr>
<tr>
<td>OECD 407 28-Day</td>
<td>rat</td>
<td>T_4, TSH, thyroid weight and histology</td>
<td>Changes in circulating levels of TH, hypertrophy or hyperplasia of thyroid follicles</td>
<td>Simple add-on; Changes in TH levels relevant to human; follicular proliferation reflects TSH increase; thyroid histology not sensitive to confounders.</td>
<td>No target organ effects measured; one time hormone measurement; total hormone levels not necessarily adverse; lack of uniform histopathology method.</td>
<td>Time course for TH observations; thyroid gland TH content; possible measurement of serum binding proteins, Tg.</td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Primary Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Additional Endpoints to Consider for Improvement</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>---</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>14-day and 21-day Frog Prometamorphosis Assay (NF stage 51/54-ca. 58)</td>
<td>Xenopus laevis</td>
<td>Hind limb differentiation; T<sub>3</sub> levels; thyroid gland histology; whole body length; developmental stage.</td>
<td>Normal, delayed, or accelerated morphogenesis from tadpole to frog.</td>
<td>More sensitive than tail resorption alone; more comprehensive than other Tier I screens for thyroid; relatively short; can accommodate other biochemical and molecular biomarkers.</td>
<td>Toxicant metabolism is unknown across taxa; lack of uniform histopathology method.</td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL SCREENING ASSAYS FOR CONSIDERATION

| Flounder metamorphoses assay | Flounder | Transition from sessile to benthic; potential large number of morphological changes associated with metamorphosis (e.g., eye migration) | Normal, delayed, or accelerated morphogenesis from juvenile to adult | Straightforward endpoint. | Does not consider other components of the fish thyroid cascade, such as central T4 production (Brain-pituitary-thyroid axis). Relevance to other taxa, especially mammals, is unknown. This assay requires further development and refinement, standardization and validation |

