OECD ADVERSE OUTCOME PATHWAY

Project Submission Form

If you require further information please contact the OECD Secretariat
Return completed forms to our generic account (env.tgcontact@oecd.org), and Nathalie Delrue (Nathalie.delrue@oecd.org)

PROJECT TITLE

Anti-dopaminergic activity leading to pancreatic islet cell tumors

SUBMITTED BY (Country / European Commission / Secretariat)

Japan

DATE OF SUBMISSION TO THE SECRETARIAT

NOV.14th, 2018

DETAILS OF LEAD COUNTRY/CONSORTIUM

Country/Organisation:	Japan
Agency/ministry/Other:	Japan Pharmaceutical Manufacturers Association
Contact person(s):	Tatsuya Nagasawa
Mail Address:	2320-1 maki, Hotaka, Azumino, Nagano, 399-8305, Japan
Phone/fax:	+81-(0)263-83-5053
Email:	tatsuya_nagasawa@pharm.kissei.co.jp

PROJECT CATEGORY

☑ Development of an AOP - applicable to a chemical category

Select the development tool to be used
☑ AOP-Wiki ☐ Effectopedia

☐ Guidance document related to AOP development including its evaluation

☐ Knowledge management tool for supporting AOP development including its evaluation

☐ Other, please specify below

If other category, please specify:
PROJECT DESCRIPTION

Please provide sufficient information to facilitate the review of the project submission by the OECD secretariat and the Extended Advisory Group with respect to its suitability to be included in the workplan of the AOP programme.

During the decades of drug development with rodent carcinogenicity studies, some classes of pharmaceuticals are known to induce tumors with non-genotoxic mechanisms based on their on-target or off-target pharmacology as well as toxicity; some are mostly common in rodents and the others might be extrapolated to humans. One of these non-genotoxic carcinogenesis is dopamine antagonism-induced pancreatic islet tumor formation and we propose to develop the AOP.

Dopamine by itself acts as a main prolactin inhibiting factor (PIF) with some other factors to suppress prolactin (PRL) release from the anterior pituitary [1]. In cases where serotonin-dopamine antagonists such as risperidone [2] and iloperidone [3] binds to dopamine D2 receptors for prolonged period, the dopamine-induced negative signal on prolactin secretion is suppressed with a resultant increase in blood PRL level. PRL stimulates rodent pancreatic β-cell proliferation via affecting cell cycle phase and polyamine metabolism [4,5]. Chronic hyperprolactinemia sustains exaggerated proliferation of islet cells, which results in pancreatic islet cell tumor formation.

The relationship between elevated blood PRL level and islet tumor formation in humans is not clearly understood at present. However, the anti-dopaminergic activity-related risks of pancreatic islet cell tumors in human deems to be low compared with rodents considering that human β-cells might lacks functional PRL receptors and do not proliferate in response to PRL [6,7]. So far, the relationship between long-term administration of antipsychotic drugs in humans and tumorigenesis has not been proved shown by the results of various epidemiological studies [6,9].

Note: For AOP Development projects please indicate the extent of the pathway to be described (i.e. the anchor points), the intermediate events that are likely to be addressed, the state of current development, the degree to which this pathway is already understood and described in the literature, and the expectation on the availability of evidence to support the AOP. Proposers should also indicate if and how the AOP is associated to any regulatory toxicological endpoints (e.g. acute or chronic toxicity, toxicity to reproduction etc.) Please provide references, links or attachments for supplementary information.

PROJECT PLANNING

In this section, please provide an indication of when the project is likely to commence and the expected duration. Please also make reference to any particular milestones or external factors that will influence project planning, and if the project is linked to programmes of particular organisations or consortia.

The Japanese Pharmaceutical Manufacturers Association (JPMA) will develop several AOPs for non-genotoxic carcinogenesis based on our survey on the pharmacology-induced modes of action of carcinogenesis in the next four years under the cooperation with Dr. Kumiko Ogawa (National Institute of Health Sciences).

The timeline of the development of the present AOP is as follows:

- Nov., 2018: to submit the AOP SPSF
- Jun., 2019: to complete AOP Wiki input and wiki input and request an internal review by EAGMST.
FLOW DIAGRAM

In this section, please provide a flow diagram of the proposed AOP, including the ME, KEs at the various stages (molecular interaction, cellular response, organ response) and the AO.

<table>
<thead>
<tr>
<th>Level of Organization</th>
<th>AOP Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-molecular</td>
<td>Anti-dopaminergic activity</td>
</tr>
<tr>
<td>Cell/Tissue</td>
<td>Pancreatic β-cell proliferation</td>
</tr>
<tr>
<td>Organ/Organ System</td>
<td>Increased blood PRL level</td>
</tr>
<tr>
<td>Individual</td>
<td>Pancreatic islet cell tumor</td>
</tr>
</tbody>
</table>

References

2. US Package Insert (RISPERDAL®)
3. US package Insert (FANAPT®)