POTENTIAL IN VITRO SCREENING ASSAYS

<p>| In vitro receptor binding | Isolated recombinant receptors from any vertebrate | T<sub>3</sub> binding to receptor | May be important mechanism by which some toxicants could interfere with thyroid signaling | Solid state binding assays available; low rate of false positive; appropriate for high through-put | Receptor binding not fully characterized as a mechanism; high false negative; no metabolic activation; solubility |</p>
<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Species</th>
<th>Primary Thyroid-Related Endpoints</th>
<th>Target Effects Relevant to the Thyroid System</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Additional Endpoints to Consider for Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor activation using recombinant receptors (from any vertebrate)</td>
<td>Various types of cell lines</td>
<td>Functional assay to define pharmacology</td>
<td>Tissue end organ effects of T₃</td>
<td>Can determine agonist or antagonist properties; system can be manipulated, optimized, etc.; readily adapted to high through-put</td>
<td>Limited metabolic activity; cell wall (yeast)</td>
<td></td>
</tr>
<tr>
<td>Thyroid Peroxidase (TPO) using lactoperoxidase</td>
<td></td>
<td>Iodine organification</td>
<td>Iodine organification</td>
<td>Sensitive; unlikely to produce false positives; in vitro uses fewer animals; could be adapted to high through-put application</td>
<td>No rodent or human TPO available; high false negative due to specificity; only one of many MOAs that affect hormone levels.</td>
<td></td>
</tr>
<tr>
<td>Binding to serum proteins (TTR, TBG)</td>
<td>Rat, human, others by design</td>
<td>Displacement of T₄ from proteins; potentially reduce serum T₄;</td>
<td>May be a mechanism by which some chemicals cause serum T₄ reduction; potentially may reduce T₄ uptake into tissue including brain.</td>
<td>Well-characterized; can be modified for high through-put; may be predictive of chemicals that alter fetal T₄</td>
<td>Many other MOAs affect serum hormones in addition to this; TTR knock-outs do not support relevance to adverse effects.</td>
<td></td>
</tr>
<tr>
<td>Deiodinase</td>
<td>Frog, fish, possibly mammal</td>
<td>Conversion of T₄ to T₃ (outer ring deiodinase) or reverse T₃ (inner ring deiodination)</td>
<td>Potentially a mechanism by which tissues regulate their sensitivity to thyroid hormone</td>
<td>Well-characterized assay; important endpoint for tailored tests</td>
<td>Not a single assay (three types); tissue and species differences in deiodinases</td>
<td></td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>Rat, others as available</td>
<td>T₄ glucuronidate</td>
<td>T₄ deactivation, reduction of circulating levels</td>
<td>Well-characterized; in vivo exposure, ex vivo assay; inducible; not as sensitive to durnal rhythm or stress</td>
<td>Very specific; high false negative; somewhat laborious</td>
<td></td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Primary Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Additional Endpoints to Consider for Improvement</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GH₃ cell assay</td>
<td>Rat</td>
<td>Growth/proliferation; normal morphology of cell signals; can be constructed to identify agonist/antagonist</td>
<td>local tissue effect of T₃</td>
<td>High through-put adaptability; uses fewer animals; can detect agonist or antagonist activity</td>
<td>Specific for TR binding; high false negative</td>
<td></td>
</tr>
<tr>
<td>Mammalian one- or two-generation</td>
<td>Rat/mouse</td>
<td>Currently no thyroid specific endpoints validated; T₄/TSH levels, thyroid weight and histopathology being considered as add-on</td>
<td>Currently no thyroid-specific endpoints; hormone levels and histopathology would provide potential measure of thyroid dysfunction during development</td>
<td>Would provide at least some thyroid specific endpoints; provides a postnatal developmental hormone profile; doesn’t use additional animals</td>
<td>Does not provide endpoints of hormone action in tissue; no overt measures of adverse effects</td>
<td>(PND4, PND21, Adult) In addition to hormone levels and thyroid histopathology: Serum binding proteins; serum Tg; Thyroid gland hormone content; Cortical lamina (BrdU in utero); cerebellar histology (P5-15); granule cell apoptosis (P5-10); Oligo # or anterior commissure area; heart development.</td>
</tr>
<tr>
<td>Fish two gen</td>
<td>Fat head minnow, medaka, zebrafish, sheepshead minnow</td>
<td>T₄ levels (whole body/serum/tissue); thyroid weight and histopathology</td>
<td>Thyroid status</td>
<td>Non mammalian test; thyroid function effects over time/development stages</td>
<td>May be insensitive to thyroid toxicants; tissue measures may be inaccurate or laborious; few TSH methods (may require development); T₃ not currently included</td>
<td>TSH, T₃ measurements; deiodinase assay; gill chloride</td>
</tr>
<tr>
<td>Assay Name</td>
<td>Species</td>
<td>Primary Thyroid-Related Endpoints</td>
<td>Target Effects Relevant to the Thyroid System</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Additional Endpoints to Consider for Improvement</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Avian Two-Generation Assay</td>
<td>Japanese quail</td>
<td>Circulating T<sub>4</sub>, T<sub>3</sub>, TSH, thyroid weight, thyroid histology, bone length, skeletal endpoints; thyroid gland hormone content; body weight/growth rate</td>
<td>Developmental profile of thyroid function, assay of thyroid hormone-sensitive tissues (skeleton); HPT axis activation</td>
<td>Doesn’t require sacrifice; relatively inexpensive, simple, quick; easily validated; new information indicates gland TH content is sensitive and reliable.</td>
<td>T<sub>4</sub> and T<sub>3</sub> are highly variable; no TSH assays; histopath is labor intensive. Body weight very insensitive</td>
<td></td>
</tr>
<tr>
<td>Avian embryo assay</td>
<td>Japanese quail</td>
<td>Toxicant application to external air cell membrane; thyroid endpoints during embryonic development and 1-day chick including gland hormone measurements; histopathology; skeletal x-ray</td>
<td>Developmental endpoints of thyroid function and thyroid hormone action</td>
<td>Developmental times may be more sensitive to thyroid-specific toxicants</td>
<td>Unknown sensitivity to thyroid hormone or thyroid toxicants</td>
<td></td>
</tr>
<tr>
<td>Larval fish assay</td>
<td>Larval fish</td>
<td>Development/growth, hormone content, histopathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flounder metamorphoses assay</td>
<td>Flounder</td>
<td>Transition from sessile to benthic; potential large number of morphological changes associated with metamorphosis (e.g., eye migration)</td>
<td>Normal, delayed, or accelerated morphogenesis from juvenile to adult</td>
<td>Some may be simple and reliable endpoints. Others will require more effort but may be reproducible. Potentially unique assay of TH action on tissues.</td>
<td>Does not consider other components of the fish thyroid cascade, such as central T4 production (Brain-pituitary-thyroid axis). Relevance to other taxa, especially mammals, is unknown. This assay requires further development and refinement, standardization and validation</td>
<td></td>
</tr>
</tbody>
</table>
Table 8-2 Points of Disruption across Taxa

<table>
<thead>
<tr>
<th>Primary Target</th>
<th>Mammals (Chapter 3)</th>
<th>Birds (Chapter 7)</th>
<th>Amphibian (Chapter 6)</th>
<th>Fish (Chapter 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid</td>
<td>Thyroid cells in all vertebrates concentrates iodide by the action of (at least) the sodium-iodide symporter (NIS). This protein is homologous in all vertebrates, but the comparative aspects of this protein in different vertebrates has not been well characterized. Therefore, while NIS inhibition is a potentially important point at which thyroid disruption could occur. However, research may show that specific chemicals (e.g., perchlorate) may be more potent in some vertebrates than in others.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIS inhibition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPO Inhibition</td>
<td>The thyroperoxidase enzyme, similar to NIS, may be different enough among the taxa that it will respond differently to specific EDCs. Further research is required to clarify this issue.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects</td>
<td>The first effect of direct inhibition of thyroid function will be the reduction in thyroid hormone synthesis and secretion. There are a great many variables that differ among vertebrate taxa that will influence this effect. Specifically, differences among vertebrates in serum half-life for thyroid hormones, the storage capacity of the thyroid gland for thyroid hormone, and the relative sensitivity of thyroid hormone synthesis to EDCs acting on the NIS or TPO, will be important to consider when comparing the relative potency of EDCs among taxa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone Assays</td>
<td>RIA kits are commercially available for T₂, T₃, free T₄, free T₃, and TSH. The T₄ kit most commonly used (a human serum-based kit) is not well calibrated for T₄ in rats. Measurement of rT₄/fT₃ are vulnerable to changes in binding proteins and may be invalid. Volumes of serum required for the RIA can be large and therefore difficult to obtain in small animals (pups).</td>
<td>RIAAs and ELISAs are in common use for thyroid hormones. Although T₂ and T₃ are chemically identical to thyroid hormones in all vertebrates, including humans, serum components may differ among taxa/species such that human kits are not valid. Validation procedures should be instituted. No immunoassay exists for avian TSH, but could be developed. Serum volumes required for multiple assays often limiting.</td>
<td>RIAAs and ELISAs are in common use for thyroid hormones. Although T₂ and T₃ are chemically identical to thyroid hormones in all vertebrates, including humans, serum components may differ among taxa/species such that human kits are not valid. Validation procedures should be instituted. No immunoassay exists for amphibian TSH, but could be developed. Serum volumes required for multiple assays often limiting.</td>
<td>RIAAs and ELISAs are in common use for thyroid hormones. Although T₂ and T₃ are chemically identical to thyroid hormones in all vertebrates, including humans, serum components may differ among taxa/species such that human kits are not valid. Validation procedures should be instituted. No immunoassay exists for avian TSH, but could be developed. Serum volumes required for multiple assays often limiting. Volumes available for analysis may be low and “whole body” measures may be required.</td>
</tr>
</tbody>
</table>

Note: TSH is present as a protein dimmer in the pituitary of all vertebrate taxa. However, this large glycoprotein is different enough among taxa – and even between species within a class – that assays must be tailored for the specific TSH or a closely related one.
<table>
<thead>
<tr>
<th>Primary Target</th>
<th>Mammals (Chapter 3)</th>
<th>Birds (Chapter 7)</th>
<th>Amphibian (Chapter 6)</th>
<th>Fish (Chapter 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid Measures</td>
<td>Thyroid gland weight Histopathology -May represent an integrated measure of thyroid function over time. Signs of hyperplasia may indicate susceptibility to cancer; however this is controversial. -Measure of stored T₄/T₃ not routinely performed but may be important.</td>
<td>Thyroid gland weight Histopathology -Both require training. Histopathology not validated for avian EDC research.</td>
<td>Thyroid structure differs from mammals and among amphibian species. Histopathology has not been validated for endocrine or EDC studies.</td>
<td>Thyroid structure differs from mammals and among fish species. Histopathology has not been validated for endocrine or EDC studies.</td>
</tr>
<tr>
<td>Adverse Effects</td>
<td>Not routinely measured. Could include a variety of developmental and physiological endpoints. These are reviewed in Chapter 4. Developmental endpoints may be most sensitive. Potential assays are reviewed in Chapter 4.</td>
<td>Not routinely measured. Could include a variety of developmental and physiological endpoints. Developmental endpoints may be most sensitive. Potential assays are reviewed in chapter 7.</td>
<td>Amphibian metamorphosis being actively investigated as potential measure of EDC adverse effects on development. Many reagents/methods approaching validation.</td>
<td>Not routinely measured. Could include a variety of developmental and physiological endpoints. Flounder metamorphosis may be a simple and quantitative assay for EDC adverse effects through multiple modes of action.</td>
</tr>
<tr>
<td>Hormone Metabolism</td>
<td>Serum Binding Protein displacement</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Effects</td>
<td>A prevailing theory is that if T₄ (and/or T₃) is displaced from serum binding proteins, then the hormones will be more rapidly removed and adverse effects of thyroid hormone insufficiency will result. However, humans with defective or absent binding proteins have altered TH levels, but no symptoms of hypothyroidism. Moreover, TTR knock-out mice have low serum hormone levels, but normal tissue levels (including brain). However, this mode of action may contribute to effects of EDCs on thyroid hormone levels. The three major thyroid hormone binding proteins – transthyretin, thyroxine binding globulin, and albumin – are expressed in different ratios in different vertebrates and differ somewhat in their structure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Target</td>
<td>Mammals (Chapter 3)</td>
<td>Birds (Chapter 7)</td>
<td>Amphibian (Chapter 6)</td>
<td>Fish (Chapter 5)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Effects</td>
<td>Prevailing theory is that induction of these enzymes by EDCs can increase their clearance (decreasing serum half-life) and causing adverse consequences mediated by thyroid hormone insufficiency. Evidence supports this concept, but there are UDPGTs selectively directed against T₄ or T₃ and EDCs may differ in their ability to induce one or both of these.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue Uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₄ transporters</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>T₃ transporters</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Effect</td>
<td>Several recent papers strongly suggest that T₄-transporters are expressed selectively on nerve cells within the central nervous system and that defects in this protein (MCD8δ) causes mental retardation and neurological deficits. Few endocrine or EDC studies have been performed, but these may be important.</td>
<td>Little information is available in birds for the existence of cellular transporters for T₃ and T₄. May be important site of EDC action.</td>
<td>There is some evidence that cells such as red blood cells have active TH transport in amphibians. Little work has been performed to identify these transporters and to characterize their importance in thyroid hormone signaling or as targets of EDC action.</td>
<td>More evidence exists for active transport mechanisms for cellular uptake in fish, but little evidence for the role of these proteins in physiology or effects of EDC on their function.</td>
</tr>
<tr>
<td>TRs</td>
<td>α/β Isoforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α/β Isoforms</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Effects</td>
<td>It is becoming clear that the different TR isoforms mediate different actions of thyroid hormone on development and physiology of all vertebrates. There is more information available in mammals, but enough information exists in some representatives of other taxa to make this conclusion. This is important because there may be EDCs that selectively affect specific TR isoforms. Although this has not been identified for any EDC, it would complicate the identification of adverse effects because assays would have to be designed to identify TR isoform-specific endpoints. A second important issue is that while T₄ binds to all TRs, we do not know if individual EDCs bind to all TRs equally. This is not likely. Therefore, TR binding as an EDC screen may require TRs from different taxa to address this issue. Finally, the actions of TRs in different vertebrates are different. In addition, these actions differ at different life stages. Therefore, endpoints of EDC effects on TR actions must be strategically designed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deiodinases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are two or three deiodinase enzymes in each taxa. These proteins share a great deal of similarity, but no studies have evaluated the effects of EDCs across the various deiodinases. However, considering that tissue expression of deiodinases controls sensitivity of the tissue to thyroid hormone, this may be an important point at which EDCs could disrupt thyroid hormone signaling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPT axis</td>
<td>In all vertebrates, the dynamic relationships between the hypothalamus, pituitary and thyroid are functionally similar. Differences among vertebrates exist in some of the hypothalamic peptides controlling pituitary-thyroid function, but the HPT axis is functionally similar in all vertebrates.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.0 REFERENCES

Bakker, O., Beeren, H. C. V., and Wiersinga, W. M. 1994. Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta-1 receptor protein. Endocrinology 134:1665-1670.

Banker, D., Bigler, J., and Eisenman, R. 1991. The thyroid hormone receptor gene (c-erb Aα) is expressed in advance of thyroid hormone naturation during the early embryonic development of *Xenopus laevis*. Mol Cell Biol 11:5079-5089.

Bres, O., MacLatchy, D. L., and Eales, J. G. 1994, Thyroid hormone: Deiodinase and receptor assays in Biochemistry and Molecular Biology of Fishes, Volume 3, Hochachka and Mommsen (eds.) Elsevier Science B.V.

202

dimensional organization of the subventricular germinal zone in the adult mammalian brain. J
Neurosci 17:5046-5061.

Dowling, A. L. S., and Zoeller, R. T. 2000. Thyroid hormone of maternal origin regulates the expression of

hormone induce rapid and transient changes in specific gene expression in fetal rat brain. J Neurosci
20:2255-2265.

Dremier, S., Coulonval, K., Perpete, S., Vandeput, F., Fortemaison, N., Van Keymeulen, A., Deleu, S.,
Ledent, C., Clement, S., Schurmans, S., Dumont, J. E., Lamy, F., Roger, P. P., and Maenhaut, C.
2002. The role of cyclic AMP and its effect on protein kinase A in the mitogenic action of

Dunn, A. D., and Dunn, J. T. 1982a. Thyroglobulin degradation by thyroidal proteases: Action of purified
cathepsin D. Endocrinology 111:280-289.

Dunn, A. D., and Dunn, J. T. 1982b. Thyroglobulin degradation by thyroidal proteases: Action of thiol

Dunn, J. T., and Dunn, A. D. 2000. Thyroglobulin: chemistry, biosynthesis, and proteolysis in The
Thyroid: A Fundamental and Clinical Text 8th edition eds. Braverman, L. E., and Utiger, R. D.
Lippincott, Williams and Wilkins, Philadelphia, pp. 91-104.

Dunn, A. D., Myers, H. E., and Dunn, J. T. 1996. The combined action of two thyroidal proteases releases
T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology 137:3279-3285.

hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 123:2291-
2297.

Eales J. G. 1988. The influence of nutritional state on thyroid function in various vertebrates. Amer Zool

Eales, J. G. 1979. Thyroid function in cyclostomes and fishes in Barrington, E. J. (ed.) Hormones and

Reviews in Fish Biology and Fisheries 3(4)299-347.

chemical disruption of thyroid hormone homeostasis and thyroidal status in fish, Environmental
Toxicology and Risk Assessment: Standardization of Biomarkers for Endocrine Disruption and

Farwell, A. P., and Dubord-Tomasetti, S. A. 1999a. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology 140:4221-4227.

Favre-Young, H., Dif, F., Roussille, F., Demeneix, B. A., and Kelly, P. A. 2000, Cross-talk between signal transducer and activator of transcription (stat5) and thyroid hormone receptor-1 (TR 1) signaling pathways: Molecular Endocrinology 14:1411-1424.

Filetti, S., and Rapoport, B. 1983. Evidence that organic iodine attenuates the adenosine 3',5'-monophosphate response to thyrotropin stimulation in thyroid tissue by an action at or near the adenylate cyclase catalytic unit. Endocrinology 113:1608-1615.

Fowler L. A. 2001. PCB effects on brain Type II 5'-deiodinase activity in developing birds. MS Thesis, VA Tech.

Frumess, R. D., and Larsen, P. R. 1975. Correlation of serum triiodothyronine (T3) and thyroxine (T4) with biologic effects of thyroid hormone replacement in propylthiouracil-treated rats. Metabolism 24:547-554.

Gloss, B., Trost, S., Bluhm, W., Swanson, E., Clark, R., Winkfein, R., Janzen, K., Giles, W., Chassande, O., Samarut, J., and Dillmann, W. 2001. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142.

Greer, M. A., Sato, N., Wang, X., Greer, S. E., and McAdams, S. 1993. Evidence that the major physiological role of TRH in the hypothalamic paraventricular nuclei may be to regulate the set-point for thyroid hormone negative feedback on the pituitary thyrotroph. Neuroendocrinology 57:569-575.

Han, Y., Watling, D., Rogers, N. C., and Stark, G. R. 1997. JAK2 and STAT5, but not JAK1 and STAT1, are required for prolactin-induced beta-lactoglobulin transcription. Molecular Endocrinology 11:1180-1188.

Iwase, K., Yamauchi, K., and Ishikawa, K. 1995, Cloning of cDNAs encoding argininosuccinate lyase and arginase from Rana catesbeiana liver and regulation of their mRNAs during spontaneous and thyroid hormone-induced metamorphosis. Biochem Biophys Acta 1260:139-146.

Koenig, R. J. 1998. Thyroid hormone receptor coactivators and corepressors. Thyroid 8:703-713.

Krain, L. P., and Denver, R. J. In Press, Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in *Xenopus laevis*. J. Endocrinology.

LaFranchi, S. 1999b. Thyroid function in the preterm infant. Thyroid 9:71-78.

Langlois, M. F., Zanger, K., Monden, T., Safer, J. D., Hollenberg, A. N., and Wondisford, F. E. 1997. A unique role of the beta-2 thyroid hormone receptor isoform in negative regulation by thyroid...
hormone. Mapping of a novel amino-terminal domain important for ligand-independent activation. Journal of Biological Chemistry 272:24927-24933.

Morte, B., Manzano, J., Scanlan, T. S., Vennstrom, B. and Bernal, J. 2004. Aberrant maturation of astrocytes in thyroid hormone receptor alpha 1 knockout mice reveals an interplay between thyroid hormone receptor isoforms. Endocrinology 145(3):1386-1391. Published by The Endocrine Society
Morte, B., Manzano, J., Scanlan, T., Vennstrom, B., and Bernal, J. 2002. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99:3985-3989.

Puzianowska-Kuznicka, M., Damjanovski, and S., Shi, Y-B. 1997. Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis. Molecular Cell Biology 17:4738-4749.

Reinert, B. D., and Wilson, F. E. 1997. Effects of thyroxine (T4) or triiodothyronine (T3) replacement therapy on the programming of seasonal reproduction and postnuptial molt in thyroidectomized male American tree sparrows (Spizella arborea) exposed to long days. J Exp Zool 279:367-76.

Salerno, M., Militerni, R., Bravaccio, C., Micillo, M., Capalbo, D., Di, M. S., and Tenore, A. 2002. Effect of different starting doses of levothyroxine on growth and intellectual outcome at four years of age in congenital hypothyroidism. Thyroid 12:45-52.

Strawson, J., Zhao, Q., and Dourson, M. 2004. Reference dose for perchlorate based on thyroid hormone change in pregnant women as the critical effect. Regul Toxicol Pharmacol 39:44-65.

Tagawa, M., Tanaka, M., Matsumoto, S., and Hirano, T. 1990. Thyroid hormones in eggs of various freshwater, marine, and diadromous teleosts and their changes during egg development. Fish Physiol Biochem 8:515-20

259

Taylor, T., Wondisford, F. E., Blaine, T., and Weintraub, B. D. 1990. The paraventricular nucleus of the hypothalamus has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. Endocrinology 126:317-324.

Ulisse, S., Esslemont, G., Baker, B. S., Chatterjee, V. K. K., and Tata, J. R. 1996. Dominant-negative mutant thyroid hormone receptors prevent transcription from Xenopus thyroid hormone receptor gene promoter in response to thyroid hormone in Xenopus tadpoles in vivo. Proc Natl Acad Sci USA 93:1205-1209.

Valamparampil, T. T., and Oommen, O. V. 1997. Triiodothyronine (T3) and thyroxine (T4) levels in *Rana curtipes* during development and metamorphosis. Indian Journal of Experimental Biology 35:1375-1377.

Weber, R., Blum, B., and Muller, P. R. 1991. The switch from larval to adult globin gene expression in *Xenopus laevis* is mediate by erythroid cells from distinct compartments. Development 112:1021-1029.

Weiss, R. E., Murata, Y., Cua, K., Hayashi, Y., Seo, H., and Refetoff, S. 1998. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice. Endocrinology 139:4945-4952.

Wester, P. W., Canton, J. H., and Dormans, J. A. M. A. 1988, Pathological effects in fresh-water fish *Poecilia-reticulata* (Guppy) and *Oryzias-latipes* (Medaka) following methyl-bromide and sodium-bromide exposure. Aquatic Toxicology 12:323-343.

